KR920000075B1 - 석판인쇄 시스템의 마스크 검사장치 - Google Patents

석판인쇄 시스템의 마스크 검사장치 Download PDF

Info

Publication number
KR920000075B1
KR920000075B1 KR1019870004537A KR870004537A KR920000075B1 KR 920000075 B1 KR920000075 B1 KR 920000075B1 KR 1019870004537 A KR1019870004537 A KR 1019870004537A KR 870004537 A KR870004537 A KR 870004537A KR 920000075 B1 KR920000075 B1 KR 920000075B1
Authority
KR
South Korea
Prior art keywords
array
mask
mask inspection
energy
sensitive elements
Prior art date
Application number
KR1019870004537A
Other languages
English (en)
Other versions
KR870011663A (ko
Inventor
디. 프란켈 로버트
에프 후스 존
Original Assignee
햄프셔 인스트루 먼트스 인코포레이티드
제임스 엠. 훠사이즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 햄프셔 인스트루 먼트스 인코포레이티드, 제임스 엠. 훠사이즈 filed Critical 햄프셔 인스트루 먼트스 인코포레이티드
Publication of KR870011663A publication Critical patent/KR870011663A/ko
Application granted granted Critical
Publication of KR920000075B1 publication Critical patent/KR920000075B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

내용 없음.

Description

석판인쇄 시스템의 마스크 검사장치
제1도는 반도체 제조기의 개략도.
제2도는 본 발명의 장치가 위치한 기판의 설명도.
제3도는 엑스레이 석판인쇄 시스템용으로 사용하는 시험용 관련 마스크와 함께 본 발명의 시험장치의 다른 형태의 설명도.
제4도는 자외선 석판인쇄 시스템용으로 사용하는 시험용 관련마스크와 함께 본 발명의 시험장치의 다른 형태의 설명도.
제5도는 본 발명의 작용을 이해하는데 유용한 상세도.
제6도는 본 발명의 검사장치의 주사통로 표시도.
* 도면의 주요부분에 대한 부호의 설명
10 : 검사장치 12 : 근원
14 : 마스크 16 : 웨이퍼
20 : 검사장치 18 : 이동수단
21, 23 : 판독수단 22 : 마스크검사시스템
26, 28, 32, 34 : 데이타 제공 수단 30 : 광선전송수단
34 : 비교수단 36 : 광선수신수단
40 : 컴퓨터(수단) 42 : 대량기억수단(기억된 데이타)
46, 50, 72 : 에너지 감응소자(들), (전하결합소자들)
44, 48, 52 : 배열 54, 82 : 에너지 투과소공
70 : 배열 72, 74 : 전하주입소자(들)
본 발명은 석판인쇄 시스템의 마스크 검사장치에 관한 것으로 특히 반도체장치제조용 석판인쇄 시스템형에 있어서 광학영상 마스크나 엑스레이 영상 마스크의 정밀한 모양을 검사하는데 사용하는 장치에 관한 것이다.
종래의 반도체장치 제조용 광학 석판인쇄 시스템의 형태에 있어서, 광선은 마스크를 통하여 감광성수지로 피막된 웨이퍼에 전달된다. 마스크는 광선의 어떤 부분을 막아서 광선의 모양이 웨이퍼의 감광수지피막층상에 초점을 맺는다.
이 광선모양은 감광수지피막(레지스트)층의 동등한 노출모양이 되고, 그러므로써, 레지스트층의 어떤 소망되는 부분이 반도체 제조공정중에서 제거될 수 있는 것이다. 최근에와서 석판인쇄장비의 발전으로 자외선 광원이 엑스선 광원으로 대치되게 되었다. 엑스선은 자외선보다 파장이 더 짧기 때문에, 보다 더 작은 모양으로 레지스트상에 그릴 수 있다.
종래의 자외선 마스크모양이 그 싸이즈에 있어서 1미크론정도까지 작게 될 수 있는데 반하여, 엑스레이 석판인쇄 장비는 2/10미크론 정도의 작은 모양을 웨이퍼상에 그릴 수 있다. 단일 반도체 장치를 제조하는데 있어서 일지라도, 여러개의 상이한 층이 필요하다.
각 층용으로, 상이한 모양(패턴)이 웨이퍼상에 노출되고, 각 패턴용으로 상응하는 상이한 마스크가 사용된다. 이렇게 석판인쇄장비는 각 마스크를 에너지원에 관련되는 위치로 반복하여 넣고 빼는 마스크 조작수단이 있어서, 마스크를 손상하지 않도록 극도로 조심하지 않으면 안된다. 극히 작은 긁힘이나 티끌만한 먼지도 마스크상에는 상세한 모양보다 몇배 더 크게 나타나고, 상술한 바와 같이 상세한 모양은 수십분의 일정도로 아주 작은 것이기 때문이다. 마스크의 손상을 방지하기 위해 취해지는 여러가지 사전주위에도 불구하고, 마스크를 통하여 영사된 패턴이 소망되는 패턴과 같은지를 확인하기 위하여 주기적으로 마스크를 체크할 필요가 상존한다. 과거에, 패턴이 정확하게 유지되어 있는지를 확인하기 위한 마스크의 시험은 마스크를 광학적으로 관찰하거나 기지의 데이타 마스크의 대부분을 시험하므로써 수행되었다. 선행기술에는 1미크론 이하의 싸이즈의 모양은 시험하기 어려운 문제였다. 1미크론 싸이즈에 가까운 모양이 통상의 석판인쇄 기법에 의하여 재생될 수 있었던 것이 겨우 최근의 일이었기 때문에 이것은 역사적으로 문제가 되는 것이 아니었다.
엑스레이 석판인쇄기계와 같은 신종기계는 수십분의 1미크론의 모양을 레지스트 피복된 웨이퍼상에 제조할 수 있을 것이다. 그와 같은 정밀한 모양을 위해서는 마스크의 각 작은 모양의 존재여부 및 마스크상에 이물질이 없나를 확인하기 위하여 과거보다 더 높은 해상력으로 마스크를 체크할 필요가 있다. 본 발명의 한가지 양상에 의하면, 반도체 영상시스템에서 사용되는 영상규정마스크상에 주어진 싸이즈보다 큰 모양을 검사하기 위한 마스크 검사장치가 설치된 것이다.
그 씨스템은 에너지가 마스크를 향하여 제공되는 형인데 그러므로써 반도체 제조공정중에 에너지의 영상이 제공되는 원인이 된다. 마스크 검사장치는 에너지 감응장치의 배열 및 에너지 투과 소공의 배열을 갖는 기판이 있는데, 각 소공은 에너지 감응장치의 하나와 일치하며 또 같게 배열되어 있다. 각 소공은 주어진 싸이즈와 관련되는 싸이즈로 되고 소공의 배열은 소공을 통하여 인가된 임의의 에너지가 그 소공과 일치하는 에너지 감응장치에 인가되는 것과 같은 에너지 감응장치로부터 떨어져서 위치한다.
또, 마스크 검사장치는 마스크 모양의 측정용 비교수단에 대한 에너지 감응장치의 변화된 조건을 명백히 하는 데이타를 제공하는 수단이 있다. 본 발명의 한 실시예를 첨부된 도면에 따라 상세히 설명하면 다음과 같다.
제1도를 참조하면, 전형적인 반도체 제조 석판인쇄시스템(10)의 약도가 도시된다. 시스템(10)은 자외선원 또는 엑스레이원인 에너지 원(12)이 있다. 그와 같은 엑스레이원의 예는 미국특허 제4,184,078호 ″펄스된 엑스레이 석판인쇄″제하에 데이비드 제이 네이겔의 수인에 의하여 나타나 있으며, 그런 자외선원의 예는 미국특허 제4,444,492호 ″반도체 웨이퍼의 다위상에 일련의 영상을 영사하는 장치″ 제히의 마틴 이 리에 의하여 표시되어 있다.
근원(12)으로부터의 에너지는 마스크(14)쪽으로 향하여 조사되고 마스크는 에너지의 어떤 부분을 막고 에너지의 다른 부분을 통과시켜서 전달되도록 허용하므로서, 에너지의 패턴이 반도체웨이퍼(16)에 나타난다.
웨이퍼(16)는 스테퍼기구(18)에 의하여 지지되는데 이 기구는 웨이퍼(16)를 X. T. Z. 및 씨이터 방향으로 움직일 수 있다. 그와 같은 스테퍼기구(18) 및 자외선 마스크의 예는 전술한 미국특허 제4,444,492호에 표시되어 있다. 엑스레이원(12)으로 사용가능한 마스크의 예는 미국특허 제3,742,230호 ″연 엑스레이 마스크지기판″제하의 데이비드 엘 스퍼스외 수인 및 미국특허 제4,170,512호″연 엑스레이 마스크의 제조방법″제하의 데일 씨 플랜더스의 수인에 표시되어 있다. 간단히 말하면, 자외선 석판인쇄 시스템의 마스크(14)는 단순히 유리와 같은 투명판으로 되어 있으며, 그 위에 자외선을 막을 검은 패턴이 위치하고 있고 엑스레이 마스크는 엑스레이 투과 막위에 금 또는 텅그스텐 패턴이 위치하고 있다. 석판인쇄시스템(10)의 작용은 다음과 같다.
스테퍼기구(18)는 포토레지스터 피복된 웨이퍼(16)를 기정된 위치에 가져다 놓고 근원(12)으로부터의 에너지 마스크(14)를 통하여 패턴을 포토레지스터 피복된 웨이퍼(16)의 특정소 구역상에 노출한다. 그 다음 웨이퍼(16)는 스페퍼기구에 의하여 노출 싸이즈와 관련된 거리만큼 일정방향으로 이동하고 에너지는 재차근원(12)으로부터 제공되어 웨이퍼(16)의 다음 근원 구역에 노출된다. 이 이동은 X방향으로 한계의 열 전부까지 계속한 다음 Y방향으로 한 스텝 건너가서 다음 열로 이동한다. 결국, X 및 Y방향 이동은 웨이퍼(16)의 모든 근접 구역이 노출될때까지 계속된다. 그런 다음, 웨이퍼(16)는 스테퍼기구(18)로부터 제거되고 통상의 반도체제조기법으로 더 처리된다. 근원(12)으로부터의 노출 사이에 이동한 거리는 한번에 1센티미터 또는 그 이상일 수 있으나, 이동은 다수의 작은 불연속 스텝으로 잘라서 행해진다. 그런 스텝은 스테퍼모터 또는 기타 스텝분할 기법의 사용에 의하여 제어될 수 있는데, 스테퍼기구(18)에 의한 웨이퍼(16)의 이동중의 각 스텝은 1/10미크론 정도로 아주 작은 것이다. 제2도를 참조하면, 본 발명의 마스크 검사장치(20)가 도시된다. 장치(20)는 편의상 제1도에 도시한 웨이퍼(16)와 같은 전형적인 웨이퍼와 같은 싸이즈로된 기판(22)으로 된다. 기판(22)은 차후에 더 상세히 설명하는 제3도 및 제4도속의 검사스테이션(24)에 접착되거나 또는 부착된다.
그러나 대체적으로 말하여, 검사스테이션(24)은 전하결합소자(CCD) 또는 전하주일소자(CID)와 같은 에너지 감응장치의 배열로 되어 있다.
에너지 감응장치(소자)의 배열은 전형적으로 500×500개의 소자들로 되어 있고, 각 소자의 중심과 중심간의 간격을 약 20미크론이다. 에너지 감응소자 바로위에는 이와 부합하는 소공의 배열이 위치하는데, 각 소공은 1/10미크론 정도로 작은 것이다. 각 소공은 에너지 감응소자의 하나와 일치하여 부합되고 배열되며 각 소공의 싸이즈의 한계는 스테퍼기구(18)가 그 위에 올려는 기판(22)을 확실하게 이동할 수 있는 최소치이다. 공지된 바와 같이, 에너지 감응소자배열의 출력은 공지방법의 장치에 의하여 직렬로 판독된다.
전하 결합소자의 판독을 제어하기 위하여, 클럭신호가 거기에 인가되어야 한다. 클럭신호는 펄스된 레이저(도시되지 않음)를 광감응다이오드(21)나 또는 기타의 광학감응장치에 조사하므로서 그리고 또 검사스테이션(24)의 전하결합소자배열용 클럭신호로서 다이오드(21)로부터의 신호를 신호조절 및 증폭장치(23)를 경유하여 제공하므로써 클럭신호가 제공된다.
검사 스테이션(24)으로부터의 출력은 신호조절 및 증폭회로(26)를 경유하여 아날로그 디지탈 변환기(28)에 인가된다. 변환기(28)는 스테이션(24)의 각 에너지 감응소자에 축적된 에너지의 아날로그신호를 디지탈 신호로 변환한다. 에너지 감응소자가 임계전압에 대하여 상대적으로 포화 또는 불포화되도록 설정되면, 아날로그 디지탈 변환기(28)는 실시된다.
변환기(28)로부터의 출력은 광학전송기(30)를 변조하기 위하여 인가되고, 광학전송기는 발광다이오드나 또는 레이저트랜지스터로 된 것이다. 또, 마스크 검사장치(20)는 일련의 밧데리나 또는 기타 광원에 의하여 출력될 수 있는 태양 전지로 되는 에너지원(32)를 갖는다.
광학전송기(30)에 의하여 마련된 광선은 광학수신기(36) 및 그와 결합된 신호 조절증폭회로(38)를 갖는 데이타수신 시스템(34)에 보내진다. 회로(38)로부터의 출력은 디스크유니트(42)와 같은 대용량자기매체기억장치와 결합된 통상의 디지탈 컴퓨터로 된 중앙처리장치(CPU)에 제공된다. 디스크유니트(42)는 기지의 우량마스크로부터 획득한 데이타가 기억지장되고 수신기(36)로부터 제공되고 처리장치(40)에 보내진 데이타는 검사스테이션(40)에 의하여 수신된 데이타가 기지의 우량데이타와 일치하는 지를 측정하기 위하여 디스크유니트(42)에 기억된 데이타와 비교된다. 수신된 데이타가 우량하면, 마스크를 더 사용해도 좋다는 표시가 처리기(40)에 의하여 주어진다. 처리기(40)에 의하여 비교된 데이타가 디스크(42)에 기억된 데이타와 다르면, 검사한 마스크에 흠집이 있다는 표시가 된다. 또, 흠집에 관한 상세한 것이 고유데이타처리에 의하여 역시 제공될 수 있다.
제3도를 보면, X-선 석판인쇄(리도그래피) 시스템에 사용하는 검사스테이션(24)의 상세도가 도시된다. 검사스테이션(24)은 반도체웨이퍼나 또는 기타 통상의 반도체 웨이퍼의 모양을 한 공지의 기판재료인 기판(22)에 접착된 것으로서 도시되어 있다. 그와 같은 모양은 제1도에 도시한 바와 같이 기판(22)을 스테퍼기구(18)에 직접 설치하고 차후에 설명하는 스테퍼기구(18)의 방법으로 이동하기에 바람직하다. 이 배열로, 실제의 리도그래피 기계는 마스크검사기계로서 단지 제2도에 도시한 장치들을 부가하므로써 사용될 수 있는 것이다.
검사 스테이션(24)은 500×500개의 하전결합소자(CCD)의 배열(44)로 되어 있다.
CCD어레이(하전결합소자배열) (44)는 미국텍사스의 달라스에 있는 텍사스인스트루먼트에서 제조되어 나오는 텍사스인스트루먼트 모델 번호 T. I. 4849와 같은 임의의 보통 하전 결합소자배열이어도 된다. 공지된 바와 같이, 하전결합소자는 에너지가 인가된 곳에 하전을 유보할 수 있는 장치의 형태이다. 에너지는 광선이거나 또는 엑스레이, 또는 전압이거나 또는 전자류와 같은 에너지파중의 하나이다. 하전결합소자에는 보통 반도체기판(48)속에 제조된 전하축적영역(46)이 있다.
각 영역들(46)은 채놀영역(48)에 의하여 연결되는데, 채놀 영역은 클럭라인(도시되지 않음)상의 적합한 신호의 명령에 따라 전하를 한개의 영역(46)에서 인접하는 영역(48)으로 변환하도록 허용한다. 이러한 방법으로 제조된 하전결합소자는 데이타(전하)가 한 장치에서 다음 인접장치로 변환할 수 있는 큰 시프트레지스터와 동등한 것이다.
적합한 출력연결 및 증폭회로에 의하여, 정보 또는 축적된 전하는 CCD어레이에서 직렬방법으로 판독될 수 있다. 개개의 하전결합소자영역(46)은 에너지를 상이한 레벨로 축적할 수 있고 제2도의 변환기(28)와 같이, 아날로그디지탈 변환기에 에너지레벨을 인가하므로써, 정확한 에너지 레벨을 명시하는 디지탈 신호가 창출될 수 있다.
어떤 적용에 있어서, 개개의 영역(46)은 마스크(14)에 의하여 제지되는 에너지의 존재 또는 부존재에 기초를 둔 에너지의 인가 또는 비인가에 따라서, 어떤 임계치 이상이거나 또는 이하이거나 하전될 수 있다. 그와 같은 적용에서, 출력은 순수한 디지탈신호로서 직접판독될 수 있다.
CCD 어레이(44)의 위로 A의 거리에 위치한 것은 핀홀어레이(52)이다. 핀홀어레이(52)는 소공(54)의 배열이며, 그 각각은 CCD소자의 전하축적영역(46)의 하나에 바로 위에 결합되거나 일치하도록 위치한다.
각개의 소공(54)은 마스크(14)의 모양을 체크하기 소망하는 해상력만큼 작아야 한다. 예를들면 마스크(14)를 위하여 1/10미크론 만큼 작은 모양을 체크하려면 하면, 소공(54)의 각각의 치수는 이와 대응하여 1/10미크론이어야 한다. 그러나, 그런 경우 스테퍼기구(18) 역시 1/10미크론의 스텝으로 검사스테이션(24)을 이동시킬 수 있어야 한다. 핀홀어레이(52)는 금이나 또는 텅그스텐 재질의 박막층으로 피복된 위에 소공(54)이 뚫려있는 실리콘박막기판으로 제조된다. 핀홀 어레이(52)는 마스크 제조기술에서 공지된 전자빔 기입기법을 사용하는데, 레지스트 재료로된 박막을 피복하고 소공(54)이 위치할 자리에 상기한 기법을 사용하여 노출하므로서 제조될 수 있다. 그런 다음에, 노출되지 않은 레지스트는 제거되고, 소공(54)의 자리에는 레지스트가 남는다.
그 다음에 공지의 도금기법으로 2-3미크론의 금박막을 피복하고 잔여 레지스트를 제거하면 그 자리에 소공(54)이 남게 된다.
핀홀어레이(52)의 상면은 기판의 포토레지스트층의 상면이 정상적으로 위치하도록 평면으로 설계되어 있다. 제3도에서 도시한 것과 같은 엑스레이 리도그래피 시스템에서, 마스크(14)는 그 평면 위의 작은 거리 B에 위치한다. 엑스레이원(56)은 마스크(14)로부터 상당한 거리 C만큼 떨어져서 위치한다. 예를들면, 거리 C는 7센티미터이고 거리 B는 20미크론이다. CCD어레이(44)로부터 핀홀어레이(52)를 분리하는 거리 A는 소공(54)으로부터 영역(46)까지 약간의 확대가 되도록 선택되어야 한다. 이 확대는 직경 D를 갖는 근원(56)의 싸이즈에 따른다. 그런 근원의 직경 D의 한예는 미국특허 제4, 184, 078호에 표시된 레이저로 유기되는 프라즈마 엑스레이 근원 기법이 사용된다면, 100미크론이다. 이렇게 엑스레이의 흐름은 각 핀홀(54)로부터의 거리 A 및 C의 비 즉 A/C에 기초를 둔 량으로 확산될 것이다. 이것은 거리 B는 너무 작기 때문에 그것을 무시할 수 있다고 가정하는 것이다. 근원(56)으로부터 발생된 엑스레이의 확산 작용을 사용하기 위하여, 거리 A는 20미크론(제3도의 거리 E)의 CCD장치용으로 2 내지 4미리미터사이에서 선택되어야 한다. 이것은 확산에 의한 엑스레이에 의하여 하전되는 각 CCD장치의 영역(46)의 더 넓은 구역을 허용한다. 특별히 거리 A는 근원(56) 및 마스크(14)간의 거리 C의 1/20인 3.5미리미터가 되도록 선택할 수 있다. 거리 A를 3.5미리미터로 하므로서, 엑스레이에 의하여 충격되는 영역(46)의 구역은 대체로 약 5미크론의 직경이 원이 될 것이다. 그러나, 0.1 내지 0.3미크론의 소공싸이즈로는 프레스넬 편향이 문제가 될 수 있고 이것은 거리 A를 0.7 내지 1.0미리미터사이로 감소시킴으로서 극복될 수 있다. 이것은 물론 확산 모양을 희생한 것이다. 근원(56)으로부터의 엑스레이의 확산작용에 의하여 그들이 CCD어레이(44)쪽으로 나아가는 것과 같이 CCD어레이(44)의 각 CCD장치는 등간격 매스릭스의 정사각으로 제조되었기 때문에, 핀홀어레이(52)의 소공(54)의 간격은 완전하게 정사각이 아니다.
필요한 보정은 핀홀어레이(52)를 제조하기 전에 거리 A, B, C, D 및 E에 근거하여 용이하게 계산할 수 있고, 그런 다음 핀홀어레이(52)상의 소공의 위치는 이 계산에 따라서 제조될 수 있다.
제4도를 보면, 자외선원을 갖는 리도그래피시스템에 유용한 본 발명의 다른 실시예가 도시된다.
자외선원(58)은 원하는 패턴을 형성하기 위하여 그 위에 위치하는 불투명 물질(62)이 있는 유리기판(60)으로된 마스크(14)를 경유하여 광선을 제공한다. 불투명 물질(62)을 타격하는 광선은 제지되고, 반대로 불투명물질(62)이 존재하지 않는 구역의 마스크(14)를 타격하는 광선은 유리기판(60)을 통과하여 검사스테이션(24)쪽으로 나간다. 렌즈시스템(64)이 근원(58)및 마스크(14)사이에 보통 방법으로 놓이고 동일한 렌즈시스템(66)이 마스크(14) 및 검사스테이션(24)사이에 역시 보통방법으로 구성되어 위치한다.
렌즈시스템(64) 및 (66)에는 미국특허 제4,444,492호에 표시되어 있다. 설명을 간단하게 하기 위하여, 렌즈시스템(64) 및 (66)은 파선으로 근원(58)으로부터의 광선은 직선으로 도시한다. 제4도에 도시한 광학검사스테이션(68)은 제3도에 도시한 엑스레이 검사스테이션(84)과 조금 다른 구조로 되어 있다. 검사스테이션(68)에서, 건하축적영역(72) 및 채놀(74)이 비전도성 기판(22)에 마주 대하도록 CCD어레이(70)가 접착되어 있다. CCD어레이의 반도체기판(76)은 유리와 같은 절연층(78)으로 피복되고 핀홀어레이(80)가 절연층(78)의 반대측에 위치한다. 핀홀어레이(80)는 절연층위에 금도금에 의하여 그리고 금도금속의 핀홀(82)의 위치는 전자빔에칭기법에 의하여 핀홀어레이(80)를 형성하도록 제조된다. 제3도의 경우와 같이, 소공(82)의 각각은 전하결합소자배열의 각 CCD장치의 전하축적영역(72)의 바로위에 위치하여야 한다. 광학검사스테이션(68)장치의 작용에서 긴요한 문제는 얼마만큼의 광선이 홀(82)의 싸이즈가 작거나 광원(58)으로부터의 광선의 파장에 비교하여 작은 핀홀(82)을 통과하여 전달되느냐인 것이다. 만약 a가 소공(82)의 직경이고 K가 광선계의 광파벡터라고 하면, 입사계의 편파의 두 상태의 전송은 :
Figure kpo00001
여기서 알파는 소공(82)으로의 정상적인 광선의 각도이다. 이 실험식에서 (Ka)는 약 0.785 내지 0.89이다. 이렇게 전달은 (Ka)의 4승에 비례하고 보다 큰 소공(82)의 전달의 10-40%만이 감소된다. 투사스테퍼에서, 입사플럭스는 40mJ/평방 cm/노출이고, 또 광량자당 2.5eV에서 10 내지 18분지일 광자/래 평방 cm이다. 0.1 미크론 평방면적의 소공(82)에서, 약 10 내지 17분지일외 광량자가 매 노출당 입사한다. 만약 10%가 소공(82)에 의하여 전달되면, 10 내지 16분지일의 공량자가 각 CCD를 노출시킨다. 전형적인 CCD상의 포화하전은 매 다이오드 당 10 내지 15분지일 전자의 3 내지 5배 사이이다. 2.5eV에서의 CCD의 양자효율은 50%에 근접한다. 이렇게 충분한 광량자플럭스가 1.1미크론짜리 소공(82)을 통하여 각 CCD다이오드의 포화영역(72)을 전적으로 포화시키는데 유효하게 이용된다.
작용에서, 소공(82)을 통과하는 각 광량자는 CCD가 형성된 반도체기판영역(76)속에 형성되어야할 전자 또는 정공의 원인이 된다. 그러면 전자는 관련 CCD다이오드의 하전된 축적영역(72)속으로 유인된다. 2-3eV에서의 실리콘의 흡수단면적은 매우 높기 때문에, 소공(82)뒤의 필드(광계)의 확산은 CCD다이오드간의 20미크론 도상 공간에 비하여 크지 않다. 이렇게, 각 CCD다이오드간의 누화는 최소이다. 그러나, 편파확산도오 역시 최소화하기 위하여, 영역(72)과 소공(82)간의 거리 F는 최소로 유지되어야 한다. 예를들면, 이 거리는 약 10미크론이어야 한다.
제5도 및 제6도를 보면, 제3도에 도시한 엑스레이 리도그래피 시스템을 사용하여 본 보기 목적용으로 검사 시스템의 작용을 설명한다. 제5도에서, 엑스레이(84)는 마스크(14) 및 핀홀어레이(52)를 경유하여 CCD어레이(44)에 인가된다. 핀홀어레이(52) 및 CCD어레이(44)는 마스크(14)를 상대적인 정지위치에 유지한채로 도면 좌측에 표시한 화살표와 같이, X 및 Y방향으로 서로 이동한다. 마스크(14) 및 핀홀어레이(52)의 소공(54)을 통과한 엑스레이만이 이 작용설명에서 중요한 뜻이 있으므로, 잔여의 엑스레이는 마스크(14)상의 엑스레이 흡수물질(90)이나 또는 어레지(52)상의 핀홀(54)의 결핍으로 인하여 제지된다고 이해되어야 한다. 제5도에서 볼 수 있듯이, 핀홀 어레이(52)는 실리콘박막과 같은 엑스레이 투과층(92)과, 금과 같은 엑스레이 흡수층(92)으로 된 것에 소공(54)이 에칭된 것이다.
종국적으로 CCD소자들(46)에 도달하는 엑스레이(84)는 맨 먼저 어레이(52)상의 각 소공(54)의 싸이즈에 합치하는 마스크(14)상의 면적(86)을 통과할 것이다. 마스크(14)상의 엑스레이 불투과 물질(90)에 의하여 제지되지 않는 곳의 엑스레이는 면적(86)을 통과하여 그와 일치하는 소공(54)을 통과하고 CCD어레이(44)의 영역(46)의 하나를 타격한다. 종국적으로 CCD어레이(44)의 영역(46)를 타격하는 엑스레이 필드는 계속하여 소공(54)으로 불러 확산하므로서 어레이(44)상의 면적(88)은 이 엑스레이필드의 확산때문에 소공(54)이나 마스크면적(86)보다 약간 더 크다는 것을 주의하여야 한다. 마스크(14)는 핀홀어레이(52)에 너머 밀접하게 위치하기 때문에, 면적(86)과 소공(54)간의 거리는 무시된다.
제6도에서, 마스크의 개개의 면적(86)은 작은 사각으로 표시되고 제6도에 도시한 전체의 면적들(86)은 CCD장치의 면적에 동일하게 해당하는 마스크(14)의 사각면적(96)의 완전한 주사중에 모두 체크된다. 각 스텝동안에, 250,000개의 개개의 면적들(86) 500×500개의 CCD소자들의 각각을 위한 한개)이 판독됨을 주의하여야 한다. 핀홀어레이(52)와 CCD어레이(44)의 조합을 X 및 Y방향으로 이동하기 때문에, 제6도에 도시한 개개의 면적들(86)의 각각은 한번에 하나씩 노출되게 된다. 마스크를 엑스레이(84)가 투과하는 그런 면적(86)에 대해서, 그와 일치하는 CCD소자영역(46)은 하전하게 된다.
각 노출로서, CCD영역상의 하전은 직렬로 판독될 수 있고 제2도에 표시된 것과 같이, CPU유니트(40)에 제공된다. 그후, CCD어레이(44) 및 핀홀어레이(52)의 조합은 한 스텝 이동되고 마스크(14)의 250,000개의 다음 면적들(86)이 시험되고 그 면적용의 CCD소자는 판독된다. CCD어레이(44) 및 핀홀어레이(52)의 이 작고 정밀한 스텝에 의한 이동과정은 마스크(14)의 전체의 열을 통하여 계속된다. 그후, 마스크(14)는 Y방향으로 한옆 이동시키고 다음 열의 반대방향으로 불연속의 스테핑이 일어난다. 사각(96)의 각 소공(54)을 위한 완전한 스테핑 패턴은 제6도에 도시한 화살에 의하여 표시되며 이 스테핑 패턴은 250,000개의 각 사각들(96)을 위하여 동시에 일어난다. 결국, 각 마스크 구획의 각 작은 개개의 면적은 CCD어레이에 의하여 시험된다. 제6도에 도시한 전체의 면적들(86)은 제5도에 도시한 것과같이, 마스크(14)의 사각(96)의 하나를 시험한다. 만들어져야할 불연속스텝의 전체의 수자는 CCD어레이(44)속의 CCD소자 각각의 싸이즈와 소공(54)의 싸이즈에 따른다. 20미크론의 사각 CCD와 0.1미크론의 사각소공(54)용으로는, 스텝의 수가 각 X 및 Y향으로 200개가 된다. 이렇게 마스크(14)의 20×20미크론의 면적을 시험하기 위하여 40,000개의 0.1의 미크론의 불연속 스텝이 필요하게 된다. 스텝의 수자는 각 소공(54)의 싸이즈를 증가시키거나 또는 싸이즈를 감소하고 어레이(44)속의 CCD소자들의 수자를 증가시킴으로서 감소할 수 있다. 예를들면 만약 소공(54)의 직경이 2/10미크론이고 각 CCD소자들이 10×10미크론의 면적으로 감소되면, 단자 2,500개의 개개의 이동만이 마스크(14)를 체코하기 위하여 필요하게 될 것이다.
500×500개의 장치의 어레이 싸이즈는 1센티미터 사각보다 큰 치수를 갖는 마스크를 체크하기 위해서는 증가되어야 한다. 이것은 더 큰 CCD어레이를 구성하거나 여러개의 어레이를 기판(22)위에 함께 설치하므로써 수행될 수 있다.

Claims (50)

  1. 위에 에너지 감응소자들의 배열을 갖는 기판과 에너지 투과 소공들의 배열과, 그 배열의 각각은 상기한 에너지 감응소자들의 하나와 일치하게 정렬되고 상기한 주어진 싸이즈와 관련되는 싸이즈를 갖으며 마스크 모양의 측정을 위한 비교수단에 상기한 에너지 감응 소자들의 변동된 상태를 명백히 하는 데이타 제공수단을 포함하는 반도체 장치 제조 공정중에 제공되어야 할 에너지 화상의 원인이 되는 상기한 마스크를 향하여 에너지가 제공되는 형의 상기한 반도체 화상 시스템에 사용되는 화상 확정 마스크위에 주어진 싸이즈보다 더 큰 모양을 검사하는 마스크 검사장치.
  2. 제2항에 있어서, 제1항에 있어서, 상기한 검사장치는 상기한 화상을 횡단하면서 불연속적인 스템으로 이동하도록 부착되고 각 스텝이동은 상기한 주어진 거리와 연관되는 마스크 검사장치.
  3. 상기한 반도체 화상 시스템은 상기한 제조 공정중에 반도체 웨이퍼를 상기한 어레이의 화상을 횡단하여 불연속적인 스텝으로 이동하는 수단을 포함하고, 상기한 검사장치는 상기한 마스크 검사용 상기한 웨이퍼를 대치하도록 부착된 마스크 검사장치.
  4. 제3항에 있어서, 상기한 각 에너지 감응소자들은 어떤 거리의 싸이즈를 갖으며, 상기한 검사장치는 상기한 불연속적인 스텝으로 상기한 어떤 거리를 이동하도록 부착된 마스크 검사장치.
  5. 제2항에 있어서, 상기한 각 에너지 감응소자들은 어떤 거리의 싸이즈를 갖으며, 상기한 검사장치는 상기한 불연속적인 스텝으로 상기한 어떤 거리를 이동하도록 부착된 마스크 검사장치.
  6. 제1항에 있어서, 상기한 반도체 화상 시스템은 상기한 제조 공정중에 반도체 웨이퍼를 상기한 어레이의 화상을 횡단하여 불연속적인 스텝으로 이동하는 수단을 포함하고 상기한 검사장치는 상기한 마스크 검사용 상기한 웨이퍼를 대치하도록 부착된 마스크 검사장치.
  7. 제6항에 있어서, 상기한 에너지 감응소자들의 각각은 어떤 거리의 싸이즈를 갖으며, 상기한 검사장치는 상기한 불연속적인 스탭으로 상기한 어떤 거리를 이동하도록 부착된 마스크 검사장치.
  8. 제1항에 있어서, 상기한 에너지 감응소자들은 일정거리의 싸이즈를 갖으며, 상기한 검사장치는 상기한 불연속적인 스탭으로 상기한 일정거리를 이동하도록 부착된 마스크 검사장치.
  9. 제1항에 있어서, 상기한 에너지원은 엑스레이이고 상기한 소공의 배열은 상기한 에너지 감응소자들의 배열위에 위치하고 그 위치는 엑스레이원과 소공 배열간의 거이와 근원의 싸이즈에 관련되는 량에 의하는 마스크 검사장치.
  10. 제9항에 있어서, 상기한 에너지 감응소자의 배열(어레이)위에 위치한 상기한 소공의 배열(어레이)의 량은 또 각 에너지 감응소자의 사이즈에 관련된 마스크 검사장치.
  11. 제10항에 있어서, 상기한 검사장치는 상기한 화상을 횡단하여 불연속적인 스탭으로 이동하도록 부착되고 각 스탭이동은 상기한 주어진 거리와 관련된 마스크 검사장치.
  12. 제11항에 있어서, 상기한 반도체 화상 시스템은 상기한 제조 공정중에 상기한 배열의 화상을 횡단하여 불연속적인 스탭으로 반도체 웨이퍼를 이동하는 수단을 포함하고 상기한 검사장치는 상기한 마스크 검사용 웨이퍼를 대치하도록 부착된 마스크 검사장치.
  13. 제12항에 있어서, 상기한 에너지 감응소자들의 각각은 일정거리의 싸이즈를 갖으며 상기한 검사장치는 상기한 불연속적인 스탭으로 상기한 일정거리를 이동하도록 부착된 마스크 검사장치.
  14. 제1항에 있어서, 상기한 에너지원이 광선이고 상기한 소공의 배열은 소공을 넘어서 광선의 편향적 확산이 에너지 감응소자의 싸이즈보다 작도록 에너지 감응소자들의 배열로부터의 거리에 위치한 마스크 검사장치.
  15. 제14항에 있어서, 상기한 검사장치는 상기한 화상을 횡단하여 불연속적인 스탭으로 이동하도록 부착되고 각 스탭이동은 상기한 주어진 거리에 연관되는 마스크 검사장치.
  16. 제15항에 있어서, 상기한 반도체 화상시스템은 상기한 조립 공정중에 상기한 배열의 화상을 횡단하여 불연속적인 스탭으로 반도체 웨이퍼를 이동하는 수단을 포함하고 상기한 검사장치는 상기한 마스크 검사용 웨이퍼를 대치하도록 부착된 마스크 검사장치.
  17. 제1항에 있어서, 상기한 데이타 제공용 수단은 상기한 에너지 감응소자들의 각각에 축적된 에너지를 한번에 하나씩 판독하는 수단과, 광선 전송수단 및 판독된 각 소자에 대응하여 상기한 전송수단을 변조하는 수단을 포함하는 마스크 검사장치.
  18. 제17항에 있어서, 상기한 검사장치는 상기한 화상을 횡단하여 불연속적인 스탭으로 이동되도록 부착되고, 각 스텝이동은 상기한 거리에 연관된 마스크 검사장치.
  19. 제18항에 있어서, 상기한 반도체 화상시스템은 상기한 제조공정중에 상기한 배열의 화상을 횡단하여 불연속적인 스탭으로 반도체 웨이퍼를 이동하는 수단과 상기한 검사장치는 상기한 마스크 검사용 웨이퍼를 대치하도록 부착된 마스크 검사장치.
  20. 제19항에 있어서, 상기한 에너지 감응소자들의 각각은 일정거리의 싸이즈를 갖으며 상기한 검사장치는 상기한 불연속적인 스텝으로 상기한 일정거리를 이동하도록 부착된 마스크 검사장치.
  21. 제17항에 있어서, 상기한 에너지원이 엑스레이이고 상기한 소공의 배열은 상기한 에너지 감응소자들의 배열위에 위차형 엑스레이의 근원과 소공의 배열간의 거리와 근원의 싸이즈에 관련되는 량에 의하는 마스크 검사장치.
  22. 제21항에 있어서, 상기한 에너지 감응소자들의 배열위에 위치한 상기한 소공들의 배열의 상기한 량은 또 각 에너지 감응소자의 싸이즈에 관련된 마스크 검사장치.
  23. 제17항에 있어서, 상기한 에너지원이 광선이고 상기한 소공의 배열은 소공을 넘어서 광선의 편향적 확산이 에너지 감응소자의 싸이즈보다 에너지 감응소자들의 배열로부터의 거리에 위치한 마스크 검사장치.
  24. 제1항에 있어서, 상기한 주어진 싸이즈와 관련된 불연속적인 스탭으로 이동되기 위한 이동수단과 어떤 중심과 중심간의 간격을 갖는 에너지 감응소자의 제 1 배열과, 상기한 장치의 배열은 상기한 이동수단위에 위치하고, 상기한 제 1 배열위에 고정배치된 에너지 투과 소공의 제 2 배열과, 각 소공은 상기한 에너지 감응소자중의 상이한 한개와 결합하고 상기한 주어진 싸이즈와 관련된 싸이즈를 갖으며 상기한 마스크의 소망되는 모양을 명백히 하는 축적된 데이타에 대하여 비교하기 위한 상기한 에너지 감응소자들의 각각의 상태를 명백히 하는 데이타 제공수단 등을 포함하는 에너지의 패턴의 원인이 되도록 레지스트 피복된 웨이퍼를 노출하기 위하여 상기한 마스크를 경유하여 선택적으로 에너지를 조사하는 형의 반도체 제조기계에 사용되는 마스크의 주어진 싸이즈위의 모양을 검사하는 마스크 검사 시스템.
  25. 제24항에 있어서, 상기한 이동수단은 다수의 스탭을 이동하므로 전체 이동이 상기한 소자들이 배열의 상기한 중심과 중심간의 간격에 관련되는 마스크 검사 시스템.
  26. 제25항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 결합소자들의 배열인 마스크 검사 시스템.
  27. 제25항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 주입 소자들의 배열인 마스크 검사 시스템.
  28. 제24항에 있어서, 상기한 제 2 배열의 각 소공은 최대 길이가 1미크론 이하인 마스크 검사 시스템.
  29. 제28항에 있어서, 상기한 이도수단은 다수의 스탭을 이동하므로 전체의 이동이 상기한 소자들의 배열의 상기한 중심과 중심간의 간격에 관련되는 마스크 검사 시스템.
  30. 제29항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 결합소자들의 배열인 마스크 검사 시스템.
  31. 제30항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 주입소자들의 배열인 마스크 검사 시스템.
  32. 제24항에 있어서, 에너지 감응소자들의 총숫자는 각 소자의 싸이즈와 상기한 마스크의 싸이즈에 관련되는 마스크 검사 시스템.
  33. 제32항에 있어서, 상기한 이동수단은 다수의 스탭을 이동하므로서 전체의 이동이 상기한 소자들의 배열의 상기한 중심과 중심간의 간격에 관련되는 마스크 검사 시스템.
  34. 제33항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 결합소자들의 배열인 마스크 검사 시스템.
  35. 제34항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 주입소자들의 배열인 검사 시스템.
  36. 제34항에 있어서, 상기한 제 2 배열의 각 소공은 최대 길이에 있어서 1미크론 이하인 마스크 검사 시스템.
  37. 제24항에 있어서, 상기한 데이타 제공수단은 상기한 에너지 감응소자들의 각각의 에너지 레벨을 판독하는 수단과, 광선 전송수단 및 상기한 에너지 감응소자들의 상기한 에너지 레벨에 대응하여 상기한 광선 전송수단을 변조하는 수단을 포함하는 마스크 검사 시스템.
  38. 제24항에 있어서, 상기한 시스템은 상기한 제공된 데이타를 기지의 우량 마스크용으로 기억된 데이타와 비교하기 위한 상기 데이타와 비 제공수단에 의하여 제공된 데이타를 수신하는 수단을 더 포함하는 마스크 검사 시스템.
  39. 제38항에 있어서, 상기한 수신 수단은 컴퓨터 수단과 대용량 데이타 기억수단을 포함하는 마스크 검사 시스템.
  40. 제39항에 있어서, 상기한 제 2 배열의 각 소공은 최대 크기가 1미크론 이하인 마스크 검사 시스템.
  41. 제40항에 있어서, 상기한 수신 수단은 상기한 광선 전송 수단에 의하여 전송된 광선 신호를 수신하는 송광선 수신수단을 더 포함하는 마스크 검사 시스템.
  42. 제41항에 있어서, 상기한 데이타 제공 수단은 각 에너지 감응소자의 에너지 레벨을 디지탈 신호로 변환하는 아날로그 디지탈 변환기수단을 더 포함하는 마스크 검사 시스템.
  43. 제42항에 있어서, 상기한 이동수단은 다수의 스탭을 이동하므로서 전체 이동이 상기한 소자들의 배열의 상기한 중심과 중심간의 간격에 관련되는 마스크 검사 시스템.
  44. 제43항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 결합소자들의 배열인 마스크 검사 시스템.
  45. 제44항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 주입소자들의 배열인 마스크 검사 시스템.
  46. 제44항에 있어서, 상기한 제 2 배열의 각 소공은 최대 길이에 있어서 1미크론 이하인 마스크 검사 시스템.
  47. 제44항에 있어서 에너지 감응소자들의 총숫자는 각 소자의 싸이즈 및 상기한 마스크의 싸이즈에 관련된 마스크 검사 시스템.
  48. 제47항에 있어서, 상기한 에너지 감응소자들의 배열은 전하 주입소자들의 배열인 마스크 검사 시스템.
  49. 제48항에 있어서, 상기한 제 2 배열의 각 소공은 최대길이에 있어서, 1미크론 이하인 마스크 검사 시스템.
  50. 제16항에 있어서, 상기한 에너지 감응소자들의 각각은 일정거리의 싸이즈를 갖으며 상기한 검사장치는 상기한 불연속적인 스탭으로 상기한 일정거리를 이동하도록 부착된 마스크 검사장치.
KR1019870004537A 1986-05-19 1987-05-08 석판인쇄 시스템의 마스크 검사장치 KR920000075B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/864,543 US4734923A (en) 1986-05-19 1986-05-19 Lithographic system mask inspection device
US864543 1986-05-19

Publications (2)

Publication Number Publication Date
KR870011663A KR870011663A (ko) 1987-12-26
KR920000075B1 true KR920000075B1 (ko) 1992-01-06

Family

ID=25343503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870004537A KR920000075B1 (ko) 1986-05-19 1987-05-08 석판인쇄 시스템의 마스크 검사장치

Country Status (4)

Country Link
US (1) US4734923A (ko)
EP (1) EP0246845A3 (ko)
JP (1) JPS62296513A (ko)
KR (1) KR920000075B1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720935B2 (ja) * 1990-07-30 1998-03-04 富士通株式会社 検査装置及び検査方法
IL99823A0 (en) * 1990-11-16 1992-08-18 Orbot Instr Ltd Optical inspection method and apparatus
US5778042A (en) * 1996-07-18 1998-07-07 University Of Hawaii Method of soft x-ray imaging
US6867406B1 (en) 1999-03-23 2005-03-15 Kla-Tencor Corporation Confocal wafer inspection method and apparatus using fly lens arrangement
US6693664B2 (en) 1999-06-30 2004-02-17 Negevtech Method and system for fast on-line electro-optical detection of wafer defects
US6369888B1 (en) * 1999-11-17 2002-04-09 Applied Materials, Inc. Method and apparatus for article inspection including speckle reduction
US7525659B2 (en) 2003-01-15 2009-04-28 Negevtech Ltd. System for detection of water defects
CN1518085B (zh) * 2003-01-15 2010-05-12 内格夫技术有限公司 用于快速在线电光检测晶片缺陷的方法和系统
US7486861B2 (en) * 2003-01-15 2009-02-03 Negevtech Ltd. Fiber optical illumination system
US6892013B2 (en) * 2003-01-15 2005-05-10 Negevtech Ltd. Fiber optical illumination system
ATE414274T1 (de) * 2003-01-15 2008-11-15 Negevtech Ltd Verfahren und gerät zur schnellen on-line und elektro-optischen defekterkennung an wafern
WO2006006148A2 (en) * 2004-07-12 2006-01-19 Negevtech Ltd. Multi mode inspection method and apparatus
US20060012781A1 (en) * 2004-07-14 2006-01-19 Negevtech Ltd. Programmable spatial filter for wafer inspection
US7813541B2 (en) * 2005-02-28 2010-10-12 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers
US7804993B2 (en) * 2005-02-28 2010-09-28 Applied Materials South East Asia Pte. Ltd. Method and apparatus for detecting defects in wafers including alignment of the wafer images so as to induce the same smear in all images
US8031931B2 (en) * 2006-04-24 2011-10-04 Applied Materials South East Asia Pte. Ltd. Printed fourier filtering in optical inspection tools
US7719674B2 (en) * 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7714998B2 (en) * 2006-11-28 2010-05-11 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745358A (en) * 1971-05-10 1973-07-10 Radiant Energy Systems Alignment method and apparatus for electron projection systems
DE3104052A1 (de) * 1981-02-06 1982-08-19 Philips Patentverwaltung Gmbh, 2000 Hamburg "roentgenuntersuchungsanordnung mit hoher ortsaufloesung"
JPS5963725A (ja) * 1982-10-05 1984-04-11 Toshiba Corp パタ−ン検査装置
JPS6062122A (ja) * 1983-09-16 1985-04-10 Fujitsu Ltd マスクパターンの露光方法
JPS6083941A (ja) * 1983-10-15 1985-05-13 Mitsubishi Electric Corp X線露光用マスクのマスクパタ−ン検査方法
US4760265A (en) * 1986-01-18 1988-07-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and device for detecting defects of patterns in microelectronic devices

Also Published As

Publication number Publication date
JPH0366657B2 (ko) 1991-10-18
KR870011663A (ko) 1987-12-26
EP0246845A3 (en) 1990-01-24
EP0246845A2 (en) 1987-11-25
JPS62296513A (ja) 1987-12-23
US4734923A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
KR920000075B1 (ko) 석판인쇄 시스템의 마스크 검사장치
KR100616589B1 (ko) 진공형 리소그래피 장치에 사용하는 간섭계형 정렬 시스템
JPH033374B2 (ko)
JP2003202661A (ja) マスクの検査方法並びに検査システム及び露光装置
GB1574512A (en) Video signal processing device for processing an electrical video signal of a mask pattern
GB2142159A (en) Correction of lithographic masks
US6774987B2 (en) Surface inspection method, surface inspection apparatus, and recording medium and data signal for providing surface inspection program
JPH0653105A (ja) 露光装置
EP1291900A2 (en) Apparatus for detecting a fine geometry on a surface of a sample and method of manufacturing a semiconductor device
JP3060357B2 (ja) 走査型露光装置及び該走査型露光装置を用いてデバイスを製造する方法
US10663633B2 (en) Aperture design and methods thereof
JPH0785466B2 (ja) 位置合せ装置
CN104460236A (zh) 用于光刻的高生产量和小占位面积扫描曝光的系统和方法
US6642528B2 (en) Alignment mark detection method, and alignment method, exposure method and device, and device production method, making use of the alignment mark detection method
JP3262415B2 (ja) 像読取り装置、表面状態検査装置及び該装置を備える露光装置
US6344896B1 (en) Method and apparatus for measuring positional shift/distortion by aberration
EP0073235A1 (en) Reregistration system for a charged particle beam exposure system
US4746958A (en) Method and apparatus for projection printing
US5912725A (en) Illumination optical system to be used in an exposure apparatus and a method of manufacturing a semiconductor structure using the exposure apparatus
US4788698A (en) X-ray exposure system
GB2040444A (en) Automatic Photomask Alignment System for Projection Printing
US7630058B2 (en) Exposure apparatus and device manufacturing method
KR20150053684A (ko) 집적회로 소자 제조 장치
US6304319B1 (en) Exposure apparatus, method of producing the same, and method of producing devices
JP3236193B2 (ja) 照明装置、露光装置及びデバイス製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960105

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee