JPH0766812B2 - Gas diffusion electrode for fuel cells - Google Patents

Gas diffusion electrode for fuel cells

Info

Publication number
JPH0766812B2
JPH0766812B2 JP60162614A JP16261485A JPH0766812B2 JP H0766812 B2 JPH0766812 B2 JP H0766812B2 JP 60162614 A JP60162614 A JP 60162614A JP 16261485 A JP16261485 A JP 16261485A JP H0766812 B2 JPH0766812 B2 JP H0766812B2
Authority
JP
Japan
Prior art keywords
electrode
gas diffusion
catalyst
fuel cell
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60162614A
Other languages
Japanese (ja)
Other versions
JPS6224565A (en
Inventor
哲 本尾
政廣 渡辺
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60162614A priority Critical patent/JPH0766812B2/en
Publication of JPS6224565A publication Critical patent/JPS6224565A/en
Publication of JPH0766812B2 publication Critical patent/JPH0766812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素−酸素燃料電池用正極、負極、工業電解
用電極、空気−亜鉛電池の電極、ガルバニック方式ガス
センサの構成電極、電気分解用ガス発生極等のガス拡散
電極に関するもので、特にそのガス拡散電極の触媒層の
構造の改良に係る。
The present invention relates to a hydrogen-oxygen fuel cell positive electrode, a negative electrode, an industrial electrolysis electrode, an air-zinc battery electrode, a galvanic gas sensor component electrode, and electrolysis. The present invention relates to a gas diffusion electrode such as a gas generation electrode, and particularly to improvement of the structure of a catalyst layer of the gas diffusion electrode.

(従来技術とその問題点) 燃料電池等は、各電極において燃料等と酸化剤等との反
応を促進するために触媒を必要とする。しかし、反応ガ
スの電気化学的反応は、電極における電解質と反応ガス
とが接触する点、すなわち三相界面を形成する領域にお
ける触媒金属の存在のもとに起る。したがって、それ以
外の部分に存在する触媒金属は有効に利用されずに浪費
されることになる。燃料電池等において一般的に用いら
れている触媒金属は高価な貴金属で、とくに白金や白金
−ロジウム、白金−酸化ルテニウム、白金−スズ等の白
金族金属であり、したがって、できる限りその浪費を少
なくし、且つ良好な電極性能を得ることが望ましい。電
極性能を向上させるためには、電解質と反応ガスの界面
領域を大きくすることが必要となる。この界面を大きく
するには、反応ガスだけが通過でき、電解液を滲み込ま
せない撥水性のガス拡散層と電解液が存在できる親水性
の触媒層を分離することにより大きな界面が得られるこ
とが従来から知られている。このような性質のガス拡散
層としては、たとえば、ポリエチレン、ポリプロピレ
ン、ポリテトラフルオルエチレン、合成ゴムなどをもち
いることができる。またこのような性質を有する触媒層
としては、触媒を担持させた導電性粒子を撥水性樹脂で
あるポリテトラフルオルエチレンで一様に結合したもの
が一般的であるが、この撥水性樹脂を上記ガス拡散層材
料におきかえることもできる。またこの導電性粒子とし
ては、たとえば、カーボンブラック(一般的には高温で
水素ガス処理をしたものが用いられるが、高温で一酸化
炭素またはフッ素含有ガスで処理したものでもよ
い。)、グラフアイト、人造石墨、活性炭、炭素繊維を
単独であるいは複数で用いることができる。
(Prior Art and Problems Thereof) Fuel cells and the like require a catalyst to promote the reaction between the fuel and the like and the oxidant and the like at each electrode. However, the electrochemical reaction of the reaction gas occurs in the presence of the catalytic metal at the contact point between the electrolyte and the reaction gas at the electrode, that is, in the region forming the three-phase interface. Therefore, the catalyst metal existing in the other part is not effectively used and is wasted. Catalytic metals generally used in fuel cells and the like are expensive precious metals, especially platinum and platinum group metals such as platinum-rhodium, platinum-ruthenium oxide, platinum-tin, etc., and therefore their waste is reduced as much as possible. It is desirable to obtain good electrode performance. In order to improve the electrode performance, it is necessary to increase the interface area between the electrolyte and the reaction gas. To make this interface large, a large interface can be obtained by separating the water-repellent gas diffusion layer that allows only the reaction gas to pass through and does not allow the electrolyte solution to permeate, and the hydrophilic catalyst layer where the electrolyte solution can exist. Is conventionally known. As the gas diffusion layer having such a property, for example, polyethylene, polypropylene, polytetrafluoroethylene, synthetic rubber or the like can be used. In addition, as the catalyst layer having such a property, it is general that conductive particles carrying a catalyst are uniformly bound with polytetrafluoroethylene which is a water-repellent resin. The above gas diffusion layer material can be replaced. As the conductive particles, for example, carbon black (generally treated with hydrogen gas at high temperature is used, but may be treated with carbon monoxide or fluorine-containing gas at high temperature), graphite. The artificial graphite, activated carbon, and carbon fiber can be used alone or in combination.

なお、アルミナ、シリカ等の無機酸化物の表面を炭化さ
せたものでも良い。
The surface of an inorganic oxide such as alumina or silica may be carbonized.

斯かる構造の撥水性ガス拡散電極は、触媒層内で、ミク
ロな撥水性部分がガス供給通路となり、親水性部分には
電解液が滲み込み電極反応が起る部分となる。ところ
で、この構造で、電極特性をより一層向上させる為に
は、かなりの撥水性部分が必要である。しかし、触媒が
一様に電極内に分布している為、前記三相界面領域の親
水性部分に存在する触媒は通常20〜30%で、最も多くて
75%であり、従って反応にあずからない無駄に使用され
る触媒が多かった。このような触媒の浪費を改善する方
法として、特開昭51−86734号公報には、電導性の粒子
からなり疎水的に結合された基質により支持された電極
のポストカタリゼーション(電極構造体が形成された
後、電極構造体内に触媒を担持される技術)により良好
な電極が得られることが開示されている。しかしながら
この方法も、三相界面領域以外の部分に存在する触媒は
有効に利用されず、その浪費は避けられない。
In the water-repellent gas diffusion electrode having such a structure, in the catalyst layer, the micro water-repellent portion serves as a gas supply passage, and the hydrophilic portion serves as a portion where the electrolytic solution permeates and an electrode reaction occurs. By the way, in this structure, in order to further improve the electrode characteristics, a considerable water-repellent portion is required. However, since the catalyst is uniformly distributed in the electrode, the catalyst existing in the hydrophilic part of the three-phase interface region is usually 20 to 30%, and the most is present.
It was 75%, and therefore many catalysts were wasted and were not used in the reaction. As a method for improving the waste of such a catalyst, Japanese Patent Laid-Open No. 51-86734 discloses post-catalysis of an electrode supported by a substrate which is composed of electrically conductive particles and is hydrophobically bound (electrode structure is It is disclosed that a good electrode can be obtained by a technique of supporting a catalyst in the electrode structure after the formation. However, also in this method, the catalyst existing in the portion other than the three-phase interface region is not effectively used, and its waste is unavoidable.

(発明の目的) 本発明は斯かる問題を解決すべくなされたものであり、
親水性部分に電解液が完全に入り、100%の触媒が電解
液のぬれ反応にあずかり、他方撥水性部分をガスが通
り、触媒に十分ガスを供給できる燃料電池等のガス拡散
電極を提供することを目的とするものである。
(Object of the Invention) The present invention has been made to solve the above problems,
Provide a gas diffusion electrode for fuel cells, etc., in which the electrolyte completely enters the hydrophilic part, 100% of the catalyst participates in the wetting reaction of the electrolyte, while gas passes through the water-repellent part and sufficient gas can be supplied to the catalyst. That is the purpose.

(発明の構成) 上記目的を達成する為の本発明による燃料電池等のガス
拡散電極は、触媒層とガス拡散層とからなる燃料電池等
のガス拡散電極において、前記触媒層は導電性粒子と撥
水性樹脂とが多孔質状に結合したスケルトン、およびそ
のスケルトンの空間に凝集した導電性粒子群からなり、
その導電性粒子群には、触媒金属が担持されていること
を特徴とする。
(Structure of the Invention) A gas diffusion electrode such as a fuel cell according to the present invention for achieving the above object is a gas diffusion electrode such as a fuel cell comprising a catalyst layer and a gas diffusion layer, wherein the catalyst layer is a conductive particle. It consists of a skeleton in which a water-repellent resin and porous are bound, and a group of conductive particles aggregated in the space of the skeleton,
A feature of the conductive particle group is that a catalytic metal is supported.

先ず、従来の燃料電池等のガス拡散電極の構成を図面に
よって説明してその欠点を指摘し、次いで本発明の燃料
電池等のガス拡散電極の構成及びその作用効果を説明す
る。
First, the structure of a conventional gas diffusion electrode for a fuel cell or the like will be described with reference to the drawings, and its drawbacks will be pointed out. Then, the structure of the gas diffusion electrode for a fuel cell or the like of the present invention and its function and effect will be described.

第2図は従来の燃料電池等のガス拡散電極の触媒層の断
面図で、触媒金属1が担持された導電性粒子2と撥水性
樹脂3が一様に混合され、スケルトンになっているもの
である。この触媒層では電解液の滲み込み部分4にある
触媒金属1しか寄与せず、撥水性樹脂3によりできたガ
ス供給通路中の触媒金属1は無駄に浪費されることとな
っている。
FIG. 2 is a cross-sectional view of a catalyst layer of a gas diffusion electrode of a conventional fuel cell or the like, in which conductive particles 2 carrying a catalyst metal 1 and a water-repellent resin 3 are uniformly mixed to form a skeleton. Is. In this catalyst layer, only the catalyst metal 1 present in the electrolyte permeation portion 4 contributes, and the catalyst metal 1 in the gas supply passage made of the water-repellent resin 3 is wasted.

第1図は本発明の燃料電池等のガス拡散電極の触媒層の
断面模式図で、付号は従来例と同様である。
FIG. 1 is a schematic cross-sectional view of a catalyst layer of a gas diffusion electrode of a fuel cell or the like of the present invention, and the symbols are the same as those of the conventional example.

本発明においては、導電性粒子2が0.01〜0.06μと撥水
性樹脂3の短径0.2μ前後に比し一けた小さいため、導
電性粒子2が凝集して導電性粒子群を形成する。この導
電性粒子群5は電解液に対して親水性であるため、この
群に電解液が滲透する。他方、撥水性樹脂3と結合して
多孔質状スケルトンを形成している導電性粒子2は、対
面する導電性粒子群5の導電性粒子2と組になってガス
供給通路を形成する。これは、従来と同様である。しか
しこのガス供給通路が導電性粒子群5のすぐ近傍に存在
するので、導電性粒子群5の触媒反応に供されるガスが
十分供給できる。電解液が触媒層全体に滲み込むために
は、導電性粒子群5がスケルトン状に連なっていること
が好ましい。また、本発明のガス拡散電極において、撥
水性樹脂の微粉体と、触媒自身又は親水性微粉体に触媒
を担持させた微粉体との混合比を8:2〜2:8の重量混合比
にした理由は、双方の重量混合比が夫々相手方と8:2以
上に開くと、親水性部分に電解液が完全に入らなくな
り、他方撥水性部分をガスが通りにくくなって触媒に十
分ガスを供給できなくなるからである。
In the present invention, the conductive particles 2 are 0.01 to 0.06 μm, which is smaller than the short diameter of the water-repellent resin 3 of about 0.2 μm, so that the conductive particles 2 aggregate to form a conductive particle group. Since this conductive particle group 5 is hydrophilic to the electrolytic solution, the electrolytic solution permeates into this group. On the other hand, the conductive particles 2 that are combined with the water-repellent resin 3 to form a porous skeleton form a gas supply passage together with the conductive particles 2 of the conductive particle group 5 facing each other. This is the same as the conventional one. However, since this gas supply passage exists in the immediate vicinity of the conductive particle group 5, the gas used for the catalytic reaction of the conductive particle group 5 can be sufficiently supplied. In order for the electrolytic solution to permeate the entire catalyst layer, it is preferable that the conductive particle groups 5 are connected in a skeleton shape. Further, in the gas diffusion electrode of the present invention, the mixing ratio of the fine powder of the water-repellent resin and the fine powder of the catalyst itself or the hydrophilic fine powder supporting the catalyst is set to a weight mixing ratio of 8: 2 to 2: 8. The reason for this is that if the weight mixing ratio of both is increased to 8: 2 or more, the electrolytic solution will not completely enter into the hydrophilic part, while it will be difficult for gas to pass through the water repellent part and sufficient gas will be supplied to the catalyst. Because it will not be possible.

(実施例) 本発明による撥水性ガス拡散電極の一実施例を、硫酸を
電解液とするH2/O2燃料電池用電極の場合について説明
する。
An example of a water-repellent gas diffusion electrode according to (Example) The present invention will be described for the case of H 2 / O 2 fuel cell electrode that sulfuric acid and the electrolyte.

導電性材料であるカーボンブラックの微粉体と撥水性バ
インダーであるポリテトラフルオルエチレンの微粒子と
を重量比で4:6の割合で混合し、加圧成形した導電性・
撥水性多孔質膜より成るガス拡散層上に、0.56mg/cm2
白金触媒を担持したカーボンブラック微粉末の導電性粒
子とポリテトラフルオルエチレンの撥水性処理したカー
ボンブラック微粉末が分散した撥水性樹脂とが重量比で
7:3の混合微粉末をホットプレスした触媒層を設けた。
なお、この触媒層には、副原料として、ワックス黒鉛フ
ッ化カーボン粉末等の撥水性増強用粉末、フッ素ゴム等
の補強用物質粉末、着色用顔料等を適宜含ませることも
できる。また、触媒層調整時には、粉末のままミキサー
で混合するか、または石油、イソプロピルアルコール、
ソルベントナフサ、ホワイトオイル等の液状炭化水素の
液体潤滑剤を約20〜200重量%混合して調整する。このH
2/O2燃料電池用電極において、60℃、3モル/l硫酸水
溶液中で酸素還元特性、水素酸化特性を測定した。その
結果、同一溶液中にある水素参照電極に対して酸素極特
性は0.8Vで0.2A/cm2、0.7Vで3A/cm2、また限界電流で5A
/cm2以上の酸素極特性が得られた。これは従来の撥水化
した導電性粒子を含まない第2図の構造のH2/O2燃料電
池用電極の2倍以上の酸素極特性である。
Fine powder of carbon black, which is a conductive material, and fine particles of polytetrafluoroethylene, which is a water repellent binder, are mixed in a weight ratio of 4: 6, and pressure-molded conductive.
On the gas diffusion layer consisting of a water repellent porous film, conductive particles of carbon black fine powder carrying 0.56 mg / cm 2 platinum catalyst and water repellent carbon black fine powder of polytetrafluoroethylene were dispersed. Weight ratio of water repellent resin
A catalyst layer was provided by hot pressing 7: 3 mixed fine powder.
It should be noted that the catalyst layer may appropriately contain, as auxiliary materials, powder for enhancing water repellency such as wax graphite carbon fluoride powder, powder for reinforcing substance such as fluororubber, coloring pigment and the like. In addition, when adjusting the catalyst layer, powder is mixed with a mixer, or petroleum, isopropyl alcohol,
It is prepared by mixing about 20 to 200% by weight of a liquid hydrocarbon liquid lubricant such as solvent naphtha and white oil. This H
Oxygen reduction characteristics and hydrogen oxidation characteristics were measured in a 3 mol / l sulfuric acid aqueous solution at 60 ° C. for a 2 / O 2 fuel cell electrode. As a result, the oxygen electrode characteristics of the hydrogen reference electrode in the same solution were 0.2 A / cm 2 at 0.8 V, 3 A / cm 2 at 0.7 V, and 5 A at the limiting current.
An oxygen electrode characteristic of not less than / cm 2 was obtained. This is more than double the oxygen electrode characteristics of the conventional H 2 / O 2 fuel cell electrode having the structure of FIG. 2 that does not contain water-repellent conductive particles.

また水素極特性は、25mVに於いて2.3A/cm2が得られ、従
来の電極の1.3倍の水素極特性が得られた。
The hydrogen electrode characteristics were 2.3 A / cm 2 at 25 mV, which was 1.3 times that of the conventional electrode.

次に本発明によるガス拡散電極の他の実施例をリン酸を
電解液とするH2/O2燃料電池用電極の場合について説明
する。
Next, another embodiment of the gas diffusion electrode according to the present invention will be described in the case of an H 2 / O 2 fuel cell electrode using phosphoric acid as an electrolytic solution.

前記実施例と同一の導電性・撥水性多孔質膜より成るガ
ス拡散層上に、0.28mg/cm2の白金触媒を担持したカーボ
ンブラック微粉末の導電性粒子とポリテトラフルオロエ
チレンの撥水性処理したカーボンブラック微粉末が分散
した撥水性樹脂とを重量比で7:3の混合粉末をホットプ
レスした触媒層を設けたH2/O2燃料電池用電極を、190
℃、100%リン酸中で酸素還元特性、水素酸化特性を測
定した。その結果、同一溶液中にある水素参照電極に対
して酸素極特性は、0.8Vで0.6A/cm2、0.7Vで3.4A/cm2
あった。これは従来のH2/O2燃料電池用電極の3倍以上
の酸素極特性である。また水素極特性は、25mVで2.5A/c
m2が得られ、これは従来の電極の1.3倍の極特性であ
る。
Water repellent treatment of conductive particles of carbon black fine powder carrying 0.28 mg / cm 2 of platinum catalyst and polytetrafluoroethylene on a gas diffusion layer composed of the same conductive / water repellent porous film as in the above-mentioned example. An electrode for a H 2 / O 2 fuel cell provided with a catalyst layer was prepared by hot-pressing a mixed powder in a weight ratio of 7: 3 with a water-repellent resin in which fine carbon black powder was dispersed.
Oxygen reduction characteristics and hydrogen oxidation characteristics were measured in 100% phosphoric acid at ℃. As a result, the oxygen electrode characteristics of the hydrogen reference electrode in the same solution were 0.6 A / cm 2 at 0.8 V and 3.4 A / cm 2 at 0.7 V. This is an oxygen electrode characteristic three times or more that of the conventional H 2 / O 2 fuel cell electrode. The hydrogen electrode characteristics are 2.5 A / c at 25 mV.
m 2 is obtained, which is 1.3 times more polar than the conventional electrode.

上記各実施例の電極の電解液にぬれている触媒クラスタ
ーの表面積は、通常用いられている電気化学的手法(ボ
ルタングラム)で求められている。即ち、撥水性が極め
て少なく、全ての触媒クラスターが完全にぬれてしまう
電極で求められたクラスター表面積をS°Pt、実施例の
電極のクラスター表面積をSPtとすると、U=SPt/S°
Ptで触媒利用率が求められ、実施例の電極における酸素
極特性に於いて、触媒利用率が100%であった。
The surface area of the catalyst cluster that is wet with the electrolytic solution of the electrode in each of the above-mentioned examples is determined by a commonly used electrochemical method (voltangram). That is, if the cluster surface area obtained by the electrode where the water repellency is extremely small and all the catalyst clusters are completely wet is S ° Pt , and the cluster surface area of the electrode of the embodiment is S Pt , then U = S Pt / S °
The catalyst utilization factor was determined by Pt , and the catalyst utilization factor was 100% in the oxygen electrode characteristics of the electrodes of the examples.

また上記実施例の電極のガス供給能の程度は次のように
確認された。即ち、ガス供給が十分で、それによる分極
が無ければ、ターフェルプロットでその勾配が理論的に
80〜90mVになる。実験により実施例の電極では、1.5A/c
m2の電流密度までそのターフェル勾配が約90mVであるこ
とが確かめられた。このことから、ガス供給に基づく分
極が1A/cm2上の電流密度まで無い電極であって、ガス供
給が十分に行われる電極であることが確認された。
The degree of gas supply capability of the electrodes of the above examples was confirmed as follows. That is, if the gas supply is sufficient and the resulting polarization is not
80 to 90 mV. Experimentally, with the electrode of the example, 1.5 A / c
It was confirmed that the Tafel slope was about 90 mV up to the current density of m 2 . From this, it was confirmed that the electrode that does not have the polarization due to the gas supply up to the current density above 1 A / cm 2 and that the gas is sufficiently supplied.

なお、上記実施例では、触媒として白金触媒が用いられ
ているが、他の金属触媒、とくに貴金属触媒または酸化
物触媒等であっても良い。また電解液は硫酸、リン酸に
かぎるものではなく、他のものでも良い。さらに上記実
施例は燃料電池用電極の場合であるが本発明のガス拡散
電極は工業電解用電極、空気−亜鉛電池の電極、ガルバ
ニック方式ガスセンサの構成電極、電気分解用ガス発生
極としても用いることができるものである。
Although the platinum catalyst is used as the catalyst in the above embodiment, other metal catalysts, particularly noble metal catalysts or oxide catalysts, may be used. Further, the electrolytic solution is not limited to sulfuric acid and phosphoric acid, and may be other solution. Further, although the above-mentioned embodiment is the case of an electrode for a fuel cell, the gas diffusion electrode of the present invention can be used as an electrode for industrial electrolysis, an electrode for an air-zinc battery, a component electrode for a galvanic gas sensor, and a gas generating electrode for electrolysis. Is something that can be done.

(発明の効果) 以上の説明で判るように本発明による燃料電池等のガス
拡散電極は、親水性部分に電解液が完全に入り、100%
の触媒が電解液のぬれ反応に与り、他方撥水性部分をガ
スが通り、触媒に十分ガスが供給されるので、触媒が無
駄に使用されることが無く、電極特性が著しく向上す
る。
(Effects of the Invention) As can be seen from the above description, in the gas diffusion electrode of the fuel cell according to the present invention, the electrolytic solution completely enters the hydrophilic portion,
Since the catalyst of (1) participates in the wetting reaction of the electrolytic solution and the gas passes through the water-repellent portion and the gas is sufficiently supplied to the catalyst, the catalyst is not wastefully used and the electrode characteristics are remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料電池等のガス拡散電極の触媒層の
断面模式図、第2図は従来のガス拡散電極の触媒層の断
面模式図である。
FIG. 1 is a schematic sectional view of a catalyst layer of a gas diffusion electrode of a fuel cell of the present invention, and FIG. 2 is a schematic sectional view of a catalyst layer of a conventional gas diffusion electrode.

フロントページの続き (72)発明者 古屋 長一 山梨県甲府市大手2丁目4番3―31号 審査官 岡田 萬里Continuation of the front page (72) Inventor Choichi Furuya 2-3-4, Ote 2-3-4, Kofu-shi, Yamanashi Examiner Manri Okada

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒層とガス拡散層の二層からなる燃料電
池等のガス拡散電極に於いて、前記触媒層は導電性粒子
2と撥水性樹脂3とが多孔質状に結合したスケルトン
と、そのスケルトンの空間に凝集した導電性粒子群から
なり、その導電性粒子群5には触媒金属1が担持されて
いることを特徴とする燃料電池等のガス拡散電極。
1. A gas diffusion electrode for a fuel cell or the like comprising two layers of a catalyst layer and a gas diffusion layer, wherein the catalyst layer is a skeleton in which conductive particles 2 and a water-repellent resin 3 are porously bonded. A gas diffusion electrode for a fuel cell or the like, which is composed of conductive particle groups aggregated in the skeleton space, and the conductive metal group 5 carries a catalyst metal 1.
【請求項2】導電性粒子群と撥水性樹脂との重量混合比
が8:2〜2:8であることを特徴とする特許請求の範囲第
(1)項記載の燃料電池等のガス拡散電極。
2. The gas diffusion of the fuel cell or the like according to claim (1), wherein the weight mixing ratio of the conductive particle group and the water-repellent resin is 8: 2 to 2: 8. electrode.
【請求項3】導電性粒子がカーボンブラックであること
を特徴とする特許請求の範囲第(1)項または第(2)
項記載の燃料電池等のガス拡散電極。
3. The conductive particles are carbon black, and claim (1) or (2).
A gas diffusion electrode for a fuel cell or the like according to the item.
JP60162614A 1985-07-24 1985-07-24 Gas diffusion electrode for fuel cells Expired - Lifetime JPH0766812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162614A JPH0766812B2 (en) 1985-07-24 1985-07-24 Gas diffusion electrode for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162614A JPH0766812B2 (en) 1985-07-24 1985-07-24 Gas diffusion electrode for fuel cells

Publications (2)

Publication Number Publication Date
JPS6224565A JPS6224565A (en) 1987-02-02
JPH0766812B2 true JPH0766812B2 (en) 1995-07-19

Family

ID=15757944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162614A Expired - Lifetime JPH0766812B2 (en) 1985-07-24 1985-07-24 Gas diffusion electrode for fuel cells

Country Status (1)

Country Link
JP (1) JPH0766812B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3786943T2 (en) * 1986-03-07 1994-03-17 Nagakazu Furuya Gas permeable electrode.
JP3251580B2 (en) * 1990-11-30 2002-01-28 尚正 砂野 Electrode sheet
JPH05234599A (en) * 1992-02-21 1993-09-10 Tanaka Kikinzoku Kogyo Kk Gas-diffusion electrode for fuel cell and its manufacture
KR100504965B1 (en) * 2001-04-27 2005-07-29 마쯔시다덴기산교 가부시키가이샤 Electrode for fuel cell and method of manufacturing the electrode
JP5000121B2 (en) * 2005-10-31 2012-08-15 ペルメレック電極株式会社 Oxygen reducing gas diffusion cathode and salt electrolysis method
KR20090121374A (en) * 2007-03-09 2009-11-25 스미또모 가가꾸 가부시키가이샤 Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
JP2008258152A (en) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this
US9714472B2 (en) * 2011-09-23 2017-07-25 Covestro Deutschland Ag Gas diffusion electrodes and process for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930838A (en) * 1972-05-22 1974-03-19
JPS5186733A (en) * 1974-12-18 1976-07-29 United Technologies Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930838A (en) * 1972-05-22 1974-03-19
JPS5186733A (en) * 1974-12-18 1976-07-29 United Technologies Corp

Also Published As

Publication number Publication date
JPS6224565A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
US5501915A (en) Porous electrode for electrode assemblies in a fuel cell
JP5134744B2 (en) POLYMER ELECTROLYTE-MEMBRANE-ELECTRODE UNIT FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME AND INK FOR MANUFACTURING THE SAME
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JPS6120114B2 (en)
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
CA2139167A1 (en) Electrode Used in Electrochemical Reaction and Fuel Cell Using the Same
JPH09245801A (en) Electrode for polymer solid electrolyte fuel cell and manufacture thereof
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
JPH0766812B2 (en) Gas diffusion electrode for fuel cells
JP2003502827A (en) Gas diffusion substrates and electrodes
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JP3035079B2 (en) Solid polymer electrolyte fuel cell
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
EP0557259B1 (en) Gas diffusion electrode for electrochemical cell and process of preparing same
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
RU2392698C1 (en) Method of manufacturing of membrane-electrode unit with bifunctional electrocatalytic layers
JP2616061B2 (en) Phosphoric acid fuel cell
JPH0666142B2 (en) BFE type electrodes for fuel cells
RU2074459C1 (en) Electrochemical cell gas-diffusion electrode
JPH0456429B2 (en)
JPH061700B2 (en) Composite electrode for fuel cell
JPH06295730A (en) Element using solid electrolyte
JPH0896813A (en) Electrode for high-molecular solid electrolytic type electrochemistry cell
Musilová et al. Influence of the electrolyte content of oxygen carbon gas-diffusion electrodes on their electro-chemical performance in acid solutions