KR920007933B1 - Making process for fe-cr by smelting reduction process - Google Patents
Making process for fe-cr by smelting reduction process Download PDFInfo
- Publication number
- KR920007933B1 KR920007933B1 KR1019890020405A KR890020405A KR920007933B1 KR 920007933 B1 KR920007933 B1 KR 920007933B1 KR 1019890020405 A KR1019890020405 A KR 1019890020405A KR 890020405 A KR890020405 A KR 890020405A KR 920007933 B1 KR920007933 B1 KR 920007933B1
- Authority
- KR
- South Korea
- Prior art keywords
- coke
- amount
- reduction
- charging
- ferrochrome
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0066—Preliminary conditioning of the solid carbonaceous reductant
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
제1도는 탄재량(코크스(장입량)/코크스(당량)×100%) 변화에 따른 환원반응 속도변화를 나타내는 그래프.1 is a graph showing the change rate of the reduction reaction according to the change in the amount of coal ash (coke (charge) / coke (equivalent) × 100%).
제2도는 슬래그 염기도 변화에 따른 환원반응속도 변화를 나타내는 그래프.2 is a graph showing a change in reduction reaction rate according to the slag basicity change.
본 발명은 크롬광석중 크롬 산화물을 상저취 전로형 반응로에서 용융 환원법에 의해 페로크롬(Fe-Cr)을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing ferrochrome (Fe-Cr) by chromium oxide in the chromium ore in a low-lowering converter reactor.
종래의 스테인레스강은 크롬 광석등을 전기로에서 탄소환원하여 페로크롬을 제조한 뒤 이것을 주원료로 용제하여 제조되었다.Conventional stainless steel is produced by chromium ore, etc. in the electric furnace to produce a ferrochrome by carbon reduction, and then to the solvent as a main raw material.
그러나 이 방법은 고가의 전력을 사용하여야 하며, 페로크롬을 일단 응고 시킨 뒤 제강과정에서 재용융처리하여야 하기 때문에 에너지손실이 큰 이유로 페로크롬의 제조원가가 높은 단점이 있었다. 이러한 문제점을 해결하기 위하여 크롬광석 또는 예비환원된 크롬광석을 상저취전로등의 용융환원로에서 전력을 사용하지 않고 탄재를 사용 탄소 환원시켜 페로크롬을 용제하여 스테인레스강을 제조하는 방법, 즉 크롬광석의 용융환원 방법(일본특개(소) 59-140319, 62-17111, 62-164848호)이 시도되었다.However, this method requires the use of expensive electric power, and because ferrochrome has to be solidified once and then remelted during steelmaking, ferrochrome has a high manufacturing cost. In order to solve this problem, chromium ore or pre-reduced chromium ore in a molten reduction furnace, such as a low-low converter, carbon reduction using carbonaceous material without using electric power to produce ferro chromium to produce stainless steel, that is, chrome ore Melt reduction methods (Japanese Patent Laid-Open No. 59-140319, 62-17111, 62-164848) have been tried.
그러나, 이 방법들은 슬래그중의 크롬 산화물들의 최종농도를 1% 이하로 낮추는데에 주목적을 두어 용융 슬래그중에 코크스를 이론적 당량보다 과잉으로 장입하고 있어 용융환원법에 의해 페로크롬 제조원가를 절감한다는 측면에서 비효율적이다.However, these methods are mainly ineffective in lowering the final concentration of chromium oxides in slag to less than 1%, and the coke is charged in excess of theoretical equivalents in molten slag, which is inefficient in terms of reducing ferrochrome manufacturing cost by melt reduction method. .
한편, 환원반응에 유리한 코크스량 관리를 용융슬래그중의 잔류 코크스량으로 하고 있는데, 잔류 코크스량은 노내가스를 분석 2차연소율등 연소반응의 해석으로 도출하고 있는데 개방형반응로에서 공기의 유입등으로 계산상 오류의 폭이 크며, 또한 계산과정이 번거로와 이것을 조업상 지표로 이용하기에는 방법상의 문제점이 있다.On the other hand, the coke amount management which is advantageous for the reduction reaction is the residual coke amount in the molten slag. The residual coke amount is derived from the analysis of the combustion reaction such as an analysis secondary combustion rate. The calculation error is large, and the calculation process is cumbersome, and there is a method problem in using this as an operational indicator.
또한 환원제인 코크스 장입량이 월등히 많기 때문에 코크스량 이외의 다른 요소들에 의한 용융슬래그중의 크롬 산화물들의 환원속도를 증가시키는 경우를 구분치 못하는 문제점을 갖고 있다.In addition, there is a problem in that the case of increasing the reduction rate of the chromium oxides in the molten slag due to factors other than the coke amount because the amount of coke charged as a reducing agent is much higher.
슬래그중의 크롬 산화물농도를 1% 이하로 유지하려면 슬래그중의 탄재량을 늘려 강환원성 분위기를 유지하여야 하므로 코크스 중의 인이 용탕으로 상당량 환원되어 들어가기 때문에 페로크롬 용탕의 탈인처리가 요구되거나 인이 적은 고가의 코크스를 사용하여야 하며, 또한 슬래그중의 크롬산화물농도가 1% 이하로 유지되면 슬래그중의 산화마그네슘 용해도가 커져 이방법에 주로 사용되는 염기성 내화물의 용손량이 늘어나는 문제점이 있다.In order to maintain the chromium oxide concentration in the slag below 1%, it is necessary to increase the amount of carbon ash in the slag to maintain a strong reducing atmosphere, so that phosphorus in the coke is reduced to a molten amount, so dephosphorization treatment of the ferrochrome molten metal is required or less phosphorus is required. Expensive coke should be used, and if the chromium oxide concentration in the slag is maintained at 1% or less, the solubility of magnesium oxide in the slag increases, so that the amount of melting of the basic refractory mainly used in this method increases.
일본특개(소) 62-17111호에 의하면 이러한 문제점 중 일부를 해결하기 위하여 슬래그중의 최종 크롬 산화물의 농도를 1-4% 정도로 높게 유지하도록 코크스량을 줄이고 저가의 코크스를 사용하여, 인의 용탕으로의 환원량을 줄이고 내화물 용손량을 줄이는 방법이 있으나, 코크스 적정량에 대한 제시는 되어 있지 못하다.According to Japanese Patent Laid-Open No. 62-17111, in order to solve some of these problems, the amount of coke is reduced to maintain the concentration of the final chromium oxide in the slag as high as 1-4%, and inexpensive coke is used as a molten metal for phosphorus. Although there is a method of reducing the amount of reduction and the amount of refractory loss, refractory amount of coke has not been suggested.
이밖에 일본특개(소) 62-164848호에 의하면 용융슬래그성분중 산화알루미늄과 산화 마그네슘 양의 합이In addition, according to Japanese Patent Laid-Open No. 62-164848, the sum of the amounts of aluminum oxide and magnesium oxide in the molten slag component is
Al2O3+MgO<0.16T-208T : 용융금속온도(℃)Al 2 O 3 + MgO <0.16T-208T: Molten metal temperature (℃)
와 같은 조건이 크롬 산화물의 환원에 유리한 것으로 되어 있지만, 고로나 전로조업에서와 같이 조업지표로 이용할 만한 특정한 슬래그 염기도(=CaO/SiO2)에 대해서는 명확히 제시되지 못한 문제점이 있다.Such conditions are advantageous for the reduction of chromium oxide, but there is a problem that the specific slag basicity (= CaO / SiO 2 ) which can be used as an operation indicator, such as in blast furnace or converter operation, is not clearly presented.
따라서, 본 발명은 용융환원과정에서 크롬 산화물의 환원속도를 저하시키지 않는 최저 코크스량을 제시하고, 이러한 최저 코크스량 사용시 부원료 첨가물에 의한 최적염기도를 제공하여 경제적으로 페로크롬을 제조하고자 하는에 그 목적이 있다.Accordingly, the present invention provides the lowest amount of coke that does not lower the reduction rate of chromium oxide in the melt reduction process, and provides the optimum base degree by using additives when using the lowest amount of coke to economically produce ferrochrome. There is this.
본 발명은 이러한 목적을 달성하기 위하여 산소상취 및 질소저취 용융환원로를 이용하여 상부로부터 취입되는 산소량을 기준하여 다음의 (1), (2)식과 같은 크롬 광석중의 크롬, 철 산화물들의 환원에 소요되는 탄재량과 (3)식과 같이 연소반응이 전량 CO 가스가 발생되는 것으로 가정하여 연소반응에 소요되는 탄재량을 변화시켜 환원속도의 저하를 초래하지 않는 최저 코크스량을 제시하였다.The present invention is based on the reduction of chromium, iron oxides in the chromium ore, such as the following (1), (2) based on the amount of oxygen blown from the top by using an oxygen uptake and nitrogen-lowering melt reduction reactor to achieve this object. The minimum amount of coke that does not cause a reduction in the reduction rate is suggested by changing the amount of carbon ash required for the combustion reaction, assuming that the amount of carbon ash required and the combustion reaction generates the entire CO gas as shown in Equation (3).
7Cr2O3+27C=2Cr7C3+21CO ………………………………(1)7Cr 2 O 3 + 27C = 2Cr 7 C 3 + 21CO... … … … … … … … … … … … (One)
3FeO+4C=Fe3C+3CO ………………………………………(2)3FeO + 4C = Fe 3 C + 3CO... … … … … … … … … … … … … … … (2)
c+1/2O2=CO …………………………………………………(3)c + 1 / 2O 2 = CO... … … … … … … … … … … … … … … … … … … (3)
또한, 이와 같은 최저 코크스량을 사용할 때 석회석, 규석, 사문암 등의 부원료를 이용하여 슬래그 염기도(CaO/SiO2)의 최적조건을 제시하였다.In addition, the optimum conditions of slag basicity (CaO / SiO 2 ) were suggested using subsidiary materials such as limestone, silica, and serpentine when using the lowest amount of coke.
즉, 본 발명은 용융환원로에 장입원료와 코크스를 장입하여 용융환원에 의해 페로크롬을 제조하는 방법에 있어서 장입 코크스의 량을 이론당량값에 필요한 코크스량의 90-110%로 하고, 상기 장입원료의 염기도를 1.2-1.4로 조정하여 용융환원하므로서, 페로크롬을 제조하는 방법에 관한 것이다.That is, the present invention is to charge the coke raw material and coke in the melt reduction reactor in the method for producing ferrochrome by melt reduction, the amount of coke charged to 90-110% of the amount of coke required for the theoretical equivalent value, It relates to a method for producing ferrochrome by adjusting the basicity of the raw material to 1.2-1.4 to melt reduction.
용융환원로에 장입원료와 코크스를 장입하여 용융환원에 의해 페로크롬을 제조함에 있어서 장입원료는 통상 49-56wt%의 크롬광석 또는 크롬광석펠릿, 29-35wt%의 석회석, 1.5-6.0wt%의 규사, 및 9-14.5%의 사문암을 함유하여 조성된다.In the production of ferrochrome by melting reduction by charging charged raw material and coke into the molten reduction reactor, the charged raw material is usually 49-56 wt% chromium ore or chrome ore pellets, 29-35 wt% limestone, 1.5-6.0 wt% It is composed of silica sand and 9-14.5% of serpentine.
상기 장입 코크스량이 증가하면 크롬광석의 용융환원 반응속도를 나타내는 0차 반응속도정수가 증가되는데, 이론 당량값에서 필요로 하는 코크스량의 90% 이하가 되면, 충분한 용융환원 반응 즉, 충분한 0차 반응 속도를 얻을 수 없으며, 110% 이상이 되는 경우에는 0차 반응속도 정수는 증가하지만, 그 증가되는 율을 그다지 크지 않고 특히, 코크스량 증가로 인한 제조비용의 증가를 가져오게 되므로, 장입되는 코크스량은 이론당량값의 90-110%가 바람직하다.When the charged coke amount is increased, the zero-order reaction rate constant representing the melt reduction reaction rate of the chromium ore is increased. When the amount of coke required is less than 90% of the amount of coke required by the theoretical equivalent value, a sufficient melt reduction reaction, that is, a sufficient zero-order reaction The rate cannot be obtained, and if it is 110% or more, the zero-order reaction rate constant increases, but the increase rate is not so large, and in particular, the production cost is increased due to the increased amount of coke, so that the amount of coke charged Silver is preferably 90-110% of the theoretical equivalent value.
또한, 상기 염기도의 범위를 1.2-1.4로 제한한 이유는 이 범위를 벗어나는 경우에는 최적의 0차 반응속도정수를 얻을 수 없기 때문이다.In addition, the reason for limiting the range of basicity to 1.2-1.4 is that the optimum zero-order reaction rate constant cannot be obtained outside this range.
이하, 본 발명을 실시예를 통하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예]EXAMPLE
[실시예 1]Example 1
500kg/ch의 용융환원로에 400kg의 냉선을 유도가열에 의하여 용선을 조성한 뒤에(이때, 용탕온도는 1600-1650℃로 유지하였음) 하기 표 1과 같은 조성의 크롬광석으로 제조된 크롬광석펠릿, 부원료, 하기 표 2의 코크스량을 반연속 장입하였으며, 이때 역시 하기 표 2의 산소를 연속취입하여 노열을 확보하였다.After forming a molten iron by induction heating of 400kg cold wire in a 500kg / ch melt reduction furnace (at this time, the melt temperature was maintained at 1600-1650 ℃) chromium ore pellets made of chromium ore of the composition shown in Table 1, Subsidiary materials, the coke amount of the coke in Table 2 was semi-continuously charged, and at this time also the oxygen of the following Table 2 was continuously blown to secure the furnace.
장입이 완료된뒤에 하기 표 2의 연소용 코크스 및 산소를 취입하면서 마무리 정련기를 실시하였다. 이 기간에 8분마다 슬래그를 채취하여 슬래그중의 크롬 산화물의 농도를 분석하였으며 마무리 정련기에서의 0차 반응속도정수를 구하여 그 결과를 제1도에 나타내었다.After the charging was completed, a finishing refiner was performed while blowing the coke and oxygen for combustion shown in Table 2 below. In this period, slag was collected every 8 minutes, and the concentration of chromium oxide in the slag was analyzed. The zero-order reaction rate constant in the finishing refiner was obtained and the results are shown in FIG.
[표 1]TABLE 1
[표 2]TABLE 2
제1도에 나타낸 바와 같이, 이론당량값에 필요한 코크스량에 비해 실장입 코크스를 90-110%로 장입하는 경우 0차 반응속도정수는 거의 일정하게 유지되며, 증가한다 하더라도 그 증가폭은 적음을 알 수 있다.As shown in FIG. 1, when the loaded coke is loaded at 90-110% of the coke required for the theoretical equivalent value, the zero-order reaction rate constant is almost constant, and the increase is small even if it is increased. Can be.
[실시예 2]Example 2
이론 당량값에 필요한 코크스대비 장입 코크스량을 109%로 하고 하기 표 3과 같이 염기도를 변화시켜 상기 실시예 1와 동일한 방법에 의하여 실험을 실시하여 0차 반응속도정수를 구하고 그 결과를 제2도에 나타내었다.The amount of coke charged to the coke required for the theoretical equivalent value was 109%, and the basicity was changed as shown in Table 3 below. The experiment was carried out according to the same method as in Example 1 to obtain a zero-order reaction rate constant. Shown in
[표 3]TABLE 3
제2도에 나타난 바와 같이, 본 발명에 부합되는 염기도를 갖는 실험번호 11(염기도 : 1.3)이 가장 큰 0차 반응속도정수를 갖게 됨을 알 수 있다.As shown in Figure 2, it can be seen that the experiment number 11 (base: 1.3) having a basicity according to the present invention has the largest zero-order reaction rate constant.
상기 실시예 1 및 2를 종합해 보면, 본 발명은 이론 당량값에 필요한 코크스량에 대하여 장입코크스량을 90-110%로 하고, 염기도를 1.2-1.4로 조절하므로서 최적의 0차 반응속도 정수를 얻을 수 있음을 알 수 있다.In summarizing the above Examples 1 and 2, the present invention provides an optimum zero-order reaction rate constant by adjusting the amount of charged coke to 90-110% and the basicity to 1.2-1.4 based on the amount of coke required for the theoretical equivalent value. It can be seen that.
상술한 바와 같이, 본 발명은 본 발명에서 제시된 코크스 장입 하한치와 염기도를 조업지표로 하면 용융환원과정에서 크롬 산화물의 환원에 필요한 적정 코크스량 사용으로 연료비의 절감을 가져올 수 있으며 코크스량 관리가 용이하고, 난환원성 크롬 산화물의 용해 및 환원을 위한 최적 용융슬래그조성 확보로 경제적인 페로크롬 제조가 가능한 효과를 얻을 수 있다.As described above, in the present invention, if the lower limit of coke loading and basicity suggested in the present invention are operating indicators, it is possible to reduce fuel costs by using an appropriate amount of coke required for reduction of chromium oxide in the melt reduction process, and to easily manage the amount of coke. In addition, it is possible to obtain economically effective ferrochrome production by securing an optimal molten slag composition for dissolving and reducing hard-reducing chromium oxide.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019890020405A KR920007933B1 (en) | 1989-12-30 | 1989-12-30 | Making process for fe-cr by smelting reduction process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019890020405A KR920007933B1 (en) | 1989-12-30 | 1989-12-30 | Making process for fe-cr by smelting reduction process |
Publications (2)
Publication Number | Publication Date |
---|---|
KR910012310A KR910012310A (en) | 1991-08-07 |
KR920007933B1 true KR920007933B1 (en) | 1992-09-19 |
Family
ID=19294431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019890020405A KR920007933B1 (en) | 1989-12-30 | 1989-12-30 | Making process for fe-cr by smelting reduction process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR920007933B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101492783B1 (en) * | 2011-11-15 | 2015-02-12 | 오토텍 오와이제이 | Process for the manufacture of ferrochrome |
-
1989
- 1989-12-30 KR KR1019890020405A patent/KR920007933B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101492783B1 (en) * | 2011-11-15 | 2015-02-12 | 오토텍 오와이제이 | Process for the manufacture of ferrochrome |
Also Published As
Publication number | Publication date |
---|---|
KR910012310A (en) | 1991-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113088791B (en) | Method for preparing rare earth steel by reducing rare earth oxide step by step in refining process | |
US3649246A (en) | Decarburizing molten steel | |
US4731112A (en) | Method of producing ferro-alloys | |
JPS54158320A (en) | Refining method for high chromium steel | |
KR920007933B1 (en) | Making process for fe-cr by smelting reduction process | |
JP2947063B2 (en) | Stainless steel manufacturing method | |
US6740138B2 (en) | Molten steel producing method | |
KR910009962B1 (en) | Method for producing chromium containing molten iron with low sulphur concentration | |
US3816100A (en) | Method for producing alloy steel | |
JP3119015B2 (en) | Smelting reduction of Ni ore | |
RU2092571C1 (en) | Composite charge for making steel | |
JP2842185B2 (en) | Method for producing molten stainless steel by smelting reduction | |
JP3560637B2 (en) | Converter furnace blowing method for stainless steel | |
JP2828489B2 (en) | Production method of chromium-containing hot metal | |
JPH01252715A (en) | Method for operating iron bath type smelting reduction furnace | |
JPH0776752A (en) | Method for melting chromium-containing steel | |
JP2837282B2 (en) | Production method of chromium-containing hot metal | |
JPH11343514A (en) | Method for melting high carbon steel using bottom-blown converter | |
JP2959368B2 (en) | Manufacturing method of Ni-Cr containing hot metal | |
JPH0892627A (en) | Production of stainless steel | |
JP3173325B2 (en) | How to make stainless steel | |
SU829707A1 (en) | Method of smelting carbon ferrochrome | |
JP3603969B2 (en) | Method for producing hot metal containing chromium and / or nickel | |
SU470550A1 (en) | The method of obtaining ligatures | |
RU2118670C1 (en) | Method of smelting silicon-vanadium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20000825 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |