KR840003596A - Oxygen generating anode and its manufacturing method - Google Patents

Oxygen generating anode and its manufacturing method Download PDF

Info

Publication number
KR840003596A
KR840003596A KR1019830000644A KR830000644A KR840003596A KR 840003596 A KR840003596 A KR 840003596A KR 1019830000644 A KR1019830000644 A KR 1019830000644A KR 830000644 A KR830000644 A KR 830000644A KR 840003596 A KR840003596 A KR 840003596A
Authority
KR
South Korea
Prior art keywords
particles
activated
base
titanium
anode
Prior art date
Application number
KR1019830000644A
Other languages
Korean (ko)
Other versions
KR890001132B1 (en
Inventor
버어나아드 비어(외2) 헨리
Original Assignee
다인 엘 휴지스
다이아몬드 샴락크 코오포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다인 엘 휴지스, 다이아몬드 샴락크 코오포레이션 filed Critical 다인 엘 휴지스
Publication of KR840003596A publication Critical patent/KR840003596A/en
Application granted granted Critical
Publication of KR890001132B1 publication Critical patent/KR890001132B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)
  • Inert Electrodes (AREA)

Abstract

내용 없음No content

Description

산소발생용 양극 및 그의 제조방법Oxygen generating anode and its manufacturing method

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음As this is a public information case, the full text was not included.

Claims (20)

납 또는 납합금의 양극 기본체로 구성되고 산(酸)전해액중에서 산소를 발생시키기 위한 양극에 있어서, (a) 촉매적으로 활성화된 티탄 입자가 기본체에 전기적으로 연결되고 견고하게 고정되도록, 기본체의 표면에 균일하게 분산되며 부분적으로 매립되고, (b) 하층 납 또는 납합금이 전기화학적으로 불활성으로 유지되어 촉매적으로 활성화된 입자에 대해 안정하고 불활성인 전류 전도 지지체로서 작용하며 감소된 전위차에서 산소를 발생시킬 수 있도록, 촉매적으로 활성화된 티탄 입자가 산화물 형태로서 소량의 루테늄을 포함하는 것을 특징으로 하는 산소발생용 양극.In an anode composed of a lead base of lead or lead alloy and for generating oxygen in an acid electrolyte, (a) the base so that catalytically activated titanium particles are electrically connected to and firmly fixed to the base. (B) the underlying lead or lead alloy remains electrochemically inert, acting as a stable and inert current conducting support for catalytically activated particles, at a reduced potential difference An anode for generating oxygen, wherein the catalytically activated titanium particles contain a small amount of ruthenium in oxide form so as to generate oxygen. 제1항에 있어서, 상기 입자가 티탄 스폰지로 구성된 것을 특징으로 하는 양극.The anode according to claim 1, wherein the particles consist of titanium sponge. 제1항 또는 2항에 있어서, 상기 입자가 산화물 형태의 망간을 더 함유하는 것을 특징으로하는 양극.The anode according to claim 1 or 2, wherein the particles further contain manganese in oxide form. 제2항 또는 3항에 있어서, 크기가 다르고 촉매적으로 활성화된 티탄 스폰지 입자가 기본체에 배열된 것을 특징으로하는 양극.4. Anode according to claim 2 or 3, characterized in that different size and catalytically activated titanium sponge particles are arranged in the base body. 제4항에 있어서, 작은 입자가 서로 다른 크기로 큰 입자보다 더 많은 양의 루테늄을 포함하는 것을 특징으로하는 양극.5. The positive electrode of claim 4 wherein the small particles comprise a greater amount of ruthenium than the larger particles of different sizes. 제1항에 있어서, 상기 활성화된 티탄 입자가 산화물 형태의 티탄을 더 포함하는 것을 특징으로 하는 양극.The anode of claim 1, wherein the activated titanium particles further comprise titanium in oxide form. 제1항에 있어서, 상기 활성화된 입자가 양극 기본체의 단위면적 당 400g이상에 해당하는 양으로 티탄을 포함하는 것을 특징으로 하는 양극.The positive electrode of claim 1, wherein the activated particles include titanium in an amount corresponding to at least 400 g per unit area of the positive electrode base body. 제1항에 있어서, 상기 활성화된 입자외에 밸브금속 및 밸브 금속산화물(양호하기로는 ZrO2)의 입자를 더 포함하는 것을 특징으로하는 양극.The anode of claim 1, further comprising particles of valve metal and valve metal oxide (preferably Z r O 2 ) in addition to the activated particles. (a) 촉매적으로 활성화된 티탄 스폰지 입자에 이용되는 루테늄 및 망간 화합물을 열분해 하므로써 얻어진 산화물 형태의 루테늄과 망간의 소량을 포함하는 상기 티탄 스폰지 입자를 납 또는 납합금의 양극 기본체 표면에 균일하게 분산하고, (b) 상기 촉매적으로 활성화된 입자를 상기 양극 기본체의 납 또는 납합금에 부분적으로 매립시키는 것을 특징으로 하는 청구 범위 1항의 양극을 제조하는 방법.(a) The titanium sponge particles containing a small amount of ruthenium and manganese in oxide form obtained by pyrolyzing ruthenium and manganese compounds used for catalytically activated titanium sponge particles are uniformly formed on the surface of the anode base of lead or lead alloy; And (b) partially embedding the catalytically activated particles in the lead or lead alloy of the positive electrode body. 제9항에 있어서, 활성화된 큰 입자가 양극 기본체의 표면에 먼저 압착된 다음, 활성화된 작은 입자가 상기 양극 기본체 표면에 압착되는 것을 특징으로 하는 방법.10. The method of claim 9, wherein the activated large particles are first pressed onto the surface of the positive electrode body and then the activated small particles are pressed onto the surface of the positive electrode body. 제10항에 있어서, 상기 작은 입자에 상기 큰 입자보다 더 많은 양의 루테늄을 제공하는 것을 특징으로하는 방법.The method of claim 10, wherein the small particles are provided with a greater amount of ruthenium than the large particles. 제10당 또는 11항에 있어서, 상기 큰 입자의 크기는 600 마이크론 이상이고 작은 입자의 크기는 300-600 마이크론인 것을 특징으로하는 방법.12. The method of claim 10 or 11, wherein the size of the large particles is at least 600 microns and the size of the small particles is 300-600 microns. 제9항에 있어서, 상기 활성화된 입자가 양극 기본체 표면의 ㎡당 400g이상에 해당하는 양으로 티탄을 함유하는 것을 특징으로하는 방법.10. The method of claim 9, wherein the activated particles contain titanium in an amount corresponding to at least 400 g per m 2 of the positive electrode base surface. 제9항에 있어서, 산화물 형태의 루테늄 및 망간을 형성한후 상기 입자에 이용된 티탄 화합물을 열분해하므로써 티탄 산화물이 상기 촉매적으로 활성화된 입자에 더 형성되는 것을 특징으로하는 방법.10. The method of claim 9, wherein after forming ruthenium and manganese in oxide form, titanium oxide is further formed in the catalytically activated particles by pyrolyzing the titanium compound used in the particles. 제9항에 있어서, 밸브 금속 및 밸브 금속 산화물의 입자가 상기 활성화된 입자를 부분적으로 매립한후 양극 기본체에 더 압착되는 것을 특징으로하는 방법.10. The method of claim 9, wherein the particles of valve metal and valve metal oxide are further pressed onto the anode base after partially embedding the activated particles. 제15항에 있어서, 상기 촉매적으로 활성화된 티탄 입자가 부분적으로 매립된 후 이산화 지르코늄의 입자가 양극 기본체에 압착 및 마찬가지로 고정되는 것을 특징으로 하는 방법.The method of claim 15, wherein the particles of zirconium dioxide are pressed and likewise fixed to the anode base after the catalytically activated titanium particles are partially embedded. 전기화학 반응을 실시하기 위한 촉매와 납 또는 납합금의 기본체를 포함하는 전극에 있어서, 기본체의 하층에 있는 납 또는 납합금의 전기화학적으로 불활성으로 유지되므로써 상기 촉매 입자에 대한 안정한 불활성 전류 전도성 지지체로서 작용하게 되는 전위에서 전기화학 반응이 상기 촉매입자에서 바람직하게 실시될 수 있도록, 원하는 반응을 위한 촉매에 의해 활성화된 불활성 및 내화성 산화물로 구성된 촉매 입자가 상기 기본체의 표면에 부분적으로 매립되거나 균일하게 분산되어 기본체에 견고하게 고정되고 전기적으로 연결되는 것을 특징으로하는 전극.In an electrode comprising a catalyst for conducting an electrochemical reaction and a base of lead or lead alloy, a stable inert current conductivity for the catalyst particles by being kept electrochemically inert of the lead or lead alloy in the lower layer of the base Catalyst particles composed of inert and refractory oxides activated by a catalyst for the desired reaction may be partially embedded in the surface of the base such that electrochemical reactions can be preferably carried out on the catalyst particles at a potential to act as a support. Electrode characterized in that it is uniformly dispersed, firmly fixed to the base and electrically connected. 제17항에 있어서, 상기 불활성 및 내화성 산화물 입자가 귀금속을 함유한 촉매에 의해 활성화되는 것을 특징으로하는 전극.18. The electrode of claim 17, wherein the inert and refractory oxide particles are activated by a catalyst containing a noble metal. 제 17항 또는 18항에 있어서, 상기 내화성 산화물이 루틸 형태의 티탄 산화물인 것을 특징으로 하는 전극.19. The electrode according to claim 17 or 18, wherein the refractory oxide is titanium oxide in rutile form. 제17항에 있어서 산(酸)전해액중에서 산소를 발생시키기 위한 양극을 특징으로 하는 전극.An electrode according to claim 17, characterized by an anode for generating oxygen in the acid electrolyte. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019830000644A 1982-02-18 1983-02-17 Electrode with lead base and method of making same KR890001132B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP82810077 1982-02-18
EP82810077.6 1982-02-18

Publications (2)

Publication Number Publication Date
KR840003596A true KR840003596A (en) 1984-09-15
KR890001132B1 KR890001132B1 (en) 1989-04-24

Family

ID=8190049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019830000644A KR890001132B1 (en) 1982-02-18 1983-02-17 Electrode with lead base and method of making same

Country Status (10)

Country Link
EP (1) EP0087186B1 (en)
JP (1) JPS58161787A (en)
KR (1) KR890001132B1 (en)
AU (1) AU1145883A (en)
CA (1) CA1208601A (en)
DE (1) DE3368696D1 (en)
ES (1) ES519885A0 (en)
FI (1) FI830537L (en)
NO (1) NO830562L (en)
PL (1) PL240656A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423605A1 (en) * 1984-06-27 1986-01-09 W.C. Heraeus Gmbh, 6450 Hanau COMPOSITE ELECTRODE, METHOD FOR THEIR PRODUCTION AND THEIR USE
US6852667B2 (en) 1998-02-16 2005-02-08 Sumitomo Chemical Company Limited Process for producing chlorine
FI118159B (en) 2005-10-21 2007-07-31 Outotec Oyj Method for forming an electrocatalytic surface of an electrode and electrode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933616A (en) * 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
US3840443A (en) * 1967-02-10 1974-10-08 Chemnor Corp Method of making an electrode having a coating comprising a platinum metal oxide
US4003817A (en) * 1967-12-14 1977-01-18 Diamond Shamrock Technologies, S.A. Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating
DE2035212C2 (en) * 1970-07-16 1987-11-12 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Metal anode for electrolytic processes
DE2652152A1 (en) * 1975-11-18 1977-09-15 Diamond Shamrock Techn Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity
DD137365A5 (en) * 1976-03-31 1979-08-29 Diamond Shamrock Techn ELECTRODE
US4256810A (en) * 1978-12-04 1981-03-17 Gould Inc. High conductivity titanium electrode
CA1225066A (en) * 1980-08-18 1987-08-04 Jean M. Hinden Electrode with surface film of oxide of valve metal incorporating platinum group metal or oxide
GB2085031B (en) * 1980-08-18 1983-11-16 Diamond Shamrock Techn Modified lead electrode for electrowinning metals

Also Published As

Publication number Publication date
ES8403532A1 (en) 1984-03-16
EP0087186A1 (en) 1983-08-31
EP0087186B1 (en) 1986-12-30
FI830537L (en) 1983-08-19
AU1145883A (en) 1983-08-25
NO830562L (en) 1983-08-19
CA1208601A (en) 1986-07-29
DE3368696D1 (en) 1987-02-05
ES519885A0 (en) 1984-03-16
JPS6227160B2 (en) 1987-06-12
KR890001132B1 (en) 1989-04-24
JPS58161787A (en) 1983-09-26
FI830537A0 (en) 1983-02-17
PL240656A1 (en) 1984-03-26

Similar Documents

Publication Publication Date Title
El-Deab et al. Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes
Takasu et al. Size effects of platinum particles on the electro-oxidation of methanol in an aqueous solution of HClO4
Lu et al. An investigation of electrode materials for the anodic oxidation of sulfur dioxide in concentrated sulfuric acid
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
Prakash et al. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution
ES8302122A1 (en) Improved anode with lead base and method of making same.
Chang et al. Kinetics of oxygen reduction at RuO2-coated titanium electrode in alkaline solution
KR850007105A (en) Electrolytic electrode and manufacturing process
Kozawa et al. Electrode materials and catalysts for oxygen reduction in isotonic saline solution
JP2017125242A (en) Electrode for reductive reaction and reaction device prepared therewith
JPH01227361A (en) Manufacture of anode for fuel cell
Burke et al. Enhanced oxygen evolution at an activated rhodium anode in base
Hoare Oxygen overvoltage on bright palladium in acid solutions
DE3068755D1 (en) Oxygen depolarized cathode and its use in electrolysis
KR840003596A (en) Oxygen generating anode and its manufacturing method
Pavese et al. Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd (II) ions
KR940013301A (en) Method of manufacturing metal foil by electrolysis
US4543174A (en) Method of making a catalytic lead-based oxygen evolving anode
JPS60434B2 (en) Hydrogen generation method
Anastasijević et al. Oxygen reduction on a modified ruthenium electrode
FR2356286A1 (en) Electrochemical compsn. esp. for fuel cell cathodes - consists of a mixed oxide of manganese and copper, nickel and/or silver
KR860700273A (en) Complex Catalytic Substance for Electrolytic Electrode and Method of Manufacturing the Same
JPH0766812B2 (en) Gas diffusion electrode for fuel cells
Shao et al. Cyclic voltammetric study of glucose oxidation on an oxide-covered platinum electrode in the presence of an underpotential-deposited thallium layer
SE8801326D0 (en) BRENSLECELLANOD

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee