KR950001283A - 배수유량예측장치 - Google Patents
배수유량예측장치 Download PDFInfo
- Publication number
- KR950001283A KR950001283A KR1019940013673A KR19940013673A KR950001283A KR 950001283 A KR950001283 A KR 950001283A KR 1019940013673 A KR1019940013673 A KR 1019940013673A KR 19940013673 A KR19940013673 A KR 19940013673A KR 950001283 A KR950001283 A KR 950001283A
- Authority
- KR
- South Korea
- Prior art keywords
- drainage flow
- flow rate
- drainage
- daily
- trend pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000001932 seasonal effect Effects 0.000 claims abstract 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract 5
- 238000003062 neural network model Methods 0.000 claims abstract 2
- 238000000746 purification Methods 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S706/00—Data processing: artificial intelligence
- Y10S706/902—Application using ai with detail of the ai system
- Y10S706/911—Nonmedical diagnostics
- Y10S706/914—Process plant
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Tourism & Hospitality (AREA)
- Automation & Control Theory (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (6)
- 상수도시설에 있어서의 정수장 등에서 배수되는 당일의 시간단위의 배수유량을 예측하는 배수유량예측 장치이고, 축적된 과거의 기상실적데이타 및 평일, 휴일의 정보를 기초로 계절마다 기상실적을 처리하는 매 계절기상실적데이타처리수단과, 일일 얻어지는 시간단위의 배수유량실적을 기본으로 계절마다 배수실적을 처리하는 매계절배수유량데이타처리수단과, 계절마다 일단위배수유량과 시간단위배수유량추이패턴의 특징량을 예측하는 뉴랄네트위크모델을 사용한 예측모델에 관한 것이며, 상기 매계절기상실적데이타처리수단 및 상기 매계절배수유량데이터처리수단에 의해서 얻어진 처리데이타를 기본으로, 백프로퍼게이션법에 의해서 가중치계수를 학습함으로써, 상기 예측모델을 동정하는 매계절예측모델학습수단과, 기후, 기온, 평일 또는 휴일 등의 당일의 정보를 입력함으로써, 상기 예측모델을 사용하여 해당하는 계절의 일단위의 배수유량과 시간단위의 배수유량추이패턴의 특징량을 예측하는 동시에, 예측모델에 의해서 얻어진 시간단위의 배수유량추이패턴의 특징량을매계절배수유량데이타처리수단내의 과거의 실적배수유량추이패턴의 특징량과 비교함으로써 가장 유사한 시간단위의 배수유량추이패턴을 과거의 실적배수유량추이패턴에서 검색하여 그것을 시간단위배수유량추이예측패턴으로서 구하여, 예측된 상기 일단위의 배수유량의 값과 상기 시간단위배수유량추이예측패턴의 값의 2개의 예측치를 곱함으로써, 시간단위의 배수유량을 예측하는 매계절배수유량예측수단을, 구비하는 것을 특징으로 하는 배수유량예측장치.
- 제 1 항에 있어서, 매계절배수유량예측수단에 있어서, 비교되는 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 배수유량의 피크치, 및 오전 및 오후의 배수유량의 상승의 값을 포함하는 것을 특징으로 하는 배수유량예측장치.
- 제 2 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 피크치의 비를 더 포함하는 것을 특징으로 하는 배수유량예측장치.
- 제 3 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전중의 피크치가 나오는 시각 및 오후의 피크치가 나오는 시각을 더 포함하는 것을 특징으로 하는 배수유량예측장치.
- 제 4 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 오전 및 오후의 상승점에서 소정시간까지의 단위시간당 배수유량의 적산치를 더 포함하는 것을 특징으로 하는 배수유량예측장치.
- 제 1 항에 있어서, 시간단위배수유량추이패턴의 특징량은, 패턴의 특징을 나타내는 여러가지의 값으로 되어, 각각의 값에 대한 중요도에 의해서 가중치를 두어 과거의 실적배수유량추이패턴의 특징량과 비교하는 것을 특징으로 하는 배수유량예측장치.※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP93-146494 | 1993-06-17 | ||
JP14649493A JP3352153B2 (ja) | 1993-06-17 | 1993-06-17 | 配水流量予測装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950001283A true KR950001283A (ko) | 1995-01-03 |
KR0148039B1 KR0148039B1 (ko) | 1998-09-15 |
Family
ID=15408900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940013673A Expired - Fee Related KR0148039B1 (ko) | 1993-06-17 | 1994-06-17 | 배수유량예측장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5448476A (ko) |
JP (1) | JP3352153B2 (ko) |
KR (1) | KR0148039B1 (ko) |
CN (1) | CN1053247C (ko) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3800713B2 (ja) * | 1996-09-12 | 2006-07-26 | 株式会社明電舎 | 配水施設制御装置 |
US6112137A (en) * | 1998-02-04 | 2000-08-29 | Gas Research Institute | Adaptive system for predictive control of district pressure regulators |
US6449749B1 (en) * | 1999-11-18 | 2002-09-10 | Pdf Solutions, Inc. | System and method for product yield prediction |
WO2002001162A1 (en) * | 2000-06-29 | 2002-01-03 | Glaxo Group Limited | Method for predicting flow properties of powders |
US6757623B2 (en) * | 2001-04-20 | 2004-06-29 | Ads Corporation | Flow transport analysis method and system |
JP3795775B2 (ja) * | 2001-07-16 | 2006-07-12 | 株式会社山武 | 下水流入量予測装置および方法、サーバ装置 |
US7457735B2 (en) * | 2001-11-14 | 2008-11-25 | Bentley Systems, Incorporated | Method and system for automatic water distribution model calibration |
KR100456413B1 (ko) * | 2002-06-21 | 2004-11-10 | 에치투엘 주식회사 | 신경회로망 및 역전파 알고리즘에 의한 하폐수처리인공지능제어 시스템 및 방법 |
JP4365598B2 (ja) * | 2003-02-19 | 2009-11-18 | 株式会社東芝 | 広域プラントの最適運用制御装置 |
CN1298458C (zh) * | 2003-09-29 | 2007-02-07 | 宝山钢铁股份有限公司 | 一种rh精炼炉钢液温度实时预测方法 |
US7103479B2 (en) * | 2004-04-30 | 2006-09-05 | Ch2M Hill, Inc. | Method and system for evaluating water usage |
US7792126B1 (en) | 2005-05-19 | 2010-09-07 | EmNet, LLC | Distributed monitoring and control system |
US20080255760A1 (en) * | 2007-04-16 | 2008-10-16 | Honeywell International, Inc. | Forecasting system |
JP5698576B2 (ja) * | 2010-03-23 | 2015-04-08 | メタウォーター株式会社 | グラフ編集型シミュレーション装置、グラフ編集型シミュレーションプログラム、及びプラント維持管理システム |
US8775341B1 (en) | 2010-10-26 | 2014-07-08 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
US9015093B1 (en) | 2010-10-26 | 2015-04-21 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
JP5672114B2 (ja) * | 2011-03-31 | 2015-02-18 | シンフォニアテクノロジー株式会社 | 水需要予測システム |
JP6399235B2 (ja) * | 2015-10-26 | 2018-10-03 | 日本電気株式会社 | 配水計画システム、配水計画方法及びプログラム記録媒体 |
US10331802B2 (en) * | 2016-02-29 | 2019-06-25 | Oracle International Corporation | System for detecting and characterizing seasons |
US10885461B2 (en) | 2016-02-29 | 2021-01-05 | Oracle International Corporation | Unsupervised method for classifying seasonal patterns |
US11113852B2 (en) | 2016-02-29 | 2021-09-07 | Oracle International Corporation | Systems and methods for trending patterns within time-series data |
CN107643686A (zh) * | 2017-09-27 | 2018-01-30 | 上海深研智能科技有限公司 | 净水器加热功率优化配置的控制系统与方法 |
US10565149B2 (en) * | 2018-04-06 | 2020-02-18 | Embrionix Design Inc. | Standardized hot-pluggable transceiving unit, hosting unit and method for applying delays based on port positions |
US12001926B2 (en) | 2018-10-23 | 2024-06-04 | Oracle International Corporation | Systems and methods for detecting long term seasons |
EP3699700A1 (de) * | 2019-02-25 | 2020-08-26 | Siemens Aktiengesellschaft | Druckregelung in einem versorgungsnetz |
CN110319900B (zh) * | 2019-04-26 | 2021-09-07 | 珠海格力电器股份有限公司 | 一种洗衣机耗水量的确定方法、装置、存储介质及洗衣机 |
US11887015B2 (en) | 2019-09-13 | 2024-01-30 | Oracle International Corporation | Automatically-generated labels for time series data and numerical lists to use in analytic and machine learning systems |
CN111764469A (zh) * | 2020-09-03 | 2020-10-13 | 成都同飞科技有限责任公司 | 一种远距离智能恒压供水系统 |
US11999640B2 (en) * | 2020-09-10 | 2024-06-04 | Intellihot, Inc. | Method for sanitizing water supply system |
CN114529815A (zh) * | 2022-02-10 | 2022-05-24 | 中山大学 | 一种基于深度学习的流量检测方法、装置、介质及终端 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5350863A (en) * | 1976-10-20 | 1978-05-09 | Hitachi Ltd | Demand quantity estimating apparatus for flow rate pressure controlling in piping network |
JPS5351386A (en) * | 1976-10-20 | 1978-05-10 | Hitachi Ltd | Operation of fluid transportation system |
JPS5952448B2 (ja) * | 1979-06-27 | 1984-12-19 | 株式会社日立製作所 | 上水道システムの運用制御方法 |
JPS58700A (ja) * | 1981-06-26 | 1983-01-05 | Hitachi Ltd | 流体輸送システムの制御方式 |
US5229937A (en) * | 1988-02-01 | 1993-07-20 | Clemar Manufacturing Corp. | Irrigation control and flow management system |
JPH03134703A (ja) * | 1989-10-20 | 1991-06-07 | Hitachi Ltd | 需要パターン予測方法及びプラント運転方法 |
JPH04220758A (ja) * | 1990-12-20 | 1992-08-11 | Fujitsu Ltd | 時系列データの予測及び予測認識方法 |
JPH04330502A (ja) * | 1991-02-22 | 1992-11-18 | Yokogawa Electric Corp | 上水道需要予測システム |
-
1993
- 1993-06-17 JP JP14649493A patent/JP3352153B2/ja not_active Expired - Lifetime
-
1994
- 1994-06-17 CN CN94106038A patent/CN1053247C/zh not_active Expired - Lifetime
- 1994-06-17 US US08/262,070 patent/US5448476A/en not_active Expired - Lifetime
- 1994-06-17 KR KR1019940013673A patent/KR0148039B1/ko not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR0148039B1 (ko) | 1998-09-15 |
JP3352153B2 (ja) | 2002-12-03 |
JPH073848A (ja) | 1995-01-06 |
CN1053247C (zh) | 2000-06-07 |
CN1097829A (zh) | 1995-01-25 |
US5448476A (en) | 1995-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950001283A (ko) | 배수유량예측장치 | |
Coulibaly et al. | Multivariate reservoir inflow forecasting using temporal neural networks | |
Thirumalaiah et al. | Hydrological forecasting using neural networks | |
Baxter et al. | Development of a full-scale artificial neural network model for the removal of natural organic matter by enhanced coagulation | |
Oonsivilai et al. | Wavelet neural network based short term load forecasting of electric power system commercial load | |
US7403928B2 (en) | Identify data sources for neural network | |
JP2003027567A (ja) | 下水流入量予測装置および方法、サーバ装置 | |
Zounemat‐Kermani et al. | Online sequential extreme learning machine in river water quality (turbidity) prediction: a comparative study on different data mining approaches | |
CN111598724A (zh) | 一种中小水库入库流量日前预测的分时段集成方法 | |
Trotta et al. | Automatic control strategies for urban stormwater | |
Beckers et al. | Quantitative methods for preliminary design of water quality surveillance systems | |
Bhattacharya et al. | Medium range forecasting of power system load using modified Kalman filter and Walsh transform | |
WO2001075237A1 (fr) | Systeme de prevision d'un volume d'eau a distribuer | |
Sirri et al. | River levels affecting firefighter interventions: factor analysis | |
JPH07119184A (ja) | 上下水道システムの運転装置 | |
Hadi et al. | Urmia Lake level forecasting using brain emotional learning (BEL) | |
Kim et al. | A neuro-genetic approach for daily water demand forecasting | |
Ikeda et al. | Non-linear prediction model of river flow by self-organization method | |
Mikulecky et al. | A knowledge-based decision support system for river basin management | |
CN119311043B (zh) | 一种信息化智能排水管理方法及系统 | |
Guariso et al. | A risk-averse approach for reservoir management | |
Kim et al. | An optimal neural network model for daily water demand forecasting | |
Meshkani et al. | Stochastic modelling of the Caspian Sea level fluctuations | |
Yang et al. | Development of a framework for the selection of a reservoir operating policy | |
Li et al. | Analysis of trends and changes in the water environment of an inland river basin in an arid area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19940617 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19940617 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980317 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19980521 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19980521 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20010427 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20020430 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20030430 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040430 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20050502 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20060502 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20070430 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20080428 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20090429 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20090429 Start annual number: 12 End annual number: 12 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20110409 |