KR910700103A - Method for attaching thin film on substrate and apparatus therefor - Google Patents

Method for attaching thin film on substrate and apparatus therefor

Info

Publication number
KR910700103A
KR910700103A KR1019900701908A KR900701908A KR910700103A KR 910700103 A KR910700103 A KR 910700103A KR 1019900701908 A KR1019900701908 A KR 1019900701908A KR 900701908 A KR900701908 A KR 900701908A KR 910700103 A KR910700103 A KR 910700103A
Authority
KR
South Korea
Prior art keywords
chamber
compound source
source
component
compound
Prior art date
Application number
KR1019900701908A
Other languages
Korean (ko)
Inventor
디 맥밀란 래리
에이 파 드 아라우조 카를로스
Original Assignee
원본미기재
시메트릭스 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원본미기재, 시메트릭스 코포레이션 filed Critical 원본미기재
Publication of KR910700103A publication Critical patent/KR910700103A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers

Abstract

내용 없음.No content.

Description

기체(基體)상에의 박막 부착방법 및 이를 위한 장치Method for attaching thin film on substrate and apparatus therefor

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

제1도는 제1실시에에 따른 CVD 장치의 계통도,1 is a system diagram of a CVD apparatus according to the first embodiment,

제2도는 제1실시예의 플로우챠트,2 is a flowchart of the first embodiment,

제3도는 제2실시예의 계통도.3 is a schematic diagram of a second embodiment.

Claims (59)

밀폐된 증착 챔버(deposition chamber)내에 기체를 제공하는 단계; 상기 챔버내에 조절된 유속으로 최소 하나의 증기화된 화합물원을 유입시키는 단계; 상기 챔버내에 있는 상기 화합물원에 스펙트럼 에너지 배쓰(Spectral energy bath)를 조절된 방식으로 인가하여 상기 화합물원으로부터 최소 하나의 성분을 분리시켜 상기 기체상에 상기 성분이 증착되게 하는 단계; 및 상기 화합물원으로부터 상기 성분을 분리시키기 위해 최적에너지를 제공하도록 상기 배쓰(bath)를 동조(tuning)시키는 단계;를 포함하는 기체상의 박막 부착방법.Providing a gas in a closed deposition chamber; Introducing at least one vaporized compound source into the chamber at a controlled flow rate; Applying a spectral energy bath to the compound source in the chamber in a controlled manner to separate at least one component from the compound source so that the component is deposited on the gas; And tuning the bath to provide an optimal energy to separate the component from the compound source. 1항에 있어서, 상기 챔버내의 밀폐된 공간을 상기 화합물원으로부터 상기 성분을 분리시키기에 충분한 온도까지 가열시키는 단계;를 포함하고, 상기 상승된 온도 및 상기 배쓰는 상기 화합물원으로부터 상기 성분의 분리를 최적화 시키기 위해 함께 조절됨을 특징으로 하는 방법.The method of claim 1, further comprising heating the enclosed space in the chamber to a temperature sufficient to separate the component from the compound source, wherein the elevated temperature and the bath separate the separation of the component from the compound source. Characterized in that they are adjusted together to optimize them. 1항에 있어서, 상기 챔버내의 상기 화합물원에 고(高)에너지 가열 펄스를 인가하여 조절된 방법으로 상기 챔버를 급속도로 열응력 부여함을 특징으로 하는 방법.The method of claim 1, wherein the chamber is rapidly thermally stressed in a controlled manner by applying a high energy heating pulse to the compound source in the chamber. 3항에 있어서, 상기 펄스는 상기 화합물원의 조절된 유속과, 요구되는 막두께에 따라 시간을 정해 연속적으로 인가됨을 특징으로 하는 방법.4. The method of claim 3, wherein the pulse is applied continuously at a predetermined time depending on the controlled flow rate of the compound source and the required film thickness. 4항에 있어서, 상기 펄스는 복사에너지원(radiant energy source)으로부터 나오 복사에너지 폭팔(brust of radiant energy)임을 특징으로 하는 방법.5. The method of claim 4, wherein the pulse is a radiant energy burst from a radiant energy source. 5항에 있어서, 상기 복사에너지원은 최소 하나의 할로겐 램프 및/폭은 펄스 히터를 포함함을 특징으로 하는 방법.The method of claim 5, wherein said radiant energy source comprises at least one halogen lamp and / or a pulse heater. 3항에 있어서, 상기 펄스는 상기 화합물원의 조절된 유속, 요구되는 막두께, 및 부착되는 물질을 활성화 시키는데 필요한 에너지 소모량에 따라 시간을 정해 연속하며 인가됨을 특징으로 하는 방법4. The method of claim 3, wherein the pulses are applied continuously and timed according to the controlled flow rate of the compound source, the required film thickness, and the energy consumption required to activate the substance to be attached. 7항에 있어서, 상기 물질은 강 유전체(强誘電體)임을 특징으로 하는 방법.8. The method of claim 7, wherein the material is a steel dielectric. 2항에 있어서, 상기 화합물원과 부착되는 물질을 신속히 열응력 부여하기 위하여 상기 챔버에 가열펄스를 인가하는 단계;를 포함하며, 상기 배쓰인가단계, 상기 챔버내의 밀폐공간을 가열하는 단계 및 펄스인가 단계는 다른 수단들을 이용하여 수행됨을 특징으로 하는 방법.The method of claim 2, further comprising: applying a heating pulse to the chamber to rapidly thermally stress the substance attached to the compound source, wherein the bath is applied, heating the closed space in the chamber, and applying a pulse. Wherein the step is performed using other means. 9항에 있어서, 상기 다른 수단들은, 상기 챔버내의 온도가 증착동안 단계적으로 변화되고, 그 온도단계는 상기 성분이 부착됨에 따라 동적으로 활성화되게 미세하게 조절되도록, 결합하여 제어됨을 특징으로 하는 방법.10. The method of claim 9, wherein the other means are controlled in combination such that the temperature in the chamber is varied step by step during deposition, the temperature step being finely adjusted to be dynamically activated as the component is attached. 1항에 있어서, 상기 화합물원은, 정해진 분자형을 갖는 상기 화합물을 불안정하게 하는 화학반응이 상기 챔버내에 거의 일어나지 않도록, 안정화됨을 특징으로하는 방법.The method of claim 1, wherein the compound source is stabilized such that little chemical reaction in the chamber occurs that destabilizes the compound having a defined molecular type. 11항에 있어서, 상기 안정화된 화합물원은 안정된 액체원을 통해 운반기체(carrier gas)로 기포하시키고 또한/혹은 상기 통과가스로써 초음파 공동을 통해 상기 액체원을 분무시켜 생성됨을 특징으로 하는 방법.The method of claim 11, wherein the stabilized compound source is produced by bubbling a carrier gas through a stable liquid source and / or spraying the liquid source through an ultrasonic cavity with the passing gas. 10항에 있어서, 부착과정을 통해 상기 챔버가 최소 하나의 정해진 진공수준을 갖도록 제어하는 단계; 상기 유속, 챔버내의 온도 및 압력, 및 부착되는 막의 두께를 검지 하기 위한 센서를 제공하는 단게; 및 상기 센서로부터 나오는 신호를 수신하고 정해진 방식으로 방법을 수행하는 컴퓨터 제어 유니트를 제공하는 단계;를 포함하는 방법.The method of claim 10, further comprising: controlling the chamber to have at least one predetermined vacuum level through an attachment process; Providing a sensor for detecting the flow rate, the temperature and pressure in the chamber, and the thickness of the film to be attached; And providing a computer control unit for receiving a signal from the sensor and performing the method in a predetermined manner. 10항에 있어서, 정해진 시간 동안 상기 막에 고에너지 가열 펄스를 부가적으로 인가함으로써 상기 챔버내에서 상기 기체상에 부착된 바와같은 성분으로 된 박막을 어닐링(anneallin)하는 단계를 포함하는 방법.11. The method of claim 10 including annealing a thin film of components as adhered to the gas phase in the chamber by additionally applying a high energy heating pulse to the film for a predetermined time. 내부에 밀폐공간을 갖는 증착 쳄버; 상기 챔버내에 최소하나의 증기화된 화합물원을 조절된 유속으로 도입하기 위한 수단; 상기 화합물원이 도입될 때 상기 쳄버에 스펙트럼 에너지 배쓰(bath)를 인가 시키기위한 수단 제1수단; 및 상기 스펙트럼 에너시 배쓰가 최적으로 동조되어 사익 화합물원으로부터 최소하나의 성분을 분리시켜 그 성분을 상기 쳄버내의 기체상에 부착시키도록 상기 유속 및 제1수단을 제어하는 제어수단; 을 포함하는 기체상에 박막을 부착시키는 장치.A deposition chamber having a sealed space therein; Means for introducing at least one vaporized compound source into the chamber at a controlled flow rate; Means for applying a spectral energy bath to the chamber when the compound source is introduced; And control means for controlling the flow rate and the first means such that the spectral energy bath is optimally tuned to separate at least one component from the source of the benefit compound and to attach the component to the gas phase in the chamber; Apparatus for attaching a thin film on a substrate comprising a. 15항에 있어서, 나아가 상기 쳄버내의 공간을 상승된 온도까지 가열하는 제2수단; 을 포함하고, 상기 제어수단은, 제공된 열이 상기 화합물원으로부터 상기 성분을 분리시키기에 불충분하게 상기 제2수단을 제어하고, 또한 제공된 열이 상기 화합물원으로부터 상기 성분의 분리를 최적화 하도록, 상기 제1 및 제2수단을 제어함을 특징으로 하는 장치.Further comprising: second means for heating the space within the chamber to an elevated temperature; Wherein said control means controls said second means insufficiently to separate said component from said compound source, and that said provided heat optimizes the separation of said component from said compound source. Controlling the first and second means. 16항에 있어서, 제1수단은 UV원을 포함하고, 상기 제2수단은 펄스 방출하는 혹은 펄스방출 하지 않는 히터를 포함함을 특징으로 하는 장치.17. The apparatus of claim 16, wherein the first means comprises a UV source and the second means comprises a heater that emits pulses or not pulses. 16항에 있어서, 상기 화합물울이 상기 챔버내에 도입됨에 따라 상기 화합물원을 신속히 열응력 부여하기 위해 상기 쳄버 및 부착되는 성분에 고 에너지 가열 펄스를 인가시키는 제3수단, 을 포함하는 장치.18. The apparatus of claim 16, comprising third means for applying a high energy heating pulse to the chamber and attached components to rapidly thermally stress the compound source as the compound wool is introduced into the chamber. 18항에 있어서, 상기 제어수단은, 상기 펄스가 상기 유속, 요구되는 부착만의 두께 및 부착되는 상기 성분의 예정된 활성에너지에 따라 단계적으로 시간에 맞춰 연속하여 인가되게, 상기 제3수단을 제어함을 특징으로 하는 장치.19. The apparatus of claim 18, wherein the control means controls the third means such that the pulse is continuously applied in time and stepwise according to the flow rate, the thickness of the required attachment only, and the predetermined active energy of the component to be attached. Device characterized in that. 19항에 있어서, 상기 도입수단은 안정되고 증기화된 화합물원을 상기 쳄버내로 도입하기 위한 수단을 포함함을 특징으로 하는 장치.20. The apparatus of claim 19, wherein said introducing means comprises means for introducing a stable, vaporized compound source into said chamber. 밀폐된 증착 쳄버내에 기체(substrate)를 제공하는 최소하나의 본질적으로 화학량론적으로 정확한 안정화된 증기화합물원을 조절된 유속으로 상기 쳄버내에 도입하는 단계; 상기 쳄버내에 고주파 바이어스를 인가하는 단계; 상기 쳄버내에 직류 바이어스를 인가하는 단계; 상기 화합물원의 최소하나의 성분을 분리시키고 그 성분을 화학량론적으로 정확한 방법으로 상기 기체상에 부착 시키기 위해 조절된 방법으로 상기 쳄버내에서 상기 화합물원에 스펙트럼에너지 배쓰를 인가하는 단계; 및 상기 화합물원으로부터 상기 성분을 분리시키기 위한 최적 에너지를 제공하기 위하여 상기 배쓰를 동조(tuning)시키는 단계; 를 포함하는 기체상에 화학량론적으로 정확한 박막을 부착시키는 방법.Introducing into said chamber at a controlled flow rate at least one essentially stoichiometrically accurate stabilized vapor compound source providing a substrate in a hermetically sealed deposition chamber; Applying a high frequency bias into the chamber; Applying a direct current bias into the chamber; Separating at least one component of the compound source and applying the spectral energy bath to the compound source in the chamber in a controlled manner to attach the component to the gas phase in a stoichiometrically accurate manner; And tuning the bath to provide an optimum energy for separating the component from the compound source; A method for attaching a stoichiometrically accurate thin film on a gas comprising. 