KR890003869B1 - 탄화철 함유입자와 그의 제법 및 이용 - Google Patents

탄화철 함유입자와 그의 제법 및 이용 Download PDF

Info

Publication number
KR890003869B1
KR890003869B1 KR1019850007821A KR850007821A KR890003869B1 KR 890003869 B1 KR890003869 B1 KR 890003869B1 KR 1019850007821 A KR1019850007821 A KR 1019850007821A KR 850007821 A KR850007821 A KR 850007821A KR 890003869 B1 KR890003869 B1 KR 890003869B1
Authority
KR
South Korea
Prior art keywords
iron
particles
carbon atoms
agent containing
average
Prior art date
Application number
KR1019850007821A
Other languages
English (en)
Other versions
KR860003633A (ko
Inventor
가즈오 우까무라
이꾸오 기따무라
히데끼 아오미
사또시 고야마
가쓰시 도꾸나가
Original Assignee
다이낀 고오교오 가부시끼가이샤
야마다 미노루
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이낀 고오교오 가부시끼가이샤, 야마다 미노루 filed Critical 다이낀 고오교오 가부시끼가이샤
Publication of KR860003633A publication Critical patent/KR860003633A/ko
Application granted granted Critical
Publication of KR890003869B1 publication Critical patent/KR890003869B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70652Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3
    • G11B5/70668Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides gamma - Fe2 O3 containing a dopant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

내용 없음.

Description

탄화철 함유입자와 그의 제법 및 이용
본 발명은 탄화철 함유 입자와 그의 제법 및 그 이용에 관한 것이다.
현재 침상 γ-산화철은 자기기록 재료로 널리 사용되고 있다. 그러나 평균 축비 1.0 내지 3.0의 γ-산화철은 보자력등의 자기특성이 부족하여 자기 기록재료로 사용되지 못하고 있다. 이럼에도 불구하고 산화철 또는 산화철이나 옥시 수산화철등의 산화철의 출발물질은 제조하기가 용이하고 그로부터 얻어지는 입자는 피복되었을때 높은 조밀도를 갖는것으로 기대된다.
더우기 구형입자상의 탄화철은 자성 물질로 알려져 있다.(미국특허 제 3,572,993호). 그러나 이 탄화철은 CO 또는 CO와 H2의 혼합물중에서 철 카르보닐을 가열하여 만든다. 그러나 이 방법은 위험이 수반되고 복잡하며 극도로 행하기가 어렵다. 더우기, 얻어진 입자는 평균 입경이 0.005 내지 0.1μm로 대단히 작고 쉽게 응집하며 분산되기가 어렵다. 따라서, 이 입자는 취급하기가 어렵고 그리하여 현재는 제조되지 않고 있다.
본 발명의 목적은 쉽게 얻을 수 있는 철화합물을 사용하여 비교적 높은 보자력을 갖고 있는 비교적 큰 입경을 갖고있어 취급하기가 용이한 입자 및 상기 입자 함유 자기물질을 제공하는 것이다.
본 발명의 상기 및 기타 목적은 다음 기재로부터 명백해질 것이다.
본 발명은 적어도 1.0이고 3.0 미만의 평균 축비와 0.1μm 이상 5μm 이하의 평균 입도를 가진 탄화철을 함유하는 입자를 제공한다.
본 발명은, (a), 침상옥시 수산화물 또는 침상산화철을 탄소원자를 함유하지 않은 환원제와 접촉시켜서 또는 접촉시키지 않고 평균축비가 1.0 이상 3.0 이하이고 평균 입경이 0.1μm 이상 5μm 이하인, 철화합물을 얻고, 그 다음(b), (a)에서 얻어진 철화합물을 탄소원자를 함유하는 환원 및 탄화제와 접촉시키거나 그들의 혼합물을 탄소원자를 함유치 않은 환원제와 반응시킴에 의해서 제조할 수 있다.
바람직한 옥시수산화철의 예에는 α-FeOOH(침철광), β-FeOOH(적금광) 및 γ-FeOOH(인철광)이 있다. 바람직한 산화철의 예에는 α-Fe2O3(적철광), γ-Fe2O3(마그헤마이트) 및 Fe3O4(자철광)이 있다.
예컨대, α-Fe2O3또는 γ-Fe2O3는 α-FeOOH, β-FeOOH 또는 γ-FeOOH를 약 200 내지 350℃에서 가열하고, 탈수하고 다시 약 350 내지 약 900℃에서 재가열하여 결정을 치밀화시키는 등의 공정으로 얻어진다. β-FeOOH는 알칼리 화합물의 수용액을 처리하면 좋다(일본 특허출원 NO. 10400/1984).
상기한 Fe3O4는 Fe3O4이외의 산화철이나 옥시수산화철을, 탄소원자를 함유하는 환원-및-탄화제 또는 탄소원자를 함유하지 않는 환원제 또는 그의 혼합물과 접촉시킴으로써 제조될 수 있으나, Fe3O4는 상기 방법으로 제조된 것에 국한되는 것은 아니다. 탄소원자를 함유하는 환원-및-탄화제나 또는 그의 탄소원자를 함유하지 않는 환원제와의 혼합물을 옥시수산화철이나 또는 Fe3O4이외의 산화철과 접촉시켜서 Fe3O4를 제조하는 경우, 시간 조건이외의, 본 발명방법에서와 동일한 접촉조건을 역시 이용할 수 있다. 이경우 형성된 Fe3O4는 후속하여 중단하지 않고 앞에서의 반응과 동일한 조건하에 가스와 접촉시켜 본 발명의 원하는 입상물질을 얻을 수 있다.
출발 옥시수산화철이나 산화철은 평균축비가 적어도 1.0 및 3.0 이하이고, 평균입경(장축)이 0.14μm 이상, 5μm 까지 인것일 수 있다. 후술하는 바와같이, 생성된 입자는 평균축비와 평균입경이 출발물보다 약간 작으나, 거의 불변이며, 따라서 본 발명의 입자는 대체로 상기한 크기를 갖는것이 바람직하다.
본 발명에 따르는 입자제조에 사용될 출발물은, 그출발물이 주로 옥시수산화철이나 산화철을 함유하는 한, 동, 마그네슘, 망간 또는 닉켈의 산화물이나 탄산염, 산화규소, 칼륨염, 나트륨염등을 소량 부가하여 함유할 수 있다.
출발 옥시수산화철은 일본 특허출원 NO.217,530/1983에 기술된 바와같이 그의 표면의 적어도 5의 pH를 갖는것이 바람직하다. 이경우 높은 보자력을 갖는 입자가 생성된다. 5이하의 pH를 갖는 출발 옥시수산화철은 알칼리 화합물(예를들면 수산화나트륨, 수산화칼륨, 수산화암모늄)의 수용액과 접촉시킴으로써 pH를 적어도 5까지 증가신킨후에 사용할 수 있다. 또한 알칼리 처리된 산화철도 역시 사용할 수 있다. 출발물은 이물질을 수산화나트륨, 수산화칼륨, 수산화암모늄 등의 수용액(예를들면 적어도 8, 바람직하게는 적어도 10의 pH를 갖는 수용액)과 접촉시키고, 필요한 경우는 30분 내지 1시간동안 교반하고, 이 혼합물을 여과 및 건조시킴으로써, 알칼리 화합물로 처리할 수 있다.
옥시수산화철이나 산화철은, 철화합물을 실은 또는 가온하에 교반하면서 코발트염이 수용액(예컨대 0.1 내지 10중량%의 희석용액)에 분산시키고, 이 분산액에 알칼리 화합물의 수용액을 가하여 알칼리성을 부여하고, 이 분산액을 여과 및 건조시킴으로써, 코발트화합물로 피복시킬 수 있다.
출발철화물은 일본특허 출원 NO.250,163/1983에 기술된 바와같이 소결-방지제로 피복하여 사용할 수 있다. 유용한 제제의 실예로는 규소화합물, 붕소화합물, 알루미늄화합물, 지방족 카르복실산이나 그의염, 인화합물, 티탄화합물등이 있다.
본 발명에서 탄소원자를 함유하지 않는 환원제의 전형적인 실예로서는 H2, NH2NH2등이 있다.
환원-및-탄화제로서는 다음 화합물의 적어도 하나를 사용할 수 있다.
①CO
②메탄, 프로판, 부탄, 씨클로헥산, 메틸씨클로헥산, 아세틸렌, 에틸렌, 프로필렌, 부타디엔, 이소프렌, 도시가스등과 같은, 지방족, 선형 또는 환상의 포화나 불포화 탄화수소.
③150℃까지의 비점을 갖는 벤젠, 톨루엔, 크실렌, 그의 알킬화된 또는 알케닐화된 유도체.
④메탄올, 에탄올, 프로판올, 씨클로헥산을 등과같은 지방족 알코올.
⑤포름산메틸, 아세트산에틸 및 150℃까지의 비점을 갖는 에스테르 등의 에스테르.
⑥저급알킬에테르, 비닐에테르 및 150℃까지의 비점을 갖는 에테르등의 에테르.
⑦포름알데히드, 아세트알데히드 및 150℃까지의 비점을 갖는 알데히드등의 알데히드.
⑧아세톤, 메틸 에틸 케톤, 이소부핀 케톤 및 150℃까지의 비점을 갖는 케톤등의 케톤.
탄소원자를 함유하는 환원-및-탄화제는 CO, CH3OH, HCOOCH3,1 내지 5개의 탄소원자를 갖는 포화 또는 불포화지방족탄화수소이다.
본 발명의 방법(a)에서, 탄소원자를 함유하지 않는 환원제는 그대로 또는 희석하여 사용될 수 있다. 희석제의 실예로는 N2, 아르곤, 헬륨등이 있다. 희석비율은 적당히 선택되나 약 1.1 내지 약 10배(용적)인 것이 바람직하다. 접촉온도, 접촉시간, 가스유동속도 및 기타 조건은, 예컨대, 옥시수산화철이나 산화철의 생산연혁, 평균축비, 평균입경 및 비표면적에 의한다. 바람직한 접촉온도는 약 200 내지 약 700℃이고, 약 300 내지 약 400℃가 바람직하다. 바람직한 접촉시간은 약 0.5 내지 약 6시간이다. 바람직한 가스 유동속도는 (희석제는 제외)출발물의 g당 약 1 내지 1000ml S.P.T/분, 더욱 바람직하게는 약 5 내지 약 500ml S.P.T/분이나, 희석제의 접촉압을 포함한 접촉압은 대체로 1 내지 2atm이나 특히 제한된 것은 아니다.
본 발명 방법(b)에서, 탄소원자를 함유하는 환원-및-탄화제나 또는 그의 탄소원자를 함유하지 않는 환원제와의 혼합물은 그대로 또는 희석하여 사용할 수 있다. 혼합물을 사용하는 경우 환원-및-탄화제와 환원제와의 혼합비는 적당히 선택되나 용적으로 1/0.05 내지 1/5인것이 바람직하다. 접촉조건도 역시 적당히 선택되나 바람직한 접촉온도는 약 250 내지 약 400℃이고, 더욱 바람직하게는 약 300 내지 약 400℃이다. 바람직한 접촉시간은 (a)에서의 접촉이 수행되는 경우는 약 0.5 내지 6시간이고, (a)에서의 접촉이 수행되지 않는 경우는 약 1 내지 12시간이다. 바람직한 가스유동 속도(희석제 제외)는 출발 철화합물 g당 약 1 내지 1000ml S.P.T/분이고, 더욱 바람직하게는 약 5 내지 약 500ml S.P.T/분이다. 희석제를 포함하는 접촉압은 일반적으로 1 내지 2atm이나 특히 제한된 것은 아니다.
본 발명으로 얻은 입상물질은 전자현미경하에서 관찰했을때 대체로 균일한 입차형태이다. 입자는 기본입자로서 존재하며, 옥시수산화철이나 산화철의 출발입자와 동일한 입자형태를 갖는다. 본 발명으로 얻어진 입자는 원소분석에 의하면 탄소를, 그의 X-선 회절패턴에 의하면 탄화철을 함유하고, 2.28Å, 2.20Å, 2.08Å, 2.05Å 및 1.92Å에서 평면 간격을 나타내는 것으로 판명되었다. 이와같은 패턴은 Fe5O2에 상응한다. 본 물질의 탄화철 성분은 어떤경우에는 함께 결합하여 존재하는 Fe2C, Fe20C9(Fe2.2C), Fe3C등과 더불어, 주로 Fe5C2로 구성된다. 따라서 탄화철을 FexC(2 x<3)로 나타내는 것이 적당하다.
탄화가 불환전한 경우 본 발명 방법으로 얻은 침상 입자는 주로 Fe3O4인 산화철 성분을 더 함유한다. 산화철에 대하여 보면 FeO, Fe3O4및 γ-Fe2O, 가 대체로 구조상 서로 연관되어 있다. 이들 세가지 산화물의 산소원자는 3차원 구조로서 최고 가능한 밀도까지 충전되어 있으며, 실제로 존재하는 Fe3O4의 산소원자의 수는 이들 산화물의 산소원자수를 포함하는 모든 범위에 걸쳐 변화하며, 따라서 침상입자의 산화철은 FeOy(1<y
Figure kpo00001
1.5)로 나타내는 것이 적당하다.
본 방법으로 제조된 침상입자는 대부분의 경우 탄화철 성분에 부가하여 산화철을 함유하나, C, H 및 N의 원소분석값은 탄소의 양이 일반적으로 X-선 회절패턴으로 확인한 탄화철의 화학식으로부터 산출한 값을 초과하였다. 과량의 탄소가 철과 결합되어 존재하는지 또는 유리탄소로 존재하는지를 명확하지 않다. 이와같은 의미에서, 본 발명방법으로 얻은 침상입자는 원소상 탄소를 함유하는 것으로 추측된다. 따라서 본 방법으로 얻어진 입자는 기본입자로서의 그의 형상에 대하여 살펴보면 평균축비가 적어도 3인 침상 입자를 포함하고, 실질적으로 탄화철 단독이나 탄화철과 산화철 그리고 원소상 탄소로 구성된다.
본 방법으로 얻는 침상입자의 탄화철 및 산화철 함량은 화학식 Fe5C2와 Fe3O4로부터 측정할 수 있으며, X-선 회절분석에 의한 주 탄화철과 산화철 성분과, 원소분석 결과의 연소시 중량증가에 의하여 확인된다. 탄화철 함량은 적어도 20중량%, 바람직하게는 적어도 50중량%인것이 바람직하다. 산화철 함량은 70중량%까지가 바람직하고, 더욱 바람직하게는 40중량%까지이다.
본 발명에서 탄화철은 주성분으로서 Fe5C2를 함유하며, 바람직하게는 약 80 내지 100중량%의 Fe5C2를 함유한다.
본 방법으로 얻은 침상입자는 평균 축비와 평균입도가 출발물, 즉 γ- Fe2O3보다 약간 적으나, 거의 동일하다. 따라서 본 방법으로 제조된 침상입자는 평균축비가 적어도 1.0 및 3.0이하이며, 평균입도(장축)는 0.1μm이상 및 5μm까지이다.
탄화철을 함유하는 본 발명의 침상입자는 상기한 특성으로부터 명확한 바와같이 자기 기특용 자성물질로서 유용하나, 그의 사용이 그에 제한되는 것은 아니다. 예컨대 침상 입자물질은 CO와 H2로부터 지방족 탄화수소를 제조하는 촉매로서 유용하다.
본 발명에 있어서는 입수가 용이한 출발 철화합물로부터 보자력이 높은 입자를 제조할 수 있다.
본 발명을 실시예에 따라 더욱 상세히 기술하고져 한다.
다음 실시예에 있어서 특성등은 다음에 기술하는 방법으로 측정한다.
(1)자기 특성
달리 지시하지 않는한 다음 방법으로 측정한다. 보자력 HC, 포화자기화 (σs, e. m. u.) 및 잔류자기화(σr, e. m. u.)는 강도 5koe인 자장내에서, 호올-효과(Hall-effect)요소가 장비된 가우스미이터와 충전비가 0.2인 시료를 사용하여 측정한다.
(2)C, H 및 N에 대한 원소분석
시료를 MT2 CHN CORDER Yanaco(Yanagimoto Mfg. Co. Ltd의 제품)를 사용하고, 900℃에서 산소(헬리움 담체)를 통과 시키면서 통상의 방법으로 원소분석한다.
(3)조성의 결정
생성물의 조성은 X-선 회절계로 결정한 산화철과 탄화철의 화학식과 C의 원소분석치와 다음과 같은 열처리로부터 초래된 중량증가로부터 산출한다. 계산은 예컨대 Fe3O4가 전술한 산화물 중량의 1.035배를 갖는 Fe2O3로 변화하고, Fe5C2가 탄화물 중량의 1.317배를 갖는 Fe2O3로 변화한다는 것을 기준으로 수행한다. 중량 증가는 열처리하는 통상의 방법, 즉 시료를 백금 도가니에 넣은다음 1시간동안 공기중 600℃의 머풀가마에서 가열하고, X-선 회절에 의하여 α-Fe2O3의 존재를 확인한 다음 초래되는 중량증가를 측정함으로써 결정한다.
더욱 상세히 설명하면, Fe5C2, Fe3O4및 원소상 탄소가 각각 x, y 및 z중량%로, 탄소 분석치와 중량증가를 각각 A 및 B중량%로 가정한다. 그러면 x, y 및 z의 값은 다음식으로 주어진다.
x+y+z=100
1.317+1.035y=100+B
z+0.079x=A
[실시예 1]
평균 크기(장축)가 0.6μm이고 평균축비가 2인 침철광 입자 2g을 도자기 보우트에 넣고, 이것을 관상로에 삽입하였다. 로의 공기를 질소로 대체한 다음 입자를 300℃까지 가열하고, 100ml/분의 유동속도로 로에 H2를 통과시키면서 2시간동안 이 온도를 유지시켰다. 100ml/분의 유동속도로 로에 CO를 통과시키면서 17시간동안 입자를 이 온도에 유지시켰다. 그다음 입자를 실온까지 냉각시켜 흑색 분말을 얻었다.
생성물의 X-선 회절패턴은 ASTM X-선 분말데이터, File 20-509상의 Fe5C2탄화철에 상응하였다. 그 결과가 표1과 2에 기재되어 있다.
[실시예 2 내지 5]
표 1에 기재된 출발물과 접촉 조건을 이용하여 실시예 1에서와 동일한 방법으로 흑색분말을 제조하였다. 그 결과가 표1과 2에 나타나 있다.
[표 1]
Figure kpo00002
[표 2]
Figure kpo00003
[실시예 6]
평균 크기(장축)가 0.6μm이고 평균축비가 2인 침철광입자 2g을 도자기 보우트에 넣고 이것을 관상 로에 삽입하였다. 로의 공기를 질소로 대체한 다음 입자를 300℃까지 가열하고, 100ml/분의 유동속도로 로에 CO를 통과시키면서 이 온도를 2.5시간동안 유지하였다. 다음 입자를 실온으로 냉각시켜서 흑색분말을 얻었다.
접촉조건과 그 결과가 표3과 4에 나타나 있다.
[실시예 7]
평균 크기(장축)가 0.6μm이고 평균축비가 2인 침철광입자 1g을 도자기 보우트에 넣고 이것을 관상 로에 삽입하였다. 로의 공기를 질소로 대체한 후 입자를 300℃까지 가열하고, 300ml/분의 유동속도로 로에 CO를 통과시키면서 이 온도를 3시간동안 유지시켰다. 그다음 입자를 실온까지 냉각시켜 흑색분말을 얻었다.
접촉조건과 그 결과가 표 3과 4에 나타나 있다.
[실시예 8]
α-FeOOH(3g)을 600℃에서 1시간동안 탈수하에 α-Fe2O3를 제조하였다. α-Fe2O3를 H2로 400℃에서 1시간 동안 환원시킨 다음 1시간동안 공기중에서 350℃로 산화시켜 γ-Fe2O3를 얻었다. 이 γ-Fe2O3를 황산코발트의 2%수용액 100ml에 교반하면서 분산시켰다. 여기에 NaOH의 수용액을 가하여 pH를 10으로 조정하고 이 혼합물을 30분간 80℃에서 교반하였다. 분산액을 여과하고 건조시켜 코발트로 피복된 γ-Fe2O3를 얻었다. 이입자 2g을 도자기 보우트에 넣고, 이를 관상로에 삽입하였다. 로의 공기를 질소로 대체시킨 다음 이 입자를 350℃까지 가열하고, 100ml/분의 유동속도로 로에 CO를 통과시키면서 이 온도를 3시간동안 유지하였다. 그다음 입자를 실온까지 냉각시켜 흑색분말을 얻었다.
접촉조건과 그 결과가 표 3과 4에 나타나 있다.
[실시예 9 내지 12 및 참고실시예 1]
표 3에 나타난 출발 철 화합물을 표 3에 지시한 가스와 접촉시켜서 표 4에 기재한 분말생성물을 제조하였다.
[표3]
Figure kpo00004
[표4]
Figure kpo00005
[실시예 13]
실시예 6과 실시예 12 및 참고 실시예 1에서 얻은 분말 각각 15g, 20g 또는 25g을 다음 성분으로 구성되는 부형제에 가하였다.
염화비닐-아세트산 비닐 공중합체 5.25g
프탈산 디옥틸 1.00g
라우트산 0.2g
톨루엔 15.0g
메틸 이소부틸 케톤 15.0g
이 혼합물 각각을 6개의 철 보올(각각 직경 15mm)을 함께 갖고 있는 200ml 도자기 보올 미일에서 30r.p.m.으로 6시간 동안 혼합시켰다.
생성 피복조성물은 닥터 나이프에 의하여 폴리에틸렌 테레프탈레이트 필름에 가하였다.
표 5는 조성물의 혼합상태를 나타낸다.
[표 5]
Figure kpo00006
비고 :
Figure kpo00007
: 조성물이 균일하게 혼합된다.
× : 조성물이 불균일하게 혼합되고, 약간의 분말이 응집한다.

Claims (7)

  1. 평균축비가 적어도 1.0 및 3.0 이하이고, 평균 입도가 0.1μm 이상, 5μm까지인 탄화철을 함유하는 것을 특징으로 하는 입자.
  2. (a) 침상으로 옥시수산화철이나 침상 산화철을 탄소원자를 함유하지 않는 환원제와 접촉시키거나 접촉시키지 않는 단계로서,이때 철화합물은 평균축비가 적어도 1.0 및 3.0 이하이고 평균입경이 0.1μm 이상, 5μm이며, (b) 상기(a)의 철화합물은 탄소원자를 함유하는 환원-및-탄화제 또는 그의 탄소원자를 함유하지 않는 환원제와의 혼합물과 접촉시키는 단계, 로 구성된 것을 특징으로 하는, 평균 축비가 적어도 1.0 및 3.0 이하이고, 평균입도가 0.1μm 이상, 5μm까지인 탄화철을 함유하는 입자의 제조방법.
  3. 제2항에 있어서, 옥시수산화철이 α-, β- 또는γ-FeOOH이고 산화철이 α 또는 γ-Fe2O3또는 Fe3O4인 것을 특징으로 하는 방법.
  4. 제2항에 있어서 (a)에서의 접촉온도가 200 내지 700℃이고, (b)에서의 접촉온도가 250 내지 400℃인 것을 특징으로 하는 방법.
  5. 제2항에 있어서, 탄소원자를 함유하는 환원-및-탄화제가 CO, CH3OH, HCOOCH3, 1내지 5개의 탄소원자를 갖는 포화 또는 불포화 지방족 탄화수소 인것을 특징으로 하는 방법.
  6. 제2항에 있어서, 탄소원자를 함유하지 않는 환원제가 H2인 것을 특징으로 하는 방법.
  7. 평균축비가 적어도 1.0 및 3.0 이하이고, 평균입도가 0.1μm 이상, 5μm까지인 탄화철을 함유하는 입자를 포함하는 것을 특징으로 하는 자성물질.
KR1019850007821A 1984-10-25 1985-10-23 탄화철 함유입자와 그의 제법 및 이용 KR890003869B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59-224968 1984-10-25
JP59224968A JPS61106410A (ja) 1984-10-25 1984-10-25 炭化鉄を含有する粒子、その製法及び用途

Publications (2)

Publication Number Publication Date
KR860003633A KR860003633A (ko) 1986-05-28
KR890003869B1 true KR890003869B1 (ko) 1989-10-05

Family

ID=16822027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850007821A KR890003869B1 (ko) 1984-10-25 1985-10-23 탄화철 함유입자와 그의 제법 및 이용

Country Status (5)

Country Link
EP (1) EP0179490B1 (ko)
JP (1) JPS61106410A (ko)
KR (1) KR890003869B1 (ko)
CA (1) CA1328727C (ko)
DE (1) DE3576679D1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900464A (en) * 1985-12-24 1990-02-13 Daikin Industries Ltd. Particles containing iron carbide
JPS6395104A (ja) * 1986-10-06 1988-04-26 Daikin Ind Ltd Fe↓7C↓3を主成分とする炭化鉄を含有する粒子、その製法及び用途
FR2680984B1 (fr) * 1991-09-06 1993-11-05 Pechiney Recherche Preparation de catalyseur a partir d'oxydes metalliques par reduction et carburation partielle par les gaz reactionnels.
JP2727436B2 (ja) * 1995-05-31 1998-03-11 川崎重工業株式会社 鉄カーバイドの製造方法及び製造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2535042A (en) * 1950-01-05 1950-12-26 Ernst M Cohn Preparation of iron carbides
US3885023A (en) * 1973-02-15 1975-05-20 Phillips Petroleum Co Preparation of iron carbide (Fe{hd 3{b C)
DE2935444A1 (de) * 1979-09-01 1981-03-19 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von nadelfoermigen ferrimagnetischem eisenoxid
JPS59199533A (ja) * 1983-04-25 1984-11-12 Daikin Ind Ltd 磁性粉末
JPS6016808A (ja) * 1983-07-05 1985-01-28 Daikin Ind Ltd 炭化鉄を含有する磁性材料
DE3469820D1 (en) * 1983-04-25 1988-04-14 Daikin Ind Ltd Acicular particulate material containing iron carbide

Also Published As

Publication number Publication date
KR860003633A (ko) 1986-05-28
EP0179490A3 (en) 1987-10-21
JPS61106410A (ja) 1986-05-24
EP0179490B1 (en) 1990-03-21
CA1328727C (en) 1994-04-26
JPH0140765B2 (ko) 1989-08-31
EP0179490A2 (en) 1986-04-30
DE3576679D1 (de) 1990-04-26

Similar Documents

Publication Publication Date Title
KR890003867B1 (ko) 탄화철을 함유하는 침상입자의 제조방법
GB1597680A (en) Manufacture of acicular ferromagnetic pigment particles
KR890003869B1 (ko) 탄화철 함유입자와 그의 제법 및 이용
US5026605A (en) Coated iron carbide fine particles
US4900464A (en) Particles containing iron carbide
US5104561A (en) Process for preparing carbide fine particles
KR940009271B1 (ko) 탄화철 미립자의 제조방법
KR910002685B1 (ko) FeC 함유입자, 그의 제조방법 및 용도
EP0326165B1 (en) Iron carbide fine particles and a process for preparing the same
JPS61111921A (ja) 炭化鉄を含有する針状粒子の製造法
KR890003868B1 (ko) 탄화철을 함유하는 침상입자의 제조방법
JPH0143683B2 (ko)
JPS61111923A (ja) 炭化鉄を含有する粒子、その製法及び用途
JPH0375489B2 (ko)
JPS63256510A (ja) 炭化鉄微粒子の安定化法
JPH0729764B2 (ja) 炭化鉄微粒子、磁性材料及び該微粒子の製造法

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010928

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee