KR20240066080A - 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법 - Google Patents

아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법 Download PDF

Info

Publication number
KR20240066080A
KR20240066080A KR1020230141510A KR20230141510A KR20240066080A KR 20240066080 A KR20240066080 A KR 20240066080A KR 1020230141510 A KR1020230141510 A KR 1020230141510A KR 20230141510 A KR20230141510 A KR 20230141510A KR 20240066080 A KR20240066080 A KR 20240066080A
Authority
KR
South Korea
Prior art keywords
formula
group
alkyl
independently
substituted
Prior art date
Application number
KR1020230141510A
Other languages
English (en)
Inventor
박종민
성시화
경규진
유승주
윤유정
이소진
한지혜
김봉오
남정표
Original Assignee
주식회사 삼양홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양홀딩스 filed Critical 주식회사 삼양홀딩스
Publication of KR20240066080A publication Critical patent/KR20240066080A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0033Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/125Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/13Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법에 관한 것으로, 보다 구체적으로는, 음이온성 약물과 복합체를 형성하여, 아마이드 및 에스터 작용기를 갖는 특정 구조로 인해 약물 전달에 유용한 이온화 지질 및 이를 제조하는 방법에 관한 것이다.

Description

아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법{Cationic lipid having amide and ester functional groups and method for preparing the same}
본 발명은 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법에 관한 것으로, 보다 구체적으로는, 음이온성 약물과 복합체를 형성하여, 아마이드 및 에스터 작용기를 갖는 특정 구조로 인해 약물 전달에 유용한 이온화 지질 및 이를 제조하는 방법에 관한 것이다.
핵산을 비롯한 음이온성 약물을 이용한 치료에 있어서, 안전하고 효율적인 약물 전달기술은 오랫동안 연구되어 왔으며, 다양한 전달체 및 전달기술이 개발되어 왔다. 전달체는 크게 아데노바이러스나 레트로바이러스 등을 이용한 바이러스성 전달체와 양이온성 지질 및 양이온성 고분자 등을 이용한 비바이러스성 전달체로 나뉜다. 바이러스성 전달체의 경우 비특이적 면역 반응 등의 위험성에 노출되어 있으며 생산 공정이 복잡하여 상용화하는 데 많은 문제점이 있는 것으로 알려져 있다. 따라서, 최근 연구 방향은 비바이러스성 전달체를 이용하여 그 단점을 개선하는 방향으로 진행되고 있다. 비바이러스성 전달체는, 바이러스성 전달체에 비하여 생체 내 안전성의 측면에서 부작용이 적고, 경제성 측면에서 생산 가격이 저렴하다는 장점을 가지고 있다.
핵산 물질의 전달에 이용되는 비바이러스성 전달체로서 대표적인 것은 양이온성 지질을 이용한 양이온성 지질과 핵산의 복합체(lipoplex) 및 폴리양이온성(polycation) 고분자와 핵산의 복합체(polyplex)이다. 이러한 양이온성 지질 혹은 폴리양이온성 고분자는, 음이온성 약물과 정전기적 상호 작용을 통해 복합체를 형성함으로써 음이온성 약물을 안정화시키고, 세포 내 전달을 증가시킨다는 점에서 많은 연구가 진행되어 왔다(De Paula D, Bentley MV, Mahato RI, Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting, RNA 13 (2007) 431-56; Gary DJ, Puri N, Won YY, Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery, J Control release 121 (2007) 64-73).
그러나 폴리양이온성(polycation) 고분자는 다가 양이온 전하에 기인한 세포독성이 있어 실제 사용하기에는 문제점이 있고, 핵산-양이온성 지질 복합체는 혈중에서의 안정성이 낮아 실제 생체 내에서의 사용이 어렵다. 또한, 양이온성 지질, 중성 지질 및 용해성 지질(fusogenic lipid)을 포함하는 이온성 리포좀은 사용되는 양이온성 지질의 합성 방법이 복잡하고, 세포 독성이 있으며, 세포내 핵산 전달 효율이 낮다는 단점이 있다.
본 발명의 목적은 음이온성 약물과 복합체를 용이하게 형성할 수 있어 약물 전달에 유용한 특정 구조의 지질 및 이의 제조방법을 제공하는 것이다.
본 발명의 제1 측면은, 하기에서 선택되는 구조 또는 이의 이온화 형태인 지질을 제공한다:
여기서,
상기 구조들 각각에 있어서, R 기들 중 적어도 2개는 Rx이고, 나머지 R 기는 Ry이며, Rx는 각각 독립적으로 ,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20의 정수이며, R1은 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고, R2는 치환되거나 비치환된 불포화 1가 탄화수소기이며,는 치환되거나 비치환된 메틸렌기를 나타내고,
Ry는 각각 독립적으로 H, 혹은 치환되거나 비치환된 알킬기이고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있으며,
L은 각각 독립적으로 치환되거나 비치환된 알킬렌기이며, 그 구조 내에 임의로 에테르 결합(-O-), 티오에테르 결합(-S-) 또는 디설파이드 결합(-S-S-)을 가질 수 있다.
본 발명의 일 구체예에 따르면, 상기 Ry는 각각 독립적으로 H, 혹은 C1-20 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기 및 임의로 치환된 C3-20 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다.
본 발명의 일 구체예에 따르면, 상기 L은 각각 독립적으로 C1-20 알킬렌기일 수 있고, 이는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기 및 임의로 치환된 C3-20 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있다.
보다 구체적으로, 상기 Rx는 각각 독립적으로 ,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20 또는 2 내지 15의 정수일 수 있고, R1은 치환되거나 비치환된 포화 또는 불포화 2가 C1-12 탄화수소기일 수 있으며, R2는 치환되거나 비치환된 불포화 1가 C2-24 탄화수소기일 수 있고, 는 치환되거나 비치환된 메틸렌기를 나타낸다.
보다 구체적으로, 상기 Ry는 각각 독립적으로 H, 혹은 C1-10 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다.
보다 구체적으로, 상기 L은 각각 독립적으로 C1-10 알킬렌기일 수 있고, 이는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있다.
보다 더 구체적으로, 상기 Rx는 각각 독립적으로,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 3 내지 12의 정수일 수 있고, R1은 치환되거나 비치환된 C1-12 알킬렌기, 치환되거나 비치환된 C2-12 알케닐렌기 또는 치환되거나 비치환된 C2-12 알키닐렌기일 수 있으며, R2는 치환되거나 비치환된 C2-24 알케닐기 또는 치환되거나 비치환된 C2-24 알키닐기일 수 있고, 는 치환되거나 비치환된 메틸렌기를 나타낸다.
보다 더 구체적으로, 상기 Ry는 각각 독립적으로 H, 혹은 C1-6 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH 및 -NH2로부터 선택되는 하나 이상에 의하여 의하여 치환될 수 있으며, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다.
보다 더 구체적으로, 상기 L은 각각 독립적으로 비치환된 C1-6 알킬렌기일 수 있다.
더욱 더 구체적으로, 상기 지질은 하기 화학식 A 내지 V로부터 선택되는 어느 하나의 구조를 갖는 것일 수 있다:
본 발명의 제2 측면은, (1) 화학식 a의 화합물을 화학식 b의 화합물과 반응시켜 화학식 c의 화합물을 얻는 단계; (2) 화학식 c의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e의 화합물을 얻는 단계; 및 (3) 화학식 e의 화합물을 화학식 f의 화합물과 반응시킨 후, 반응 결과물을 탈보호화하는 단계;를 포함하는, 화학식 1-1로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 a]
H2N-(CH2)a-C(=O)OH
[화학식 b]
OH-R'
[화학식 c]
H2N-(CH2)a-C(=O)O-R'
[화학식 d]
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 f]
H2N-(CH2)1-20-NH-C(=O)O-C(CH3)3
[화학식 1-1]
H2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
상기에서,
R'은 각각 독립적으로,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제3 측면은, 본 발명의 제2 측면에서 얻어진 화학식 e의 화합물을 화학식 g의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-2로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 g]
H2N-(CH2)1-20-N(C1-20 알킬)2
[화학식 1-2]
(C1-20 알킬)2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
상기에서,
R'은 각각 독립적으로,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이다.
본 발명의 제4 측면은, 본 발명의 제2 측면에서 얻어진 화학식 e의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-3으로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 h]
(C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
[화학식 1-3]
A-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A
상기에서,
R'은 각각 독립적으로,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
A는 -CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R'이고,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제5 측면은, (1) 화학식 a의 화합물을 화학식 b'의 화합물과 반응시켜 화학식 c'의 화합물을 얻는 단계; (2) 화학식 c'의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e'의 화합물을 얻는 단계; 및 (3) 화학식 e'의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-4로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 a]
H2N-(CH2)a-C(=O)OH
[화학식 b']
OH-R2
[화학식 c']
H2N-R1-C(=O)O-R2
[화학식 d]
[화학식 e']
H2C=CH-C(=O)-HN-R1-C(=O)O-R2
[화학식 h]
(C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
[화학식 1-4]
A'-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A'
상기에서,
A'는 -CH2-CH2-C(=O)-HN-R1-C(=O)O-R2이고,
R1은 독립적으로 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고,
R2는 독립적으로 치환되거나 비치환된 불포화 1가 탄화수소기이며,
a는 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제6 측면은, 본 발명에 따른 지질을 포함하는 약물 전달용 조성물을 제공한다.
본 발명에 따른 특정 구조의 지질은 음이온성 약물과 복합체를 용이하게 형성할 수 있고, 이 복합체를 활용하면 약물을 목표한 생체 조직 내에 효율적으로 전달할 수 있다.
도 1은 실시예 1에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 2는 실시예 2에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 3은 실시예 3에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 4는 실시예 4에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 5는 실시예 5에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 6은 실시예 6에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 7은 실시예 7에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 8은 실시예 8에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 9는 실시예 9에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 10은 실시예 10에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 11은 실시예 11에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 12은 실시예 12에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 13은 실시예 13에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 14는 실시예 14에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 15는 실시예 15에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 16은 실시예 16에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 17은 실시예 17에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 18은 실시예 18에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 19는 실시예 19에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 20은 실시예 20에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 21은 실시예 21에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
도 22는 실시예 22에서 수행된 지질 합성 과정에 대한 반응 개략도이다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명의 제1 측면에 따라 제공되는 지질은 하기에서 선택되는 구조를 갖거나, 이의 이온화 형태이다:
여기서,
상기 구조들 각각에 있어서, R 기들 중 적어도 2개(보다 구체적으로는 2 내지 7개)는 Rx이고, 나머지 R 기는 Ry이며,
Rx는 각각 독립적으로,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20의 정수이며, R1은 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고, R2는 치환되거나 비치환된 불포화 1가 탄화수소기이며, 는 치환되거나 비치환된 메틸렌기를 나타내고,
Ry는 각각 독립적으로 H, 혹은 치환되거나 비치환된 알킬기이고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있으며,
L은 각각 독립적으로 치환되거나 비치환된 알킬렌기이며, 그 구조 내에 임의로 에테르 결합(-O-), 티오에테르 결합(-S-) 또는 디설파이드 결합(-S-S-)을 가질 수 있다.
본 명세서에서, 임의의 기가 “치환 또는 비치환된” 것이라는 표현은, 달리 특정되지 않는 한, 그 기가 치환되지 않거나, -OH, 할로겐 원자, C1-6 알킬기, C1-6 알콕시기, C1-6 할로겐화알킬기, C1-6 할로겐화알콕시기, C3-20 사이클로알킬기, C3-20 헤테로사이클로알킬기, C6-20 아릴기 또는 C3-20 헤테로아릴기 중에서 선택된 하나 이상의 치환기로 치환된 것임을 의미한다.
본 발명의 일 구체예에 따르면, 상기 Rx는 각각 독립적으로 ,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20 또는 2 내지 15의 정수일 수 있고, R1은 치환되거나 비치환된 포화 또는 불포화 2가 C1-12 탄화수소기일 수 있으며, R2는 치환되거나 비치환된 불포화 1가 C2-24 탄화수소기일 수 있고,는 치환되거나 비치환된 메틸렌기를 나타낸다.
본 발명의 일 구체예에 따르면, 상기 a, b 및 c는 각각 독립적으로 2 내지 15의 정수일 수 있고, 보다 구체적으로는 각각 독립적으로 3 내지 12의 정수일 수 있다. 보다 더 구체적으로, 상기 a는 5 내지 7의 정수일 수 있고, 상기 b 및 c는 각각 독립적으로 3 내지 11의 정수일 수 있으나, 이에 한정되지 않는다.
본 발명의 일 구체예에 따르면, 상기 Ry는 각각 독립적으로 H, 혹은 C1-20 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기(예컨대, C3-20 사이클로알킬기 또는 C6-20 아릴기) 및 임의로 치환된 C3-20 헤테로사이클릭 기(예컨대, C3-20 헤테로사이클로알킬기 또는 C3-20 헤테로아릴기)로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다. 또한 여기서 상기 알킬기 또는 알콕시기는 보다 구체적으로는 C1-10 알킬기 또는 알콕시기, 보다 더 구체적으로는 C1-6 알킬기 또는 알콕시기일 수 있으나, 이에 한정되지 않는다.
본 발명의 일 구체예에 따르면, 상기 L은 각각 독립적으로 C1-20 알킬렌기(보다 구체적으로는 C1-10 알킬렌기, 보다 더 구체적으로는 C1-6 알킬렌기)일 수 있고, 이는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기(예컨대, C3-20 사이클로알킬기 또는 C6-20 아릴기) 및 임의로 치환된 C3-20 헤테로사이클릭 기(예컨대, C3-20 헤테로사이클로알킬기 또는 C3-20 헤테로아릴기)로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있다. 또한 여기서 상기 알킬기 또는 알콕시기는 보다 구체적으로는 C1-10 알킬기 또는 알콕시기, 보다 더 구체적으로는 C1-6 알킬기 또는 알콕시기일 수 있으나, 이에 한정되지 않는다.
보다 구체적으로, 상기 Ry는 각각 독립적으로 H, 혹은 C1-10 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다.
보다 구체적으로, 상기 L은 각각 독립적으로 C1-10 알킬렌기일 수 있고, 이는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환될 수 있으며, 여기서 상기 헤테로사이클릭 기는 N, O 및 S로부터 선택되는 하나 이상(예컨대, 1~3개)의 헤테로 원자를 가질 수 있다.
보다 더 구체적으로, 상기 Rx는 각각 독립적으로,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 3 내지 12의 정수일 수 있고, R1은 치환되거나 비치환된 C1-12 알킬렌기, 치환되거나 비치환된 C2-12 알케닐렌기 또는 치환되거나 비치환된 C2-12 알키닐렌기일 수 있으며, R2는 치환되거나 비치환된 C2-24 알케닐기 또는 치환되거나 비치환된 C2-24 알키닐기일 수 있고, 는 치환되거나 비치환된 메틸렌기를 나타낸다.
보다 더 구체적으로, 상기 Ry는 각각 독립적으로 H, 혹은 C1-6 알킬기일 수 있고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH 및 -NH2로부터 선택되는 하나 이상에 의하여 의하여 치환될 수 있으며, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어, N 및 O로부터 선택되는 하나 이상의 헤테로 원자를 임의로 가지는 고리 구조를 형성할 수 있다.
보다 더 구체적으로, 상기 L은 각각 독립적으로 비치환된 C1-6 알킬렌기일 수 있다.
구체적으로, 상기 지질은 하기 중 어느 하나의 구조를 갖는 것일 수 있다:
상기 구조들 각각에 있어서, R1 내지 R7은 각각 독립적으로,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20의 정수이며, R1은 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고, R2는 치환되거나 비치환된 불포화 1가 탄화수소기이며, 는 치환되거나 비치환된 메틸렌기를 나타낸다.
더욱 더 구체적으로, 상기 지질은 하기 화학식 A 내지 V로부터 선택되는 어느 하나의 구조를 갖는 것일 수 있다:
본 발명의 제2 측면은, (1) 화학식 a의 화합물을 화학식 b의 화합물과 반응시켜 화학식 c의 화합물을 얻는 단계; (1) 화학식 c의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e의 화합물을 얻는 단계; 및 (3) 화학식 e의 화합물을 화학식 f의 화합물과 반응시킨 후, 반응 결과물을 탈보호화하는 단계;를 포함하는, 화학식 1-1로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 a]
H2N-(CH2)a-C(=O)OH
[화학식 b]
OH-R'
[화학식 c]
H2N-(CH2)a-C(=O)O-R'
[화학식 d]
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 f]
H2N-(CH2)1-20-NH-C(=O)O-C(CH3)3
[화학식 1-1]
H2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
상기에서,
R'은 각각 독립적으로,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고는 치환되거나 비치환된 메틸렌기를 나타내며,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제2 측면에 따른 지질 제조방법의 일 구체예에서, 상기 (1)단계의 반응은 용매(예컨대, 사이클로헥산) 내에서 촉매(예컨대, p-톨루엔설폰산 일수화물(p-TsOH)) 존재 하에서 환류(reflux) 하에 수행될 수 있고, 상기 (2)단계의 반응은 용매(예컨대, 염화메틸렌(MC)) 내에서 촉매(예컨대, 트리에틸아민(TEA)) 존재 하에서 저온(예컨대, -10°C 내지 10°C) 또는 상온(예컨대, 20°C 내지 30°C) 조건하에 수행될 수 있으며, 상기 (3)단계의 반응은 용매(예컨대, n-부탄올(n-BuOH)) 내에서 환류(reflux) 하에 수행될 수 있고, 상기 (3)단계의 탈보호화는 용매(예컨대, 염화메틸렌(MC)) 내에서 산(예컨대, 트리플루오로아세트산(TFA)) 존재 하에서 상온(예컨대, 20°C 내지 30°C) 조건 하에 수행될 수 있으나, 이에 한정되지 않는다.
본 발명의 제3 측면은, 본 발명의 제2 측면에서 얻어진 화학식 e의 화합물을 화학식 g의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-2로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 g]
H2N-(CH2)1-20-N(C1-20 알킬)2
[화학식 1-2]
(C1-20 알킬)2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
상기에서,
R'은 각각 독립적으로 ,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이다.
본 발명의 제3 측면에 따른 지질 제조방법의 일 구체예에서, 상기 반응은 용매(예컨대, n-부탄올(n-BuOH)) 내에서 환류(reflux) 하에 수행될 수 있으나, 이에 한정되지 않는다.
본 발명의 제4 측면은, 본 발명의 제2 측면에서 얻어진 화학식 e의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-3으로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 e]
H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
[화학식 h]
(C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
[화학식 1-3]
A-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A
상기에서,
R'은 각각 독립적으로,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
A는 -CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R'이고,
a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제4 측면에 따른 지질 제조방법의 일 구체예에서, 상기 반응은 용매(예컨대, n-부탄올(n-BuOH)) 내에서 환류(reflux) 하에 수행될 수 있으나, 이에 한정되지 않는다.
본 발명의 제5 측면은, (1) 화학식 a의 화합물을 화학식 b'의 화합물과 반응시켜 화학식 c'의 화합물을 얻는 단계; (2) 화학식 c'의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e'의 화합물을 얻는 단계; 및 (3) 화학식 e'의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는, 화학식 1-4로 표시되는 구조를 갖는 지질의 제조방법을 제공한다:
[화학식 a]
H2N-(CH2)a-C(=O)OH
[화학식 b']
OH-R2
[화학식 c']
H2N-R1-C(=O)O-R2
[화학식 d]
[화학식 e']
H2C=CH-C(=O)-HN-R1-C(=O)O-R2
[화학식 h]
(C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
[화학식 1-4]
A'-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A'
상기에서,
A'는 -CH2-CH2-C(=O)-HN-R1-C(=O)O-R2이고,
R1은 독립적으로 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고,
R2는 독립적으로 치환되거나 비치환된 불포화 1가 탄화수소기이며,
a는 2 내지 20의 정수이고,
X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
본 발명의 제5 측면에 따른 지질 제조방법의 일 구체예에서, 상기 (1)단계의 반응은 용매(예컨대, 사이클로헥산) 내에서 촉매(예컨대, p-톨루엔설폰산 일수화물(p-TsOH)) 존재 하에서 환류(reflux) 하에 수행될 수 있고, 상기 (2)단계의 반응은 용매(예컨대, 염화메틸렌(MC)) 내에서 촉매(예컨대, 트리에틸아민(TEA)) 존재 하에서 저온(예컨대, -10°C 내지 10°C) 또는 상온(예컨대, 20°C 내지 30°C) 조건하에 수행될 수 있으며, 상기 (3)단계의 반응은 용매(예컨대, n-부탄올(n-BuOH)) 내에서 환류(reflux) 하에 수행될 수 있으나, 이에 한정되지 않는다.
본 발명에 따른 특정 구조의 지질은 음이온성 약물과 복합체를 용이하게 형성할 수 있어 약물 전달에 유용하다.
따라서, 본 발명의 제6 측면에 따르면, 본 발명의 지질을 포함하는 약물 전달용 조성물이 제공된다.
일 구체예에서, 상기 약물은 핵산, 폴리펩티드, 바이러스 또는 이들의 조합으로부터 선택된 것일 수 있다.
상기 “핵산”은, 예를 들어, DNA, RNA, siRNA, shRNA, miRNA, mRNA, 앱타머, 안티센스 올리고뉴클레오티드, 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
상기 “폴리펩티드”는 항체 또는 이의 절편, 시토킨, 호르몬 또는 그 유사체와 같은 체내에 활성을 갖는 단백질, 또는 항원, 이의 유사체 또는 전구체의 폴리펩티드 서열을 포함하여, 체내에서 일련의 과정을 통해 항원으로 인식될 수 있는 단백질을 의미할 수 있다.
일 구체예에서, 본 발명의 지질은 약물과 복합체를 형성하고, 이 복합체가 양친성 블록 공중합체가 형성하는 나노입자 구조체 내부에 봉입될 수 있다.
일 구체예에서, 상기 양친성 블록 공중합체는, 친수성 A 블록 및 소수성 B 블록을 포함하는 A-B 형 블록 공중합체일 수 있다. 상기 A-B 형 블록 공중합체는, 수용액 상에서, 소수성 B 블록이 코어(내벽)를 형성하고 친수성 A 블록이 쉘(외벽)을 형성하는 코어-쉘 타입의 고분자 나노입자를 형성한다.
일 구체예에서, 상기 친수성 A 블록은 폴리알킬렌글리콜, 폴리비닐알콜, 폴리비닐피롤리돈, 폴리아크릴아미드 및 그 유도체로 구성된 군으로부터 선택되는 하나 이상일 수 있다.
보다 구체적으로, 상기 친수성 A 블록은 모노메톡시폴리에틸렌클리콜(mPEG), 모노아세톡시폴리에틸렌글리콜, 폴리에틸렌글리콜, 폴리에틸렌과 프로필렌글리콜의 공중합체 및 폴리비닐피롤리돈으로 구성된 군으로부터 선택되는 하나 이상일 수 있다.
또한, 필요에 따라, 상기 친수성 A 블록의 말단에 특정 조직이나 세포에 도달할 수 있는 작용기, 리간드, 또는 세포내 전달을 촉진할 수 있는 작용기를 화학적으로 결합시켜 나노입자 전달체의 체내 분포를 조절하거나 상기 나노입자 전달체가 세포 내로 전달되는 효율을 높일 수 있다. 일 구체예에서, 상기 작용기나 리간드는 단당류, 다당류, 비타민, 펩타이드, 단백질 및 세포 표면 수용체에 대한 항체로 이루어진 군에서 선택된 1종 이상일 수 있다. 보다 구체적으로, 상기 작용기나 리간드는 아니사마이드(anisamide), 비타민 B9(엽산), 비타민 B12, 비타민A, 갈락토오스, 락토오스, 만노오스, 히알루론산, RGD 펩타이드, NGR 펩타이드, 트랜스페린, 트랜스페린 수용체에 대한 항체 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 소수성 B 블록은 생체적합성 생분해성 고분자로서, 일 구체예에서, 이는 폴리에스테르, 폴리언하이드라이드, 폴리아미노산, 폴리오르소에스테르 및 폴리포스파진으로 구성된 군으로부터 선택되는 하나 이상일 수 있다.
보다 구체적으로, 상기 소수성 B 블록은 폴리락타이드(PLA), 폴리글리콜라이드, 폴리카프로락톤, 폴리디옥산-2-온, 폴리락타이드와 글리콜라이드의 공중합체, 폴리락타이드와 폴리디옥산-2-온의 공중합체, 폴리락타이드와 폴리카프로락톤의 공중합체 및 폴리글리콜라이드와 폴리카프로락톤의 공중합체로 구성된 군으로부터 선택되는 하나 이상일 수 있다.
또한, 일 구체예에서, 상기 소수성 B 블록은, 소수성 B 블록의 소수성을 증가시켜 나노입자의 안정성을 향상시키기 위하여, 소수성 B 블록 말단의 히드록시기에 토코페롤, 콜레스테롤, 또는 탄소수 10 내지 24개의 지방산을 화학적으로 결합시키는 것에 의하여 수식된 것일 수 있다.
이하, 본 발명을 하기 실시예에 의거하여 보다 자세하게 설명하나, 이들은 본 발명을 설명하기 위한 것일 뿐 이들에 의하여 본 발명의 범위가 어떤 식으로든 제한되는 것은 아니다.
[실시예]
실시예 1
1-1. 도 1에 나타낸 합성 개요에 따라 하기 화학식 A의 화합물을 제조하였다.
[화학식 A]
1-2. 운데실 6-아크릴아미도헥사노에이트(undecyl 6-acrylamidohexanoate)의 합성
250 mL 3-neck 둥근 바닥 플라스크(RBF)에 6-아미노헥산산(6-aminohexanoic acid)(10 g, 76.23 mmol, 1.1 eq), 운데칸-1-올(undecan-1-ol)(11.94 g, 69.30 mmol, 1eq), p-톨루엔술폰산 일수화물(p-toluenesulfonic acid monohydrate, p-TsOH)(15.82 g, 83.16 mmol, 1.2 eq), 사이클로헥산(cyclohexane)(120 mL)를 첨가하고, 딘-스타크 트랩(Dean-Stark trap)과 컨덴서(Condenser)를 설치하여 교반 및 환류(reflux)하였다. 24시간 후, 반응결과물을 진공하에 농축하고, 염화메틸렌(methylene chloride, MC)과 3% 수산화나트륨(sodium hydroxide) 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨(sodium sulfate)으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 운데실 6-아미노헥사노에이트(undecyl 6-aminohexanoate)를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 운데실 6-아미노헥사노에이트, 염화메틸렌(100mL), 트리에틸아민(triethylamine, TEA)(15.43 g ,152.46 mmol, 2.2 eq)을 넣고 0℃로 냉각한 후, 아크릴로일 클로라이드(acryloyl chloride)(6.90 g, 76.23mmol, 1.1 eq)를 한방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 4시간 후, 반응기 안의 혼합물을 탄산수소나트륨(sodium bicarbonate) 포화 수용액에 추출하고 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 에틸 아세테이트(ethyl acetate):헥산(hexane)(1:1)으로 실리카 컬럼을 이용하여 정제하여 운데실 6-아크릴아미도헥사노에이트(17.22 g, 수율: 73%)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.25 (dd, 1H), 6.01-6.08 (m, 1H), 5.61-5.68 (m, 2H), 4.01 (t, 2H), 3.31 (q, 2H), 2.28 (t, 2H), 1.43-1.68 (m, 6H), 1.30-1.45 (m, 18H), 0.89 (t, 3H)
1-3. 운데실 2,2-디메틸-4,11-디옥소-8-(3-옥소-3-((6-옥소-6-(운데실옥시)헥실)아미노)프로필)-3-옥사-5,8,12- 트리아자옥타데칸-18-오에이트(undecyl 2,2-dimethyl-4,11-dioxo-8-(3-oxo-3-((6-oxo-6-(undecyloxy)hexyl)amino)propyl)-3-oxa-5,8,12-triazaoctadecan-18-oate)의 합성
100 mL 1-neck RBF에 운데실 6-아크릴아미도헥사노에이트(3 g, 8.83 mmol, 3 eq), tert-부틸(2-아미노에틸)카바메이트(tert-butyl (2-aminoethyl)carbamate)(0.47 g, 2.94 mmol, 1eq), n-부탄올(n-BuOH)(40 mL)을 넣고 교반 및 환류하였다. 4일 후, 70℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(ammonium hydroxide)(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 운데실 2,2-디메틸-4,11-디옥소-8-(3-옥소-3-((6-옥소-6-(운데실옥시)헥실)아미노)프로필)-3-옥사-5,8,12- 트리아자옥타데칸-18-오에이트(1.34 g, 수율: 54%)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 4.06 (t, 4H), 3.49 (q, 4H), 3.26-3.16 (br, 2H), 2.71 (q, 4H), 2.48-2.41 (br, 2H), 2.32-2.85 (m, 8H), 1.67-1.26 (m, 48H), 1.44 (s, 9H), 0.87 (t, 6H)
1-4. 화학식 A의 화합물의 합성
100mL 1-neck RBF에 운데실 2,2-디메틸-4,11-디옥소-8-(3-옥소-3-((6-옥소-6-(운데실옥시)헥실)아미노)프로필)-3-옥사-5,8,12- 트리아자옥타데칸-18-오에이트(1 g, 1.19 mmol)에 염화메틸렌(20 mL)을 넣고, 트리플루오로아세트산(trifluoroacetic acid, TFA)(2 mL)을 한방울씩 떨어뜨려 주입하였다. 상온에서 4시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 A의 화합물(0.31 g, 35%)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.86 (t, 2H), 4.06 (t, 4H), 3.25 (t, 4H), 2.89 (t, 2H), 2.68 (t, 4H), 2.58 (t, 2H), 2.36 (t, 4H), 2.31 (t, 2H), 1.65 - 1.26 (m, 48H), 0.89 (t, 6H)
실시예 2
2-1. 도 2에 나타낸 합성 개요에 따라 하기 화학식 B의 화합물을 제조하였다.
[화학식 B]
2-2. 2-헥실데실 6-아크릴아미도헥사노에이트(2-hexyldecyl 6-acrylamidohexanoate)의 합성
250 mL 3-neck RBF에 6-아미노헥산산(10 g, 76.23 mmol, 1.1 eq), 2-헥실데칸-1-올(2-hexyldecan-1-ol)(16.80 g, 69.30 mmol, 1eq), p-톨루엔술폰산 일수화물(p-TsOH) (15.82 g, 83.16 mmol, 1.2 eq), 사이클로헥산(120 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-헥실데실 6-아미노헥사노에이트(2-hexyldecyl 6-aminohexanoate)를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 2-헥실데실 6-아미노헥사노에이트, 염화메틸렌(100mL), 트리에틸아민(TEA)(15.43 g ,152.46 mmol, 2.2 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(6.90 g, 76.23mmol, 1.1 eq)를 한방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 4시간 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 에틸 아세테이트:헥산(1:1)으로 실리카 컬럼을 이용하여 정제하여 2-헥실데실 6-아크릴아미도헥사노에이트(14.25 g, 수율: 50 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.07-6.12 (m, 1H), 5.62-5.64 (m, 2H), 3.97 (d, 2H), 3.34 (q, 2H), 2.32 (t, 2H), 1.54-1.68 (m, 5H), 1.26-1.41 (m, 26H), 0.87 (t, 6H)
2-3. 2-헥실데실 8-(3-((6-((2-헥실데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2-hexyldecyl 8-(3-((6-((2-hexyldecyl)oxy)-6-oxohexyl)amino)-3-oxopropyl)-2,2-dimethyl-4,11-dioxo-3-oxa-5,8,12-triazaoctadecan-18-oate)의 합성
100 mL 1-neck RBF에 2-헥실데실 6-아크릴아미도헥사노에이트(4 g, 9.76 mmol, 3 eq), tert-부틸(2-아미노에틸)카바메이트(0.52 g, 3.25 mmol, 1 eq), n-부탄올(n-BuOH)(40 mL)을 넣고 교반 및 환류하였다. 4일 후, 70℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 2-헥실데실 8-(3-((6-((2-헥실데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2.23 g, 수율: 70 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.09 (br, 2H), 3.96 (d, 4H), 3.35 (q, 4H), 3.26 (q, 4H), 3.06 (br, 4H), 2.88 (t, 4H), 2.50 (br, 4H), 2.32 (t, 4H), 1.67-1.35 (m, 62H), 1.44 (s, 9H), 0.89 (t, 12H)
2-4. 화학식 B의 화합물의 합성
100 mL 1-neck RBF에 2-헥실데실 8-(3-((6-((2-헥실데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2 g, 2.04 mmol)에 염화메틸렌(40 mL)을 넣고 트리플루오로아세트산(TFA)(4 mL)을 한방울씩 떨어뜨려 주입하였다. 상온에서 4시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 B의 화합물(1.21 g, 67 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.96 (t, 2H), 3.96 (t, 4H), 3.21 - 3.13 (m, 6H), 2.71 (t, 2H), 2.64 (t, 4H), 2.37 (t, 4H), 2.31 (t, 4H), 1.65 - 1.33 (m, 62H), 0.89 (t, 6H)
실시예 3
3-1. 도 3에 나타낸 합성 개요에 따라 하기 화학식 C의 화합물을 제조하였다.
[화학식 C]
3-2. 화학식 C의 화합물의 합성
100 mL 1-neck RBF에 실시예 2-2에서 합성한 2-헥실데실 6-아크릴아미도헥사노에이트(3 g, 7.32 mmol, 3 eq), N,N-디메틸에틸렌디아민(N,N-dimethylethylenediamine)(0.22 g, 2.44 mmol, 1 eq), n-부탄올(n-BuOH)(30 mL)를 넣고 교반 및 환류하였다. 3일 후, 70℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 C의 화합물(0.95 g, 수율: 43 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 4.05 (t, 4H), 3.15 (q, 4H), 2.77 (br, 4H), 2.69 (t, 4H), 2.53 (br, 6H), 2.12 (t, 4H), 2.28 (t, 4H), 1.66 - 1.26 (m, 62H), 0.89 (t, 6H)
실시예 4
4-1. 도 4에 나타낸 합성 개요에 따라 하기 화학식 D의 화합물을 제조하였다.
[화학식 D]
4-2. 2-부틸옥틸 6-아크릴아미도헥사노에이트(2-butyloctyl 6-acrylamidohexanoate)의 합성
500 mL 3-neck RBF에 6-아미노헥산산(6-aminohexanoic acid)(5.03 g, 38.32 mmol, 1.20 eq), 2-부틸-1-n-옥탄올(5.95 g, 31.93 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(10.93 g, 57.48 mmol, 1.80 eq), 사이클로헥산(200 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-부틸옥틸 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 2-부틸옥틸 6-아미노헥사노에이트, 염화메틸렌(170mL), 트리에틸아민(7.11 g ,70.28 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(3.18 g, 35.12mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 에틸아세테이트(EtOAc):헥산(1:2)으로 실리카 컬럼을 이용하여 정제하여 2-부틸옥틸 6-아크릴아미도헥사노에이트(5.0 g, 수율: 44 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.47 (dd, 1H), 6.09-6.15 (m, 1H), 5.63 (dd, 2H), 3.97 (d, 2H), 3.34 (q, 2H), 2.32 (t, 2H), 1.54-1.68 (m, 6H), 1.27-1.40 (m, 20H), 0.87-0.91 (m, 6H)
4-3. 화학식 D의 화합물의 합성
100 mL 3-neck RBF에 2-부틸옥틸 6-아크릴아미도헥사노에이트(1000.00 mg, 2.83 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(N,N'-dimethyl-1,3-propanediamine)(111.16 mg, 1.09 mmol, 1.00 eq), n-BuOH(11 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 D의 화합물(712.60 mg, 수율: 81 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.87 (s, 2H), 3.96 (d, 4H), 3.22 (q, 4H), 2.61 (t, 4H), 2.41 (t, 4H), 2.36 (t, 4H), 2.30 (t, 4H), 2.25 (s, 6H), 1.61-1.70 (m, 8H), 1.48-1.54 (m, 4H), 1.25-1.39 (m, 37H), 0.90 (t, 3H)
실시예 5
5-1. 도 5에 나타낸 합성 개요에 따라 하기 화학식 E의 화합물을 제조하였다.
[화학식 E]
5-2. 2-헥실옥틸 6-아크릴아미도헥사노에이트(2-hexyloctyl 6-acrylamidohexanoate)의 합성
500 mL 3-neck RBF에 6-아미노헥산산(1.84 g, 13.99 mmol, 1.20 eq), 2-헥실-1-n-옥탄올(2.50 g, 11.66 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(3.99 g, 20.99 mmol, 1.80 eq), 사이클로헥산(120 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-헥실옥틸 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 2-헥실옥틸 6-아미노헥사노에이트, 염화메틸렌(60 mL), 트리에틸아민(2.60 g ,25.65 mmol, 2.20 eq), 염화메틸렌(60 mL)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(1.16 g, 12.83 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:2)으로 실리카 컬럼을 이용하여 정제하여 2-헥실옥틸 6-아크릴아미도헥사노에이트(3.63 g, 수율: 82 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.05-6.11 (m, 1H), 5.63 (dd, 2H), 3.97 (d, 2H), 3.34 (q, 2H), 2.32 (t, 2H), 1.41-1.68 (m, 6H), 1.21-1.41 (m, 20H), 0.85-0.90 (m, 6H)
5-3. 화학식 E의 화합물의 합성
100 mL 3-neck RBF에 2-헥실옥틸 6-아크릴아미도헥사노에이트(660.27 mg, 1.73 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(68.00 mg, 0.67 mmol, 1.00 eq), n-BuOH(7 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 E의 화합물(375.60 mg, 수율: 65 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.85 (s, 2H), 3.96 (d, 4H), 3.22 (q, 4H), 2.62 (t, 4H), 2.42 (t, 4H), 2.36 (t, 4H), 2.30 (t, 4H), 2.25 (s, 6H), 1.61-1.71 (m, 8H), 1.48-1.54 (m, 4H), 1.20-1.40 (m, 45H), 0.90 (t, 12H)
실시예 6
6-1. 도 6에 나타낸 합성 개요에 따라 하기 화학식 F의 화합물을 제조하였다.
[화학식 F]
6-2. 부틸 6-아크릴아미도헥사노에이트(butyl 6-acrylamidohexanoate)의 합성
500 mL 3-neck RBF에 6-아미노헥산산(6.37 g, 48.57 mmol, 1.20 eq), 부탄-1-올(3.00 g, 40.47 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(15.40 g, 80.95 mmol, 2.00 eq), 사이클로헥산(200 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 부틸 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 500 mL 3-neck RBF에 앞서 얻은 부틸 6-아미노헥사노에이트, 염화메틸렌(200 mL), 트리에틸아민(9.01 g, 89.04 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(4.03 g, 44.52 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온 (20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:1)으로 실리카 컬럼을 이용하여 정제하여 부틸 6-아크릴아미도헥사노에이트(3.58 g, 수율: 37 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.01-6.11 (m, 1H), 5.62-5.67 (m, 2H), 4.07 (t, 2H), 3.34 (q, 2H), 2.31 (t, 2H), 1.41-1.62 (m, 6H), 1.34-1.39 (m, 4H), 0.93 (t, 3H)
6-3. 화학식 F의 화합물의 합성
100 mL 3-neck RBF에 부틸 6-아크릴아미도헥사노에이트(700.00 mg, 2.90 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(113.99 mg, 1.12 mmol, 1.00 eq), n-BuOH(11 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 F의 화합물(479.00 mg, 수율: 73 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.89 (s, 2H), 4.06 (t, 4H), 3.22 (q, 4H), 2.61 (t, 4H), 2.46 (t, 4H), 2.42 (t, 4H), 2.36 (t, 4H), 2.31 (s, 6H), 1.60-1.70 (m, 10H), 1.41-1.60 (m, 4), 1.32-1.39 (m, 8H), 0.90 (t, 6H)
실시예 7
7-1. 도 7에 나타낸 합성 개요에 따라 하기 화학식 G의 화합물을 제조하였다.
[화학식 G]
7-2. 2-옥틸도데실 6-아크릴아미도헥사노에이트(2-octyldodecyl 6-acrylamidohexanoate)의 합성
250 mL 3-neck RBF에 6-아미노헥산산(1.05 g, 8.04 mmol, 1.20 eq), 2-옥틸도데칸-1-올(2.00 g, 6.70 mmol, 1.00eq), p-톨루엔술폰산 일수화물(2.29 g, 12.06 mmol, 1.80 eq), 사이클로헥산(100 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-옥틸도데실 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 100 mL 3-neck RBF에 앞서 얻은 2-옥틸도데실 6-아미노헥사노에이트, 염화메틸렌(33 mL), 트리에틸아민(1.49 g, 14.74 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(0.67 g, 7.37 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:2)으로 실리카 컬럼을 이용하여 정제하여 2-옥틸도데실 6-아크릴아미도헥사노에이트(1928.20 mg, 수율: 62 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.05-6.10 (m, 1H), 5.59-5.64 (m, 2H), 3.97 (d, 2H), 3.34 (q, 2H), 2.32 (t, 2H), 1.54-1.68 (m, 4H), 1.26-1.41 (m, 36H), 0.89 (t, 6H)
7-3. 화학식 G의 화합물의 합성
100 mL 3-neck RBF에 2-옥틸도데실 6-아크릴아미도헥사노에이트(592.57 mg, 1.27 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(50.00 mg, 0.49 mmol, 1.00 eq), n-BuOH(5 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 G의 화합물(346.8 mg, 수율: 69 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.83 (s, 2H), 3.96 (d, 4H), 3.22 (q, 4H), 2.62 (t, 4H), 2.42 (t, 4H), 2.36 (t, 4H), 2.30 (t, 4H), 2.25 (s, 6H), 1.61-1.69 (m, 8H), 1.48-1.54 (m, 4H), 1.25-1.39 (m, 69H), 0.90 (t, 3H)
실시예 8
8-1. 도 8에 나타낸 합성 개요에 따라 하기 화학식 H의 화합물을 제조하였다.
[화학식 H]
8-2. 2-헥실옥틸 8-아크릴아미도옥타노에이트(2-hexyloctyl 8-acrylamidooctanoate)의 합성
250 mL 3-neck RBF에 8-아미노옥탄산(1.78 g, 11.19 mmol, 1.20 eq), 2-헥실옥탄-1-올(2.00 g, 9.33 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(3.19 g, 16.79 mmol, 1.80 eq), 사이클로헥산(100 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-헥실옥틸 8-아미노옥타노에이트를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 2-헥실옥틸 8-아미노옥타노에이트, 염화메틸렌(100 mL), 트리에틸아민(2.08 g, 20.52 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(0.93 g, 10.26 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:1)으로 실리카 컬럼을 이용하여 정제하여 2-헥실옥틸 8-아크릴아미도옥타노에이트(2838.70 mg, 수율: 74 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.05-6.10 (m, 1H), 5.55-5.64 (m, 2H), 3.97 (d, 2H), 3.32 (q, 2H), 2.29 (t, 2H), 1.51-1.65 (m, 4H), 1.27-1.35 (m, 27H), 0.85-0.90 (m, 6H)
8-3. 화학식 H의 화합물의 합성
100 mL 3-neck RBF에 2-헥실옥틸 8-아크릴아미도옥타노에이트(703.42 mg, 0.76 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(30.00 mg, 0.29 mmol, 1.00 eq), n-BuOH(5 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 H의 화합물(218.90 mg, 수율: 81 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.78 (s, 2H), 3.96 (d, 4H), 3.21 (q, 4H), 2.64 (t, 4H), 2.44 (t, 4H), 2.38 (t, 4H), 2.28-2.32 (m, 4H), 2.26 (s, 6H), 1.66-1.72 (m, 2H), 1.40-1.63 (m, 10H), 1.20-1.40 (m, 54H), 0.90 (t, 12H)
실시예 9
9-1. 도 9에 나타낸 합성 개요에 따라 하기 화학식 I의 화합물을 제조하였다.
[화학식 I]
9-2. 2-데실테트라데실 6-아크릴아미도헥사노에이트(2-decyltetradecyl 6-acrylamidohexanoate)의 합성
250 mL 3-neck RBF에 6-아미노헥산산(887.70 mg, 6.77mmol, 1.20 eq), 2-데실테트라데칸-1-올(2.00 g, 5.64 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(1.93 g, 10.15 mmol, 1.80 eq), 사이클로헥산(100 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 2-데실테트라데실 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 2-데실테트라데실 6-아미노헥사노에이트, 염화메틸렌(100 mL), 트리에틸아민(1.26 g, 12.41 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(561.44 mg, 6.20 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:2)으로 실리카 컬럼을 이용하여 정제하여 2-데실테트라데실 6-아크릴아미도헥사노에이트(1.29 g, 수율: 44 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.05-6.10 (m, 1H), 5.62-5.64 (m, 2H), 3.97 (d, 2H), 3.34 (q, 2H) 2.31 (t, 2H), 1.54-1.68 (m, 5H), 1.26-1.41 (m, 44H), 0.88-0.89 (m, 6H)
9-3. 화학식 I의 화합물의 합성
100 mL 3-neck RBF에 2-데실테트라데실 6-아크릴아미도헥사노에이트(306.44 mg, 0.59 mmol, 2.40 eq), N,N'-디메틸-1,3-프로판디아민(25.00 mg, 0.24 mmol, 1.00 eq), n-BuOH(2.5 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 I의 화합물(209.2 mg, 수율: 75 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.86 (s, 2H), 3.96 (d, 4H), 3.22 (q, 4H), 2.60 (t, 4H), 2.41 (t, 4H), 2.35 (t, 4H), 2.30 (t, 4H), 2.24 (s, 6H), 1.61-1.69 (m, 11H), 1.48-1.53 (m, 4H), 1.20-1.40 (m, 87H), 0.9 (t, 12H)
실시예 10
10-1. 도 10에 나타낸 합성 개요에 따라 하기 화학식 J의 화합물을 제조하였다.
[화학식 J]
10-2. 화학식 J의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 2-2에서 합성한 2-헥실데실 6-아크릴아미도헥사노에이트(2000.00 mg, 4.88 mmol, 3.00 eq), N,N'-디메틸-1,3-프로판디아민(170.00 mg, 1.63 mmol, 1.00 eq), n-BuOH(20 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 J의 화합물(934.00 mg, 수율: 62 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.88 (s, 2H), 3.96 (d, 4H), 3.22 (q, 4H), 2.60 (t, 4H), 2.40 (t, 4H), 2.35 (t, 4H), 2.30 (t, 4H), 2.27 (s, 6H), 1.61-1.70 (m, 8H), 1.40-1.54 (m, 4H), 1.20-1.40 (m, 52H), 0.90 (t, 12H)
실시예 11
11-1. 도 11에 나타낸 합성 개요에 따라 하기 화학식 K의 화합물을 제조하였다.
[화학식 K]
11-2. 노닐 6-아크릴아미도헥사노에이트(nonyl 6-acrylamidohexanoate)의 합성
250 mL 3-neck RBF에 6-아미노헥산산(10 g, 76.23 mmol, 1.1 eq), 노난-1-올(21.58g, 69.30 mmol, 1 eq), p-톨루엔술폰산 일수화물(p-TsOH)(15.82 g, 83.16 mmol, 1.2 eq), 사이클로헥산(120 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 진공으로 농축하고, 염화메틸렌과 3% 수산화나트륨 수용액으로 추출한 후, 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 노닐 6-아미노헥사노에이트를 얻었다. 추가적인 정제 없이, 250 mL 3-neck RBF에 앞서 얻은 노닐 6-아미노헥사노에이트, 염화메틸렌(100 mL), 트리에틸아민(15.43 g ,152.46 mmol, 2.2 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(6.90 g, 76.23 mmol, 1.1 eq)를 한방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 4시간 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 염화메틸렌 층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:1)으로 실리카 컬럼을 이용하여 정제하여 노닐 6-아크릴아미도헥사노에이트(15.66 g, 수율: 66%)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.28 (d, 1H), 6.11 (m, 1H), 5.64 (d, 2H), 4.07 (t, 2H), 3.63 (q, 2H), 2.32 (t, 2H), 1.68 - 1.26 (m, 20H), 0.90 (t, 3H)
11-3. 화학식 K의 화합물의 합성
100 mL 3-neck RBF에 노닐 6-아크릴아미도헥사노에이트(1000.00 mg, 3.21 mmol, 2.60 eq), N,N'-디메틸-1,3-프로판디아민(126.18 mg, 1.23 mmol, 1.00 eq), n-BuOH(10 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 K의 화합물(770.10 mg, 수율: 86 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 7.87 (s, 2H), 4.05 (t, 4H), 3.22 (q, 4H), 2.62 (t, 4H), 2.42 (t, 4H), 2.36 (t, 2H), 2.30 (t, 4H), 2.25 (s, 6H), 1.61-1.69 (m, 10H), 1.40-1.60 (m, 4H), 1.27-1.38 (m, 28H), 0.87 (t, 6H)
실시예 12
12-1. 도 12에 나타낸 합성 개요에 따라 하기 화학식 L의 화합물을 제조하였다.
[화학식 L]
12-2. 화학식 L의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 4-2에서 합성한 2-부틸옥틸 6-아크릴아미도헥사노에이트(850.65 mg, 2.43 mmol, 2.60 eq), tert-부틸 N-(2-아미노에틸)카바메이트(tert-butyl N-(2-aminoethyl)carbamate)(150.00 mg, 0.94 mmol, 1.00 eq), n-BuOH(10 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 낮은 순도의 2-부틸옥틸 8-(3-((6-((2-부틸옥틸)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2-butyloctyl 8-(3-((6-((2-butyloctyl)oxy)-6-oxohexyl)amino)-3-oxopropyl)-2,2-dimethyl-4,11-dioxo-3-oxa-5,8,12-triazaoctadecan-18-oate)를 얻었다. 이어서 추가적인 정제과정 없이 화학식 L의 화합물의 합성을 진행하였다. 25 mL 1-neck RBF에 2-부틸옥틸 8-(3-((6-((2-부틸옥틸)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5,8,12-트리아자옥타데칸-18-오에이트(143.20 mg, 0.16 mmol)에 염화메틸렌(2 mL)을 넣고 트리플루오로아세트산(0.2 mL)을 한 방울씩 떨어뜨려 주입하였다. 상온에서 24시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 L의 화합물(85.1 mg, 67 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.38 (t, 2H), 3.96 (d, 4H), 3.18 (q, 4H), 2.93 (t, 2H), 2.67 (t, 4H), 2.58 (t, 2H), 2.29-2.36 (m, 8H), 1.61-1.66 (m, 6H), 1.48-1.60 (m, 4H), 1.27-1.38 (m, 38H), 0.90-0.92 (m, 12H)
실시예 13
13-1. 도 13에 나타낸 합성 개요에 따라 하기 화학식 M의 화합물을 제조하였다.
[화학식 M]
13-2. 화학식 M의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 5-2에서 합성한 2-헥실옥틸 6-아크릴아미도헥사노에이트(1429.07 mg, 3.74 mmol, 2.40 eq), tert-부틸 N-(2-아미노에틸)카바메이트(250.00 mg, 1.56 mmol, 1.00 eq), n-BuOH(10 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 낮은 순도의 2-헥실옥틸 8-(3-((6-((2-헥실옥틸)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2-hexyloctyl 8-(3-((6-((2-hexyloctyl)oxy)-6-oxohexyl)amino)-3-oxopropyl)-2,2-dimethyl-4,11-dioxo-3-oxa-5,8,12-triazaoctadecan-18-oate)를 얻었다. 이어서 추가적인 정제과정 없이 화학식 M의 화합물의 합성을 진행하였다. 25 mL 1-neck RBF에 2-헥실옥틸 8-(3-((6-((2-헥실옥틸)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트, 염화메틸렌(3 mL)을 넣고 트리플루오로아세트산(0.3 mL)을 한 방울씩 떨어뜨려 주입하였다. 상온에서 24시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(8:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 M의 화합물(116.6 mg, two steps 9.1 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.94 (t, 2H), 3.96 (d, 4H), 3.12-3.20 (m, 6H), 2.73 (t, 2H), 2.62 (t, 4H), 2.29-2.37 (m, 8H), 1.59-1.65 (m, 6H), 1.47-1.52 (m, 4H), 1.20-1.39 (m, 46H), 0.90 (t, 12H)
실시예 14
14-1. 도 14에 나타낸 합성 개요에 따라 하기 화학식 N의 화합물을 제조하였다.
[화학식 N]
14-2. 화학식 N의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 7-2에서 합성한 2-옥틸도데실 6-아크릴아미도헥사노에이트(1200.00 mg, 2.58 mmol, 2.40 eq), tert-부틸 N-(2-아미노에틸)카바메이트(171.99 mg, 1.07 mmol, 1.00 eq), n-BuOH(10 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 낮은 순도의 2-옥틸도데실 2,2-디메틸-8-(3-((6-((2-옥틸도데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-4,11-디옥소-3-옥사-5,8,12-트리아자옥타데칸-18-오에이트(2-octyldodecyl 2,2-dimethyl-8-(3-((6-((2-octyldodecyl)oxy)-6-oxohexyl)amino)-3-oxopropyl)-4,11-dioxo-3-oxa-5,8,12-triazaoctadecan-18-oate)를 얻었다. 이어서 추가적인 정제과정 없이 화학식 N의 화합물의 합성을 진행하였다. 100 mL 1-neck RBF에 2-옥틸도데실 2,2-디메틸-8-(3-((6-((2-옥틸도데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-4,11-디옥소-3-옥사-5,8,12-트리아자옥타데칸-18-오에이트, 염화메틸렌(10 mL)을 넣고 트리플루오로아세트산(1.0 mL)을 한 방울씩 떨어뜨려 주입하였다. 상온에서 24시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 N의 화합물(137.8 mg, two steps 12.9 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.86 (t, 2H), 3.96 (d, 4H), 3.17 (q, 4H), 2.98 (t, 2H), 2.61-2.67 (m, 6H), 2.29-2.37 (m, 8H), 1.60-1.66 (m, 7H), 1.20-1.38 (m, 72H), 0.90-0.95 (m, 12H)
실시예 15
15-1. 도 15에 나타낸 합성 개요에 따라 하기 화학식 O의 화합물을 제조하였다.
[화학식 O]
15-2. 화학식 O의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 8-2에서 합성한 2-헥실옥틸 8-아크릴아미도옥타노에이트(1130.14 mg, 2.76 mmol, 2.60 eq), tert-부틸 N-(2-아미노에틸)카바메이트(170.00 mg, 1.06 mmol, 1.00 eq), n-BuOH(11 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 낮은 순도의 2-헥실옥틸 8-(3-((8-((2-헥실옥틸)옥시)-8-옥소옥틸)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자이코산-20-오에이트(2-hexyloctyl 8-(3-((8-((2-hexyloctyl)oxy)-8-oxooctyl)amino)-3-oxopropyl)-2,2-dimethyl-4,11-dioxo-3-oxa-5,8,12-triazaicosan-20-oate)를 얻었다. 이어서 추가적인 정제과정 없이 화학식 O의 화합물의 합성을 진행하였다. 25 mL 1-neck RBF에 2-헥실옥틸 8-(3-((8-((2-헥실옥틸)옥시)-8-옥소옥틸)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자이코산-20-오에이트, 염화메틸렌(4.4 mL)을 넣고 트리플루오로아세트산(0.4 mL)을 한 방울씩 떨어뜨려 주입하였다. 상온에서 24시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 O의 화합물(225.5 mg, two steps 24.2 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.81 (t, 2H), 3.96 (d, 4H), 3.15 (q, 4H), 3.03 (t, 2H), 2.63-2.66 (m, 6H), 2.35 (t, 4H), 2.29 (t, 4H), 1.59-1.62 (m, 6H), 1.46-1.50 (m, 4H), 1.27-1.39 (s, 55H), 0.87-0.92 (m, 12H)
실시예 16
16-1. 도 16에 나타낸 합성 개요에 따라 하기 화학식 P의 화합물을 제조하였다.
[화학식 P]
16-2. 화학식 P의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 9-2에서 합성한 2-데실테트라데실 6-아크릴아미도헥사노에이트(891.15 mg, 1.71 mmol, 2.40 eq), tert-부틸 N-(2-아미노에틸)카바메이트(114.00 mg, 0.71 mmol, 1.00 eq), n-BuOH(6.2 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(20:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 낮은 순도의 2-데실테트라데실 8-(3-((6-((2-데실테트라데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트(2-decyltetradecyl 8-(3-((6-((2-decyltetradecyl)oxy)-6-oxohexyl)amino)-3-oxopropyl)-2,2-dimethyl-4,11-dioxo-3-oxa-5,8,12-triazaoctadecan-18-oate)를 얻었다. 이어서 추가적인 정제과정 없이 화학식 P의 화합물의 합성을 진행하였다. 25 mL 1-neck RBF에 2-데실테트라데실 8-(3-((6-((2-데실테트라데실)옥시)-6-옥소헥실)아미노)-3-옥소프로필)-2,2-디메틸-4,11-디옥소-3-옥사-5 ,8,12-트리아자옥타데칸-18-오에이트, 염화메틸렌(6.0 mL)을 넣고 트리플루오로아세트산(0.6 mL)을 한 방울씩 떨어뜨려 주입하였다. 상온에서 24시간 교반한 후, 반응기 안의 혼합물을 탄산수소나트륨 포화 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 P의 화합물(157.9 mg, two steps 20.1 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.98 (t, 2H), 3.96 (d, 4H), 3,16 (q, 4H), 3.01 (t, 2H), 2.65 (t, 6H), 2.36 (t, 4H), 2.30 (t, 4H), 1.60-1.66 (m, 7H), 1.48-1.54 (m, 5H), 1.20-1.40 (m, 83H), 0.90-0.95 (m, 12H)
실시예 17
17-1. 도 17에 나타낸 합성 개요에 따라 하기 화학식 Q의 화합물을 제조하였다.
[화학식 Q]
17-2. 화학식 Q의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 11-2에서 합성한 노닐 6-아크릴아미도헥사노에이트(3000.00 mg, 9.63 mmol, 2.60 eq), N,N-디메틸프로판디아민(378.53 mg, 1.00 mmol, 1.00 eq), n-BuOH(18 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(7:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 Q의 화합물(1257.6 mg, 수율: 47 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 4.05 (t, 4H), 3.22 (q, 4H), 2.73 (t, 4H), 2.50 (t, 2H), 2.25-2.47 (m, 10H), 2.23 (s, 6H), 1.60-1.67 (m, 10H), 1.48-1.58 (m, 4H), 1.27-1.38 (m, 28H), 0.88 (t, 6H)
실시예 18
18-1. 도 18에 나타낸 합성 개요에 따라 하기 화학식 R의 화합물을 제조하였다.
[화학식 R]
18-2. 화학식 R의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 2-2에서 합성한 2-헥실데실 6-아크릴아미도헥사노에이트(1500.00 mg, 3.67 mmol, 2.60 eq), N,N-디메틸프로판디아민(143.90 mg, 1.41 mmol, 1.00 eq), n-BuOH(7 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 R의 화합물(476.10 mg, 수율: 37 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.88 (t, 2H), 3.97 (d, 4H), 3.21 (q, 4H), 2.72 (t, 4H), 2.49 (t, 2H), 2.29-2.35 (m, 10H), 2.22 (s, 6H), 1.61-1.67 (m, 9H), 1.49-1.55 (m, 4H), 1.27-1.40 (m, 50H), 0.88 (t, 12H)
실시예 19
19-1. 도 19에 나타낸 합성 개요에 따라 하기 화학식 S의 화합물을 제조하였다.
[화학식 S]
19-2. 화학식 S의 화합물의 합성
100 mL 3-neck RBF에 상기 실시예 2-2에서 합성한 2-헥실데실 6-아크릴아미도헥사노에이트(2000.00 mg, 4.88 mmol, 3.00 eq), 2-모르폴리노에탄-1-올(2-morpholinoethan-1-ol)(210.00 mg, 1.63 mmol, 1.00 eq), n-BuOH(20 mL)을 넣고 교반 및 환류하였다. 48 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(15:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 S의 화합물(596.00 mg, 수율: 39 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.82 (t, 2H), 3.96 (d, 4H), 3.69 (t, 4H), 3.22 (q, 4H), 2.76 (t, 3H), 2.58 (t, 2H), 2.43-2.49 (m, 6H), 2.29-2.34 (m, 7H), 1.61-1.67 (m, 6H), 1.38-1.54 (m, 4H), 1.27-1.38 (m, 52H), 0.88 (t, 12H)
실시예 20
20-1. 도 20에 나타낸 합성 개요에 따라 하기 화학식 T의 화합물을 제조하였다.
[화학식 T]
20-2. 데크-3-인-1-일 6-아크릴아미도헥사노에이트(dec-3-yn-1-yl 6-acrylamidohexanoate)의 합성
500 mL 3-neck RBF에 6-아미노헥산산(3.06 g, 23.34 mmol, 1.20 eq), 데크-3-인-1-올(dec-3-yn-1-ol)(3.00 g, 19.45 mmol, 1.00eq), p-톨루엔술폰산 일수화물(5.55 g, 29.17 mmol, 1.50 eq), 사이클로헥산(130 mL)을 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 NaOH 수용액으로 추출한 후, 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 데크-3-인-1-일 6-아미노헥사노에이트(dec-3-yn-1-yl 6-aminohexanoate)를 얻었다. 추가적인 정제 없이, 500 mL 3-neck RBF에 앞서 얻은 데크-3-인-1-일 6-아미노헥사노에이트 , 염화메틸렌(130 mL), 트리에틸아민(4.33 g, 42.79 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(1.94 g, 21.39 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:2)로 실리카 컬럼을 이용하여 정제하여 데크-3-인-1-일 6-아크릴아미도헥사노에이트(765.60 mg, 수율: 12 %)를 얻었다.
1H-NMR (400 MHz, CDCl3) δ 6.29 (d, 1H), 6.11 (m, 1H), 5.64 (d, 2H), 4.15 (t, 2H), 3.36 (t, 2H), 2.49 (m, 2H), 2.35 (t, 2H), 2.15 (t, 2H), 1.67 - 1.26 (m, 14H), 0.88 (t, 3H)
20-3. 화학식 T의 화합물의 합성
100 mL 3-neck RBF에 데크-3-인-1-일 6-아크릴아미도헥사노에이트(300.00 mg, 0.94 mmol, 2.20 eq), N,N'-디메틸-1,3-프로판디아민(43.80 mg, 0.43 mmol, 1.00 eq), n-BuOH(5 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 T의 화합물(165.3 mg, 수율: 52 %)를 얻었다
1H-NMR (400 MHz, CDCl3) δ 7.90 (s, 2H), 4.13 (t, 4H), 3.22 (q, 4H), 2.62 (t, 4H), 2.48 (m, 4H), 2.42 (m, 4H), 2.36 (t, 4H), 2.32 (t, 4H), 2.25 (s, 6H), 2.15 (m, 4H), 1.63-1.79 (m, 7H), 1.40-1.60 (m, 9H), 1.25-1.38 (m, 8H), 0.90 (t, 6H)
실시예 21
21-1. 도 21에 나타낸 합성 개요에 따라 하기 화학식 U의 화합물을 제조하였다.
[화학식 U]
21-2. (9Z,12Z)-옥타데카-9,12-디엔-1-일 6-아크릴아미도헥사노에이트((9Z,12Z)-octadeca-9,12-dien-1-yl 6-acrylamidohexanoate)의 합성
100 mL 3-neck RBF에 6-아미노헥산산(295.37 mg, 2.25 mmol, 1.20 eq), (9Z,12Z)-옥타데카-9,12-디엔-1-올((9Z,12Z)-octadeca-9,12-dien-1-ol)(500.00 mg, 1.88 mmol, 1.00 eq), p-톨루엔술폰산 일수화물(642.47 mg, 3.38 mmol, 1.80 eq), 사이클로헥산(20 mL)를 첨가하고, 딘-스타크 트랩과 컨덴서를 설치하여 교반 및 환류하였다. 24시간 후, 상온으로 냉각하여 진공으로 농축하고, 염화메틸렌과 NaOH 수용액으로 추출한 후, 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하여 낮은 순도의 (9Z,12Z)-옥타데카-9,12-디엔-1-일 6-아미노헥사노에이트((9Z,12Z)-octadeca-9,12-dien-1-yl 6-aminohexanoate)를 얻었다. 추가적인 정제 없이, 100 mL 3-neck RBF에 앞서 얻은 (9Z,12Z)-옥타데카-9,12-디엔-1-일 6-아미노헥사노에이트, 염화메틸렌(20 mL), 트리에틸아민(417.72 mg, 4.13 mmol, 2.20 eq)을 넣고 0 ℃로 냉각한 후, 아크릴로일 클로라이드(186.82 mg, 2.06 mmol, 1.10 eq)를 한 방울씩 떨어뜨려 주입하였다. 반응기의 온도를 상온(20~25℃)으로 올려 교반하였다. 18시간 후, 반응기 안의 혼합물을 HCl 수용액에 추출하고 유기층을 황산나트륨으로 건조하고 여과하였다. 여액은 진공으로 농축하고 EtOAc:헥산(1:2)로 실리카 컬럼을 이용하여 정제하여 (9Z,12Z)-옥타데카-9,12-디엔-1-일 6-아크릴아미도헥사노에이트(579.9 g, 수율: 71 %)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 6.27 (dd, 1H), 6.05-6.11 (m, 1H), 5.62-5.64 (m, 2H), 5.34-5.38 (m, 4H), 4.05 (t, 2H), 3.33 (q, 2H), 2.76 (t, 2H), 2.29 (t, 2H), 2.05 (q, 4H), 1.56-1.67 (m, 6H), 1.28-1.39 (m, 18H), 0.89 (t, 3H)
21-3. 화학식 U의 화합물의 합성
100 mL 3-neck RBF에 (9Z,12Z)-옥타데카-9,12-디엔-1-일 6-아크릴아미도헥사노에이트(305.258 mg, 0.70 mmol, 2.40 eq), N,N'-디메틸-1,3-프로판디아민(30.00 mg, 0.29 mmol, 1.00 eq), n-BuOH (3 mL)을 넣고 교반 및 환류하였다. 24 시간 후, 80℃에서 진공으로 농축하고 염화메틸렌:메탄올:수산화암모늄(10:1:0.1)으로 실리카 컬럼을 이용하여 정제하여 화학식 U의 화합물(185.10 mg, 수율: 65 %)을 얻었다.
1H NMR (400 MHz, CDCl3) δ 7.85 (s, 2H), 5.34-5.38 (m, 8H), 4.05 (s, 4H), 3.22 (q, 4H), 2.80 (t, 4H), 2.60 (t, 4H), 2.42 (t, 4H), 2.36 (t, 4H), 2.28 (t, 4H), 2.03 (s, 6H), 2.05 (q, 8H), 1.60-1.68 (m, 10H), 1.49-1.60 (m, 4H), 1.27-1.37 (m, 36H), 0.89 (t, 3H)
실시예 22
22-1. 도 22에 나타낸 합성 개요에 따라 하기 화학식 V의 화합물을 제조하였다.
[화학식 V]
22-2. 1-시클로프로필노닐 6-(((벤조일옥시)카르보닐)아미노)헥사노에이트(1-cyclopropylnonyl 6-(((benzyloxy)carbonyl)amino)hexanoate)의 합성
500 mL 3-neck RBF에 1-사이클로프로필노난-1-올(1-cyclopropylnonan-1-ol)(8.68 g, 47.1 mmol, 1.00 eq)을 염화메틸렌(170 mL)에 25°C에서 첨가하였다. 1-에틸-3-(3-디메틸아미노프로필)카보디이미드(EDCI) (11.7 g, 61.3 mmol, 1.30 eq)와 트리에틸아민(Et3N)(9.54 g, 94.2 mmol, 2.00 eq)을 혼합물에 첨가하였다. 6-(((벤질옥시)카르보닐)아미노)헥산산(6-(((benzyloxy)carbonyl)amino)hexanoic acid)(15.0 g, 56.5 mmol, 1.20 eq)와 4-디메틸아미노피리딘(DMAP)(1.15 g, 9.42 mmol, 0.20 eq)를 첨가하였다. 질소(N2)로 3회 퍼징하였다. 혼합물을 25°C에서 16시간 동안 교반하였다. 반응 혼합물을 물(200 mL)로 희석하고 염화메틸렌 600 mL (200 mL x 3)로 추출하였다. 염화메틸렌 층을 수집하고 황산나트륨을 이용해 건조시킨 후, 여과하고 감압 하에 여과액을 농축하여 잔여물을 얻었다. 잔여물은 컬럼 크로마토그래피(SiO2, 석유에테르(PE)/에틸아세테이트(EtOAc)=10/1 to 1/100)로 정제하였다. 1-시클로프로필노닐 6-(((벤조일옥시)카르보닐)아미노)헥사노에이트(9.00 g, 20.9 mmol, 44.3% 수율)를 무색의 오일로 얻었다.
1H NMR (400 MHz, CDCl3) δ 4.27 (td, 1H), 3.41 (t, 2H), 2.31 (t, 2H), 1.89 - 1.74 (m, 2H), 1.68 - 1.60 (m, 4H), 1.43 (s, 2H), 1.38 - 1.25 (m, 16H), 0.99 - 0.92 (m, 1H), 0.89 (t, 3H), 0.59 - 0.51 (m, 1H), 0.49 - 0.42 (m, 1H), 0.38 (qd, 1H), 0.31 - 0.21 (m, 1H)
22-3. 1-사이클로프로필노닐 6-아미노헥사노에이트(1-cyclopropylnonyl 6-aminohexanoate)의 합성
아르곤(Ar) 분위기 하에서 원통형 플라스크의 35mL 부분에 팔라듐 촉매(Pd/C)(2.22 g, 2.09 mmol, 10% 순도, 0.10 eq)을 첨가하였다. 원통형 플라스크 윗부분에 테트라하이드로푸란(THF)(90 mL)을 첨가하였다. 혼합물에 1-시클로프로필노닐 6-(((벤조일옥시)카르보닐)아미노)헥사노에이트(9.00 g, 20.9 mmol, 1.00 eq)을 첨가하였다. 수소(H2)를 50 psi로 충전하였다. 혼합물을 50°C에서 16시간 동안 교반하였다. Pd/C 필터 케이크를 안전하게 여과하고 수집하였다. 여과액을 압력 하에 농축하여 잔여물을 얻었다. 잔여물은 컬럼 크로마토그래피(SiO2, 염화메틸렌/메탄올=10/1 to 1/100)로 정제하여 1-사이클로프로필노닐 6-아미노헥사노에이트(6.00 g, 20.2 mmol, 96.7% 수율)을 노란색의 오일로 얻었다.
1H NMR (400 MHz, CDCl3) δ 4.27 (td, 1H), 2.71 (t, 2H), 2.32 (t, 2H), 1.71 - 1.60 (m, 5H), 1.53 - 1.43 (m, 2H), 1.42 - 1.18 (m, 15H), 1.00 - 0.92 (m, 1H), 0.89 (t, 3H), 0.59 - 0.50 (m, 1H), 0.49 - 0.42 (m, 1H), 0.38 (qd, 1H), 0.33 - 0.18 (m, 1H)
22-4. 1-사이클로프로필노닐 6-아크릴아미도헥사노에이트(1-cyclopropylnonyl 6-acrylamidohexanoate)의 합성
100 mL 3-neck RBF에 염화메틸렌(30 mL)와 1-사이클로프로필노닐 6-아미노헥사노에이트(3.00 g, 10.1 mmol, 1.00 eq)을 첨가하였다. 0°C에서 혼합물에 트리에틸아민(TEA)(4.59 g, 45.4 mmol, 4.50 eq)를 첨가하였다. 0°C에서 아크릴로일 클로라이드(1.37 g, 15.1 mmol, 1.50 eq)를 혼합물에 점적으로 첨가하였다. 혼합물을 0°C에서 2시간 동안 교반한 후, 서서히 실온으로 되돌렸다. 반응 혼합물은 20°C에서 물(40 mL)의 첨가로 중화시킨 후, 염화메틸렌(50 mL x 3)으로 추출하였다. 결합된 유기층을 황산나트륨으로 건조시킨 후, 여과하고 감압 하에 여과액을 농축하여 잔여물을 얻었다. 잔여물은 컬럼 크로마토그래피 (SiO2, PE/EtOAc=10/1 to 1/100)로 정제하였다. 1-사이클로프로필노닐 6-아크릴아미도헥사노에이트(2.60 g, 7.40 mmol, 73.3% 수율)을 노란색의 오일로 얻었다.
1H NMR (400 MHz, CDCl3) δ 6.34 - 6.21 (m, 1H), 6.15 - 5.98 (m, 1H), 5.64 (br dd, 1H), 4.27 (td, 1H), 3.41 - 3.08 (m, 2H), 2.40 - 2.22 (m, 2H), 1.72 - 1.61 (m, 4H), 1.58 (s, 6H), 1.45 - 1.35 (m, 2H), 1.27 (br s, 9H), 1.00 - 0.91 (m, 1H), 0.89 (t, 3H), 0.61 - 0.51 (m, 1H), 0.50 - 0.41 (m, 1H), 0.37 (qd, 1H), 0.30 - 0.20 (m, 1H)
22-5. 화학식 V의 화합물의 합성
50 mL 3-neck RBF에 디메틸 설폭사이드(DMSO)(3.5 mL)와 물(3.5 mL)의 혼합 용액과 1-사이클로프로필노닐 6-아크릴아미도헥사노에이트(0.70 g, 1.99 mmol, 1.00 eq)를 첨가하였다. 혼합물에 TEA(134 mg, 1.33 mmol, 0.67 eq)를 첨가하였다. 혼합물에 N1,N3-디메틸프로판-1,3-디아민(N1,N3-dimethylpropane-1,3-diamine)(67.8 mg, 663 μmol, 0.33 eq)를 첨가하였다. N2로 3회 퍼징하였다. 혼합물을 100°C에서 48시간 동안 교반하였다. 반응 혼합물을 감압 하에 농축하여 잔여물을 얻었다. 잔여물은 컬럼 크로마토그래피(SiO2, 염화메틸렌/메탄올=10/1)로 정제하여 비교적 낮은 순도의 0.3 g의 화학식 V의 화합물을 얻었다. 이를 역상 HPLC(컬럼: Phenomenex luna C18 15025mm 10μm; 이동상: [물(FA)-ACN]; slope: 10분 동안 40%-70% B)로 정제하여, 화학식 V의 화합물(0.15 g, 186 μmol, 28.1% 수율, 96.1% 순도)을 노란색의 오일로 얻었다.
1H NMR (400 MHz, CDCl3) δ 7.91 (br s, 2H), 4.26 (td, 2H), 3.31 - 3.17 (m, 4H), 2.61 (t, 4H), 2.41 (t, 4H), 2.38 - 2.33 (m, 4H), 2.33 - 2.27 (m, 4H), 2.25 (s, 6H), 1.72 - 1.62 (m, 10H), 1.56 - 1.48 (m, 4H), 1.41 - 1.25 (m, 28H), 1.01 - 0.92 (m, 2H), 0.89 (t, 6H), 0.59 - 0.50 (m, 2H), 0.49 - 0.41 (m, 2H), 0.36 (qd, 2H), 0.31 - 0.21 (m, 2H)
[약물 전달용 조성물의 제조예]
1. 원료 물질 준비
하기 표에 나타낸 바에 따라, 제형 제조에 필요한 물질들을 각 희석 용매로 용해하여 필요 농도로 준비하였다. 녹일 때는 물질들을 상온화한 후 용매를 넣고 용해시켰다.
2. 원료 물질 혼합
NP ratio(지질의 아민기: mRNA의 포스페이트기)를 10에 맞추어 화학식 A 내지 S 각각의 화합물:DMG-PEG:DSPC:Cholesterol=50:1.5:10:38.5의 비율에 맞추어 원료 물질들의 필요량을 혼합하였다. 에탄올 층에는 모든 원료 물질의 합이 12.5 mM 이내로 존재하도록 에탄올을 추가하여 주고, 수상(aqueous phase)과 에탄올상(ethanol phase)은 3:1의 부피비를 유지하여 혼합하였다. 혼합 후 전체 에탄올 함량을 낮추기 위해 다음과 같이 버퍼 교환(buffer exchange)을 하였다: 혼합액을 Amicon-Ultra tube filter(Merk Millipore, UFC505096 또는 UFC805024, pore size: 50K, volume: 0.5 mL 또는 4 mL)를 사용하여 4,000 rpm에서 1/3수준으로 원심분리하여 농축한 다음, 농축액의 3배의 PBS로 희석한 후 원심분리하여 농축하는 과정을 6회 반복하여 버퍼 교환을 하였다.
구체적인 공정 순서는 다음과 같다.
1) Autoclaved tube 두 개를 준비하였다(Tube (A), (B)).
2) Tube (A)에 실험 조건에 따라 계산된 몰 수의 화학식 A 내지 U 각각의 화합물 및 DSPC, cholesterol, DMG-PEG를 차례대로 첨가하고, 첨가 후 vortexing하여 섞어주었다.
3) 에탄올상(ethanol phase)에는 모든 원료 물질의 합이 12.5 mM 이내로 존재하도록, 필요시 에탄올을 추가하였다.
4) Tube (B)에는 mRNA와 20 mM sodium acetate buffer(pH 4.6)(=3M sodium acetate buffer를 20 mM로 희석하고 1M HCl를 이용하여 pH 4.6으로 적정(titration)하여 준비된 것)를 섞어주었다. 그때 비율은 수상(aqueous phase)의 부피가 에탄올상(ethanol phase) 부피의 총 3배가 되도록 계산하여 첨가하였다.
5) Tube (A)와 Tube (B)의 혼합은 Microfluidics(Ignite, Precision Nanosystem) 기기를 이용하여 수행하였다. Microfluidics 작동 조건은 FRR(Flow Rate Ratio)이 C:R=3:1이었고, TRR(Total Flow Rate)이 12 mL/min이었다.
6) 5)단계의 결과 혼합액을, Amicon-Ultra tube filter(50K)를 사용하여 4,000 rpm에서 1/3수준으로 원심분리하여 농축한 다음, PBS로 3배 희석 후 원심분리 농축하였다. 이 과정을 6회 반복하여, 원하는 volume으로 농축하였다.
3. 제형의 물성 평가
1) 제조된 제형에 대하여, 입도분석기(Dynamic Light Scattering, DLS)를 통해 입자 특성(즉, 제타-평균 입자크기(Zeta-average), 다분산도(PDI) 및 제타-전위(Zeta-potential))을 확인하였으며, 그 결과를 하기 표1에 나타내었다.
2) 제조된 제형에 대하여, Ribo-green assay를 통하여 mRNA 봉입 효율(Encapsulation efficiency)을 확인하였으며, 그 결과를 하기 표 1에 나타내었다.
[표 1]

Claims (10)

  1. 하기에서 선택되는 구조 또는 이의 이온화 형태인 지질:



    여기서,
    상기 구조들 각각에 있어서, R 기들 중 적어도 2개는 Rx이고, 나머지 R 기는 Ry이며,
    Rx는 각각 독립적으로,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20의 정수이며, R1은 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고, R2는 치환되거나 비치환된 불포화 1가 탄화수소기이며, 는 치환되거나 비치환된 메틸렌기를 나타내고,
    Ry는 각각 독립적으로 H, 혹은 치환되거나 비치환된 알킬기이고, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있으며,
    L은 각각 독립적으로 치환되거나 비치환된 알킬렌기이며, 그 구조 내에 임의로 에테르 결합(-O-), 티오에테르 결합(-S-) 또는 디설파이드 결합(-S-S-)을 가질 수 있다.
  2. 제1항에 있어서,
    Rx는 각각 독립적으로,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 20의 정수이며, R1은 치환되거나 비치환된 포화 또는 불포화 2가 C1-12 탄화수소기이고, R2는 치환되거나 비치환된 불포화 1가 C2-24 탄화수소기이며, 는 치환되거나 비치환된 메틸렌기를 나타내고,
    Ry는 각각 독립적으로 H, 혹은 C1-20 알킬기이고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기 및 임의로 치환된 C3-20 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환되며, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있고,
    L은 각각 독립적으로 C1-20 알킬렌기이고, 이는 각각 독립적으로 비치환되거나, -OH, C1-20 알킬, C1-20 알콕시, -NH2, -NH(C1-20알킬), -N(C1-20알킬)2, 임의로 치환된 C3-20 탄소사이클릭 기 및 임의로 치환된 C3-20 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환되는, 지질.
  3. 제2항에 있어서,
    Rx는 각각 독립적으로,,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 2 내지 15의 정수이고, R1은 치환되거나 비치환된 포화 또는 불포화 2가 C1-12 탄화수소기이며, R2는 치환되거나 비치환된 불포화 1가 C2-24 탄화수소기이고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
    Ry는 각각 독립적으로 H, 혹은 C1-10 알킬기이고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환되며, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있고,
    L은 각각 독립적으로 C1-10 알킬렌기이고, 이는 각각 독립적으로 비치환되거나, -OH, C1-10 알킬, C1-10 알콕시, -NH2, -NH(C1-10알킬), -N(C1-10알킬)2, 임의로 치환된 C3-10 탄소사이클릭 기 및 임의로 치환된 C3-10 헤테로사이클릭 기로부터 선택되는 하나 이상에 의하여 치환되는, 지질.
  4. 제3항에 있어서,
    Rx는 각각 독립적으로,로부터 선택되고, 여기서 a, b 및 c는 각각 독립적으로 3 내지 12의 정수이고, R1은 치환되거나 비치환된 C1-12 알킬렌기, 치환되거나 비치환된 C2-12 알케닐렌기 또는 치환되거나 비치환된 C2-12 알키닐렌기이며, R2는 치환되거나 비치환된 C2-24 알케닐기 또는 치환되거나 비치환된 C2-24 알키닐기이고,는 치환되거나 비치환된 메틸렌기를 나타내며,
    Ry는 각각 독립적으로 H, 혹은 C1-6 알킬기이고, 여기서 상기 알킬기는 각각 독립적으로 비치환되거나 -OH 및 -NH2로부터 선택되는 하나 이상에 의하여 치환되며, H가 아닌 두개의 Ry는 이들이 부착된 질소원자와 함께 서로 연결되어 고리 구조를 형성할 수 있고,
    L은 각각 독립적으로 비치환된 C1-6 알킬렌기인, 지질.
  5. 제4항에 있어서, 하기 화학식 A 내지 V로부터 선택되는 어느 하나의 구조를 갖는 것인 지질:


  6. (1) 화학식 a의 화합물을 화학식 b의 화합물과 반응시켜 화학식 c의 화합물을 얻는 단계;
    (2) 화학식 c의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e의 화합물을 얻는 단계; 및
    (3) 화학식 e의 화합물을 화학식 f의 화합물과 반응시킨 후, 반응 결과물을 탈보호화하는 단계;를 포함하는,
    화학식 1-1로 표시되는 구조를 갖는 지질의 제조방법:
    [화학식 a]
    H2N-(CH2)a-C(=O)OH
    [화학식 b]
    OH-R'
    [화학식 c]
    H2N-(CH2)a-C(=O)O-R'
    [화학식 d]

    [화학식 e]
    H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
    [화학식 f]
    H2N-(CH2)1-20-NH-C(=O)O-C(CH3)3
    [화학식 1-1]
    H2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
    상기에서,
    R'은 각각 독립적으로 ,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
    a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
    X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
  7. 제6항에서 얻어진 화학식 e의 화합물을 화학식 g의 화합물과 반응시키는 단계;를 포함하는,
    화학식 1-2로 표시되는 구조를 갖는 지질의 제조방법:
    [화학식 e]
    H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
    [화학식 g]
    H2N-(CH2)1-20-N(C1-20 알킬)2
    [화학식 1-2]
    (C1-20 알킬)2N-(CH2)1-20-N[-CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R']2
    상기에서,
    R'은 각각 독립적으로 ,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
    a, b 및 c는 각각 독립적으로 2 내지 20의 정수이다.
  8. 제6항에서 얻어진 화학식 e의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는,
    화학식 1-3으로 표시되는 구조를 갖는 지질의 제조방법:
    [화학식 e]
    H2C=CH-C(=O)-HN-(CH2)a-C(=O)O-R'
    [화학식 h]
    (C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
    [화학식 1-3]
    A-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A
    상기에서,
    R'은 각각 독립적으로 ,또는이고, 여기서 *는 인접 산소 원자에의 부착점(point of attachment)을 나타내고, 는 치환되거나 비치환된 메틸렌기를 나타내며,
    A는 -CH2-CH2-C(=O)-HN-(CH2)a-C(=O)O-R'이고,
    a, b 및 c는 각각 독립적으로 2 내지 20의 정수이고,
    X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
  9. (1) 화학식 a의 화합물을 화학식 b'의 화합물과 반응시켜 화학식 c'의 화합물을 얻는 단계;
    (2) 화학식 c'의 화합물을 화학식 d의 화합물과 반응시켜 화학식 e'의 화합물을 얻는 단계; 및
    (3) 화학식 e'의 화합물을 화학식 h의 화합물과 반응시키는 단계;를 포함하는,
    화학식 1-4로 표시되는 구조를 갖는 지질의 제조방법:
    [화학식 a]
    H2N-(CH2)a-C(=O)OH
    [화학식 b']
    OH-R2
    [화학식 c']
    H2N-R1-C(=O)O-R2
    [화학식 d]

    [화학식 e']
    H2C=CH-C(=O)-HN-R1-C(=O)O-R2
    [화학식 h]
    (C1-10 알킬)-NH-(CH2)1-20-NH-(C1-10 알킬)
    [화학식 1-4]
    A'-N(C1-10 알킬)-(CH2)1-20-N(C1-10 알킬)-A'
    상기에서,
    A'는 -CH2-CH2-C(=O)-HN-R1-C(=O)O-R2이고,
    R1은 독립적으로 치환되거나 비치환된 포화 또는 불포화 2가 탄화수소기이고,
    R2는 독립적으로 치환되거나 비치환된 불포화 1가 탄화수소기이며,
    a는 2 내지 20의 정수이고,
    X는 F, CI, Br 및 I로 구성된 군으로부터 선택된다.
  10. 제1항 내지 제5항 중 어느 한 항의 지질을 포함하는 약물 전달용 조성물.
KR1020230141510A 2022-11-01 2023-10-20 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법 KR20240066080A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220143883 2022-11-01
KR1020220143883 2022-11-01

Publications (1)

Publication Number Publication Date
KR20240066080A true KR20240066080A (ko) 2024-05-14

Family

ID=90930903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230141510A KR20240066080A (ko) 2022-11-01 2023-10-20 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20240066080A (ko)
WO (1) WO2024096408A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA33064B1 (fr) * 2009-01-28 2012-02-01 Smartcells Inc Systemes à base de conjugués pour administration contrôlée de médicaments
WO2011109294A1 (en) * 2010-03-01 2011-09-09 Dicerna Pharmaceuticals, Inc. Lipid delivery formulations
EP3956303A1 (en) * 2019-04-18 2022-02-23 Translate Bio, Inc. Cystine cationic lipids
CA3162374A1 (en) * 2019-12-20 2021-06-24 So Jin Lee Kit for preparing nanoparticle composition for drug delivery, comprising polylactic acid salt
CA3174407A1 (en) * 2020-04-15 2021-10-21 Dechun Wu Antibody-drug conjugate

Also Published As

Publication number Publication date
WO2024096408A1 (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
AU2017356699B2 (en) Cationic lipids for nucleic acid delivery and preparation thereof
CN112262122B (zh) 化合物或其盐及脂质颗粒
AU781735B2 (en) Manufacture of polyglutamate-therapeutic agent conjugates
AU705147B2 (en) High molecular weight polymer-based prodrugs
JP2011168799A (ja) 化学的に異なる末端基を含むポリ(エチレングリコール)
WO1998007713A1 (en) High molecular weight polymer-based prodrugs
CN114105799B (zh) 一种氨基脂质及其制备方法和应用
JP5949036B2 (ja) ポリオキシアルキレン修飾脂質およびその製造方法
KR20240066080A (ko) 아마이드 및 에스터 작용기를 갖는 지질 및 이의 제조방법
CN114181200B (zh) 一种具有高效基因转染效率的阳离子脂质体及制备与应用
CN117050130A (zh) 脂质化合物及其组合物、制备和用途
CN113214171B (zh) 两亲性树形分子、合成及其作为药物递送系统的应用
KR20240072916A (ko) 약물 전달용 나노입자 조성물
JP6051758B2 (ja) ジアシルグリセロールと結合した分岐型ポリエチレングリコール、その製造方法およびポリエチレングリコール修飾リポソーム
KR100560107B1 (ko) 주사제용 다기능성 폴리숙신이미드계 고분자
CN115197433B (zh) 一种纳米药物载体甲氧基聚乙二醇-聚(l-谷氨酸钠)的制备方法
CN116143707B (zh) 一种碱基可电离脂质及其制备方法与应用
CN114306632B (zh) 一种与人血清白蛋白非共价结合型7-乙基-10-羟基喜树碱衍生物前药、制备及应用
CN114685778B (zh) 长循环阳离子脂质体的合成方法
KR20240066975A (ko) 양이온성 지질 및 이의 제조방법
CN117229160B (zh) 三酯类阳离子脂质化合物、包含其的组合物及用途
CN117209747A (zh) 一种聚乙二醇-多分支脂肪酸酯衍生物及其制法与应用
KR20240072023A (ko) 양이온성 지질 및 이의 제조방법
CN117843603A (zh) 一种可电离脂质材料及其在制备核酸递送载体中的应用
CN114436994A (zh) 金刚烷尾链脂质及其在细胞转染中的应用

Legal Events

Date Code Title Description
E902 Notification of reason for refusal