KR930007186B1 - Single crystal growning method of compound semiconductor meterial - Google Patents

Single crystal growning method of compound semiconductor meterial Download PDF

Info

Publication number
KR930007186B1
KR930007186B1 KR1019880011229A KR880011229A KR930007186B1 KR 930007186 B1 KR930007186 B1 KR 930007186B1 KR 1019880011229 A KR1019880011229 A KR 1019880011229A KR 880011229 A KR880011229 A KR 880011229A KR 930007186 B1 KR930007186 B1 KR 930007186B1
Authority
KR
South Korea
Prior art keywords
impurities
single crystal
melt
ingot
high concentration
Prior art date
Application number
KR1019880011229A
Other languages
Korean (ko)
Other versions
KR900003992A (en
Inventor
유학도
김한생
박주성
Original Assignee
삼성코닝 주식회사
한형수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝 주식회사, 한형수 filed Critical 삼성코닝 주식회사
Priority to KR1019880011229A priority Critical patent/KR930007186B1/en
Publication of KR900003992A publication Critical patent/KR900003992A/en
Application granted granted Critical
Publication of KR930007186B1 publication Critical patent/KR930007186B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The single crystal growth of a semiconductor by the liquid encapsulated Czochralski method comprises (a) dipping a seed crystal (4) into the primary fused solution (9) with gallium, arsenic and high concentrated impurities, (b) forming the shoulder (15) containing impurities by slowly pulling up, and (c) controlling the concentration of impurities for doping an ingot by smelting the GaAs material rod (14) in the residual solution of the primary fused solution.

Description

화합물 반도체의 단결성 성장방법Unity growth method of compound semiconductor

제1도는 잉고트(Ingot)의 어깨부(Shoulder)를 제조할 때 발생되는 결정중의 내부응력(Stress)를 이론적으로 계산한 단면의 패턴.1 is a pattern of a cross section theoretically calculating the internal stress (Stress) in the crystal generated when manufacturing the shoulder of the ingot (Ingot).

제2도는 종래의 잉고트 성장방법에 관한 일예로서, 고농도의 불순물이 함유된 제1용액으로 부터 원하는 직경을 갖는 잉고트를 성장시킨 뒤 그 결정을 꺼내어 어깨부의 윗부분을 잘라서 종자(Seed)로 사용하여 제2용액에서 잉고트를 성장시키는 것을 나타내는 도면.2 is an example of a conventional ingot growth method. After growing an ingot having a desired diameter from a first solution containing a high concentration of impurities, the crystals are taken out, and the upper part of the shoulder is cut and used as a seed. Figure showing growth of an ingot in 2 solutions.

제3도는 본 발명에 방법에 의해 고농도의 불순물과, Ga, As가 함유된 초기 용액으로 부터 고농도의 불순물이 함유된 어깨부와 잉고트가 연속적으로 성장되는 것을 나타내는 도면.3 is a diagram showing that a high concentration of impurities and a shoulder and an ingot containing a high concentration of impurities are continuously grown from an initial solution containing Ga and As by the method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 결정의 회전인상축 2 : Ga, As원료막대의 이동축1: Rotational impression axis of crystal 2: Movement axis of Ga, As raw material rod

3 : 고압 용기 4 : 종자 단결정(Seed Crystal)3: high pressure vessel 4: seed single crystal

5 : 제1융액으로 부터 인상된 종자 6 : 제2융액으로 부터 인상된 잉고트5: seed raised from first melt 6: ingot raised from second melt

7 : 히터(Heater) 8 : 액체봉지제(B2O3)7: Heater 8: Liquid Encapsulant (B 2 O 3 )

9 : 초기융액 10 : 제2융액9: initial melt 10: second melt

11 : 도가니 12 : 도가니 받침대11: crucible 12: crucible base

13 : 도가니 회전축 14 : Gs, As원료막대13: Crucible rotating shaft 14: Gs, As raw material rod