21항에 있어서, 상기 쳄버내으 밀폐공간을, 상기 화합물부터 상기 성분을 분리시키기에 불충분한 상승온도까지 가열시키는 단계를 포함하고, 상기 상승된 온도, 배쓰 및 바이어스는 상기 화합물원으로부터 상기 성분의 분리를 최적화 시키기 위해 함께 제어됨을 특징으로 하는 방법.22. The method of claim 21, comprising heating a confined space in the chamber to an elevated temperature insufficient to separate the component from the compound, wherein the elevated temperature, bath and bias separate the component from the compound source. Controlled together to optimize the system. 21항에 있어서, 상기 쳄버에 신속히 열응력을 부여하기 위해 제어된 방법으로 상기 쳄버내의 화합물원에 고 에너지 펄스를 인가하는 단계를 포함하는 방법.22. The method of claim 21 comprising applying a high energy pulse to a compound source in the chamber in a controlled manner to rapidly impart thermal stress to the chamber. 23항에 있어서, 상기 펄스는 유속 및 요구되는 막 두께에 따라 간을 맞춰 연속하여 인가됨을 특징으로 하는 방법.24. The method of claim 23, wherein the pulses are applied successively in intervals according to flow rate and desired film thickness. 24항에 있어서, 상기 펄스는 복사에너지원 및/혹은 펄스 히터로 부터 나온 복사에너지 폭발임을 특징으로 하는 방법.25. The method of claim 24, wherein the pulse is a radiation explosion from a radiant source and / or pulse heater. 25항에 있어서, 상기 복사에너지원은 최소하나의 할로겐 램프 및/혹은 펄스히터를 포함함을 특징으로 하는 방법.The method of claim 25, wherein said radiant energy source comprises at least one halogen lamp and / or pulsed heater. 23항에 있어서, 상기 펄스는 유속, 요구되는 막의 두께, 및 부착되는 물질을 활성화시키는데 필요한 에너지 소요량에 따라 시간을 맞춰 연속하여 인가됨을 특징으로 하는 방법.24. The method of claim 23, wherein the pulses are applied continuously in time according to the flow rate, the thickness of the film required, and the amount of energy required to activate the material to be attached. 27항에 있어서, 상기 물질은 강유전체(强誘電體)임을 특징으로 하는 방법.28. The method of claim 27, wherein the material is a ferroelectric. 22항에 있어서, 상기 화합물원과 부착되는 물질을 신속히 열응력 부여하기 위하여 상기 쳄버에 펄스를 인가하는 단계; 를 포함하며, 상기 스펙트럼에너지 배쓰인가 단계, 상기 쳄버내의 밀폐공간을 가열하는 단계 및 펄스인가 단계는 다른 수단들을 이용하여 수행됨을 특징으로 하는 방법.23. The method of claim 22, further comprising the steps of: applying a pulse to the chamber to rapidly thermally stress a substance attached to the compound source; Wherein the spectral energy bath application step, heating the confined space in the chamber and pulse application step are performed using other means. 29항에 있어서, 상기 다른 수단들은, 상기 쳄버내의 온도가 증착동안 단계적으로 변화되고, 그 온도단계는 상기 성분이 부착됨에 따라 동적으로 활성화되어 미세하게 조절되도록 결합하여 제어됨을 특징으로 하는 방법.30. The method of claim 29, wherein the other means are controlled in combination such that the temperature in the chamber is varied step by step during deposition, the temperature step being dynamically activated and finely adjusted as the component is attached. 21항에 있어서, 상기 화합물원은, 정해진 분자형을 갖는 상기 화합물을 불안정하게 하는 화합반응이 상기 쳄버내에서 거의 일어나지 않게 안정화됨을 특징으로 하는 방법.22. The method of claim 21, wherein the compound source is stabilized such that a compounding reaction that destabilizes the compound having a predetermined molecular form occurs little in the chamber. 31항에 있어서, 상기 안정화된 화합물원은 안정된 액체원을 통해 운반기체(carrier gas)를 기포화시키고 또한/혹은 상기 통과가스로써 초음파 공동을 통해 상기 액체원을 분무시켜 생성됨을 특징으로 하는 방법.32. The method of claim 31, wherein said stabilized compound source is produced by bubbling a carrier gas through a stable liquid source and / or spraying said liquid source through an ultrasonic cavity with said passing gas. 30항에 있어서, 부착과정을 통해 상기 쳄버가 최소 하나의 정해진 진공수준을 갖도록 제어하는 단계; 상기 유속, 쳄버내의 온도 및, 압력 및 부착되는 막의 두께를 검지 하기 위한 센서를 제공하는 단계; 및 상기 센서로부터 나오는 신호를 수신하고 정해진 방식으로 방법을 수행하는 컴퓨터 제어 유니터를 제공하는 단계; 를 포함하는 방법.31. The method of claim 30, further comprising: controlling the chamber to have at least one predetermined vacuum level through an attachment process; Providing a sensor for detecting the flow rate, the temperature in the chamber, the pressure and the thickness of the film attached; And providing a computer controlled unit receiving the signal from the sensor and performing the method in a predetermined manner. How to include. 30항에 있어서, 정해진 시간 동안 상기 필름 고에너지 가열 펄스를 부가적으로 인가함으로써 상기 쳄버내에서 상기 기체상에 부착된 바와 같은 성분으로 된 박막을 어닐링(annealing)하는 단계를 포함하는 방법.31. The method of claim 30, further comprising annealing a thin film of components as adhered to the gas phase in the chamber by additionally applying the film high energy heating pulse for a predetermined time. 밀폐된 내부 공간을 갖는 증착 쳄버; 상기 쳄버내에 조절된 유속으로 최소하나의 화학량론적으로 정확한 안정화된 증기화합물원을 도입하기 위한 수단; 상기 쳄버에 고주파 파이어스 및 직류 바이어스를 인가시키기 위한 전기 수단; 상기 쳄버에 스펙트럼에너지 배쓰를 인가시키기 위한 제1수단; 및 상기 화합물원으로부터 최소 하나의 성분을 분리시키고 그 성분을 화학량론적으로 정확하게 기체상에 부착시키기 위해 상기 배쓰가 최적으로 동조되도록 상기 유속, 고주파 및 직류바이어스 및 상기 제1수단을 제어하는 제어수단; 을 포함하는 기체상에 화학량론적으로 정확한 박막을 부착하는 장치.A deposition chamber having a closed interior space; Means for introducing at least one stoichiometrically accurate stabilized vapor compound source at a controlled flow rate in the chamber; Electrical means for applying a high frequency fire and direct current bias to the chamber; First means for applying a spectral energy bath to the chamber; And control means for separating said at least one component from said compound source and controlling said flow rate, high frequency and direct current bias, and said first means such that said bath is optimally tuned for attaching said component stoichiometrically and accurately to the gas phase. Apparatus for attaching a stoichiometrically accurate thin film on a gas comprising a. 35항에 있어서, 나아가 상기 쳄버내의 공간을 상승된 온도까지 가열하는 제2수단을 포함하고, 상기 제어 수단은, 제공된 열이 상기 화합물원으로부터 상기 성분의 분리를 최적화하도록 , 상기 제1 및 제2수단 제어함을 특징으로 하는 장치.36. The apparatus of claim 35, further comprising second means for heating the space in the chamber to an elevated temperature, wherein the control means is such that the heat provided optimizes the separation of the component from the compound source. Means control means. 36항에 있어서, 상기 제1수단은 UV원을 포함하고, 상기 제2수단은 펄스 방출하는 혹은 펄스방출 하지않는 히터를 포함함을 특징으로 하는 장치.37. An apparatus according to claim 36, wherein said first means comprises a UV source and said second means comprises a pulse emitting or non-pulsing heater. 36항에 있어서, 나아가 상기 화합물원이 상기 쳄버내에 도입됨에 따라 상기 화합물원을 신소히 열응력을 부여하기 위해 상기 쳄버 및 부착되는 성분에 고 에너지 가열 펄스를 인가시키는 제3수단을 포함하는 장치.38. The apparatus of claim 36, further comprising third means for applying a high energy heating pulse to the chamber and attached components to impart a thermal stress to the compound source as it is introduced into the chamber. 38항에 있어서, 상기 제어수단은, 상기 펄스가 상기 유속, 요구되는 부착막의 두께 및 부착되는 상기 성분의 예정된 활성에너지에 따라 단계적으로 시간에 맞춰 연속하여 인가되게, 상기 제3수단을 제어함을 특징으로 하는 장치.39. The apparatus of claim 38, wherein the control means controls the third means such that the pulse is continuously applied in time and stepwise according to the flow rate, the thickness of the adhesion film required and the predetermined activation energy of the component to be deposited. Characterized in that the device. 1항에 있어서, 상기 쳄버가 진공상태하에 있도록 제어하는 단계; 및 상기 화합물원을 도입하기 전에 상기 기체상에 부착되는 상기 막이 화학량론적으로 정확하도록 화합물원의 졸-겔(sol-gel)을 정해진 화학량론비로 초음파 처리함으로써 상기 증기화된 화합물원을 제조하는 단계; 를 포함함을 특징으로 하는 방법.The method of claim 1, further comprising: controlling the chamber to be in a vacuum state; And preparing the vaporized compound source by sonicating a sol-gel of the compound source at a stoichiometric ratio such that the membrane attached to the gas phase is stoichiometrically accurate before introducing the compound source. ; Method comprising a. 15항에 있어서, 상기 쳄버가 진공상태하에 있도록 제어하는 수단; 및 상기 화합물원을 쳄버내에 도입하기 전에 상기 부착되는 필름이 화학량론적으로 정확하도록 화합물원의 졸-겔(sol-gel)을 정해진 화학량론비로 초음파 처리함으로써 상기 증기화된 화합물원을 제조하는 수단; 을 포함함을 특징으로 하는 장치.17. The apparatus of claim 15, further comprising: means for controlling the chamber to be in vacuum; And means for producing the vaporized compound source by sonicating a sol-gel of the compound source at a defined stoichiometric ratio such that the attached film is stoichiometrically accurate before introducing the compound source into the chamber; Apparatus comprising a. 21항에 있어서, 상기 쳄버가 진공상태하에 있도록 제어하는 단계; 및 상기 화합물원을 쳄버내에 도입하기 전에 상기 부착되는 막이 화학량론적으로 정확하도록 화합물원의 졸-겔(sol-gel)을 정해진 화학량론비로 초음파 처리함으로써 상기 증기화된 화합물원을 제조하는 단계; 를 포함함을 특징으로 하는 방법.The method of claim 21, further comprising: controlling the chamber to be in a vacuum state; And producing the vaporized compound source by sonicating a sol-gel of the compound source at a defined stoichiometric ratio such that the deposited film is stoichiometrically accurate before introducing the compound source into the chamber; Method comprising a. 35항에 있어서, 상기 쳄버가 진공상태하에 있도록 제어하는 수단; 및 상기 화합물원을 쳄버내로 도입하기 전에 상기 부착되는 막이 화학량론적으로 정확하도록 화합물원의 졸-겔(sol-gel)을 정해진 화학량론비로 초음파 처리함으로써 상기 증기화된 화합물원을 제조하는 수단; 을 포함함을 특징으로 하는 장치.36. The apparatus of claim 35, further comprising: means for controlling the chamber to be in vacuum; And means for producing the vaporized compound source by sonicating a sol-gel of the compound source at a defined stoichiometric ratio such that the deposited film is stoichiometrically accurate before introducing the compound source into the chamber; Apparatus comprising a. 1항에 있어서, 상기 쳄버가 진공상태에 있도록 제어하는 단계; 상기 증기화된 화합물을원 상기 쳄버내에 도입하기 전에 부착된 막이 화학량론적으로 정확하도록 정해진 화학량론비로 PbTiO3, PbxZryTiO3, PbxLayZrzTiO3, YMnO3(단, 여기서 Y는 희토류 원소이다.) 및 TiYMnO3를 포함한 일반식 ABO3를 갖는 졸-겔이나 MOD 형성물으로부터 상기 증기화된 화합물원을 제조하는 단계; 를 포함하는 방법.The method of claim 1, further comprising: controlling the chamber to be in a vacuum state; PbTiO 3 , PbxZryTiO 3 , PbxLayZrzTiO 3 , YMnO 3 (where Y is a rare earth element) and TiYMnO 3 at stoichiometric ratios such that the membrane attached prior to introduction of the vaporized compound into the source chamber is stoichiometrically accurate Preparing the vaporized compound source from a sol-gel or MOD formation having the general formula ABO 3 ; How to include. 21항에 있어서, 상기 쳄버가 진공상태에 있도록 제어하는 단계; 상기 증기화된 화합물원을 상기 쳄버내에 도입하기 전에 부착된 막이 화학량론적으로 정확하도록 정해진 화학량론비로 PbTiO3, PbxZryTiO3, PbxLayZrzTiO3, YMnO3(단, 여기서 Y는 희토류 원소이다.) 및 TiYMnO3를 포함한 일반식 ABO3를 갖는 졸-겔이나 MOD 형성물으로부터 상기 증기화된 화합물원을 제조하는 단계; 를 포함하는 방법.The method of claim 21, further comprising: controlling the chamber to be in a vacuum state; PbTiO 3 , PbxZryTiO 3 , PbxLayZrzTiO 3 , YMnO 3 (where Y is a rare earth element) and TiYMnO 3 at stoichiometric ratios such that the membrane attached prior to introducing the vaporized compound source into the chamber is stoichiometrically accurate Preparing the vaporized compound source from a sol-gel or MOD formation having the general formula ABO 3 ; How to include. 15항에 있어서, 상기 쳄버가 진공상태에 있도록 제어하는 수단; 상기 쳄버내에 증기화된 화합물을 도입하기 전에, 상기 부착된 필름이 화학량론적으로 정확하도록 정해진 화학량론비로 PbTiO3, PbxZryTiO3, PbxLayZrzTiO3, YMnO3(단, 여기서 Y는 희토류 원소이다.) 및 TiYMnO3를 포함한 일반식 ABO3를 갖는 졸-겔이나 MOD 형성물으로부터 상기 증기화된 화합물원을 제조하는 단계; 를 포함하는 장치.18. The apparatus of claim 15, further comprising: means for controlling the chamber to be in a vacuum state; Prior to introducing the vaporized compound into the chamber, the attached film has PbTiO 3 , PbxZryTiO 3 , PbxLayZrzTiO 3 , YMnO 3 (where Y is a rare earth element) and TiYMnO at a stoichiometric ratio determined to be stoichiometrically accurate. Preparing said vaporized compound source from a sol-gel or MOD formation having the general formula ABO 3 , including 3 ; Device comprising a. 35항에 있어서, 상기 쳄버가 진공상태에 있도록 제어하는 수단; 상기 쳄버내에 증기화된 화합물을 도입하기 전에, 부착된 막이 화학량론적으로 정확하도록 정해진 화학량론비로 PbTiO3, PbxZryTiO3, PbxLayZrzTiO3, YMnO3(단, 여기서 Y는 희토류 원소이다.) 및 TiYMnO3를 포함한 일반식 ABO3를 갖는 졸-겔 혹은 MOD 형성물을 안정화시킴으로써 상기 증기화된 화합물원을 제조하는 수단; 을 포함하는 장치, 상기 화합물원을 쳄버내에 도입하기 전에 상기 부착되는 필름이 화학량론적으로 정확하도록 화합물원의 졸-겔(sol-gel)을 정해진 화학량론비로 초음파 처리함으로써 상기 증기화된 화합물원을 제조하는 수단; 을 포함함을 특징으로 하는 장치.36. The apparatus of claim 35, further comprising: means for controlling the chamber to be in a vacuum state; Prior to introducing the vaporized compound into the chamber, PbTiO 3 , PbxZryTiO 3 , PbxLayZrzTiO 3 , YMnO 3 (where Y is a rare earth element) and TiYMnO 3 are deposited at stoichiometric ratios such that the attached film is stoichiometrically accurate. Means for preparing said vaporized compound source by stabilizing a sol-gel or MOD formation having a general formula ABO 3 ; An apparatus comprising: sonicating the vaporized compound source by sonicating a sol-gel of the compound source at a defined stoichiometric ratio such that the adhered film is stoichiometrically accurate before introducing the compound source into the chamber. Means for manufacturing; Apparatus comprising a. 1항에 있어서, 상기 성분을 부착하여 200A 이하의 아주 얇은 층을 형성하는 단계를 포함함을 특징으로 하는 방법.The method of claim 1 including attaching the component to form a very thin layer of 200 A or less. 21항에 있어서, 상기 성분을 부착하여 200A 이하의 아주 얇은 층을 형성하는 단계를 포함함을 특징으로 하는 방법.22. The method of claim 21 comprising attaching the component to form a very thin layer of 200 A or less. 1항에 있어서, 도우핑 및/혹은 환원분위기내에서 UV-증진 환원(UV-enchanced reduction)에 의해 하나 혹은 그 이상의 상기 박막을 테일러링(tailoring)하는 단계를 포함하는 방법.The method of claim 1 comprising tailoring one or more of said thin films by UV-enchanced reduction in doping and / or reducing atmospheres. 50항에 있어서, 강유전성 게이트 트란스커패시터 장치를 형성하기 위해 독립적으로 바이어스되는 게이트내에 커패시터의 상하단 전극을 제거한 n-형 혹은 p-형 층을 이용함을 특징으로 하는 방법.51. The method of claim 50, wherein an n-type or p-type layer is used to remove the top and bottom electrodes of the capacitor in independently biased gates to form a ferroelectric gate transcapacitor device. 하나이상의 스프릿트 게이트(split gate), 하나 이상의 프린지 게이트(fringe gate) 및/혹은 하나이상의 스프릿트와 프린지 게이트 조합을 포함함을 특징으로 하는 51항 방법에 의해 제조된 장치.An apparatus made by the method of claim 51, comprising one or more split gates, one or more fringe gates and / or one or more split and fringe gate combinations. 두께 200A 이하인 상기 부착성분으로된 하나 이상의 아주 얇은 층;을 포함하고, 상기 층은 도펀트, 화학량론적 변형물 및/혹은 완전히 다른 물질을 이용하여 형성하며; 상기 층중 하나이상은 물품내부에 형성되어 게터링층(gattering layer)혹은 프로우팅 게이트로써의 기능을 하며; 상기 층중 하나이상은 물품의 표면에 형성되어 그래이드 표면(graded surface) 혹은 그래이드 전극(graded electrode)로서의 기능을 하는; 청구범위 1항의 방법으로 제조된 물품.At least one very thin layer of said adhesion component having a thickness of 200 A or less; wherein said layer is formed using dopants, stoichiometric modifications, and / or completely different materials; At least one of the layers is formed within the article to function as a gettering layer or a floating gate; At least one of the layers is formed on the surface of the article to function as a graded surface or as a graded electrode; An article made by the method of claim 1. 물품이 100-5000A의 두께를 갖고, 부착된 성분을 세라믹, 유리질 물질, 전기적으로 활성인 물질, 및/혹은 강유전체임을 특징으로 하는 청구범위 1항 방법에 의해 제조된 물품.An article made by the method of claim 1, wherein the article has a thickness of 100-5000 A and the attached component is a ceramic, glassy material, electrically active material, and / or ferroelectric. 도우핑 및/혹은 환원분위기내에서 UV-증진 환원(UV-enchanced reduction)에 의해 하나 혹은 그 이상의 상기 박막을 테일러링(tailoring)하는 단계를 포함하는 방법.Tailoring one or more of said thin films by UV-enchanced reduction in doping and / or reducing atmospheres. 55항에 있어서, 강유전성 게이트 트란스커패시터 장치를 형성하기 위해 독립적으로 바이어스되는 게이트내에 커패시터의 상하단 전극을 제거한 n-형 혹은 p-형 이용함을 특징으로 하는 방법.56. The method of claim 55, wherein an n-type or p-type is used with the top and bottom electrodes of the capacitor removed in an independently biased gate to form a ferroelectric gate transcapacitor device. 하나이상의 스프릿트 게이트(split gate), 하나 이상의 프린지 게이트(fringe gate) 및/혹은 하나이상의 스프릿트와 프린지 게이트 조합을 포함함을 특징으로 하는 51항 방법에 의해 제조된 장치.An apparatus made by the method of claim 51, comprising one or more split gates, one or more fringe gates and / or one or more split and fringe gate combinations. 두께 200A 이하인 상기 부착성분으로 된 하나 이상의 아주 얇은 층;을 포함하고, 상기 층은 도펀트, 화학량론적 변형물 및/혹은 완전히 다른 물질을 이용하여 형성되며; 상기 층중 하나이상은 물품내부에 형성되어 게터링층(gattering layer)혹은 프로우팅 게이트로써의 기능을 하며; 상기 층중 하나이상은 물품의 표면에 형성되어 그래이드 표면(graded surface) 혹은 그래이드 전극(graded electrode)로서의 기능을 하는; 청구범위 21항의 방법으로 제조된 물품.At least one very thin layer of said adhesion component having a thickness of 200 A or less; wherein said layer is formed using dopants, stoichiometric modifications, and / or completely different materials; At least one of the layers is formed within the article to function as a gettering layer or a floating gate; At least one of the layers is formed on the surface of the article to function as a graded surface or as a graded electrode; An article made by the method of claim 21. 물품이 100-5000A의 두께를 갖고, 부착된 성분은 세라믹, 유리질 물질, 전기적으로 활성인 물질, 및/혹은 강유전체임을 특징으로 하는 청구범위 21항 방법에 의해 제조된 물품.An article made by the method of claim 21, wherein the article has a thickness of 100-5000 A, and the attached component is a ceramic, glassy material, electrically active material, and / or ferroelectric. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019900701908A 1988-12-27 1989-12-27 Method for attaching thin film on substrate and apparatus therefor KR910700103A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29046888A 1988-12-27 1988-12-27
US290,468 1988-12-27
PCT/US1989/005882 WO1990007390A1 (en) 1988-12-27 1989-12-27 Methods and apparatus for material deposition

Publications (1)

Publication Number Publication Date
KR910700103A true KR910700103A (en) 1991-03-13

Family

ID=23116134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900701908A KR910700103A (en) 1988-12-27 1989-12-27 Method for attaching thin film on substrate and apparatus therefor

Country Status (3)

Country Link
KR (1) KR910700103A (en)
AU (1) AU636818B2 (en)
WO (1) WO1990007390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006793B2 (en) * 2018-08-01 2022-02-10 株式会社ニコン Mist film forming equipment and mist film forming method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989407A (en) * 1982-11-15 1984-05-23 Mitsui Toatsu Chem Inc Formation of amorphous silicon film
JPS59198718A (en) * 1983-04-25 1984-11-10 Semiconductor Energy Lab Co Ltd Manufacture of film according to chemical vapor deposition
JPS60128264A (en) * 1983-12-14 1985-07-09 Nec Corp Formation of thin film
US4683147A (en) * 1984-04-16 1987-07-28 Canon Kabushiki Kaisha Method of forming deposition film
US4571350A (en) * 1984-09-24 1986-02-18 Corning Glass Works Method for depositing thin, transparent metal oxide films
US4569855A (en) * 1985-04-11 1986-02-11 Canon Kabushiki Kaisha Method of forming deposition film
JPS6296327A (en) * 1985-10-22 1987-05-02 Seiko Epson Corp Method of preparing sol
CA1302803C (en) * 1986-02-15 1992-06-09 Hiroji Kawai Method and apparatus for vapor deposition
JPS62246826A (en) * 1986-04-16 1987-10-28 Seiko Epson Corp Production of glass
JPH0698328B2 (en) * 1986-10-31 1994-12-07 住友重機械工業株式会社 Vacuum coating equipment

Also Published As

Publication number Publication date
AU4846990A (en) 1990-08-01
WO1990007390A1 (en) 1990-07-12
AU636818B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US5138520A (en) Methods and apparatus for material deposition
GB8518835D0 (en) Forming crystal of semiconductor
US4900591A (en) Method for the deposition of high quality silicon dioxide at low temperature
HU181779B (en) Method and apparatus for growing thin film layer combined from atoms of various elements on some carrier surface
KR850003480A (en) Translucent conductive thin film deposition apparatus and method
JPS6450429A (en) Formation of insulating film
KR960034479A (en) METHOD FOR MANUFACTING OXIDE FILM AND METHOD FOR PRODUCING THE SAME
KR910700103A (en) Method for attaching thin film on substrate and apparatus therefor
JPS55125681A (en) Manufacture of photovoltaic device
US3389022A (en) Method for producing silicon carbide layers on silicon substrates
US5093703A (en) Thin film transistor with 10-15% hydrogen content
US5178904A (en) Process for forming deposited film from a group II through group VI metal hydrocarbon compound
KR860006566A (en) Method for forming metal thin film and apparatus for forming same
JPS5351187A (en) Gas phase chemical evaporation apparatus
GB1035499A (en) Process for the manufacture of crystalline layers from low volatility substances in the gas phase
JPS5713738A (en) Vapor-phase growing apparatus
JPS6476606A (en) Dielectric material
JPS57120335A (en) Manufacture of semiconductor device
JPS5518054A (en) Fabricating method of semiconductor device
JP3741842B2 (en) Vacuum deposition apparatus and thin film forming method
KR860001049B1 (en) Method for performing growth of compound thin films
KR860001051B1 (en) Apparatus for performing growth of compound thin films
JPS5663821A (en) Manufacture of zinc oxide film
JPS6481192A (en) Formation of ferroelectric thin film
JPS6423540A (en) Apparatus for manufacturing compound semiconductor film

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid