KR950001283A - 배수유량예측장치 - Google Patents

배수유량예측장치 Download PDF

Info

Publication number
KR950001283A
KR950001283A KR1019940013673A KR19940013673A KR950001283A KR 950001283 A KR950001283 A KR 950001283A KR 1019940013673 A KR1019940013673 A KR 1019940013673A KR 19940013673 A KR19940013673 A KR 19940013673A KR 950001283 A KR950001283 A KR 950001283A
Authority
KR
South Korea
Prior art keywords
drainage flow
flow rate
drainage
daily
trend pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1019940013673A
Other languages
English (en)
Other versions
KR0148039B1 (ko
Inventor
후또시 구로가와
슈이찌로 고바야시
타다요시 무라야마
Original Assignee
사또 후미오
가부시끼가이샤 도시바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사또 후미오, 가부시끼가이샤 도시바 filed Critical 사또 후미오
Publication of KR950001283A publication Critical patent/KR950001283A/ko
Application granted granted Critical
Publication of KR0148039B1 publication Critical patent/KR0148039B1/ko
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/911Nonmedical diagnostics
    • Y10S706/914Process plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Automation & Control Theory (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

배수유량의 실적데이타를 학습하는 능력을 갖고, 계절마다 일단위의 배수유량 및 1일을 통한 시간단위의 배수유량을 예측할 수 있는 배수유향예측장치를 제공한다.
축적된 과거의 기상실적데이타를 기본으로 계절마다 기상실적을 처리하고, 일일 얻어지는 시간단위의 배수유량실적을 기본으로 계절마다 배수유량실적을 처리하고, 얻어진 처리데이타를 기본으로 계절마다 일단위 배수유량과 사간단위배수유량추이패턴의 특징량을 예측하는 뉴랄네트워크모델을 사용하고, 백프로퍼게이션법에 의해서 가중치계수를 학습함으로써 계절마다 일단위의 배수유량과 시간단위의 배수유량추이패턴의 특징량을 예측하는 예측모델을 동정하는 매계절예측모델학습수단(23)과, 기후 등의 당일의 정보를 입력함으로써, 해당하는 계절의 일단위의 배수유량과 시간단위의 배수유량추이패턴의 특징량을 예측하는 예측모델을 선택하고, 이 선택된 예측모델에 의해서 일단위의 배수유량을 예측하는 한편, 이 선택된 예측모델에 의해서 얻어진 시간단위의 배수유량추이패턴의 특징량을 과거의 실적배수유량추이패턴의 특징량과 비교함으로서 가장 유사한 시간단위의 배수유량추이패턴을 과거의 실적배수유량추이패턴에서 검색하여 그것을 시간단위배수유량추이패턴예측으로써 예측하고, 예측된 상기 일단위의 배수유량의 값과 상기 시간단위배수유량추이패턴 예측의 값의 2개의 예측치를 곱함으로써, 시간단위의 배수유량을 예측하는 매계절배수유량예측수단(24)을 구비한 것을 특징으로 한다.

Description

배수유량예측장치
본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음
제 1 도는 본 발명에 의한 배수유량예측장치의 개략구성을 나타낸 블록도, 제 2 도는 제 1 도에 있어서의 주요한 구성을 상세하게 나타낸 블록도, 제 3 도는 추이패턴의 특징량을 나타낸 도면, 제 4 도는 뉴랄네트워크의 구조를 설명하는 도면, 제 5 도는 유사배수유량패턴의 검색방법을 설명하는 도면.

Claims (6)

  1. 상수도시설에 있어서의 정수장 등에서 배수되는 당일의 시간단위의 배수유량을 예측하는 배수유량예측 장치이고, 축적된 과거의 기상실적데이타 및 평일, 휴일의 정보를 기초로 계절마다 기상실적을 처리하는 매 계절기상실적데이타처리수단과, 일일 얻어지는 시간단위의 배수유량실적을 기본으로 계절마다 배수실적을 처리하는 매계절배수유량데이타처리수단과, 계절마다 일단위배수유량과 시간단위배수유량추이패턴의 특징량을 예측하는 뉴랄네트위크모델을 사용한 예측모델에 관한 것이며, 상기 매계절기상실적데이타처리수단 및 상기 매계절배수유량데이터처리수단에 의해서 얻어진 처리데이타를 기본으로, 백프로퍼게이션법에 의해서 가중치계수를 학습함으로써, 상기 예측모델을 동정하는 매계절예측모델학습수단과, 기후, 기온, 평일 또는 휴일 등의 당일의 정보를 입력함으로써, 상기 예측모델을 사용하여 해당하는 계절의 일단위의 배수유량과 시간단위의 배수유량추이패턴의 특징량을 예측하는 동시에, 예측모델에 의해서 얻어진 시간단위의 배수유량추이패턴의 특징량을매계절배수유량데이타처리수단내의 과거의 실적배수유량추이패턴의 특징량과 비교함으로써 가장 유사한 시간단위의 배수유량추이패턴을 과거의 실적배수유량추이패턴에서 검색하여 그것을 시간단위배수유량추이예측패턴으로서 구하여, 예측된 상기 일단위의 배수유량의 값과 상기 시간단위배수유량추이예측패턴의 값의 2개의 예측치를 곱함으로써, 시간단위의 배수유량을 예측하는 매계절배수유량예측수단을, 구비하는 것을 특징으로 하는 배수유량예측장치.
  2. 제 1 항에 있어서, 매계절배수유량예측수단에 있어서, 비교되는 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 배수유량의 피크치, 및 오전 및 오후의 배수유량의 상승의 값을 포함하는 것을 특징으로 하는 배수유량예측장치.
  3. 제 2 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 피크치의 비를 더 포함하는 것을 특징으로 하는 배수유량예측장치.
  4. 제 3 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전중의 피크치가 나오는 시각 및 오후의 피크치가 나오는 시각을 더 포함하는 것을 특징으로 하는 배수유량예측장치.
  5. 제 4 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 상승점에서 소정시간까지의 단위시간당 배수유량의 적산치를 더 포함하는 것을 특징으로 하는 배수유량예측장치.
  6. 제 1 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 패턴의 특징을 나타내는 여러가지의 값으로 되어, 각각의 값에 대한 중요도에 의해서 가중치를 두어 과거의 실적배수유량추이패턴의 특징량과 비교하는 것을 특징으로 하는 배수유량예측장치.
    ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.
KR1019940013673A 1993-06-17 1994-06-17 배수유량예측장치 Expired - Fee Related KR0148039B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP93-146494 1993-06-17
JP14649493A JP3352153B2 (ja) 1993-06-17 1993-06-17 配水流量予測装置

Publications (2)

Publication Number Publication Date
KR950001283A true KR950001283A (ko) 1995-01-03
KR0148039B1 KR0148039B1 (ko) 1998-09-15

Family

ID=15408900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013673A Expired - Fee Related KR0148039B1 (ko) 1993-06-17 1994-06-17 배수유량예측장치

Country Status (4)

Country Link
US (1) US5448476A (ko)
JP (1) JP3352153B2 (ko)
KR (1) KR0148039B1 (ko)
CN (1) CN1053247C (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800713B2 (ja) * 1996-09-12 2006-07-26 株式会社明電舎 配水施設制御装置
US6112137A (en) * 1998-02-04 2000-08-29 Gas Research Institute Adaptive system for predictive control of district pressure regulators
US6449749B1 (en) * 1999-11-18 2002-09-10 Pdf Solutions, Inc. System and method for product yield prediction
WO2002001162A1 (en) * 2000-06-29 2002-01-03 Glaxo Group Limited Method for predicting flow properties of powders
US6757623B2 (en) * 2001-04-20 2004-06-29 Ads Corporation Flow transport analysis method and system
JP3795775B2 (ja) * 2001-07-16 2006-07-12 株式会社山武 下水流入量予測装置および方法、サーバ装置
US7457735B2 (en) * 2001-11-14 2008-11-25 Bentley Systems, Incorporated Method and system for automatic water distribution model calibration
KR100456413B1 (ko) * 2002-06-21 2004-11-10 에치투엘 주식회사 신경회로망 및 역전파 알고리즘에 의한 하폐수처리인공지능제어 시스템 및 방법
JP4365598B2 (ja) * 2003-02-19 2009-11-18 株式会社東芝 広域プラントの最適運用制御装置
CN1298458C (zh) * 2003-09-29 2007-02-07 宝山钢铁股份有限公司 一种rh精炼炉钢液温度实时预测方法
US7103479B2 (en) * 2004-04-30 2006-09-05 Ch2M Hill, Inc. Method and system for evaluating water usage
US7792126B1 (en) 2005-05-19 2010-09-07 EmNet, LLC Distributed monitoring and control system
US20080255760A1 (en) * 2007-04-16 2008-10-16 Honeywell International, Inc. Forecasting system
JP5698576B2 (ja) * 2010-03-23 2015-04-08 メタウォーター株式会社 グラフ編集型シミュレーション装置、グラフ編集型シミュレーションプログラム、及びプラント維持管理システム
US8775341B1 (en) 2010-10-26 2014-07-08 Michael Lamport Commons Intelligent control with hierarchical stacked neural networks
US9015093B1 (en) 2010-10-26 2015-04-21 Michael Lamport Commons Intelligent control with hierarchical stacked neural networks
JP5672114B2 (ja) * 2011-03-31 2015-02-18 シンフォニアテクノロジー株式会社 水需要予測システム
JP6399235B2 (ja) * 2015-10-26 2018-10-03 日本電気株式会社 配水計画システム、配水計画方法及びプログラム記録媒体
US10331802B2 (en) * 2016-02-29 2019-06-25 Oracle International Corporation System for detecting and characterizing seasons
US10885461B2 (en) 2016-02-29 2021-01-05 Oracle International Corporation Unsupervised method for classifying seasonal patterns
US11113852B2 (en) 2016-02-29 2021-09-07 Oracle International Corporation Systems and methods for trending patterns within time-series data
CN107643686A (zh) * 2017-09-27 2018-01-30 上海深研智能科技有限公司 净水器加热功率优化配置的控制系统与方法
US10565149B2 (en) * 2018-04-06 2020-02-18 Embrionix Design Inc. Standardized hot-pluggable transceiving unit, hosting unit and method for applying delays based on port positions
US12001926B2 (en) 2018-10-23 2024-06-04 Oracle International Corporation Systems and methods for detecting long term seasons
EP3699700A1 (de) * 2019-02-25 2020-08-26 Siemens Aktiengesellschaft Druckregelung in einem versorgungsnetz
CN110319900B (zh) * 2019-04-26 2021-09-07 珠海格力电器股份有限公司 一种洗衣机耗水量的确定方法、装置、存储介质及洗衣机
US11887015B2 (en) 2019-09-13 2024-01-30 Oracle International Corporation Automatically-generated labels for time series data and numerical lists to use in analytic and machine learning systems
CN111764469A (zh) * 2020-09-03 2020-10-13 成都同飞科技有限责任公司 一种远距离智能恒压供水系统
US11999640B2 (en) * 2020-09-10 2024-06-04 Intellihot, Inc. Method for sanitizing water supply system
CN114529815A (zh) * 2022-02-10 2022-05-24 中山大学 一种基于深度学习的流量检测方法、装置、介质及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350863A (en) * 1976-10-20 1978-05-09 Hitachi Ltd Demand quantity estimating apparatus for flow rate pressure controlling in piping network
JPS5351386A (en) * 1976-10-20 1978-05-10 Hitachi Ltd Operation of fluid transportation system
JPS5952448B2 (ja) * 1979-06-27 1984-12-19 株式会社日立製作所 上水道システムの運用制御方法
JPS58700A (ja) * 1981-06-26 1983-01-05 Hitachi Ltd 流体輸送システムの制御方式
US5229937A (en) * 1988-02-01 1993-07-20 Clemar Manufacturing Corp. Irrigation control and flow management system
JPH03134703A (ja) * 1989-10-20 1991-06-07 Hitachi Ltd 需要パターン予測方法及びプラント運転方法
JPH04220758A (ja) * 1990-12-20 1992-08-11 Fujitsu Ltd 時系列データの予測及び予測認識方法
JPH04330502A (ja) * 1991-02-22 1992-11-18 Yokogawa Electric Corp 上水道需要予測システム

Also Published As

Publication number Publication date
KR0148039B1 (ko) 1998-09-15
JP3352153B2 (ja) 2002-12-03
JPH073848A (ja) 1995-01-06
CN1053247C (zh) 2000-06-07
CN1097829A (zh) 1995-01-25
US5448476A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
KR950001283A (ko) 배수유량예측장치
Coulibaly et al. Multivariate reservoir inflow forecasting using temporal neural networks
Thirumalaiah et al. Hydrological forecasting using neural networks
Baxter et al. Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation
Oonsivilai et al. Wavelet neural network based short term load forecasting of electric power system commercial load
US7403928B2 (en) Identify data sources for neural network
JP2003027567A (ja) 下水流入量予測装置および方法、サーバ装置
Zounemat‐Kermani et al. Online sequential extreme learning machine in river water quality (turbidity) prediction: a comparative study on different data mining approaches
CN111598724A (zh) 一种中小水库入库流量日前预测的分时段集成方法
Trotta et al. Automatic control strategies for urban stormwater
Beckers et al. Quantitative methods for preliminary design of water quality surveillance systems
Bhattacharya et al. Medium range forecasting of power system load using modified Kalman filter and Walsh transform
WO2001075237A1 (fr) Systeme de prevision d'un volume d'eau a distribuer
Sirri et al. River levels affecting firefighter interventions: factor analysis
JPH07119184A (ja) 上下水道システムの運転装置
Hadi et al. Urmia Lake level forecasting using brain emotional learning (BEL)
Kim et al. A neuro-genetic approach for daily water demand forecasting
Ikeda et al. Non-linear prediction model of river flow by self-organization method
Mikulecky et al. A knowledge-based decision support system for river basin management
CN119311043B (zh) 一种信息化智能排水管理方法及系统
Guariso et al. A risk-averse approach for reservoir management
Kim et al. An optimal neural network model for daily water demand forecasting
Meshkani et al. Stochastic modelling of the Caspian Sea level fluctuations
Yang et al. Development of a framework for the selection of a reservoir operating policy
Li et al. Analysis of trends and changes in the water environment of an inland river basin in an arid area

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19940617

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19940617

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19980317

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19980521

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19980521

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20010427

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20020430

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20030430

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20040430

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20050502

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20060502

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20070430

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20080428

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20090429

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20090429

Start annual number: 12

End annual number: 12

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20110409