15 : 초기융액으로 부터 인상된 불순물이 고농도로 도핑된 종자(어깨부)15: Seed doped with high concentration of impurities from the initial melt (shoulder)

본 발명은 저전위 밀도의 화합물 반도체의 단결정 성장방법에 관한 것으로서, 좀 더 상세하게는 고압 용기내의 도가니에 결정 원료와 액체 봉지제(B2O3)를 넣고 고온 고압 하에서 용융해서 인상하여 GaAs단결정을 제조하는 방법(Liquid Encapsulated Czochrolski법 ; 이하 LEC법이라 칭함)에 있어서, 특히 전위(결함 ; Defect)밀도를 감소시키면서 미소결정 결함을 발생시키지 않고 양호한 반도체 단결정을 제조하는 방법에 관한 것이다.The present invention relates to a single crystal growth method of a compound semiconductor having a low dislocation density, and more particularly, a crystal raw material and a liquid encapsulant (B 2 O 3 ) are added to a crucible in a high pressure vessel, melted and pulled up under high temperature and high pressure, and then subjected to GaAs single crystal. (Liquid Encapsulated Czochrolski method; hereafter referred to as LEC method), the present invention relates to a method for producing a good semiconductor single crystal while reducing the dislocation (defect) density without generating microcrystalline defects.

GaAs는 발광, 수광 특성이 있고 전자이동도가 Si에 비해 빠르기 때문에 LED, LD등의 광전자 소자와 전계효과 트랜지스터(FET) 및 직접 회로(IC)등을 제조하는데 이용되고 있다.GaAs are used to manufacture optoelectronic devices such as LEDs and LDs, field effect transistors (FETs), and integrated circuits (ICs) because they have light emission, light reception, and electron mobility compared to Si.

그런데 이들 소자의 특성의 향상 및 균일화를 위해서는 결함의 수를 줄이고, 그 분포를 균일하게 하는 것이 요구되는데, 결함의 수를 줄이는 방법으로는 네킹(necking)과 고액계면의 평탄화, 고액계면 근방의 온도구배를 가능한 한 작게 할 것 및 불순물 첨가등이 제안된다.However, in order to improve and homogenize the characteristics of these devices, it is required to reduce the number of defects and to make the distribution uniform. The methods for reducing the number of defects include necking, flattening of the liquid-liquid interface, and temperature near the liquid-liquid interface. It is proposed to make the gradient as small as possible and to add impurities.

이와 같은 GaAs화합물 반도체의 단결정 성장장치는 제2도에 도시된 바와 같은 구조를 가지며, 여기서 소정 크기(Size)의 GaAs 잉고트를 LEC법으로 인상시킬 때 잉고트 어깨부(Shoulder)형성시 결정중의 내부응력(Stress)을 이론적으로 계산한 것이 제1도의 단면 패턴이다.Such a single crystal growth apparatus of GaAs compound semiconductor has a structure as shown in FIG. 2, wherein the inside of the crystal when forming the ingot shoulder when the GaAs ingot of a predetermined size is pulled by the LEC method. Theoretically calculated stress is the cross-sectional pattern of FIG.

제1도의 단면도에서 알수 있듯이 응력(Stress)이 가장 많이 발생하는 부분은 어깨부(Shoulder)의 변곡점으로 이곳에서 전위발생이 가장 일어나기 쉽게 되어 전술한 조건을 만족시키지 못한다. 따라서 결정중의 전위의 발생을 억제하는 방법으로서 어깨부(Shoulder)형성시 응력(Stress)을 완화시켜 주기 위해 불순물을 첨가하는 방법에 제안되고 있다.As can be seen from the cross-sectional view of FIG. 1, the portion where stress is most generated is the inflection point of the shoulder, where dislocation is most likely to occur, and thus does not satisfy the above conditions. Therefore, as a method of suppressing the generation of dislocations in crystals, a method of adding impurities in order to relieve stress during shoulder formation has been proposed.

즉, 불순물이 고농도로 함유되어 있는 제1융액으로부터 고농도의 불순물이 도핑(doping)된 잉고트(Ingot)를 성장시켜서 이중어깨부(Shoulder)가 형성된 부분을 잘라내어 그것을 종자(Seed)로 사용하여 불순물이 적당량 첨가된 제2융액으로부터 잉고트를 성장시켜서 제2융액으로부터 성장되는 잉고트내의 전위를 감소시키는 방법이 이용되고 있다.In other words, by growing an ingot doped with a high concentration of impurities from a first melt containing a high concentration of impurities, a portion in which a double shoulder is formed is cut out and used as a seed to remove impurities. A method of growing an ingot from an appropriately added second melt to reduce the potential in the ingot grown from the second melt is used.

상기 방법에서는 일단 불순물이 고농도로 함유된 제1융액으로부터 잉고트(Ingot)를 성장시킨 뒤 필요한 부분을 잘라내어 종자(Seed)로 사용하여 다시 잉고트(Ingot)를 성장시키기 때문에 성장 프로세스(Process)를 두번 거쳐야 원하는 잉고트(Ingot)를 성장시킬 수가 있어서 프로세스(Process) 시간이 2배 정도 걸리고, 공정이 길어지게 되므로 발생할 수 있는 에러의 확률이 그만큼 높아지고, 또한 제1융액에서 성장시킨 결정에서 필요한 부분만 잘라내야 하므로 절단시 결함(defect)의 발생 및 손상의 우려가 있고, 제1융액에서 성장된 잉고트중 일부분만 종자(Seed)로 사용하기 때문에 버리는 부분이 생겨 고가의 원료가 낭비되는 결정이 있다.In this method, once the ingot is grown from the first melt containing a high concentration of impurities, the necessary part is cut out and used as seed to grow the ingot again, so it has to go through the growth process twice. Since it can grow the desired ingot, the process takes about twice as long, and the process takes longer, which increases the probability of error, and also cuts out only the parts of the crystal grown in the first melt. Therefore, there is a risk of defects and damage during cutting, and since only a part of the ingots grown in the first melt is used as a seed, a part is discarded and expensive raw materials are wasted.

따라서, 본 발명의 목적은 GaAs단결정 성장방법에 있어서 고농도의 불순물과 Ga, As가 함유된 초기 융액을 이용하므로써 1단계의 공정으로 어깨부를 포함한 GaAs 단결정 전체의 전위밀도를 감소시키는 방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for reducing the dislocation density of the entire GaAs single crystal including the shoulder in one step by using an initial melt containing high concentration of impurities and Ga, As in the GaAs single crystal growth method. .

이하, 본 발명에 따른 방법을 제3도를 참조하여 설명하면 다음과 같다.Hereinafter, the method according to the present invention will be described with reference to FIG. 3.

초기 융액(9)는 불순물을 최종적으로 잉고트(Ingot)에 원하는 수준으로 도핑(doping)하기 위해 원료융액에 섞어야 할 불순물 양에다 종자단결정(4)으로부터 어깨부(Shoulder)까지 고농도로 불순물을 도핑하기 위해 필요한 불순물의 양만큼을 합한 불순물과 Ga, As를 원료로 하여 제조한다.The initial melt 9 is a high concentration of impurities from the seed single crystal 4 to the shoulder to the amount of impurities to be mixed into the raw material melt in order to finally dope the impurities into the desired level in the ingot. It is prepared from the impurities, Ga, and As, which are combined by the amount of impurities necessary for the purpose.

상기 초기융액(9)의 양은 불순물이 고농도로 함유된 어깨부(Shoulder)를 형성하는 양과 소량이 잔존할 수 있는 정도로 한다.The amount of the initial melt 9 is such that an amount and a small amount of a shoulder containing a high concentration of impurities may remain.

이 초기융액(9)에 종자단결정(4)을 담근후 결정의 회전인상축(1)을 서서히 인상하여 불순물이 고농도로 도핑된 종자(어깨부, 15)를 제조한다.The seed single crystal 4 is immersed in this initial melt 9, and then the rotational impression shaft 1 of the crystal is gradually raised to prepare seeds (shoulder portion 15) doped with a high concentration of impurities.

이와 같이 어깨부를 형성시킨 다음, GaAs원료막대(14)를 내려 초기 융액중의 잔존융액에 담궈 용융시키므로써 도가니내의 융액의 양을 증가시킨다.After forming the shoulder portion as described above, the GaAs raw material rod 14 is lowered and soaked in the remaining melt in the initial melt to increase the amount of melt in the crucible.

또한, 이 과정을 통해서 융액내의 불순물 농도가 원하는 수준으로 조절된다. 이때 어깨부까지 성장된 잉고트는 융액의 높이가 높아지는 만큼 서서히 위로 올려(혹은 도가니(11)를 내려)준다. 이와 같은 상태에서 GaAs 원료막대(14)를 충분히 용융시킨 다음 어깨부까지 성장된 잉고트에 연이어서 결정을 성장시킨다.In addition, this process adjusts the concentration of impurities in the melt to the desired level. At this time, the ingot grown up to the shoulder portion is gradually raised upward (or lower the crucible 11) as the height of the melt increases. In this state, the GaAs raw material rod 14 is sufficiently melted, and then crystals are grown by successively growing the ingot grown up to the shoulder.

초기용액으로부터 고농도로 도핑(doping)된 어깨부까지 성장된 결정은 불순물 첨가효과에 의해 전위가 대폭적으로 감소되어 그 이후에 성장되는 결정내로의 전위의 전파가 감소되어 전체적으로 전위밀도가 감소된 고품질의 단결정을 얻을 수 있다.Crystals grown from the initial solution to the highly doped shoulders have greatly reduced dislocations due to the impurity addition effect, thereby reducing the propagation of dislocations into crystals grown thereafter. Single crystals can be obtained.

본 발명을 좀더 상세히 설명하면, 도가니(11)에 초기융액을 제조하기 위해 필요한 Ga, As와 불순물(최종적으로 잉고트에 원하는 수준으로 도핑(doping)하기 위해 원료융액에 섞어야 할 불순물의 양과 종자 단결정(4)부분부터 어깨부까지 고농도로 도핑(doping)하기 위해 필요한 양의 합)을 담고, 고압용기내에 넣은뒤 Ar이나 N2가스를 고압용기내에 채운 다음 이를 가열하여 원료 융액을 용융합성한다. 이 초기융액에 종자단결정(4)을 담근뒤 서서히 인상해서 불순물이 고농도로 도핑(doping된 결정을 어깨부까지 성장시킨다.In more detail, the Ga, As and impurities necessary for preparing the initial melt in the crucible 11 (the amount of impurities and seed single crystals to be mixed in the raw material melt to finally dope the desired level to the ingot) (4) Sum of necessary amount to doping (doping) at high concentration from the part to the shoulder part, and put it in the high pressure vessel, fill the Ar or N 2 gas in the high pressure vessel and heat it to melt synthesize the raw material melt. The seed single crystal 4 is immersed in this initial melt, and then slowly raised to grow a crystal doped with impurities at a high concentration to the shoulder.

이 결정은 불순물이 고농도로 첨가되어 있으므로 불순물 첨가 효과에 의해 전위의 발생이 억제된 고품질의 단결정이다.This crystal is a high quality single crystal in which dislocations are suppressed by the impurity addition effect because impurities are added at high concentration.

상기 과정후 GaAs 원료막대(14)를 내려서 잔존융액에 접촉시키면서 용융시켜 잔존 융액의 양을 증가시킨다. 이렇게 해서 융액내의 불순물의 농도를 결정이 성장된 뒤 잉고트를 원하는 정도로 도핑시키는데 필요한 정도로 희석, 조절한다.After the above process, the GaAs raw material rod 14 is lowered and melted while contacting the remaining melt to increase the amount of remaining melt. In this way, the concentration of impurities in the melt is diluted and adjusted to the extent necessary to dope the ingot to the desired degree after the crystal has grown.

이때, 어깨부까지 성장된 결정을 융액면이 상승함에 따라 같은 속도로 상승시키고, 원료 다결정 막대를 완전히 용융시킨 다음 GaAs 원료막대의 이동축(2)을 고압용기 상부로 올린 뒤 계속해서 결정을 성장시킨다.At this time, the crystals grown to the shoulder portion are raised at the same speed as the melt surface rises, the raw material polycrystalline rod is completely melted, and then the moving shaft (2) of the GaAs raw material rod is raised to the upper part of the high pressure container, and the crystals continue to grow. Let's do it.

상기와 같이 결정이 성장되는 동안 잉고트와 융액의 계면을 일정한 높이로 유지하기 위해 융액이 감소하는 속도에 따라 도가니(11)를 상승시킨다. 이렇게하여 최종적으로 성장된 결정은 어깨부까지 불순물이 고농도로 도핑(doping)되어 이어서 전위발생이 억제되므로 어깨부에 연이어서 성장된 결정도 전위밀도가 낮은 고품질의 단결정이 제조되게 된다.As described above, in order to maintain the interface between the ingot and the melt at a constant height while the crystal is grown, the crucible 11 is raised at a rate at which the melt decreases. In this way, the finally grown crystals are doped (doping) at a high concentration to the shoulder portion, so that dislocation generation is suppressed, and subsequent crystals grown on the shoulder portion also have high-quality single crystals with low dislocation density.

상술한 바와 같은 본 발명의 화합물 반도체의 단결정 성장방법에 의한 효과는 종래의 방법과 같이 어개부(Shoulder)를 불순물로 고농도로 도핑(doping)시켜 전위의 발생을 억제한 뒤 이 결정을 꺼내어 절단하고, 그것을 종자로 이용해서 다시 결정을 성장시키는 2단계의 결정성장과정이 필요한 것이 아니라 1단계의 성장과정만 거치면 되므로 시간이 대폭 절약되며, 성장프로세스 도중의 에러발생 확률이 감소할 뿐만 아니라, 종래방법에서는 제1융액으로부터 성장된 결정을 일단 냉각하고 꺼내어 절단하는 과정을 거치게 되므로 성장프로세스상의 결함의 발생 및 손상의 우려가 있으나, 본 발명에 따른 방법에 있어서는 그러한 결점이 해소될 수 있다.As described above, the effect of the single crystal growth method of the compound semiconductor of the present invention is to dope the shoulder with impurities as high concentration as in the conventional method, to suppress the occurrence of dislocation, and then to remove the crystal and cut it. However, it is not necessary to have a two-stage crystal growth process that grows the crystals again using seeds as seeds, but it only saves time because only one stage of growth process is required, and it reduces the probability of error occurrence during the growth process. In the process of cooling and taking out the crystals grown from the first melt once the cutting process, there is a fear of the generation and damage of the growth process, but in the method according to the present invention such defects can be eliminated.

또한, 종래의 방법에서는 1차 융액으로부터 성장된 결정으로 부터 일부만 잘라서 사용하여야 하므로 버려야 하는 부분이 생겨 고가의 원료낭비가 생기나 본 발명에서는 이러한 과정이 필요치 않으므로 원료가 절약되는 장점이 있다.In addition, in the conventional method, since only a part of the crystal grown from the primary melt must be cut and used, a portion to be discarded is generated, resulting in expensive raw material waste, but the present invention does not require such a process, thus saving raw materials.

Claims (2)

액체봉지 인상법(LEC)으로 화합물 반도체의 단결정을 성장시키는 방법에 있어서, 종자단결정(4)을 고농도의 불순물과 Ga, As가 함유된 초기융액(9)에 담근후 서서히 인상하여 고농도로 불순물이 함유된 어깨부(15)를 형성시킨 다음, GaAs 원료막대(14)를 초기융액의 잔존용액으로 내려 이를 용융시키므로써 불순물의 농도를 잉고트 도핑에 필요한 정도로 희석시켜서 결정을 성장시키는 것을 특징으로하는 저전위 밀도의 화합물 단결정을 성장시키는 방법.In the method of growing a single crystal of a compound semiconductor by the liquid encapsulation pulling method (LEC), the seed single crystal (4) is immersed in an initial melt (9) containing a high concentration of impurities and Ga, As, and then gradually raised to obtain impurities at a high concentration. After forming the shoulder portion 15, the GaAs raw material rod 14 is lowered into the remaining solution of the initial melt and melted, thereby diluting the concentration of impurities to the extent necessary for ingot doping to grow crystals. A method of growing a compound single crystal of dislocation density. 제1항에 있어서, 초기융액(9)에 함유된 불순물의 양은 잉고트를 원하는 수준으로 도핑하는데 필요한 불순물양과 종자단결정(4)부분부터 어깨부(15)까지 고농도로 도핑하는데 필요한 양의 합임을 특징으로 하는 방법.The method of claim 1, wherein the amount of impurities contained in the initial melt (9) is the sum of the amount of impurities necessary to dope the ingot to the desired level and the amount necessary to dope at a high concentration from the seed single crystal (4) to the shoulder portion (15). How to.
KR1019880011229A 1988-08-31 1988-08-31 Single crystal growning method of compound semiconductor meterial KR930007186B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880011229A KR930007186B1 (en) 1988-08-31 1988-08-31 Single crystal growning method of compound semiconductor meterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880011229A KR930007186B1 (en) 1988-08-31 1988-08-31 Single crystal growning method of compound semiconductor meterial

Publications (2)

Publication Number Publication Date
KR900003992A KR900003992A (en) 1990-03-27
KR930007186B1 true KR930007186B1 (en) 1993-07-31

Family

ID=19277385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880011229A KR930007186B1 (en) 1988-08-31 1988-08-31 Single crystal growning method of compound semiconductor meterial

Country Status (1)

Country Link
KR (1) KR930007186B1 (en)

Also Published As

Publication number Publication date
KR900003992A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
KR930007186B1 (en) Single crystal growning method of compound semiconductor meterial
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
CN211620660U (en) Quartz sealing cap for crystal growth based on VGF method and crystal growth device
KR102346307B1 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP2574618B2 (en) Crystal growth method and crucible for crystal growth
CN110952133A (en) Quartz sealing cap for crystal growth based on VGF method, crystal growth device and crystal growth process
JP2002255697A (en) GALLIUM-ARSENIC SINGLE CRYSTAL AND GaAs WAFER AND PRODUCTION METHOD FOR GaAs SINGLE CRYSTAL
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH03177400A (en) Manufacture of semiconductor material wafer
JP7046242B1 (en) Method for manufacturing indium phosphide single crystal ingot and method for manufacturing indium phosphide substrate
KR960005511B1 (en) Growing method of gaas single crystal
JPS6385100A (en) Production of gallium arsenide single crystal containing added silicon
JPH0670973B2 (en) Compound semiconductor epitaxial wafer
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPS59116194A (en) Manufacture of compound semiconductor single crystal
JP2004002076A (en) METHOD FOR MANUFACTURING GaAs WAFER
JPH05155685A (en) Production of compound semiconductor single crystal
JPH09249479A (en) Method for growing compound semiconductor single crystal
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
Grant et al. Growth of InP and GaAs substrate crystals by the vertical gradient freeze method
JPH0269390A (en) Production of single crystal of iii-v compound semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080623

Year of fee payment: 16

EXPY Expiration of term