KR950010800B1 - 과탄산나트륨의 연속제조방법 - Google Patents

과탄산나트륨의 연속제조방법 Download PDF

Info

Publication number
KR950010800B1
KR950010800B1 KR1019920014330A KR920014330A KR950010800B1 KR 950010800 B1 KR950010800 B1 KR 950010800B1 KR 1019920014330 A KR1019920014330 A KR 1019920014330A KR 920014330 A KR920014330 A KR 920014330A KR 950010800 B1 KR950010800 B1 KR 950010800B1
Authority
KR
South Korea
Prior art keywords
sodium percarbonate
reaction
hydrogen peroxide
fluidized bed
sodium
Prior art date
Application number
KR1019920014330A
Other languages
English (en)
Other versions
KR940003848A (ko
Inventor
이윤구
이종필
백도선
Original Assignee
동양화학공업주식회사
권석명
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동양화학공업주식회사, 권석명 filed Critical 동양화학공업주식회사
Priority to KR1019920014330A priority Critical patent/KR950010800B1/ko
Publication of KR940003848A publication Critical patent/KR940003848A/ko
Application granted granted Critical
Publication of KR950010800B1 publication Critical patent/KR950010800B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/20Preparation by reacting oxides or hydroxides with alkali metal salts
    • C01D1/22Preparation by reacting oxides or hydroxides with alkali metal salts with carbonates or bicarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

내용 없음.

Description

과탄산나트륨의 연속제조방법
본 발명은 건식법을 이용하여 과탄산나트륨을 연속적으로 제조하는 방법에 관한 것으로서, 더욱 상세하게는 탄산나트륨으로부터 건식법을 이용하여 과탄산나트륨을 제조함에 있어 탄산나트륨을 용해시키지 아니하고 과산화수소와 직접 반응시키므로서 고수율로 과탄산나트륨을 연속 제조하는 방법에 관한 것이다.
일반적으로 탄산나트륨으로부터 과산화수소를 반응시켜서 과탄산나트륨을 제조하는데는 크게 습식법과 건식법이 있는바, 습식법은 탄산나트륨을 물에 용해시켜서 슬러리상태에서 과산화수소를 첨가 반응시키고 Fe 등 중금속을 제거시키기 위해 NaOH를 첨가 정제하는 과정 및 재결정과정과 건조과정을 거쳐 제조하는 것으로서, 재결정하고 건조시켜야 하는 관계로 수율이 낮고 에너지 비용이 높기 때문에 경제적으로 문제가 있었을 뿐 아니라 유효 산소 잔존율이 낮은 단점이 있었다.
이러한 습식법을 이용한 제법으로서, 예컨대 일본특허공고 소 63-63481호 및 미국특허 제3870783호에서는 습식법의 과정으로 과탄산나트륨을 제조하는바, 이 방법들에서는 제조단계가 복잡하여 에너지 비용이 매우 높고 수율이 80~90% 정도로 비교적 낮을 뿐 아니라 유효 산소 잔존율, 즉 과산화수소 분해율이 높다.
또한, 건식법으로서 독일특허 제2133566호에서는 고온의 유동층 건조기에서 반응과 건조를 동시에 시행하므로써 반응열을 조절할 수 없어 분해가 됨으로써 수율이 낮고 입자형성이 불충분하기 때문에 입자형성이 균일하지 못하게 되어 상품가치가 떨어지는데 20~60메쉬의 입자분포가 60%에도 못미친다.
이와같이 종래의 과탄산나트륨은 저온 표백능이 우수한 무공해 산소계 표백제로서 유용하고, 또 그 산화성을 이용한 용도가 다양하기 때문에 보다 효율적인 제조방법이 필요하였으나, 대부분 널리 사용되고 있는 습식법이나 이를 개선시킨 건식법 모두가 나름대로의 단점이 있었기 때문에 그 제조방법의 개선이 시급하였다.
이에 본 발명자들은 종래의 습식법의 단점을 해소하고 건식법에서 나타나는 입자형성의 불균일 문제를 해결하기 위하여 연구한 결과 건식법을 이용하되 과산화수소의 주입과 건조과정에서의 조건을 조절하게 되면 수율이 향상됨과 아울러서 균일한 입자의 안정한 과탄산나트륨을 얻을 수 있다는 사실을 알게 되어 본 발명을 완성하였다.
따라서, 본 발명은 건식법을 이용하여 탄산나트륨을 과산화수소와 직접 반응시켜서 고수율로 균일한 입자의 안정한 과탄산나트륨을 제조하는 개량된 방법을 제공하는데 그 목적이 있다.
이하, 본 발명을 상세히 설명하면 다음과 같다.
본 발명은 건식법으로 탄산나트륨과 과산화수소를 반응시키고 유동층 건조기로 건조시켜서 과탄산나트륨을 제조함에 있어서, 탄산나트륨을 정제하지 않고서 교반하에서 공기를 주입함과 동시에 안정화된 과산화수소를 분무시키면서 40~70℃의 온도로 반응시킨 다음, 열풍을 불어 넣으면서 연속적으로 유동 건조시켜서 제조함을 그 특징으로 한다.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명은 건식법을 이용하여 과탄산나트륨을 제조함에 있어서, 탄산나트륨과 과산화수소를 반응시킬때 정제하지 않은 탄산나트륨을 과산화수소와 직접 반응시키면서도 분해가 되지 않고 입자형성이 우수한 목적물을 제조할 수 있도록 하는 방법이다.
본 발명에서는 상기 반응시에 탄산나트륨을 교반속도 1~5rpm으로 교반시키면서 공기를 반응기 용량 1㎥당 2~15㎥/분의 속도로 공기를 주입하면서 반응시킨다. 이때, 교반속도가 너무 늦으면 반응이 잘 이루어지지 않고 반응온도가 상승하여 분해를 유발하며, 너무 빠르면 입자가 깨져 입자형성이 불균일해지는 문제가 있다. 또한 공기는 분해를 방지하고 균일한 입자형성을 위해 주입하는 것으로서 그 주입량이 적거나 과다하면 분해가 일어나거나 입자형성이 곤란해지므로 바람직하지 못하다.
본 발명에 따르면 상기 반응중에 주입되는 공기는 바람직하기로는 직경 2~5mm의 노즐이 30~100개 장착되어 있는 반응기를 이용하여 공급되도록 하는 것이 좋은데, 이는 공기의 유입량 조절이 용이하게 되도록 함과 동시에 공기의 유입속도와 균일한 주입을 통해 분해방지의 효과를 극대화시키고 입자형성의 균일성을 높여주도록 하기 위한 것이다.
한편, 탄산나트륨과 함께 반응하는 과산화수소는 분무상태로 공급하여 반응시키는데, 과산화수소의 사용은 노즐이 장착된 분무기로 연속 공급되는 탄산나트륨 1mole에 대해 1.5mole비로 공급 사용하며 과산화수소 농도는 50~70%인 것을 사용한다.
또한, 상기 반응시의 반응온도는 40~70℃를 유지해야 하는데, 반응온도가 너무 낮으면 반응성이 낮고, 너무 높으면 분해가 되어 수율이 낮아지므로 바람직하지 못하다.
본 발명에 따르면 상기 반응시 수분함량을 5~20%로 조절하여야 입자형성이 용이한데, 이때 수분함량이 너무 적게 되면 입자형성이 되지 않으며, 수분함량이 너무 많으면 다음 공정의 건조기에서 건조속도가 늦어지며 분해의 우려가 있다.
한편, 상기와 같이 반응시킨 다음에 얻어지는 젖은 과탄산나트륨은 연속적으로 오버플로우(over-flow) 되어 건조기로 이송되어 건조되는데, 건조는 공지의 유동층 건조기에서 약 1~3시간 동안 이루어진다. 이때 유동층 건조기에서는 건조되는 과탄산나트륨의 온도를 50~100℃로 조절할 수 있는 칸막이가 설치되어 있어서 건조온도를 효율적으로 유지시켜주는데, 본 발명에서는 90~140℃의 열풍을 불어 넣어 일정 높이로 띄우면서 연속적으로 건조시켜서 분해를 방지해준다. 건조단계에서 열풍온도가 너무 높으면 분해를 유발하고, 너무 낮으면 수분함량이 높아 분해에 영향을 미치므로 적절한 온도유지가 필요하다. 건조한 이후에는 제품 냉각을 위하여 40~70℃로 냉각하여 과탄산나트륨을 얻는다.
이때 냉각온도가 너무 높거나 낮으면 건조후 분해되거나 응축수가 생길 수 있으므로 좋지 못하다.
본 발명에서는 유동층 건조기내에서 과탄산나트륨 건조시 유동층의 높이를 30~70cm, 바람직하기로는 20~50cm로 조절하는데, 높이를 조절하므로서 입자형성을 조절하도록 한다. 또한, 건조시 상기 열풍을 4~7㎥/min의 유입량으로 불어 넣는 것이 입자형성을 위한 유동층 높이조절 면에서 바람직하다.
본 발명에 따르면 과탄산나트륨의 연속제조가 가능한바, 이는 반응기에서 탄산나트륨을 연속 투입하면서 과산화수소를 탄산나트륨에 대해 1.5mole 비로 연속 분무하여 생성된 과탄산나트륨을 다음 공정인 건조기로 연속적으로 오버 플로우시켜 건조시킴으로써 연속적으로 제조될 수 있는 것이다.
이렇게 본 발명에 따라 건식법으로 과탄산나트륨을 제조하는데 사용되는 탄산나트륨은 겉보기 비중이 1.03~1.07이고 함량이 99% 이상인 것을 정제하지 않고 그대로 사용하며, 안정화된 과산화수소는 농도가 50~70%인 것으로서 안정화제로서 규산염이 0.1~1.5중량%, 황산염이 0.1~1.5중량%, 그리고 폴리포스폰산이 0.01~1.0중량% 첨가되어 안정화시킨 것이 사용된다. 이때 안정화제로 사용된 규산염으로서는 예컨대 메타규산나트륨이 사용될 수 있고 황산염으로서는 황산마그네슘이 사용될 수 있다.
이때 상기 규산염과 황산염은 과량사용될 경우 상대적으로 유효산소 함량이 낮아지고, 소량 사용되면 과탄산나트륨의 안정성이 저하되며, 이들은 탄산나트륨 중의 중금속을 붕쇄시켜 알카리상태의 과탄산나트륨을 안정화시키기 위해 사용된다. 또한 폴리포스폰산 킬레이트는 과량 사용될 경우 인산염 함량이 증가하므로 바람직하지 못하다.
이와 같은 본 발명에 따르면 공기의 주입시 공기량의 조절과 교반속도의 조절에 의해 과탄산나트륨의 반응열과 분해를 줄일 수가 있게 되고 균일한 입자의 과탄산나트륨을 92.5% 이상의 수율로 제조할 수가 있으며, 유효산소는 14% 이상이고 유효산소 잔존율도 97% 이상으로서 바람직한 과탄산나트륨이 얻어지게 된다.
상술한 바와 같이 본 발명의 방법에 따르면 탄산나트륨과 과산화수소 반응시 공기유입과 교반등의 반응조건을 개선하고 안정화된 과산화수소를 분무하면서 반응시키며 열풍 건조조건등을 통해 종래에 습식법이나 건식법에서 얻을 수 없었던 수율 및 입자형성이 우수한 안정한 과탄산나트륨을 연속적으로 제조할 수가 있으며, 이러한 과탄산나트륨은 무공해 산소계 표백제 등으로서 매우 유용하게 사용되는데 공업적 방법으로 더욱 효과적으로 공급할 수 있게 된다.
이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은바, 본 발명이 실시예에 의해 한정되는 것은 아니다.
[실시예 1]
교반기와 공기를 불어넣을 수 있는 장치가 장착된 10L 반응기에 탄산나트륨(B. D : 1.06g/㎤, 함량 99%)을 4kg/hr, 메탄규산나트륨 40g/hr로 투입하면서 황산마그네슘과 폴리포스폰산이 각각 25g, 10g 함유된 60% 과산화수소를 3.2kg/hr로 투입하여 반응시켰다. 이때 공기량은 70L/min로 유지시키고 교반속도는 3rpm이었다. 반응중 반응온도는 50℃를 유지하였다.
반응기에서 반응된 수분함량 14%인 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 열풍온도는 130℃, 유동층 높이를 30cm로 유지시키면서 건조기에서 건조하고 연속적으로 60℃로 냉각시킨 후 5.80kg/hr의 건조된 과탄산나트륨을 얻었다.
이 과탄산나트륨은 유효산소 14.8%의 균일한 입자의 과탄산나트륨으로 제조되었으며, 유효산소 잔존율, 입도분포도, 수율을 측정한 결과는 다음 표 1과 같다.
[실시예 2~5]
상기 실시예 1과 동일한 방법으로 모든 반응을 진행하였고, 반응기 내의 공기량을 50L/min(실시예 2), 90L/min(실시예 3), 110L/min(실시예 4) 및 130L/min(실시예 5)로 각각 실시하였다.
반응후 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 보내면서 열풍온도 130℃와 60℃의 냉각실을 통과시키고, 유동층 높이는 각각 20cm(실시예 3), 35cm(실시예 3), 40cm(실시예 4), 50cm(실시예 5)로 하여 실시하였다. 건조된 과탄산나트륨의 유효산소 잔존율, 입도분포, 수율을 측정한 결과는 각각 다음표 1과 같다.
[실시예 6]
반응장치와 조건은 실시예 1~5와 같이 실시하였고 다만 반응기에 주입되는 공기량은 60L/min으로 유지시키고 교반속도는 3rpm이었다. 반응중 반응온도는 60℃를 유지하였다.
반응기에서 반응된 수분함량 12%인 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 투입하여 열풍온도는 130℃, 유동층 높이를 30cm로 유지시키면서 건조기에서 건조하고 연속적으로 60℃로 냉각시킨 후 5.5kg/hr의 건조된 과탄산나트륨을 얻었다. 건조된 과탄산나트륨의 유효산소 잔존율, 입도분포, 수율을 측정한 결과는 다음 표 1과 같다.
[실시예 7]
실시예 1과 같은 반응장치와 조건으로 실시하고 반응기에 주입되는 공기량은 80L/min으로 유지시키고 교반속도는 3rpm이었다. 반응중 반응속도는 40℃로 유지시켰다. 반응기에서 반응된 수분함량 18%인 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 투입하여 열풍온도는 130℃, 유동층 높이를 30cm로 유지시키면서 건조기에서 건조하고 연속적으로 50℃로 냉각시킨 후 5.7kg/hr의 건조된 과탄산나트륨을 얻었다. 건조된 과탄산나트륨의 유효산소 잔존율, 입도분포, 수율을 측정한 결과는 다음 표 1과 같다.
[실시예 8]
실시예 7과 같은 반응조건으로 반응시킨 후 반응기에서 반응된 수분함량 18%인 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 투입하여 열풍온도는 100℃, 유동층 높이를 20cm로 유지시키면서 건조기에서 건조하고 과탄산나트륨을 50℃로 냉각시킨 후 5.7kg/hr의 건조된 과탄산나트륨을 얻었다. 건조된 과탄산나트륨의 유효산소 잔존율, 입도분포, 수율을 측정한 결과는 다음 표 1과 같다.
[비교예]
블레이드(blade)가 장착된 드럼형 믹서(drum/mixer)에서 탄산나트륨을 4.0kg/hr, 메타규산나트륨 40g/hr로 투입하면서 상기 실시예 1과 동일한 안정제가 함유된 60% 과산화수소를 3kg/hr로 투입하여 반응시켰다. 반응중 반응온도는 75℃이었다. 반응된 수분함량 23%의 젖은 과탄산나트륨을 유동층 건조기로 연속적으로 보내어 5.65kg/hr의 건조된 과탄산나트륨을 얻었다. 얻어진 목적물의 유효산소 잔존율, 입도분포도, 수율을 측정한 결과는 다음 표 1과 같다.
[비교예 2]
탄산나트륨 12%, 과산화수소 2.5%와 안정제로서 글루타민산나트륨 0.25%를 포함하는 용액 500ml를 교반하면서 이 용액을 탄산나트륨 90g/hr, 60% 과산화수소 77.7g/hr, 글루타민산나트륨 0.29g/hr을 연속적으로 투입하면서 반응온도를 20℃로 유지하여 반응시키고 체류시간은 40분을 유지시킨 후 슬러리를 취출하여 원심여과하고 여액은 재순환시키는 방법으로 하였다. 4시간 동안 연속 반응한 후 여과된 과탄산나트륨을 110℃에서 건조후 저장안정성과 수율을 측정한 결과는 다음 표 1과 같다.
[표 1]
(주)유효산소 잔존율 : 40℃, 상태습도 85%에서 14일간 방치후 측정한 결과임.
입도분포도 : 메쉬(ME) 범위의 분포 %를 나타냄.
수 율 : 과산화수소 사용량 기준수율임.

Claims (5)

  1. 건식법으로 탄산나트륨과 과산화수소를 반응시키고 유동층 건조기로 건조시켜서 과탄산나트륨을 제조함에 있어서, 탄산나트륨을 정제하지 않고서 교반하에서 공기를 반응기 용량 기준으로 1㎥당 2~15㎥/분의 비율로 주입함과 동시에 안정화된 과산화수소를 분무시키면서 40~70℃의 온도로 반응시킨 다음, 열풍을 불어 넣으면서 연속적으로 유동 건조시켜서 제조함을 특징으로 하는 과탄산나트륨의 연속 제조방법.
  2. 제1항에 있어서, 상기 교반은 1~5rpm으로 진행함을 특징으로 하는 과탄산나트륨의 제조방법.
  3. 제1항에 있어서, 상기 반응시 수분함량은 5~20%가 되도록 조절하여 반응시킴을 특징으로 하는 과탄산나트륨의 제조방법.
  4. 제1항에 있어서, 상기 열풍은 90~140℃의 온도로 유지하고 4~7㎥/분의 양으로 불어 넣는 것을 특징으로 하는 과탄산나트륨의 제조방법.
  5. 제1항에 있어서, 상기 건조시 건조기내의 과탄산나트륨의 유동층 높이는 20~50cm로 조절하여 시행함을 특징으로 하는 과탄산나트륨의 제조방법.
KR1019920014330A 1992-08-10 1992-08-10 과탄산나트륨의 연속제조방법 KR950010800B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920014330A KR950010800B1 (ko) 1992-08-10 1992-08-10 과탄산나트륨의 연속제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920014330A KR950010800B1 (ko) 1992-08-10 1992-08-10 과탄산나트륨의 연속제조방법

Publications (2)

Publication Number Publication Date
KR940003848A KR940003848A (ko) 1994-03-12
KR950010800B1 true KR950010800B1 (ko) 1995-09-23

Family

ID=19337731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920014330A KR950010800B1 (ko) 1992-08-10 1992-08-10 과탄산나트륨의 연속제조방법

Country Status (1)

Country Link
KR (1) KR950010800B1 (ko)

Also Published As

Publication number Publication date
KR940003848A (ko) 1994-03-12

Similar Documents

Publication Publication Date Title
CN101270232B (zh) 一种颗粒型包膜过碳酸钠的制备方法
US5851420A (en) Process for manufacturing granular sodium percarbonate
CN107473990A (zh) 一种磷酸脲母液水溶性肥料及制备方法
CN108285427A (zh) 一种湿法磷酸循环法连续生产大颗粒工业级磷酸脲的方法
US4427644A (en) Process for the preparation of bivalent metal peroxides
KR950010800B1 (ko) 과탄산나트륨의 연속제조방법
US4018874A (en) Process for the production of sodium percarbonate by atomization
KR950010801B1 (ko) 과탄산나트륨의 제조방법
CN105016307B (zh) 一种稳定速溶型过碳酸钠的制备方法
US4002434A (en) Process for the production of abrasion resistant perborate monohydrate
US3801706A (en) Preparation of sodium percarbonate
CN101270233B (zh) 一种低堆密度颗粒型包膜过碳酸钠的制备方法
CN101270231B (zh) 一种颗粒型无磷包膜过碳酸钠的制备方法
US3197883A (en) Drying of wet solid sodium cyanide
KR100494814B1 (ko) 입상 과탄산나트륨의 제조방법
US5393319A (en) Process for producing oxamide granules
JP3897378B2 (ja) アスパラギン酸誘導体の製造方法
US6228342B1 (en) Process for the production of sodium percarbonate
KR100315538B1 (ko) 산업용 섬유 유연제의 과립상 제조방법
CN112758897B (zh) 一种过碳酸钠的制备方法
US3037838A (en) Method of preparing granulated condensed phosphate peroxyhydrate
US3718735A (en) Process for the production of perborates
JPS63215502A (ja) 安定化された過炭酸ナトリウムの製法
WO2004014789A1 (fr) Percarbonate de sodium revetu et son procede de preparation et son utilisation
US3510269A (en) Preparation of shaped alkali metal perborate tetrahydrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110708

Year of fee payment: 17

EXPY Expiration of term