KR920010015B1 - 엔코우더용 변위 검출장치 - Google Patents

엔코우더용 변위 검출장치 Download PDF

Info

Publication number
KR920010015B1
KR920010015B1 KR1019870004123A KR870004123A KR920010015B1 KR 920010015 B1 KR920010015 B1 KR 920010015B1 KR 1019870004123 A KR1019870004123 A KR 1019870004123A KR 870004123 A KR870004123 A KR 870004123A KR 920010015 B1 KR920010015 B1 KR 920010015B1
Authority
KR
South Korea
Prior art keywords
signal
speed
circuit
counter
displacement
Prior art date
Application number
KR1019870004123A
Other languages
English (en)
Other versions
KR870011451A (ko
Inventor
겐자부로우 이이지마
요시노리 하야시
Original Assignee
야마하 가부시끼가이샤
가와까미 히로시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61101809A external-priority patent/JPS62257065A/ja
Priority claimed from JP61137569A external-priority patent/JPS62293123A/ja
Application filed by 야마하 가부시끼가이샤, 가와까미 히로시 filed Critical 야마하 가부시끼가이샤
Publication of KR870011451A publication Critical patent/KR870011451A/ko
Application granted granted Critical
Publication of KR920010015B1 publication Critical patent/KR920010015B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24404Interpolation using high frequency signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/28Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding
    • H03M1/30Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding incremental
    • H03M1/303Circuits or methods for processing the quadrature signals

Abstract

내용 없음.

Description

엔코우더용 변위 검출장치
제1도는 본 발명에 따른 검출장치의 실시예에 대한 회로도.
제2도는 본 발명에 따른 변위 검출장치의 또다른 실시예에 대한 회로도.
제3도 및 제4도는 제2도에 도시된 회로도에서 나타나는 신호도.
제5도는 본 발명에 따른 변위 검출장치의 다른 실시예에 대한 회로도.
제6도는 종래의 변위 검출장치의 회로도.
본 발명은 각 변위 또는 위치 변위를 검출하는데 적합한 엔코우더용 변위 검출장치에 관한 것이다.
엔코우더의 출력 신호를 복조하여 실제로 변위 검출하는데 다양한 검출장치가 발달되어 왔었고 사용되어 왔었다.
종래의 변위 검출장치의 예로서는 후에 상세히 서술될 위상 고정 통신방식(phase-locked loop : 후에 간단히 PLL이라고 언급됨)이다. 요약하면 그러한 변위 검출장치는 엔코우더의 스케일 의장에 배열된 간격을 둔 한 쌍의 자기센서로 이루어진 검출 헤드를 포함한다. 스케일은 선형이거나 아니면 원형이고 같은 주기로 일렬로 배열된 자기 영역을 포함한다. 자기센서 및 스케일은 정해진 상대운동에 따라 조정된다.
상대운동 기간동안, 자기센서는 엔코우더의 스케일의 자기 영역에 의하여 발생되는 자계 세기의 변화에 응하여 일렬의 위상을 갖는 출력신호쌍을 연속적으로 발생시킨다. 여러 가지 회로소자를 통하여 정해진 신호를 처리한 후에, 변위 검출장치는 엔코우더의 스케일에 대하여 자기센서의 순서 위치를 나타내는 소정의 변위 데이타에서 일렬의 시스템 출력을 발생시킨다. 각각의 변위 데이타 Dout는 병렬 모드에서 한 쌍의 카운터에 의하여 발생되는 출력신호로 이루어져 있다. 한 카운터의 출력 신호는 변위 데이타 Dout의 상위측 비트를 형성하고 자기센서에 의하여 통과되는 자기 영역의 수, 즉 스케일에 대하여 자기센서의 순시 위치를 지시하는 반면에, 나머지 한 카운터의 출력 신호는 변위 데이타 Dout의 하위측 비트를 형성하고 자기센서에 의하여 통과되고 있는 자기 영역내에 자기센서의 순시 위치를 지시한다.
상기 서술된 변위 검출장치 회로에 있어서, 스케일은 자기 영역 1024개를 포함하고 첫 번째 카운터는 8비트를 갖는다고 가정하자. 스케일의 회전속도가 1RPS(초당 회전)일 때, 첫 번째 카운터의 최하위 비트의 주파수는 260KHz이다.
회전 엔코우더는 스케일의 회전 속도가 6-60RPS의 범위에서도 정확한 위치 검출을 실행하는 기능을 가져야만 한다. 상기 서술된 회로는 스케일의 회전 속도가 상대적으로 낮을 때 고분해능으로 위치 검출을 보장한다. 그러나, 회로는 PLL의 늦은 반응과 고 회전 속도에서 그러한 부족한 기능이 자기 영역내에서 한 자기센서의 순시 위치를 지시하는 첫 번째 카운터의 카운트 치 ψ의 정확성의 저하를 가져오는 이유로 스케일의 고회전 속도를 잘 따라 갈 수가 없어 그러한 부정확한 변위 데이타가 어느 적절한 보상없이 회로로부터 발생된다.
상기 언급된 회로의 경우에 있어서, 두 번째 카운터의 출력 신호 N 및 첫 번째 카운터의 카운트 치 ψ는 변위 데이타 Dout를 형성하는 병렬 모드에서 발생된다.
결과적으로, 신호 전송용 케이블 수는 변위 데이타 Dout의 비트 수와 같거나 더 많아야 한다. 변위 데이타 Dout가 그러한 병렬 모드의 시스템 외부로 공급되어질 때, 잡음 등으로 인하여 전송에러의 가능성이 커서 검출 신뢰성이 낮다.
또한, 상기 서술된 종래의 회로의 경우에 있어서, 카운터들의 카운트 값들은 전원이 꺼졌을 때, 존재하지 않기 때문에 변위 검출 데이타는 전원이 들어왔을 때 올바르게 발생될 수가 없다. 전원이 나가 있는 동안 임시적으로 변위 데이타 Dout를 저장하기 위하여 적당한 외부 메모리를 사용할 생각이다. 그러나, 이 경우에서, 메모리에 저장된 변위 데이타 Dout는 전원이 나간 후에 스케일을 이동시키는 실제 변위와 다르다.
검출 헤드와 엔코우더 사이에서 상대적인 운동의 변위 속도의 어느 영향을 받지 않고 정확한 변위 데이타를 일정하게 발생할 능력이 있는 엔코우더용 변위 검출장치를 제공하는 것이 본 발명의 기본적인 목적이다.
고검출 신뢰도로 직렬 모드에서 변위 데이타를 발생하는 엔코우더용 변위 검출장치를 제공하는 것이 본 발명의 또 하나의 목적이다.
전원이 들어왔을 때 정확하게 순시 변위 데이타를 발생할 수 있는 엔코우더용 변위 검출장치를 제공하는 것이 본 발명의 또 다른 목적이다.
본 발명의 기본적인 구성도에 의하면 변위 검출장치는 상대 운동을 엔코우더의 스케일 의장에 배열되고 스케일에서 저장된 신호세기에 따른 위상을 갖는 출력신호 쌍을 발생하는 검출 헤드, 출력신호를 디지탈화 하기 위한 검출 헤드에 연결된 첫 번째 및 두 번째 A/D 변환기, 첫 번째 및 두 번째 A/D 변환기에 연결되어 있고 정해진 데이타의 코사인 치와 함께 첫 번째 A/D 변환기로부터 출력 신호를 승산한 첫 번째 곱 및 정해진 데이타의 사인치와 함께 승산한 두 번째 곱을 발생하는 관수발생 승산부, 관수발생 승산부에 연결되어 있고 첫 번째 승산곱과 두 번째 승산곱과의 차를 계산하기 위한 감산장치, 감산장치 및 관수발생 승산부에 연결되어 있으며, 승산의 곱에서 차에 응하는 카운트를 행하고 차의 극성에 따라 카운트의 차 모드를 이동시키고, 카운터의 카운트 치를 상기 서술된 정해진 데이타로서 관수발생 승산부로 통과시키는 첫 번째 카운팅부, 검출헤드 및 첫 번째 카운팅부에 연결되어 있고 상대 운동의 속도를 검출하여 속도가 기준 속도를 초과할 때는 파형을 판별한 후 검출 헤드로부터 출력신호 중 하나를 선택하고 속도가 기준치 미만인 경우 첫 번째 카운팅 부로부터 카운트 치의 최상위 비트에서 신호를 검출하는 신호 스윗칭부, 신호 스윗칭부에 연결되어 있고 후자로부터 출력신호를 카운트하기 위한 두 번째 카운팅부, 두 번째 카운팅부 및 첫 번째 카운팅부에 연결되어 있고, 첫 번째 카운팅부의 카운트 치에 의하여 형성되는 하위측 비트와 두 번째 카운팅부의 치에 의하여 형성되는 상위측 비트를 포함하는 첫 번째 절대 데이타를 속도가 기준 속도보다 낮을 때 직렬 데이타로 변환시키고 두 번째 카운팅부로부터 카운트 치에 의하여 형성되는 상위측 비트를 포함하는 두 번째 절대 데이타를 속도가 기준 속도를 초과하였을 때 첫 번째 카운팅부로부터 카운트 치를 무효로 한 후 두 번째 직렬 데이타로 변환시키는 병렬/직렬 변환장치를 포함한다.
다양한 검출장치가 엔코우더의 출력 신호의 복조를 통하여 변위 검출을 하는데 발달되어 왔으며 실제로 사용되어 왔었다. 그러한 종래의 변위 검출장치의 한 실예로서는 제6도에 도시되어 있다. 제6도에서 스케일(15)은 일정한 주기를 갖는 사인파로 주어진 궤도를 자화시킴으로서 형성되어진다. 보통 그러한 스케일(15)은 자기 원반상 자화된 원형 궤도를 따라 간다. 자화하는데 사용된 사인파의 파장 λ는 수십-수백 ㎛로 선택된다.
한 쌍의 자기센서(16) 및 (17)은 스케일(15)상에 자화 세기에 응하는 레벨 신호를 발생시키는 스케일(15)의 장에 배열되어진다. 그러한 센서(16) 및 (17)의 출력 신호는 반송파를 포함하지 않는다. 예를 들면, 반도체 소자는 센서에 사용된다. 센서(16) 및 (17)은 λ/4(90°)에 의하여 위상차를 갖는다. 다시 말하면, 센서(16) 및 (17)은 m±1/4λ 거리로 분리되어 있으며, 여기에서 m은 정수이다. 스케일(15) 및 자기센서(16, 17)는 상대 회전에 따라 배열된다. 자기센서(16)는 사인파 출력 신호를 발생하고 센서(17)는 코사인파 출력 신호를 발생한다. 자화에 사용되는 사인파 m의 한 사이클의 주기 θ, 즉 스케일(15)의 내부 폴(inter-pole) 거리는 ψ-2π이며, 자기센서(16) 및 (17)은 sinθ 및 cosθ와 같은 출력 신호를 발생한다.
자기센서들은 자기센서(16) 및 (17)로부터 출력 신호를 디지탈화하는 각각의 A/D 변환장치(18) 및 (19)를 경유하여 각각의 승산기(20) 및 (21)의 입력단자에 연결되어 있다. 승산기(20) 및 (21)의 출력 신호는 디지탈 비교기(23) 통과시키는 출력 신호의 감산기(22)의 단자를 통과한다. 비교기(23)은
Figure kpo00001
신호를 카운터(24)의 업-다운 이동 단자에 공급한다.
Figure kpo00002
신호는 감산 결과가 0이하일 때 “1”, 0이상이면 “0”이라고 가정하면 클록 펄스는 또한 카운터(24)에 공급되고, 카운터(24)는 업 모드에서 비교기로부터 신호 “1”을 수신하고 다운 모드에서 비교기로부터 “0”을 수신한다.
Figure kpo00003
카운터(24)는 sinψ 및 cosψ 데이타를 저장하는 관수 발생 ROM(25)에 연결되어 있다. 이들 데이타는 카운트 치 ψ에 따라 연속적으로 읽어 낸다. 데이타 cosψ는 승산기의 다른 입력 단자에 통과되어지는 반면, sinψ는 승산기(21)의 다른 입력 단자로 통과시킨다. 이러한 구성도에 있어서, 감산기의 출력은 sin(θ-ψ)이다. 비교기(23)은 sin(θ-ψ)가 정일 때
Figure kpo00004
신호 “1”를 발생하고 sin(θ-ψ)가 부일 때
Figure kpo00005
신호 “0”을 발생한다. 카운터(24)의 카운트 치 ψ는 sin(θ-ψ)의 극성에 따라 변한다.
자기센서 역시 파형 변별회로(30) 및 (31)에 연결되어 있다. 각각의 변별회로는 주어진 쓰레스 홀드(theshold)치와 함께 연관된 자기센서로부터 출력 신호를 판별하고 “1” 레벨 또는 “0” 레벨의 신호치를 발생한다. 변별회로(30) 및 (31)의 출력신호 P1 및 P2는 π/2에 의하여 위상을 갖는 구형파로 주어진다. 자기센서(16) 및 (17)이 정방향에서 이동할 때 출력신호 P1은 진행하고 자기센서(16) 및 (17)이 부방향에서 이동할 때 출력신호 P2가 진행한다. 파형 변별회로(30) 및 (31)은 자기센서(16) 및 (17)의 이동 방향을 판별하는 공통 방향 변별회로(33)에 연결되어 있다. 방향 변별회로(33)의 출력신호 Sw는 카운터(34)의 업-다운 이동 단자로 통과되는 한편, 외부 시스템에 공급된다. 카운터(34)는 파형 변별회로(33)로부터 출력신호 Sw를 카운트한다. 카운터(34)는 자기센서(16) 및 (17)이 정방향에서 이동할 때 업 모드에서 고정되며, 자기센서(16) 및 (17)이 부방향에서 이동할 때 다운 모드에서 고정된다. 자기센서(16) 및 (17)은 완전한 회전사이클마다, 제로 포인트 신호 Sz는 기준 위치에서 발생되고 파형 변별회로(32)를 경유하여 상기 서술된 카운터(4)의 리셋트 단자에 공급된다. 따라서, 카운터(34)는 자기센서(16) 및 (17)이 기준 위치에 의하여 통과되는 매 시간마다, 리셋트된다.
결과적으로, 카운터(24)의 카운터 치는 현재 위치와 기준 위치 사이의 자기센서(16) 및 (17)에 의하여 통과되었던 스케일상 자기 영역 수와 관련있다.
카운터(34)의 출력 N은 변위 데이타 Dout의 상위측 비트를 형성하는 반면에, 카운터(24)의 출력은 변위 데이타 Dout의 하위측 비트를 형성한다. 자기센서(16) 및 (17)이 정방향에서 이동할 때, 카운터(34)는 각 자기 영역이 통과되는 바와 같이 업 모드 카운트를 행하며, 카운트 치는 변위 데이타 Dout의 상위측 비트에서 발생된다. 결과적으로, 변위 데이타 Dout의 상위측 비트는 자기센서(16) 및 (17)에 의하여 이미 통과되었던 자기 영역 수를 나타내며 그것은 기준 위치에 대하여 자기센서(16) 및 (17)의 현재 위치이다.
A/D 변환장치(18) 및 (19)에 의하여 디지탈화 한 다음에, 자기센서(16) 및 (17)로부터 sinθ 및 cosθ를 관수발생 ROM(25)에 의하여 발생되며, 승산의 곱은 sin(θ-ψ)의 검출을 하는 감산기(22)에 공급된다. 카운터(24)의 카운트 치 ψ는 카운트 치 ψ의 크기에 따라 관수발생 ROM(25)의 출력신호 sinψ 및 cosψ를 변하게 하는 sin(θ-ψ)의 극성에 따라 변한다. 그래서 상기 서술된 회로는 sin(θ-ψ)치를 제로로 만드는 PLL을 형성한다. 결과적으로, 카운터(24)의 카운트 치 ψ는 자기 영역내에 한 자기센서(16)의 순시 위치를 나타낸다.
첫 번째 카운터는 8 내지 10비트를 가질 때, 카운트 치에 의한 분해능은 한 가지 영역 길이의 1/256 내지 1/2048정도이다.
본 발명에 따른 변위 검출장치에 한 실시예가 제1도에 도시되어 있다. 제1도에서 제6도에 도시된 종래의 회로에서 사용되었던 회로 소자와 관련있는 회로 소자는 같은 참조 번호를 부여하였다.
자기센서(16)의 출력 sinθ를 토대로 자기센서(16) 및 (17)과 스케일 사이의 상대 변위 속도를 검출하기 위하여 속도 검출장치(40)는 자기센서(16)에 연결되어 있다. 속도 검출장치(40)는 변위 속도가 주어진 기준속도 미만일 때, 신호 “0”을 발생하며 기준 속도를 초과할 때 신호 “1”을 발생한다. 파형 변별회로(41)는 역시 주어진 쓰레스 홀드치와 비교하여 자기센서(16)의 출력신호를 “1” 레벨 및 “0” 레벨의 신호치로 변환하기 위하여 자기센서(16)에 연결되어 있다. PLL P에서 카운터(24)의 카운트 치 ψ의 최상위 비트 MSB 또는 파형 변별회로(41)의 출력신호 어느 하나를 선택적으로 카운터(33)에 공급하기 위하여 데이타 선택장치(42)는 파형 변별 장치(41)에 연결되어 있다. 신호 “0”이 속도 검출장치(40)로부터 공급되어질 때, 카운트 치 ψ의 최상위 비트 MSB가 카운터(43)에 공급하기 위하여 선택되는 반면에, 파형 변별회로(41)의 출력신호는 신호 “1”이 공급되어질 때 카운터(43)에 공급하기 위하여 선택된다.
이 카운터(43)의 업-다운 이동단자
Figure kpo00006
는 방향 변별회로(33)의 출력신호 Sw를 받는다. 카운터(43)은 출력신호 W에 따라서 카운터의 카운트 모드를 이동시키는 동안 입력 신호를 카운트한다. 설명된 예에 있어서, 카운터(43)는 자기센서(16) 및 (17)이 정방향에서 이동할 때 업 모드 카운트를 행하고 자기센서들이 부방향에서 이동할 때 다운 모드 카운트를 행한다. 카운터의 리셋트 단자 R이 AND 게이트(44)를 경유하여 파형 변별회로(32)로부터 통과된 제로 포인트 펄스 Pz를 받는다. 그리하여 카운터(43)는 자기센서(16) 및 (17)이 출발한 매 시간마다, 리셋트된다. 카운터(24)의 카운트 치 ψ의 최상위 비트 MSB 또는 파형 변별회로(41)의 출력신호 어느 하나가 카운터(43)에 공급되어질 때, 카운터(43)의 카운트 치는 순시 위치와 기준위치 사이에서 자기센서(16) 및 (17)에 통과된 스케일(15)상 자기 영역수를 나타낸다. 따라서 카운터(43)는 제6도에 도시된 종래의 회로에서 사용된 카운터(34)와 기능적으로 같다. 그러나 차이는 자기센서(16,17)와 스케일(15) 사이의 상대 변위 속도가 기준 속도 미만일 때 이 카운터(43)가 PLL P에서 카운터(24)의 카운트 치 ψ의 최상위 비트 MSB를 카운트한다. 또한, PLL P는 카운터(24)의 카운트 치 ψ를 시간에 대하여 미분한 속도 검출장치(35)를 포함한다.
따라서 카운트 치 ψ는 상대 변위 속도에 따라 변한다. 결과적으로, 카운트 ψ의 변화율
Figure kpo00007
는 자기센서(16,17)과 스케일(15) 사이의 상대 변위 속도에 응하고 속도 검출장치(35)는 속도신호를 발생한다.
카운터(43)의 출력신호 및 카운터(24)의 카운트 치 ψ를 받기 위하여 래치(latch) 회로(45)는 카운터(43) 및 (24)에 연결되어 있다. 래치회로(45)는 입력 신호를 시스템 클록펄스 CK로 단속하고 변위 데이타 Dout를 병렬/직렬 변환장치(46)로 통과시킨다. 출력신호 N은 변위 데이타 Dout의 상위측 비트를 형성하는 반면에, 카운트 치 ψ는 하위측 비트를 형성한다. 이러한 방법으로, 병렬/직렬 이동회로(46)의 동기화는 달성될 수가 있다.
PLL P는 카운터(24)의 카운트 치 ψ의 최하위 비트 LSB 및 (LSB + 1)치를 토대로 자기센서(16) 및 (17)의 이동 방향을 판별하는 변별회로(36)가 첨부되어 있다. 데이타 선택 장치(47)는 변별회로(36)의 출력신호 Sv 또는 변별회로(33)의 출력신호 Sw 어느 하나를 래치회로(45)에 선택적으로 공급하기 위하여 방향 변별회로(33) 및 (36)에 연결되어 있다. 데이타 선택장치(47)는 속도 검출장치(40)로부터 신호 “0”을 받는 즉시, 출력신호 Sv를 래치회로(45)에 공급하는 반면, 출력신호 Sw는 신호 “1”이 속도 검출장치(40)로부터 수신되었을 때 래치회로(45)에 공급된다. 다시 말하면, 자기센서(16) 및 (17)과 스케일(15) 사이의 상대 변위 속도가 기준 속도 미만일 때, 신호 Sv는 자기센서(16)의 이동방향을 지시하는 방향 신호 Sb로서 래치회로(45)에 공급되는 반면에, 신호 Sw는 상대 변위 속도가 기준 속도를 초과할 때, 방향 신호 Sb로서 래치회로(46)에 공급된다. 시스템 클록 펄스 CK로 단속한 후에, 래치회로(45)는 데이타 선택장치(47) 및 속도 검출장치(40)의 출력신호를 경유하여 공급된 방향신호 Sb를 병렬/직렬 변환장치에 공급한다. 병렬/직렬 변환장치(46)는 변위 데이타 Dout로 이루어진 병렬 데이타 및 래치회로(45)로부터 공급된 방향 신호 Sb를 직렬 데이타로 변환시킨다. 신호 “0”이 속도 검출장치(40)로부터 공급될 때 변위 데이타 Dout 및 방향신호 Sb는 변환된다.
이 경우에, 변위 데이타 Dout의 상위측 비트는 카운터(43)의 출력신호에 의하여 형성되고 하위측 비트는 카운터(24)의 카운트 치 ψ에 의하여 형성된다. 신호 “1”은 속도 검출장치(40)로부터 공급될 때, 변위 데이타 Dout의 상위측 비트는 카운터(43)의 출력신호에 의하여 형성되지만, 카운터(24)의 카운트 치 ψ는 제로이다. 즉, PLL P에서 카운터(24)의 카운트 치 ψ는 자기센서(16,17)와 스케일(15) 사이의 상대 변위 속도가 주어진 기준 속도를 초과할 때 무효로 된다.
병렬/직렬 카운터(46)는 변환장치(46)로부터 직렬 신호를 부호화하는 부호기(50)에 연결되어 있다. 직렬 데이타는 NRZ 비페이저(biphase), f/2f, 더블-커런트 RZ(double-current RZ), RZ, 바이폴라, 디코우더 및 NRZI 코우드 중 하나로 부호화된다. 부호화된 신호는 드라이버(driver)(51)에 의한 패러티 비트와 같은 체크비트의 첨가후에 직렬 모드의 시스템 외부로 전송된다. 이 경우에 있어서, 드라이버(51)은 RS422, RS232C 또는 R423 기준하에 직렬 전송을 행하여지도록 되어 있다. 드라이버(51)는 또한 광파이버 전송을 행하도록 되어 있다.
밧데리(56)를 포함한 전원 모니터 회로(55)가 제공된다. 전원이 외부에서 공급되어졌을 때, 모니터 회로는 전원을 부호기(50) 및 드라이버(51)를 포함하는 회로 그룹 A 및 그의 회로소자를 포함하는 회로 그룹 B에 공급한다. 외부 전원 공급이 차단되었을 때, 전원은 밧데리(56)에서만 회로 그룹 B에 공급된다.
상기 서술된 변위 검출장치는 다음과 같이 동작한다.
(I) 첫째로, 자기센서(16,17)와 스케일(15)의 상대 변위 속도가 기준 속도 미만이라고 가정하자.
이 경우에서, 속도 검출장치(40)로부터 신호 “0”이 데이타 선택장치(42) 및 (47)에 공급되어지는 한편, 래치회로(45)를 경유하여 병렬/직렬 변환장치(46)에 공급된다. 결과적으로 카운터(24)의 카운트 치 ψ의 최상위 비트 MSB는 데이타 선택장치(42)를 경유하여 카운터(43)에 도달한다.
래치회로(45)를 경유하여, 변위 데이타 Dout가 병렬/직렬 변환장치(46)에 공급되어지며, 병렬/직렬 변환장치(46)는 카운터(24)의 카운트 치 ψ에 의하여 형성되는 하위측 비트 및 카운터(43)의 카운트 치 N에 의하여 형성되는 상위측 비트를 포함한다. 방향 변별회로(36)의 출력 신호 Sv는 또한 자기센서(16) 및 (17)의 이동방향을 나타내는 방향 신호 Sb로서 변환장치(46)에 공급된다.
결과적으로, 변위 데이타 Dout 및 방향 신호는 변위를 고분해능과 함께 지시하는 부호기(50)에 공급되는 직렬 데이타로 변환된다.
부호화한 후에, 직렬 데이타는 직렬 모드에서 드라이버(51)에 의하여 시스템 외부로 전송된다.
(II) 두 번째로, 자기센서(16,17) 와 스케일(15) 사이의 상대 변위 속도가 기준 속도 이상이라고 가정하자.
이 경우에서, 속도 검출장치(40)로부터 신호 “1”이 데이타 선택장치(42) 및 (47)에 공급되어지는 한편, 또 다른 한편으로는 래치회로(45)를 경유하여 병렬/직렬 변환장치(46)에 공급된다.
래치회로(45)를 경유하여, 변위 데이타 Dout가 병렬/직렬 변환장치에 공급되며, 병렬/직렬 변환장치는 카운터(24)의 카운트 치 ψ에 의하여 형성되는 하위측 비트 및 카운트(43)의 카운트 치 N에 의하여 형성되는 상위측 비트를 포함한다. 방향 변별회로(33)의 출력신호 역시 자기센서(16) 및 (17)의 이동 방향을 지시하는 방향신호 Sb로서 변환장치(16)에 공급된다. 이 경우에 있어서, 카운터(24)의 카운터 치 ψ는 무효로 된다.
변환 후에, 직렬 데이타는 변위를 저 분해능으로 지시하는 부호기(51)에 공급된다. 부호화한 후에 직렬 데이타는 직렬 모드에서 드라이버(51)에 의하여 시스템 외부로 전송된다.
자기센서(16,17)와 스케일(15) 사이의 상대 변위 속도는 낮거나 제로일 때, 고 분해능의 절대 변위 데이타가 발생되는 반면에, 저 분해도의 절대 데이타가 상대 변위 속도가 높을 때 발생된다.
(III) 세 번째로, 외부 전원이 차단되었다고 가정하자. 이 경우에서 모니터 회로(55)의 밧데리(56)는 전원을 순시 변위 데이타가 외부 전원 공급이 되었을 때 계속 동작하도록 회로 그룹에 공급된다. 본 발명에 적용한 검출 시스템의 경우에 있어서, 한 쌍의 자기센서로 만들어진 검출 헤드는 3개의 신호를 발생한다. 즉 한 쌍의 출력신호 및 스케일의 기준 위치로 지시하는 제로 포인트 신호를 발생한다.
본 발명의 변위 검출장치가 고속 엔코우더용으로 사용될 때, 변위 검출은 저속 상대 운동의 경우 고 분해능으로 행하여질 수 있지만 출력신호의 주파수들은 다음 신호 처리에서 고속을 요구함으로써 생산하기가 어렵고 단가가 비싸다. 고주파 혼선이 필연적으로 일어난다.
본 발명의 변위 검출장치가 일반적인 엔코우더에 사용될 때, 출력신호의 주파수들은 다음 신호 처리에서 고속 요구 및 고주파 간섭에 상관없는 약 200Hz 정도이다. 그러나 저속 상대 운동의 경우에 있어서는, 변위 검출은 고분해능으로 행하여질 수가 있다.
또한, 제2도 및 제5도에 도시된 본 발명의 실시예들은 상기 서술된 종래의 변위 검출 본래의 단점을 제거하기 위한 것이다.
제2도에 도시된 회로에서, 검출 헤드(61)는 3개의 신호 I, II 및 III를 발생한다. 신호 I 및 II는 검출 헤드(61)를 형성하는 한 쌍의 자기센서의 출력 신호이며, 신호 III은 스케일의 기준 위치를 지시하는 제로 포인트 신호이다.
이들 신호 I 및 II는 파형 변별회로(62)를 경유하여 동기회로(63)로 통과하게 된다. 이 실시예에 있어서, 신호 I 및 II는 제3a도 및 제3b도에 도시된 펄스 신호를 형성한다. 설명한 바와 같이, 펄스 신호들은 1/4주기에 의하여 위상차를 갖는다. 이 경우에서, 펄스 신호 I는 펄스 신호 II보다 앞선다.
펄스신호 I 및 II는 확대회로(64)를 통과하게 된다. 제3c도에 도시된 바와 같이 펄스 신호 I 및 II는 여기에서 n배로 확대되고, 여기에서 n은 양의 정수이며, 제3c도 및 제3d도에서 신호 Id 및 IId는 확대회로(64)의 출력신호를 나타낸다. 확대회로(64)는 PLL을 포함한다. 확대 결과로, 신호 Id 및 IId의 주기들은 신호 I 및 II의 주기들의 1/n이고 신호 Id 및 IId는 1/4주기 위상을 갖는다.
펄스 Id 및 IId는 방향 변별회로(65)를 경유하여 동기 회로(63)로 통과하게 된다. 방향 변별회로(65)는 신호 I와 II사이의 위상 관계를 토대로 신호 I와 II사이의 상대 운동의 방향을 검출하며, 상대 운동의 방향을 지시하는 신호 Sc(“0” 또는 “1”)를 발생한다. 신호 II는 주파수 고정회로(65)로 통과하게 된다. 신호 II가 “1” 레벨에 있을 때, 이 회로(66)는 시스템 출력 펄스 CK를 카운트하고 카운트 치를 수동 스윗치 S1내지 S4에 의하여 선택되는 기준치와 비교한다. 신호 II가 “0” 레벨일 때, 이 회로(66)는 카운트 치를 클리어하며, 카운트 치가 기준치를 초과할 때 신호 Sb를 발생한다. 즉 제4도에서, 시스템 클록펄스 CK가 주기 Ta 동안 카운트되며, 카운트 치는 주기 Tb 동안 신호 Sb의 발생을 클리어하게 된다.
신호 Sd가 공급되어질 때, 동기 회로(63)는 펄스신호 I 및 II에 응하는 펄스신호 PI 및 PII를 발생한다. 신호 Sd가 공급되지 않았을 때, 동기회로(63)는 펄스신호 Id 및 IId에 응하는 펄스신호 PI 및 PII를 발생한다. 신호 Sd의 존재를 무시하고, 동기회로(63)는 펄스신호 Id 및 IId에 응하는 펄스신호 PI를 발생한다. 따라서, 주파수 고정회로(66)로부터 신호의 존재에 따라, 펄스신호 I 및 II 또는 펄스신호 Id 및 IId 어느 하나가 동기회로(63)에서 신호 PI 및 PII의 발생을 위하여 선택적으로 선택되어진다. 이 경우에서, 동기회로(63)는 선택되어지는 신호의 스윗칭에서 동기화를 위한 시스템 클록 펄스CK에 의하여 공급되는 신호를 단속한다.
검출 헤드(61)와 스케일 사이의 저속 상대 운동의 경우에 있어서, 주파수 고정회로(66)는 신호 Sd를 발생하지 아니하고 동기 회로(63)는 펄스회로 Id 및 IId를 이어받아 펄스신호 PI 및 PII를 발생하므로써, 고분해능에서 변위 검출을 보장한다. 신호 Sd의 부재는 확대된 펄스 신호들이 현재 발생되고 있다는 사실을 지적하는 것이다. 신호 Sc의 값은 검출 헤드와 스케일 사이의 상대 운동의 방향을 나타낸다.
수동 스윗치 S1내지 S1에 의하여 선택되는 기준치 이상의 고속 상대 운동의 경우에 있어서, 주파수 고정회로(66)는 신호 Sd를 발생하고 동기회로(63)는 펄스신호 I 및 II를 이어 받았던 펄스신호 PI 및 PII를 발생한다. 펄스신호 I 및 II의 주파수가 확대된 펄스신호 Id 및 IId의 주파수보다 낮기 때문에, 고주파 간섭을 피할 수 있으며, 다음 신호 처리에서의 고속을 요구하지 아니한다.
수동 스윗치 S1내지 S1의 대용으로 적당한 외부 기준치 데이타가 시스템에 공급되어질 지도 모른다.
스윗칭 시스템의 또 다른 실시예가 제5도에 도시되어 있다. 이 경우에서, 신호 I 및 II는 제1도에 도시된 실시예와 같이 sinθ 및 cosθ을 형성하는데에 주어진다.
신호 I 및 II는 속도 검출회로(71)로 통과하게 된다. 제2도에 도시된 실시예에서 사용되는 바와 같이 파형을 형성하기 위하여 신호 I 및 II의 파형 변별을 실행한다. 구형파 사이의 위상관계로부터, 회로(71)는 상대운동과 방향을 검출하고 방향을 지시하는 신호 Sd를 발생한다. 회로(71)는 또한 속도신호 Sv로서 구형파 하나 또는 둘 모두를 발생시킨다. 또한, 회로(71)는 PLL 회로를 사용하여 신호 I 및 II로부터 θ를 빼며 비트수로 이루어진 디지탈 신호 Dθ을 발생시킨다.
디지탈 신호 Dθ는 검출헤드와 출력을 위한 스케일 사이의 낮은 상대 운동으로부터 높은 상대 운동까지 스윗칭에서 신호 Dθ의 하위측 비트까지 연속 이동을 하는 비트 이동회로(72)로 통과하게 된다. 즉, 비트 이동회로(72)의 출력신호 Dn은 Dθ min와 Dθ max(원래신호) 사이의 하나의 비트 신호이다.
비트 이동회로(72)는 또한 현재 선택된 비트수를 지시하는 신호 s(n)을 발생시킨다. 비트 이동회로(72)는 예를 들면, 디지탈 신호 Dθ의 최상위 비트 Dθ min으로부터 끄집어 낸 신호의 주파수를 체크함으로서 속도 검출을 행한다.
검출 헤드와 스케일 사이의 저속 상대 운동의 경우에 있어서, 비트 이동회로(72)는 고분해능에서 디지탈 신호 Dθ의 하위측 비트를 발생한다. 고속 상대 운동의 경우에 있어서, 비트 이동회로(72)는 디지탈 신호 Dθ의 상위측 비트를 발생하여서 출력 주파수를 낮게 유지시킨다.

Claims (11)

  1. 엔코우더용 변위 검출장치에 있어서, 상대 운동에 대한 엔코우더의 스케일(15)의 장에 배열되고 상기 스케일에 저장된 신호세기에 응하는 위상을 갖는 한 쌍의 출력신호를 발생하는 검출 헤드(61), 상기 출력신호들을 디지탈화 하기 위한 상기 검출 헤드에 연결되어 있는 첫 번째 A/D 변환장치와 두 번째 A/D 변환장치, 상기 첫 번째 및 두 번째 A/D 변환장치에 연결되어 있고 정해진 데이타의 코사인 치와 함계 상기 첫 번째 A/D 변환장치로부터 출력 신호를 승산한 첫 번째 곱 및 상기 정해진 데이타의 사인치와 함께 승산한 두 번째 곱을 발생하는 관수발생 승산부(25), 상기 관수발생 승산부에 연결되어 있고, 첫 번째 승산곱과 두 번째 승산곱과의 차를 계산하기 위한 감산기(22), 상기 감산기 및 상기 관수발생 승산부에 연결되어 있으며, 승산의 곱에서 차에 응하는 카운트를 행하고 상기 차의 극성에 따라 카운팅의 모드를 이동시키고, 카운터의 카운트 치를 상기 서술된 정해진 데이타로서 관수발생 승산부로 통과시키는 첫 번째 카운팅부(24), 상기 검출헤드 및 상기 첫 번째 카운팅부에 연결되어 있고 상대 운동의 속도를 검출하여 속도가 기준 속도를 초과할 때는 파형을 판별한 후 검출 헤드로부터 출력신호 중 하나를 선택하고 속도가 기준치 미만인 경우 상기 첫 번째 카운팅 부로부터 카운트 치의 최상위 비트에서 신호를 검출하는 신호 스윗칭부, 상기 스위칭부에 연결되어 있고, 후자로부터 출력신호를 카운트하기 위한 두 번째 카운팅부(43), 상기 두 번째 카운팅부 및 첫 번째 카운팅부에 연결되어 있고, 첫 번째 카운팅부의 카운트 치에 의하여 형성되는 하위측 비트와 두 번째 카운팅부의 카운트 치에 의하여 형성되는 상위측 비트를 포함하는 첫 번째 절대 데이타를 상대 속도가 기준 속도보다 낮을 때 직렬 데이타로 변환시키고 두 번째 카운팅부로부터 카운트 치에 의하여 형성되는 상위측 비트를 포함하는 두 번째 절대 데이타를 속도가 기준 속도를 초과하였을 때 상기 첫 번째 카운팅부로부터의 카운트 치를 무효로 한 후에, 두 번째 직렬 데이타로 변환시키는 병렬/직렬 변환장치(46)를 포함하는 엔코우딩용 변위 검출장치.
  2. 청구범위 제1항에 있어서, 외부전원이 차단되었을 때 임시적으로 밧데리 전압 공급을 하기 위하여 상기 서술된 회로 소자에 연결되어 있는 전원 모니터를 포함하는 변위 검출장치.
  3. 청구범위 제1항 또는 제2항에 있어서, 상기 스케일(15)이 자화된 패턴을 저장하고, 상기 검출 헤드(61)가 상기 첫번째 및 상기 두번째 A/D 변환장치(18)(19)에 각각 연결되어 있는 첫번째및 두번째 자기센서(16)(17)로 포함하고, 상기 첫 번째 및 두 번째 자기센서가 상기 자화된 패턴의 1/4주기에 응하는 거리에 의하여 서로 떨어져 있는 변위 검출장치.
  4. 청구범위 제1항 또는 제2항에 있어서, 상기 관수발생 승산부(25)가 상기 첫번째 및 두번째 A/D 변환장치(18)(19)에 각각 연결되어 있는 첫번째 및 두번째 승산기 및 상기 승산기의 입력측에 연결되어 있는 관수발생 ROM(25)을 포함하는 변위 검출장치.
  5. 청구범위 제1항 또는 제2항에 있어서, 상기 첫 번째 카운팅부(24)가 상기 감산기와 상기 카운터의 업-다운 이동단자 사이에 내재된 카운터 및 비교기를 포함하고, 상기 비교기가 감산결과가 정일 때 1이고 감산 결과가 부일 때 0인 신호를 발생하는 변위 검출장치.
  6. 청구범위 제1항 또는 제2항에 있어서, 상기 신호 스윗칭 회로가 상기 검출 헤드에 연결되어 있는 속도 검출장치(40), 상기 검출헤드(61)에 연결되어 있는 파형 변별회로(62) 및 상기속도 검출장치, 상기 첫번째 카운팅부(24) 및 파형 변별회로(62)에 연결되어 있는 데이타 선택장치를 포함하는 변위 검출장치
  7. 청구범위 제1항 또는 제2항에 있어서, 상기 병렬/직렬 변환부(46)가 래치회로의 출력측에 연결되어 있는 병렬/직렬 변환장치 및 래치회로를 포함하는 변위 검출장치.
  8. 청구범위 제1항 또는 제2항에 있어서, 상기 첫 번째 및 두 번째 A/D변환기(18)(19), 상기 관수발생 승산부(25), 상기 감산기(22) 및 상기 첫 번째 카운팅부(24)가 고정루프(Locked loop)를 형성하는 변위 검출장치.
  9. 청구범위 제1항 또는 제2항에 있어서, 상기 검출헤드(61)로부터의 상기 출력신호의 주파수보다 n배 또는 2n배 정도의 큰 주파수를 갖는 분할된 신호를 발생하기 위한 수단과, 상기 속도가 기준 속도를 초과할 때 상기 상대 운동의 상기 속도를 검출하고, 상기 속도가 상기 기준속도 미만일 때 상기 분할된 속도를 선택하는 신호 선택회로를 포함하는 변위 검출장치.
  10. 청구범위 제9항에 있어서, 상기 신호 선택회로가 상기 기준 속도를 자유스럽게 고정하기 위한 수단을 포함하고 있는 변위 검출장치.
  11. 청구범위 제9항에 있어서, 상기 기준 속도가 외부에서 공급된 신호에 의하여 고정되는 변위 검출장치.
KR1019870004123A 1986-05-01 1987-04-27 엔코우더용 변위 검출장치 KR920010015B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP137569 1986-05-01
JP86-101809 1986-05-01
JP101809 1986-05-01
JP61101809A JPS62257065A (ja) 1986-05-01 1986-05-01 エンコ−ダ
JP86-137569 1986-06-13
JP61137569A JPS62293123A (ja) 1986-06-13 1986-06-13 エンコ−ダ用変位検出装置

Publications (2)

Publication Number Publication Date
KR870011451A KR870011451A (ko) 1987-12-23
KR920010015B1 true KR920010015B1 (ko) 1992-11-10

Family

ID=26442604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870004123A KR920010015B1 (ko) 1986-05-01 1987-04-27 엔코우더용 변위 검출장치

Country Status (4)

Country Link
US (1) US4782329A (ko)
EP (1) EP0244385B1 (ko)
KR (1) KR920010015B1 (ko)
DE (1) DE3787668T2 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449914A (en) * 1987-08-20 1989-02-27 Fanuc Ltd Signal processor for pulse encoder
JPH0267916A (ja) * 1988-09-02 1990-03-07 Yamaha Corp アブソリュートエンコーダ
JP2697919B2 (ja) * 1989-09-29 1998-01-19 キヤノン株式会社 信号内挿回路及び該回路を備えた変位測定装置
AU700629B2 (en) * 1994-03-22 1999-01-07 Hyperchip Inc. Efficient direct cell replacement fault tolerant architecture supporting completely integrated systems with means for direct communication with system operator
CA2232399A1 (en) * 1998-05-13 1999-11-13 Hohner Corp Optical encoder with absolute communication and incremental reading system
DE10234744A1 (de) * 2002-07-30 2004-02-19 Elgo-Electric Gmbh Vorrichtung zur Positions-und/oder Längenbestimmung
JP3708093B2 (ja) 2003-04-01 2005-10-19 ミネベア株式会社 モータのサーボ制御システムおよびモータの速度制御に利用されるr/dコンバータ
JP4270128B2 (ja) * 2003-04-11 2009-05-27 三菱電機株式会社 回転型エンコーダ
DE102004004281B4 (de) * 2004-01-28 2005-12-01 Infineon Technologies Ag Verfahren und Vorrichtung zur Positionserfassung
EP1752740B1 (en) * 2005-08-11 2008-12-03 Mitutoyo Corporation Method and Circuit for interpolating an Encoder Output
JP4782553B2 (ja) * 2005-11-28 2011-09-28 オークマ株式会社 アブソリュート位置検出装置
US7535382B2 (en) * 2006-10-31 2009-05-19 Mitutoyo Corporation High speed quadrature counter
KR101218028B1 (ko) * 2008-03-18 2013-01-02 미쓰비시덴키 가부시키가이샤 회전각도 검출 장치
DE102018209956A1 (de) * 2018-06-20 2019-12-24 Zf Friedrichshafen Ag Ermittlung einer Drehzahl eines drehbaren Geberelements

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346447A (en) * 1979-12-28 1982-08-24 Nippon Kogaku K.K. Divisional reading device for sine signals
US4449117A (en) * 1981-11-13 1984-05-15 Dataproducts Corporation Encoder tracking digitizer having stable output
DE3412557A1 (de) * 1984-04-04 1985-10-24 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Laengenmesseinrichtung
EP0251341B1 (en) * 1984-04-14 1991-09-25 Fanuc Ltd. Circuit means for evaluating the movement of a code track of incremental type
DE3445617A1 (de) * 1984-07-13 1985-07-04 Max Stegmann GmbH, Uhren- und Elektroapparatefabrik, 7710 Donaueschingen Verfahren und anordnung zur seriellen uebertragung der digitalen messwerte eines messwertwandlers

Also Published As

Publication number Publication date
US4782329A (en) 1988-11-01
KR870011451A (ko) 1987-12-23
EP0244385B1 (en) 1993-10-06
DE3787668D1 (de) 1993-11-11
EP0244385A3 (en) 1990-12-19
DE3787668T2 (de) 1994-02-03
EP0244385A2 (en) 1987-11-04

Similar Documents

Publication Publication Date Title
KR920010015B1 (ko) 엔코우더용 변위 검출장치
US7571552B2 (en) Scale reading apparatus
EP1600741A2 (en) Pulse width modulation based digital incremental encoder
CN109696112B (zh) 用于电感式绝对位置编码器的紧凑型伪随机标尺和读头
US6914543B2 (en) Method for initializing position with an encoder
US4587485A (en) Evaluation arrangement for a digital incremental transmitter
EP0853231B1 (en) Method for varying interpolation factors
CN107421569B (zh) 一种高分辨率高精度双光电编码器补偿细分装置及方法
US7099790B2 (en) Sensor signal processor
KR960015387B1 (ko) 복조기 및 복조 방법
JPH06147922A (ja) 変位測定装置
KR0155878B1 (ko) 리니어 스텝핑 모터의 위치검출방법 및 그 장치
JPH0424646B2 (ko)
KR940007110B1 (ko) 엔코우더용의 개선된 변위 검출장치
JPH0726858B2 (ja) エンコーダ用信号処理回路
JPH0438284B2 (ko)
JPH0449891B2 (ko)
JPH0466288B2 (ko)
US20050270090A1 (en) Direct phase and frequency demodulation
US5007057A (en) Power source monitor and a rotary encoder with such a monitor
JPH02220111A (ja) エンコーダ
JPS61120920A (ja) エンコ−ダ方式の測角・測長回路
SU682931A1 (ru) Преобразователь угла поворота вала в код
JPH05209710A (ja) 回転角度検出装置
JPH0342766B2 (ko)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19971028

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee