KR20240027904A - 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물 - Google Patents

용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물 Download PDF

Info

Publication number
KR20240027904A
KR20240027904A KR1020220105039A KR20220105039A KR20240027904A KR 20240027904 A KR20240027904 A KR 20240027904A KR 1020220105039 A KR1020220105039 A KR 1020220105039A KR 20220105039 A KR20220105039 A KR 20220105039A KR 20240027904 A KR20240027904 A KR 20240027904A
Authority
KR
South Korea
Prior art keywords
compound
solubility
linker
dissolved
amino acid
Prior art date
Application number
KR1020220105039A
Other languages
English (en)
Inventor
백이용
김민정
성보경
나근
신우리
심희연
박시은
백규철
정은경
Original Assignee
(주) 에빅스젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에빅스젠 filed Critical (주) 에빅스젠
Priority to KR1020220105039A priority Critical patent/KR20240027904A/ko
Priority to PCT/KR2023/012369 priority patent/WO2024043651A1/ko
Publication of KR20240027904A publication Critical patent/KR20240027904A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물에 관한 것으로, 본 발명의 용해도 개선용 펩티드는 카고와 결합하여 종래 용해도가 극히 낮았던 카고의 용해도를 증가시켜 카고의 약품으로서의 활용가능성을 확대시킬 수 있는 장점이 있다.

Description

용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물 {PEPTIDE FOR IMPROVING SOLUBILITY AND COMPOSITION FOR IMPROVED SOLUBILITY COMPRISING THE SAME}
용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물에 관한 것이다.
HIV(human immunodeficiency virus)의 뉴클레오캡시드 단백질(nucleocapsid, 이하, 'NC'라 명명함)은 바이러스 개체형성을 위한 구조적 역할뿐만 아니라, 바이러스의 생활주기(viral life cycle)에서 기능적으로도 중요한 역할을 하는데, 그 기능을 살펴보면 다음과 같다. 첫째, NC 펩티드는 바이러스의 유전적 포막(genomic encapsidation)에 관여한다. 이러한 기능은 독특한 CCHC 모티프로 구성되는 두 개의 징크 핑거 도메인으로부터 기인하는데, 상기 도메인은 모든 레트로바이러스(retrovirus)에서 높은 보존성을 나타내며, HIV RNA 포장(packaging)과 감염성 바이러스 생산에 필수적인 것으로 알려져 있다. 둘째, NC 펩티드는 바이러스의 역전사 반응(reverse transcription, RT)동안 tRNA 프라이머 어닐링(annealing)과 가닥 이동(strand transfer)을 촉진한다고 알려져 있으며, 이로부터 NC 펩티드가 바이러스 복제(viral replication)에 중요한 기능을 한다는 것을 알 수 있다. 셋째, NC 펩티드는 바이러스의 생활주기에 필요한 핵산 샤페론(chaperone) 활성을 가지며. 최근에는 바이러스 DNA가 숙주세포 염색체에 삽입될 때에도 NC 펩티드가 소정의 역할을 담당한다고 보고되고 있다.
한편, 약물은 용해되어 있는 상태에서만 약리작용을 나타낼 수 있으므로, 약물의 용해도는 약효와 밀접한 관계를 가진다. 물에 잘 녹는 약물의 경우에는 주사제로도 용이하게 제조되고 정제하여 복용하면 위장관에서 용해되나, 난용성 약물의 경우에는 이를 가용화하지 않은 상태에서 복용하면 위장관에서 펠렛과 같은 집합체 상태로 존재하고 단일 분자로 용해되지 않아 흡수되지 않을 수 있다. 또한, 난용성 약물을 가용화하지 않은 상태에서 주사제로 사용하는 경우, 혈관이 막혀 혈전이 생겨 주사제로 사용할 수 없으므로, 약물 용해도는 약물의 제형화에 있어 중요한 문제이다.
약물의 용해에 있어 잘 알려진 방법 중 하나는, 가용화제로서 계면활성제를 사용하는 방법이다. 계면활성제는 분자 내에 친유성기와 친수성기를 모두 가지므로, 물속에서 소수성 탄화수소 사슬이 가운데로 모이고, 친수성 그룹이 물과 만나도록 둥근 공 모양의 마이셀(micelle)을 형성하므로, 마이셀 내에 약물을 봉입시킴으로써 약물을 녹일 수 있다. 다만, 계면활성제를 사용하는 이와 같은 방법은 계면활성제를 고농도로 사용하였을 때, 정맥 내 투여에 적합하지 않을 수 있다. 또한, 마이셀 형성에 대한 임계 농도 이하로 마이크로에멀젼(microemulsion)의 농도가 희석되는 경우에는 마이셀 내에 포함된 약물의 응집이 유도될 수도 있다(Journal of Advanced Pharmacy Education & Research 2 (1) 32-67 (2012) ISSN 2249-3379). 따라서, 계면활성제를 사용하지 않으면 서도 제제의 농도 변화와 관계없이 약물의 용해도를 지속적으로 증가시키는 방법의 개발이 요구되어 왔다.
이에 본 발명자들은 HIV 의 NC 펩티드를 연구한 결과 종래 용해도가 극히 낮았던 물질들이 HIV의 NC 펩티드의 일부 서열과 결합된 경우 용해도가 증가하는 것을 확인하여 본 발명을 완성하였다.
또한, 본 발명자들은 니클로사마이드 (Niclosamide)에 링커를 결합하였을 때 효능이 개선되는 것을 확인하여 본 발명을 완성하였다.
KR 10-2015-0113934 A
본 발명의 일 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하는 용해도 개선용 펩티드를 제공하는 것을 목적으로 한다.
본 발명의 다른 일 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하고, 상기 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)가 결합되어 있는 용해도 개선 조성물을 제공하는 것을 목적으로 한다.
본 발명의 또 다른 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)가 결합하는 단계를 포함하는 용해도 개선 조성물 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 양상은 화학식 1 또는 이의 약학적으로 허용 가능한 염으로 이루어진 화합물을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하는 용해도 개선용 펩티드를 제공한다.
본 명세서에서 용어, "펩티드" 또는 "폴리펩티드"는 펩티드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형의 분자를 의미하며, 아미노산 잔기 4-70개, 바람직하게는 4-40개, 보다 바람직하게는 4-30개, 가장 바람직하게는 4-20개로 이루어져 있다.
상기 서열번호 1로 표시되는 아미노산 서열인 폴리펩티드는 HIV (Human immunodeficiency virus)의 NC 펩티드 내에 존재하는 첫 번째 징크 핑커 도메인과 링커 도메인으로 이루어진 것이고 (ACP 2 펩티드), 상기 서열번호 3으로 표시되는 아미노산 서열인 폴리펩티드는 HIV(Human immunodeficiency virus)의 NC 펩티드 내에 존재하는 링커 도메인에 알라닌을 추가한 것으로 (ACP 5 펩티드), 본 발명자들은 실험을 통해 종래 용해도가 극히 낮아 수용액으로 활용하기 어려운 유효성분들을 상기 서열 각각은 펩티드의 일 말단에 결합한 경우 용해도가 증가하는 것을 확인하였으며, 이를 통해 용해도 증가용 물질로서 활용할 수 있다는 점을 확인하였다.
서열명 Sequence 서열번호
ACP 2 펩티드 VKCFNCGKEGHTARNCRAPRKKG 1
ACP 4 펩티드 ARAPRKKGARAPRKKG 2
ACP 5 펩티드 ARAPRKKG 3
본 발명에서 상기 서열번호 1 또는 3으로 표시되는 아미노산 서열은 서열번호 1 또는 3으로 표시되는 아미노산 서열뿐만 아니라 상기 서열과 40% 이상, 바람직하게는 60% 이상, 더욱 바람직하게는 80% 이상, 보다 더욱 바람직하게는 90% 이상, 더욱 더 바람직하게는 95% 이상, 가장 바람직하게는 99% 이상의 상동성을 나타내는 아미노산 서열로서 실질적으로 용해도 개선의 효과를 발현하는 아미노산 서열이라면 제한없이 포함하며, 이러한 상동성을 갖는 서열로서 실질적으로 서열번호 1 또는 3의 아미노산과 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함됨은 자명하다.
상기 "NC 펩티드"는 레트로바이러스(retrovirus)의 뉴클레오캡시드(nucleocapsid)를 구성하는 폴리펩티드를 의미하는 것으로, 상기 폴리펩티드는 레트로바이러스의 게놈 RNA에 강하게 결합하여 리보 핵산단백질 코어 복합체(ribonucleoprotein core complex)를 형성하는 것으로 알려져 있다.
본 명세서에서 용어, "용해도"는, 생리활성 단백질 또는 펩티드가 인체에 투여하기 적합한 용매에 용해될 수 있는 정도를 의미한다. 구체적으로, 특정 온도에서 주어진 용매에 대하여 용질이 포화된 정도를 나타내는 것일 수 있다. 용해도는 용질의 포화 농도를 결정함으로써 측정할 수 있으며, 예컨대 용매에 용질을 과량으로 첨가하고 이를 교반하고 여과한 다음, 농도를 UV 분광기 또는 HPLC 등을 사용하여 측정할 수 있으나, 이에 제한되는 것은 아니다. 생리활성 단백질 또는 펩티드가 치료용으로 사용되기 위해서는 약리학적으로 유효한 양으로 용매에 용해되는 것이 중요하며, 이는 동결건조 제제의 재구축 시의 농도, 또는 액상 제제의 활성 물질의 농도 등을 결정하는데 중요한 고려 사항이 된다.
본 발명의 일 구체예로, 상기 서열번호 3의 서열은 1 또는 2회 반복되는 것일 수 있다. 구체적으로, 상기 서열번호 3의 서열이 1회 반복될 경우 ACP 5 펩티드에 해당되고, 2회 반복될 경우 ACP4 펩티드에 해당된다.
본 발명의 다른 일 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하고, 상기 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)가 결합되어 있는 용해도 개선 조성물을 제공한다.
본 명세서에서 용어, "용해도 개선 조성물"은 결합된 카고의 용해도를 증가시킬 수 있는 형태를 의미한다.
본 발명의 일 구체예로, 상기 서열번호 3의 서열은 1 또는 2회 반복되는 것일 수 있다. 구체적으로, 상기 서열번호 3의 서열이 1회 반복될 경우 ACP 5 펩티드에 해당되고, 2회 반복될 경우 ACP4 펩티드에 해당된다.
본 발명의 일 구체예에 따르면, 상기 세포 내 운반 대상의 카고는 화학물질, 폴리펩티드, 핵산, 탄수화물 또는 지질일 수 있다.
본 명세서에서 용어, "카고(cargo)"는 세포막 투과 펩티드로서 작용하는 NC 펩티드에 결합하여 세포 내로 운반될 수 있는 화학물질, 작은 분자, 폴리펩티드, 핵산 등을 의미한다.
본 발명의 아미노산 서열에 결합될 수 있는 물질, 즉 카고(cargo)가 될 수 있는 물질은 다양하며, 예를 들어, 단백질(폴리펩티드), 핵산(폴리뉴클레오티드), 화학 물질(약물) 등을 포함하나, 이에 한정되는 것은 아니다. 예를 들어, 약물, 조영제(예를 들어, T1 조영제, 초상자성 물질과 같은 T2 조영제, 방사성 동위 원소 등), 형광 마커, 염색 물질 등이 될 수 있으나, 이에 한정되지는 않는다. 상기 폴리펩티드는 둘 또는 그 이상의 잔기로 구성되는 아미노산의 중합체로 펩티드 및 단백질을 포함한다. 폴리펩티드는 예를 들어, 세포 불멸에 관여하는 단백질(예를 들어, SV40 라지 T 항원 및 텔로머라아제), 항-아폽토틱 단백질(예를 들어, 돌연변이 p53 및 BclxL), 항체, 암유전자(예를 들어, ras, myc, HPV E6/E7 및 아데노바이러스 Ela), 세포 주기 조절 단백질(예를 들어, 사이클린 및 사이클린 의존성 인산화효소) 또는 효소(예를 들어, 녹색 형광 단백질, 베타-갈락토시다아제 및 클로람페니콜 아세틸 트랜스퍼라아제)가 될 수 있으나, 이에 한정하지는 않는다. 또한, 핵산은 예를 들어, RNA, DNA 또는 cDNA가 될 수 있으며, 핵산의 시퀀스는 암호화 부위 서열 또는 비암호화 부위 서열(예를 들어, 안티센스 올리고뉴클레오티드 또는 siRNA)이 될 수 있다. 핵산 카고로서의 뉴클레오티드는 표준 뉴클레오티드(예를 들어, 아데노신, 시토신, 구아닌, 티민, 이노신 및 우라실) 또는 아날로그(예를 들어, 포스포로티오에이트 뉴클레오티드)일 수 있다. 예를 들어, 핵산 카고는 포스포로티오에이트 뉴클레오티드로 구성된 안티센스 시퀀스 또는 RNAi일 수 있다. 상기 화학 물질은 생체 내에서 목적하는 효과를 발현하는 단일 또는 복합 화합물을 의미할 수 있으며, 구체적인 예시로는 사이클로스포린 (Cyclosporin, CsA), 타크로리무스 (Tacrolimus), 시로리무스 (Sirolimus), 탐스로신 (Tamsulosin), 피나스테라이드 (Finasteride), 니클로사마이드 (Nicrosamide) 또는 파크리탁셀 (Paclitaxel) 일 수 있으나, 이에 한정되지는 않는다.
서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열과 세포 내 운반 대상인 카고(cargo) 사이에 링커를 더 포함할 수 있고, 구체적으로 상기 링커에 의해 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열과 세포 내 운반 대상인 카고(cargo)가 결합되어 있을 수 있다. 구체적인 예시로, 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열, 상기 아미노산 서열의 N-말단 또는 C-말단에 결합된 링커 및 상기 링커에 결합된 세포 내 운반 대상인 카고(cargo)를 포함하는 형태로 이루어질 수 있다.
상기 링커는 카고의 용해도 증가 목적에 반하지 않는 공지의 링커 종류를 사용할 수 있으며, 구체적으로 글라이신 링커, 옥살릴 링커, 에틸렌 다이아민 (ethylene diamine, EDA) 링커, 메틸렌 다이아민 (methylene diamine, MEDA) 링커, 아미노에틸 카바모일(aminoethyl carbamoyl) 링커, 아미노메틸 카바모일(aminomethyl carbamoyl) 링커, 에틸아미노 카바메이트형 링커, 말레이미드(maleimide) 링커, 아크릴릭 설포 에틸아민(Acrylic Sulfur Ethylamine) 링커 및 벤질 아민 유도체 링커 중 어느 하나 일 수 있다.
본 발명의 상기 용해도 개선 조성물은 다양한 형태로 활용 또는 포함될 수 있고, 구체적으로는 약학적 조성물, 식품 조성물 등으로 활용 또는 포함될 수 있다.
상기 용해도 개선 조성물이 약학적 조성물로 활용될 경우 약학적으로 허용되는 담체를 포함할 수 있다. 상기 약학적으로 허용되는 담체는 약제의 제조에 통상적으로 이용되는 것으로써, 락토오스, 덱스트로스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제는 Remington: the science and practice of pharmacy 22nd edition (2013)에 상세히 기재되어 있다.
또한, 상기 용해도 개선 조성물은 약학적 조성물로 활용될 경우 그 제형의 제제화에 필요하고 적절한 각종 기제 및/또는 첨가물을 포함할 수 있으며, 그 효과를 떨어트리지 않는 범위 내에서 비이온 계면활성제, 실리콘 폴리머, 체질안료, 향료, 산화 안정화제, 유기 용매, 이온성 또는 비이온성 증점제, 유연화제, 산화방지제, 자유 라디칼 파괴제, 불투명화제, 안정화제, 에몰리언트(emollient), 실리콘, α-히드록시산, 소포제, 보습제, 비타민, 곤충 기피제, 향료, 보존제, 계면활성제, 소염제, 물질 P 길항제, 충전제, 중합체, 추진제, 염기성화 또는 산성화제, 또는 착색제 등 공지의 화합물을 더 포함하여 제조될 수 있다.
상기 용해도 개선 조성물은 약학적 조성물로 활용될 경우에 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있다. 경구 투여의 경우, 정제, 과립제, 분말제, 캡슐제, 환제, 액상제, 시럽제 등과 같은 통상의 제형으로서 투여될 수 있다. 비경구적 투여를 위해서는, 예를 들어 근육내 주사 등과 같은 주사제, 좌약, 경피흡수제, 흡입제제 등의 임의의 제형으로 투여될 수 있다.
상기 용해도 개선 조성물은 약학적 조성물로 활용될 경우에 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약학적 조성물의 투여량은 성인 기준으로 0.001~1000㎎/kg일 수 있다.
또한, 본 발명의 용해도 개선 조성물이 식품 조성물로 활용되는 경우 식품 제조 시에 통상적으로 첨가되는 성분을 포함할 수 있으며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함할 수 있다. 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스, 올리고당 등; 및 폴리사카라이드, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜일 수 있다. 향미제로서 천연 향미제[타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등)] 및 합성 향미제(사카린, 아스파르탐 등)를 사용할 수 있다.
또한, 본 발명의 용해도 개선 조성물이 식품 조성물로 활용되는 경우 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다.
이러한 성분은 독립적으로 또는 조합하여 사용할 수 있으며, 이러한 첨가제의 비율은 식품 조성물 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 용해도 개선 조성물이 식품 조성물로 활용되는 경우 식품, 식품첨가제, 음료, 음료첨가제, 발효유, 건강기능식품 등으로 사용될 수 있다. 식품, 식품첨가제, 음료, 음료첨가제, 또는 건강기능식품으로 사용되는 경우, 각종 식품류, 발효유, 육류, 음료수, 초콜렛, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류, 알코올 음료, 비타민 복합제, 주류 또는 그 밖의 건강기능식품 제형으로 제공될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)를 결합하는 단계를 포함하는 용해도 개선 조성물 제조방법을 제공한다.
본 발명의 방법은 상기 세포 내 전달체들을 이용하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 동일한 내용의 기재는 생략한다.
한편, 전술한 바와 같이 상기 아미노산 서열과 카고 사이에 링커를 더 포함할 수 있고, 이 때는 카고를 링커와 먼저 결합시키고, 카고가 결합된 링커를 상기 아미노산과 결합하는 단계로 제조될 수 있다.
본 발명의 다른 양상은 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열, 상기 아미노산 서열의 N-말단 또는 C-말단에 결합된 링커 및 상기 링커에 결합된 세포 내 운반 대상인 카고(cargo)를 포함하는 용해도 개선용 조성물을 제공한다.
상기 용해도 개선용 조성물은 전술한 용해도 개선용 조성물의 일 구체예와 동일하다.
또한, 본 발명의 다른 양상은 세포 내 운반 대상인 카고(cargo)를 링커에 결합시키는 단계; 및 상기 링커에 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열의 N-말단 또는 C-말단을 결합시키는 단계를 포함하는 용해도 개선 조성물 제조방법을 제공한다.
상기 제조방법은 전술한 용해도 개선 조성물 제조방법의 일 구체예와 동일하다.
본 발명의 다른 양상은 하기 화학식 1 또는 이의 약학적으로 허용 가능한 염으로 이루어진 화합물을 제공한다.
[화학식 1]
상기 화학식 1 은 니클로사마이드에 링커가 결합된 것으로, 상기 링커는 카바메이트 링커인 것이다.
상기 “니클로사마이드(niclosamide)"는 1960년 FDA 승인을 받아 50년 가까이 다양한 기생충 감염 치료에 사용되는 경구형 살리실 아닐리드 유도체로, 최근에는 다양한 종류의 암에 대한 항암 요법 및 다양한 종류의 바이러스 대한 항 바이러스 요법에 사용될 수 있다는 내용이 보고된 바 있다.
전술한 바와 같이 화학식 1의 링커는 카바메이트일 수 있으나, 전술한 다양한 공지의 링커를 치환하여 사용할 수도 있다.
본 발명의 용해도 개선용 펩티드는 카고와 결합하여 종래 용해도가 극히 낮았던 카고의 용해도를 증가시켜 카고의 약품으로서의 활용가능성을 확대시킬 수 있는 장점이 있다.
본 발명의 화합물은 니클로사마이드 단독과 비교하여 개선된 효과, 구체적으로 개선된 항 바이러스 효과를 나타낸다.
도 1은 실험예 1에 따른 결과를 나타내는 사진으로, 50% CsA에서는 사이클로스포린이 침전되는데 비하여, 50% CsA-linker-ACP2 및 50% CsA-linker-ACP4에서는 모두 용해되는 것을 확인할 수 있다.
도 2는 실험예 1에 따른 결과를 나타내는 사진으로, 2% CsA에서는 사이클로스포린이 침전되나, 2% CsA-linker-ACP2 및 2% CsA-linker-ACP4에서는 모두 용해되는 것을 확인할 수 있다.
도 3은 실험예 2에 따른 결과를 나타내는 사진으로, 0.0005% Tacrolimus/PBS에서는 타크로리무스가 침전되지 않으나, 0.5% Tacrolimus/PBS 및 5% Tacrolimus/PBS에서는 타크로리무스의 침전을 확인할 수 있고, 동일한 농도인 5% ACP2-Tacrolimus/PBS 및 5% ACP4-Tacrolimus/PBS에서는 침전되는 것 없이 모두 용해되는 것을 확인할 수 있다.
도 4는 실험예 2에 따른 결과를 나타내는 사진으로, 5% Tacrolimus-ACP2 /PBS 및 50% Tacrolimus-ACP4/PBS 모두 침전 없이 모두 용해되는 것을 확인할 수 있다.
도 5는 실험예 2에 따른 결과를 나타내는 사진으로, 시로리무스 (sirolimus)는 단독으로 용해하였을 때 10mg/mL에서도 과포화 상태를 확인한 반면, ACP2-링커-시로리무스는 50mg/mL, ACP4-링커-시로리무스는 20mg/mL에서도 모두 용해된 것을 확인할 수 있다.
도 6은 실험예 3에 따른 결과를 나타내는 사진으로, 탐스로신 (Tamsulosin HCl)은 단독으로 용해하였을 때 20mg/mL에서 과포화 된 것을 확인한 반면, 탐스로신-Gly-ACP4는 동일한 농도에서 모두 용해된 것을 확인할 수 있다.
도 7은 실험예 4에 따른 결과를 나타내는 사진으로, Finasteride는 1mg/ml에서 용해도가 떨어져 과포화 상태인 반면, Finasteride-ACP4는 10배 농도인 10mg/ml에서 모두 용해된 것을 확인할 수 있다.
도 8 내지 9은 실험예 5에 따른 결과를 나타내는 사진으로, Niclosamide 는 1mg/ml(도8) 에서 용해도가 떨어져 과포화 상태인 반면, Niclosamide-linker, ACP4-linker-niclosamide는 10배 농도인 10mg/ml, ACP5-linker-niclosamide 는 20배 농도인 20mg/ml에서 모두 용해된 것을 확인할 수 있다(도9). HPLC 분석 시, 용해도는 Niclosamide-linker는 19.31mg/ml, ACP4-linker-niclosamide는 305.83mg/ml로서 확인된다.
도 10은 실험예 6에 따른 결과를 나타내는 사진으로, 파크리탁셀 (Paclitaxel)은 1mg/mL의 농도에서도 용해되지 않은 파크리탁셀을 확인할 수 있으나, ACP2-MI-linker1-PAC(I), ACP2-MI-linker1-PAC(II) 는 50mg/mL에서 완전용해된 것을 확인할 수 있고, ACP4-NH-Et-S-MI-PTX 는 100mg/mL에서, PTX-Acr-S-Et-NH-ACP4 는 20mg/mL에서 완전 용해된 것을 확인할 수 있다.
도 11은 실험예 7에 따른 결과를 나타내는 사진으로, Niclosamide는 IC50 0.24 μM, Niclosamide-linker는 IC50 0.15 μM, ACP4-linker-niclosamide는 IC50 12.16 μM 로서 Niclosamide에 비해 Niclosamide-linker의 SARS-Cov-2에 대한 항 바이러스 효능이 향상된 것을 확인 할 수 있다.
이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 용해도 개선 조성물의 제조
1-1. 사이클로스포린 용해도 개선 조성물 제조
Bromoacetyl bromide 1.7ml에 100mg의 CsA-OH를 투입하고 실온에서 30분 교반 후 50mg의 4-methylaminopyridine을 투입하였다. 실온에서 1시간 교반 후 반응액을 12ml의 포화 NaHCO3 수용액에 서서히 가하였다. NaHCO3를 추가로 가하여 pH를 8로 조정한 후 10ml의 MC로 2회 추출하여 유기층을 얻었다. 유기층을 포화 NaHCO3 수용액 10ml 및 NaCl 수용액 10ml로 세척하고 무수 MgSO4로 건조하였다. 용매를 감압하여 제거한 후 column chromatography (acetone:hexane = 1:2)로 정제하여 80mg의 고체화합물 (A)를 얻었다 (수율 73%).
화합물 B 60mg (0.045 mmole)을 DMF 1ml에 용해한 후 9mg의 sodium azide를 투입한 후 100℃에서 4시간 반응시켰다. 용매를 감압 증류하여 제거한 후 column chromatography (acetone:hexane = 1:2)를 이용하여 고체화합물 38mg을 얻었다 (수율 65%).
화합물 B 30mg (0.023mmole)을 THF 1ml에 용해하고 triphenylphosphine 9mg을 투입하고 실온에서 6시간 교반 하였다. 증류수 0.1ml를 주입한 후 실온에서 5시간 교반 후 감압하여 완전히 농축하였다. 농축 잔류물을 column chromatography (acetone:hexane = 1:1)로 정제하여 고체화합물 23mg을 얻었다 (수율 80%).
정제수 3ml 와 methanol 3ml 혼합용액에 sodium bicarbonate 30mg 과 ACP4 300mg (0.17mmole)을 투입한 후 di-tert-butyl dicarbonate 500mg을 주입하고 24시간 교반 하였다. 0.1N HCl 3.6ml를 가하고 30분 교반 후 감압하여 용매를 완전히 제거한 후 ethanol 10ml를 주입하여 용해하였다. 0.2μm membrane filter를 이용하여 고체를 여과 제거한 후 여액을 감압 농축하여 385mg의 고체 화합물을 얻었다 (수율 100%).
화합물 C 20mg (0.016mmole), 화합물 D 45mg (0.020mmole)을 DMF 1ml에 용해한 후 HATU 15mg (0.040 mmole)을 투입한 후 triethylamine (10μl)를 주입하고 실온에서 6시간 교반하였다. 반응 완료 후 감압하여 용매를 제거한 후 reverse phase column chromatography (H2O, ACN gradient)를 이용하여 34mg의 흰색 고체를 얻었다 (수율 60%).
화합물 E 30mg (0.0086mmole)을 MC 100μl 에 용해한 후 trifluoroacetic acid 1ml를 주 입하였다. 실온에서 6시간 교반 후 농축하고 reverse phase column chromatography (H2O, ACN gradient)를 이용하여 18mg 의 사이클로스포린 용해도 개선 조성물 (흰색 고체)을 얻었다 (수율 71%).
상기와 동일한 방법으로 ACP4 대신 ACP2를 이용하여 사이클로스포린 용해도 개선 조성물을 얻었다.
1-2. 타크로리무스, 시로리무스 용해도 개선 조성물 제조
ACP2, 4는 자유 아미노 말단을 가지도록 SPPS를 이용하여 합성한 뒤 건조 DMF (2mL)로 분산하고 42-O-(4-니트로헥시카르보닐) 라파마이신 (42-O-(4-Nitrophenoxycarbonyl) rapamycin, 100mg, 0.092 mmol)과 피리딘 (50 μl) 혼합물이 포함된 건조 DMF (10mL)에 25℃ 첨가되었고 14시간 동안 교반되었다. 수지는 3시간동안 TFA:물:TIS 비율 90:5:5의 조건에서 여과, 절단되었고, 결합물들은 다이이소프로필에터 (Diisopropyl ether)에서 침전되었다. 그리고, 최초 반응물은 물에 용해시키고, RP컬럼 크로마토그래피에서 물, 아세토니트링 경사를 이용하여 정제하였다.
타크로리무스 용해도 개선 조성물 또한 동일한 방법으로 제조되었다.
1-3. 탐스로신 용해도 개선 조성물 제조
Tamsulosin hydrochloride 445mg (1.00 mmole)을 DMF 5ml 용해한 후 HATU 494mg을 투입하고 0.3ml의 triethylamine을 주입하였다. 실온에서 10분 교반 후 N-(tert-butoxycarbonyl)glycine 200mg을 투입한 후 5시간 교반하였다. 물 15ml와 dichloromethane 20ml를 주입한 후 층분리하여 유기층을 얻었다. 유기층을 무수 MgSO4 로 건조한 후 농축한 후 column chromatography로 분리하여 흰색 화합물 (B) 480mg 을 얻었다 (수율 85%).
화합물 C 300mg (0.53 mmole)을 MC 3 ml에 용해한 후 trifluoroacetic acid 5ml를 주입하고 실온에서 3시간 교반하였다. 감압 농축한 후 sodium bicarbonate 포화수용액 10ml와 ethyl acetate 10ml 로 층분리하여 유기층을 얻었다. 유기층을 무수 MgSO4로 건조한 후 2 M HCl ethyl acetate 용액을 적가하여 흰색 고체 (화합물 (C)) 218mg 을 얻었다 (수율 82%).
정제수 3ml 와 methanol 3ml 혼합용액에 sodium bicarbonate 30mg 과 ACP4 (화합물 (D)) 300mg (0.17mmole)을 투입한 후 di-tert-butyl dicarbonate 500mg을 주입하고 24시간 교반하였다. 감압하여 용매를 완전히 제거한 후 ethanol 10ml를 주입하고 1시간 교반 한 후 0.2μm membrane filter를 이용하여 여과하였다. 여과된 ethanol 용액을 감압 농축하여 385mg의 고체 화합물 (화합물 (E))을 얻었다. 정제하지 않고 다음 반응에 사용하였다. LRMS (ESI) m/z: 563 [M+4H]4+ , 750 [M+3H] 3+ , 1125 [M+2H]2+
화합물 E 50mg (22μmole)을 DMF 5ml 용해한 후 HATU 13mg을 투입하고 10ul의 triethylamine을 주입하였다. 실온에서 10분 교반 후 화합물 (C) 15mg을 투입한 후 5시간 교반하였다. 감압 농축하여 DMF를 제거한 후 C18 reverse phase column chromatography (ACN water gradient elution ; ACN 0~70%)로 정제하여 흰색 고체 (화합물 (F), 5Boc-ACP4-Gly-tamsulosin) 21mg 을 얻었다 (수율 : 35 %).
화합물 (F) 21mg 에 TFA 1ml를 가한 후 실온에서 3시간 교반 하였다. 반응 완료 후 감압 농축하고 C18 reverse phase column chromatography (ACN water gradient elution; ACN 0~30%)를 이용하여 정제하여 흰색 고체 (화합물 (G))0.7mg 을 얻었다 (수율 4 %).
1-4. 피나스테라이드 용해도 개선 조성물 제조
Finasteride 372 mg (1.00mmole)을 6N HCl 20ml 투입한 후 6시간 환류하였다. 반응액을 실온으로 냉각한 후 ethyl acetate 20ml 추출하여 유기층을 얻었다. 유기층을 무수 MgSO4 로 건조한 후 농축한 후 column chromatography로 분리하여 흰색 화합물 (B) 219mg을 얻었다 (수율 69%).
화합물 C 159mg (0.50 mmole)을 DMF 2ml 용해한 후 HATU 210mg을 투입하고 200ul의 triethylamine을 주입하였다. 실온에서 10분 교반 후 N-(tert-Butoxycarbonyl)ethylenediamine 100mg을 투입하고 5시간 교반하였다. 감압 농축하여 DMF를 제거한 후 C18 reverse phase column chromatography (MeOH water gradient elution; MeOH 0~70%)로 정제하여 흰색 고체 184mg을 얻었다 (수율 80%).
화합물 (C) 150mg (0.326 mmole)을 ethyl acetate 5ml에 용해한 후 HCl 2N ethyl acetate 용액 5ml를 주입하고 6시간 교반하였다. 생성된 고체를 여과하고 ether로 세척하여 백색 의 화합물 (D) 96mg을 얻었다 (수율 74%).
정제수 3ml 와 methanol 3ml 혼합용액에 sodium bicarbonate 30mg 과 ACP4 300mg (0.17mmole)을 투입한 후 di-tert-butyl dicarbonate 500mg을 주입하고 24시간 교반 하였다. 감압하여 용매를 완전히 제거한 후 ethanol 10ml를 주입하고 1시간 교반 한 후 0.2μm membrane filter를 이용하여 여과하였다. 여과된 ethanol 용액을 감압 농축하여 385mg의 고체 화합물을 얻었다. 정제하지 않고 다음 반응에 사용하였다.
화합물 E 100mg (44μmole)을 DMF 5ml 용해한 후 HATU 26mg을 투입하고 20ul의 triethylamine을 주입하였다. 실온에서 10분 교반 후 화합물 (C) 20mg을 투입한 후 10시 간 교반하였다. 감압 농축하여 DMF를 제거한 후 C18 reverse phase column chromatography (ACN water gradient elution ; ACN 0~70%)로 정제하여 흰색 고체 66mg을 얻었다 (수율 : 58 %).
화합물 (F) 60mg 에 TFA 1ml를 가한 후 실온에서 3시간 교반 하였다. 반응 완료 후 감압 농축하고 C18 reverse phase column chromatography (ACN water gradient elution ; ACN 0~30%)를 이용하여 정제하여 피나스테라이드 용해도 개선 조성물 (흰색 고체) 39mg을 얻었다 (수율 82%).
1-5. 니클로사마이드 용해도 개선 조성물 제조
1-5-1. ACP4-linker-niclosamide
(1) 화합물 A
Sodium bicarbonate 포화 수용액 50ml에 methanol 50ml와 ethanolamine 3.1g (0.05mole) 을 주입하고 0℃로 냉각한 후 di-tert-butyl dicarbonate 13g을 서서히 주입하고 실온에서 12시간 교반 하였다. 반응 완료 후 MC 100ml와 정제수 50ml를 가하고 층 분리하여 얻은 유기층을 0.1N HCl 100ml, brine 100ml를 이용하여 순차적으로 세척하고 anhydrous magnesium sulfate로 건조한 후 농축하여 오일 형태의 화합물 6.9g을 얻었으며 정제하지 않고 다음 반응에 사용하였다. 수율 85%
(2) 화합물 B
화합물 A 5.0g (31 mmole)을 MC 50ml에 용해한 후 triethylamine 8ml를 주입하고 0℃로 냉각하였다. p-Toluenesulfonyl chloride 6.2g (33mmole) 을 투입하고 실온에서 6시간 교 반 한 후 정제수 50ml를 주입하였다. 층 분리하여 얻은 유기층을 0.1N HCl 50ml, brine 50ml를 이용하여 순차적으로 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축하였다. Column chromatography (EA : Hex = 1 : 1)를 이용하여 점성 있는 화합물 7.6 g을 얻었다. 수율 78%
(3) 화합물 C
화합물 B 6.0g (19mmole)을 ethanol 30ml에 용해하고 methylamine 40% 수용액 10ml 및 potassium iodide 100mg을 가한 후 50℃에서 6시간 교반 하였다. 반응 완료 후 감압하 여 완전히 농축하였다. Methylene chloride 50ml 와 정제수 20ml로 층 분리하여 유기층을 얻은 후 anhydrous magnesium sulfate로 건조하고 감압 농축하여 점성 있는 액상의 화합 물 1.8g을 얻었다. 수율 55%
(4) 화합물 D
Methylene chloride 5ml에 triphosgene 891mg (3.00mmole)을 용해한 후 0℃로 냉각하였 다. 화합물 C 1.50g (8.70mmole)과 pyridine 2.1ml의 methylene chloride(10ml) 용액을 서서히 주입한 후 실온에서 30분 교반하고 0.1N HCl 15ml 를 주입하였다. 유기층을 분리한 후 0.1N HCl 15ml로 재차 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축 하여 점성있는 액상의 화합물 1.48g을 얻었다. 수율 72%
(5) 화합물 E (5Boc-ACP4)
정제수 10ml 와 methanol 15ml 혼합용액에 sodium bicarbonate 1.00g 과 ACP4 900mg (0.51mmole)을 투입한 후 di-tert-butyl dicarbonate 840mg을 주입하고 24시간 교반 하였 다. 감압하여 용매를 완전히 제거한 후 ethanol 30ml를 주입하여 용해하였다. 0.2um membrane filter를 이용하여 고체를 여과 제거한 후 여액을 감압 농축하였다. Methanol 10ml로 용해한 후 reverse phase column chromatography (MeOH 20 -> 0%)를 이용하여 840 mg의 흰색 고체화합물을 얻었다. 수율 73%
(6) 화합물 F
Anhydrous tetrahydrofuran 10ml에 niclosamide 980mg (3.00mmole), 화합물 D 710mg, N,N-dimethylaminopyridine 400mg을 가한 후 4시간 환류 하였다. 반응 완료 후 정제수 30ml와 MC 30ml를 주입하고 층 분리하여 유기층을 얻었다. 유기층을 anhydrous magnesium sulfate로 건조하고 감압 농축한 후 column chromatography (EA : Hex = 1 : 2) 를 이용하여 미황색의 고체화합물 705mg 을 얻었다. 수율 44%
(7) 화합물 G
화합물 F 600mg (1.14mmole)에 1.3N HCl ethyl acetate solution 10ml를 주입하고 8시간 교 반 후 생성된 고체를 여과하고, 무수 ethyl acetate 10ml로 세척한 후 건조하여 427mg의 흰색 고체화합물을 얻었다. 수율 88%
(8) 화합물 H
Anhydrous DMF 15ml에 화합물 E 800mg (0.356mmole) 용해한 후 HATU 203mg (0.53mmole), triethylamine (200 μl)을 투입하고 실온에서 10분 교반 한 후 화합물 G 182mg (0.427mmole)을 투입하고 실온에서 3시간 교반 하였다. 반응 완료 후 감압 농축하 고 C18 reverse phase column chromatography (ACN water gradient elution ; ACN 0~100%) 를 이용하여 정제하여 흰색 고체 364mg 을 얻었다. 수율 40%
(9) 화합물 I (Target Compound)
화합물 H 350mg (0.137mmole)에 50% TFA MC 용액 10ml를 가한 후 실온에서 3시간 교반 하였다. 반응 완료 후 감압 농축하고 C18 reverse phase column chromatography (ACN water gradient elution ; ACN 0~70%)를 이용하여 정제하여 흰색 고체 144mg 을 얻었다. 수율 49%
1-5-2. Niclosamide-linker
(1) 화합물 A
Sodium bicarbonate 포화 수용액 50ml에 methanol 50ml와 ethanolamine 3.1g (0.05mole) 을 주입하고 0℃로 냉각한 후 di-tert-butyl dicarbonate 13g을 서서히 주입하고 실온에서 12시간 교반 하였다. 반응 완료 후 MC 100ml와 정제수 50ml를 가하고 층 분리하여 얻은 유기층을 0.1N HCl 100ml, brine 100ml를 이용하여 순차적으로 세척하고 anhydrous magnesium sulfate로 건조한 후 농축하여 오일 형태의 화합물 6.9g을 얻었으며 정제하지 않고 다음 반응에 사용하였다. 수율 85%
(2) 화합물 B
화합물 A 5.0g (31 mmole)을 MC 50ml에 용해한 후 triethylamine 8ml를 주입하고 0℃로 냉각하였다. p-Toluenesulfonyl chloride 6.2g (33mmole) 을 투입하고 실온에서 6시간 교 반 한 후 정제수 50ml를 주입하였다. 층 분리하여 얻은 유기층을 0.1N HCl 50ml, brine 50ml를 이용하여 순차적으로 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축하였다. Column chromatography (EA : Hex = 1 : 1)를 이용하여 점성 있는 화합물 7.6 g을 얻었다. 수율 78%
(3) 화합물 C
화합물 B 6.0g (19mmole)을 ethanol 30ml에 용해하고 methylamine 40% 수용액 10ml 및 potassium iodide 100mg을 가한 후 50℃에서 6시간 교반 하였다. 반응 완료 후 감압하 여 완전히 농축하였다. Methylene chloride 50ml 와 정제수 20ml로 층 분리하여 유기층을 얻은 후 anhydrous magnesium sulfate로 건조하고 감압 농축하여 점성 있는 액상의 화합 물 1.8g을 얻었다. 수율 55%
(4) 화합물 D
Methylene chloride 5ml에 triphosgene 891mg (3.00mmole)을 용해한 후 0℃로 냉각하였다. 화합물 C 1.50g (8.70mmole)과 pyridine 2.1ml의 methylene chloride(10ml) 용액을 서 서히 주입한 후 실온에서 30분 교반하고 0.1N HCl 15ml 를 주입하였다. 유기층을 분리한 후 0.1N HCl 15ml로 재차 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축 하여 점성있는 액상의 화합물 1.48g을 얻었다. 수율 72%
(5) 화합물 F
Anhydrous tetrahydrofuran 10ml에 niclosamide 980mg (3.00mmole), 화합물 D 710mg, N,N-dimethylaminopyridine 400mg을 가한 후 4시간 환류 하였다. 반응 완료 후 정제수 30ml와 MC 30ml를 주입하고 층 분리하여 유기층을 얻었다. 유기층을 anhydrous magnesium sulfate로 건조하고 감압 농축한 후 column chromatography (EA : Hex = 1 : 2) 를 이용하여 미황색의 고체화합물 705mg 을 얻었다. 수율 44%
(6) 화합물 G (Target compound)
화합물 F 600mg (1.14mmole)에 1.3N HCl ethyl acetate solution 10ml를 주입하고 8시간 교 반 후 생성된 고체를 여과하고, 무수 ethyl acetate 10ml로 세척한 후 건조하여 427mg의 흰색 고체화합물을 얻었다. 수율 88%
1-5-3. ACP5-linker-niclosamide
(1) 화합물 A
Sodium bicarbonate 포화 수용액 50ml에 methanol 50ml와 ethanolamine 3.1g (0.05mole) 을 주입하고 0℃로 냉각한 후 di-tert-butyl dicarbonate 13g을 서서히 주입하고 실온에서 12시간 교반 하였다. 반응 완료 후 MC 100ml와 정제수 50ml를 가하고 층 분리하여 얻은 유기층을 0.1N HCl 100ml, brine 100ml를 이용하여 순차적으로 세척하고 anhydrous magnesium sulfate로 건조한 후 농축하여 오일 형태의 화합물 6.9g을 얻었으며 정제하지 않고 다음 반응에 사용하였다. 수율 85%
(2) 화합물 B
화합물 A 5.0g (31mmole)을 MC 50ml에 용해한 후 triethylamine 8ml를 주입하고 0℃로 냉 각하였다. p-Toluenesulfonyl chloride 6.2g (33mmole) 을 투입하고 실온에서 6시간 교반 한 후 정제수 50ml를 주입하였다. 층 분리하여 얻은 유기층을 0.1N HCl 50ml, brine 50ml 를 이용하여 순차적으로 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축 하였다. Column chromatography (EA : Hex = 1 : 1)를 이용하여 점성 있는 화합물 7.6 g을 얻었다. 수율 78%
(3) 화합물 C
화합물 B 6.0g (19mmole)을 ethanol 30ml에 용해하고 methylamine 40% 수용액 10ml 및 potassium iodide 100mg을 가한 후 50℃에서 6시간 교반 하였다. 반응 완료 후 감압하여 완전히 농축하였다. Methylene chloride 50ml 와 정제수 20ml로 층 분리하여 유기층을 얻은 후 anhydrous magnesium sulfate로 건조하고 감압 농축하여 점성 있는 액상의 화합물 1.8g을 얻었다. 수율 55%
(4) 화합물 D
Methylene chloride 5ml에 triphosgene 891mg (3.00mmole)을 용해한 후 0℃로 냉각하였다. 화합물 C 1.50g (8.70mmole)과 pyridine 2.1ml의 methylene chloride(10ml) 용액을 서서히 주입한 후 실온에서 30분 교반하고 0.1N HCl 15ml를 주입하였다. 유기층을 분리한 후 0.1N HCl 15ml로 세척한 후 anhydrous magnesium sulfate로 건조하고 감압 농축하여 점성있는 액상의 화합물 1.48g을 얻었다. 수율 72%
(5) 화합물 E (3Boc-ACP5)
정제수 10ml 와 methanol 15ml 혼합용액에 sodium bicarbonate 1.00g 과 ACP5 1000mg (1.133mmole)을 투입한 후 di-tert-butyl dicarbonate 1100mg(5.046mmole)을 주입하고 24 시간 교반 하였다. 감압하여 용매를 완전히 제거하였다. Methanol 10ml로 희석한 후 reverse phase column chromatography (MeOH 20 -> 80%) 로 정제하여 940mg의 백색 고체를 얻었다. 수율 70%
(6) 화합물 F
Anhydrous tetrahydrofuran 10ml에 niclosamide 980mg (3.00mmole), 화합물 D 710mg, N,N-dimethylaminopyridine 400mg을 가한 후 4시간 환류 하였다. 반응 완료 후 정제수 30ml와 MC 30ml를 주입하고 층 분리하여 유기층을 얻었다. 유기층을 anhydrous magnesium sulfate로 건조하고 감압 농축한 후 column chromatography (EA : Hex = 1 : 2) 를 이용하여 미황색의 고체화합물 705mg 을 얻었다. 수율 44%
(7) 화합물 G
화합물 F 600mg (1.14mmole)에 1.3N HCl ethyl acetate solution 10ml를 주입하고 8시간 교 반 후 생성된 고체를 여과하고, 무수 ethyl acetate 10ml로 세척한 후 건조하여 427mg의 흰색 고체화합물을 얻었다. 수율 88%
(8) 화합물 H
Anhydrous DMF 10ml에 화합물 E 140mg (0.118mmole)을 용해한 후 HATU 67mg (0.18mmole), triethylamine (100μl)을 투입하고 실온에서 10분 교반 한 후 화합물 G 76mg (0.18mmole)을 투입하고 실온에서 3시간 교반 하였다. 반응 완료 후 감압 농축하고 reverse phase column chromatography (MeOH water gradient elution ; MeOH 0~100%)로 정제하여 흰색 고체 85mg 을 얻었다. 수율 45%
(9) 화합물 I (Target Compound)
화합물 H 50mg (0.032mmole)에 50% TFA MC 용액 3ml를 가한 후 실온에서 5시간 교반 하였다. 반응 완료 후 감압 농축하고 C18 reverse phase column chromatography (MeOH water gradient elution ; MeOH 10~95%)를 이용하여 정제하여 흰색 고체 24mg 을 얻었다. 수율 59%
1-6. 파크리탁셀 용해도 개선 조성물 제조
1-6-1. ACP2-linker-paclitaxel
Acetic acid 100ml에 5.00g의 6-aminohexanoic acid와 3.74g의 maleic anhydride를 용해한 후 8시간 환류하였다. 감압하여 acetic acid를 제거한 후 물 50ml와 ethyl acetate 50ml를 가한 후 층을 분리하여 유기층을 얻었다. 유기층을 무수 MgSO4로 건조한 후 농축하고 이를 silica gel column chromatography (EA:Hex =1:1)를 이용하여 정제하였다 (화합물 A (6-maleimidohexanoic acid)).
화합물 A (211mg, 1.00 mmole)을 dichloromethane 10ml에 용해한 후 thionyl chloride 2ml 를 주입하고 실온에서 5시간 교반하였다. 감압하여 용매와 여분의 thionyl chloride를 제거 한 후 toluene 10ml를 주입한 후 다시 감압 농축하여 thionyl chloride를 완전히 제거하여 점성 있는 액체화합물 (화합물 B (6-maleimidohexanoyl chloride)) 을 얻었다. 화합물은 정제하지 않고 다음 반응에 그대로 사용하였다.
Paclitaxel 100mg (0.117 mmole) 을 MC 1 ml에 용해한 후 triethylamine 40μl를 주입하고 0℃로 냉각하였다. 화합물 B 53mg을 MC 0.2ml에 용해하여 주입하고 6시간 교반하였다. 용매를 감압하여 제거한 후 column chromatography (EA:MeOH=20:1)로 정제하여 58mg 의 백색 고체화합물 (화합물 C (PAC-MI)) 을 얻었다 (수율 47%).
ACP2 100mg (0.039mmole)을 5ml의 0.05M sodium phosphate buffer (pH 7.0)에 용해한 후 화합물 C 41mg (0.039mmole)을 DMF 0.2ml에 용해하여 주입하고 실온에서 12시간 교반 하였다. 감압하여 용매를 제거한 후 50% methanol 수용액 1ml로 용해한 후 reverse phase column chromatography (ACN 45% -> ACN 70%)를 이용하여 분리하였다. 분취된 부분을 농축하여 ACP2-MI-PAC(I), ACP2-MI-PAC(II)를 각각 15mg, 10mg 얻었다 (화합물 D (ACP2-MI-PAC I, ACP2-MI-PAC II)). 각 화합물은 ACP2에 화합물 C가 하나 결합된 화합물이며, ACP2에 존재하는 3개의 sulfhydryl group 중 어느 위치에 결합되어 있는지는 확인되지 않았다. 다만 ACP2-MIPAC I 은 분자 내 disulfide 결합이 존재하지 않는 화합물, ACP2-MI-PAC II 는 분자 내 disulfide 결합이 형성된 화합물로 추정된다.
1-6-2. ACP4-NH-Et-S-MI-PTX
정제수 3ml 와 methanol 5ml 혼합용액에 sodium bicarbonate 300mg 과 ACP4 300mg (0.17mmole)을 투입한 후 di-tert-butyl dicarbonate 280mg을 주입하고 24시간 교반하였다. 감압하여 용매를 완전히 제거한 후 ethanol 10ml를 주입하여 용해하였다. 0.2mm membrane filter를 이용하여 고체를 여과 제거한 후 여액을 감압 농축하였다. Methanol 5ml로 용해한 후 reverse phase column chromatography (MeOH 20 -> 90%)를 이용하여 280mg의 흰색 고체 화합물 (5Boc-ACP4)을 얻었다(수율 73%).
Acetic acid 100ml에 6-aminohexanoic acid 5.00g(38.1mmole)과 maleic anhydride 3.74g(38.2mmole)을 용해한 후 8시간 환류하였다. 감압하여 acetic acid를 제거하고 물 50ml와 ethyl acetate 50ml를 가한 후 층을 분리하여 유기층을 얻었다. 유기층을 무수 MgSO4로 건조한 후 농축하고 이를 silica gel column chromatography (EA:Hex =1:1)를 이용하여 정제하여 흰색의 고체 화합물 (A) 6.2g을 얻었다 (수율 77%).
화합물 (A) (211mg, 1.00mmole)을 THF 5ml에 용해한 후 oxalyl chloride 1.5mmole을 주입하고 DMF 1 방울을 주입한 후 실온에서 30분 교반하였다. 감압하여 용매를 제거하고 다음 반응에 그대로 사용하였다(화합물 B; 6-maleimidohexanoyl chloride).
화합물 (B) 120mg (0.52mmole)에 MC 3ml를 주입한 후 paclitaxel 300mg (0.35mmole)을 투입하고 triethylamine 87ml를 주입 한 후 실온에서 2시간 교반하였다. 용매를 감압하여 제거한 후 column chromatograph (EA: HEX =1:1)로 정제하여 250mg 의 백색 고체 화합물 (C; PTX-MI)을 얻었다 (수율 68 %).
2-aminoethanthiol 3.91g을 trifluoroacetic acid 40 ml 에 용해한 후 14.1g의 trityl chloride를 투입하였다. 실온에서 3시간 교반한 후 감압하여 용매를 제거하였다. Ethyl acetate 50ml를 가하여 용해한 후 3N NaOH 수용액 15ml를 이용하여 4회 세척하고 증류수 15ml로 세척한 후 무수 MgSO4를 이용하여 유기층을 건조하였다. 감압 농축한 후 dichloromethane과 hexane으로 재결정하여 13.8g의 흰색 고체 화합물 (D)을 얻었다(수율 85%).
DMF 2ml에 5Boc-ACP4 210mg (93.493 mmole), HATU 53.2mg (1.5eq), triethylamine 100ml를 주입하고 실온에서 5분 교반한 후 화합물 (D) 44.8mg(1.5eq)을 투입하였다. 실온에서 3시간 교반 후 acetonitrile 40ml를 가하여 얻은 고체 화합물을 C18 reverse phase column chromatography를 이용하여 정제하여 155mg의 흰색 화합물 (E)을 얻었다 (수율 65%).
화합물 (E) 100mg을 dichloromethane 1ml에 용해한 후 triethylsilane 100mg을 주입하고 trifluoroacetic acid 3ml를 주입하였다. 실온에서 1시간 교반 후 감압 농축 하고 reverse phase column chromatography (MeOH 30 -> 70%)를 이용하여 62mg의 흰색 고체 화합물 (F)을 얻었다 (수율 88%).
화합물 (F) 60mg (0.034 mmole)을 5ml의 0.05M sodium phosphate buffer (pH 7.0)에 용해한 후 화합물 (C) 52mg (0.050 mmole)을 methanol 0.2ml에 용해하여 주입하고 실온에서 12시간 교반하였다. 감압하여 용매를 제거한 후 10% methanol 수용액 1ml로 용해한 후 reverse phase column chromatography (MeOH 10 -> 85%)를 이용하여 분리하였다. 분취된 부분을 농축하여 흰색 고체 화합물 (G) 41mg을 얻었다 (수율 42%).
1-6-3. PTX-Acr-S-Et-NH-ACP4
정제수 5ml 와 methanol 8ml 혼합용액에 sodium bicarbonate 500mg 과 ACP4 500mg (0.29mmole)을 투입한 후 di-tert-butyl dicarbonate 470mg을 주입하고 24시간 교반하였다. 감압하여 용매를 완전히 제거한 후 ethanol 10ml를 주입하여 용해하였다. 0.2mm membrane filter를 이용하여 고체를 여과 제거한 후 여액을 감압 농축하였다. Methanol 5ml로 용해한 후 reverse phase column chromatography (MeOH 20 -> 90%)를 이용하여 280mg의 흰색 고체 화합물 (5Boc-ACP4)을 얻었다(수율 70%).
Benzoyl chloride 8.44g에 화합물 (A) 2.16g, hydroquinone 5mg을 가한 후 200℃의 oil bath를 이용하여 증류하였다. 60~85℃에서 끓어 나오는 화합물을 수거한 후 이를 다시 분별증류하여(bp 73~75℃ 760mmHg) 정제하여 1.85g의 액체 화합물 (B)을 얻었다 (수율 68%).
Paclitaxel 100mg (0.117 mmole)을 MC 1 ml에 용해한 후 triethylamine 40㎕를 주입하고 0℃로 냉각하였다. 화합물 (B) 14mg을 MC 0.2ml에 용해하여 주입하고 10시간 교반하였다. 용매를 감압하여 제거한 후 column chromatography (EA:MeOH=20:1)로 정제하여 56mg의 백색 고체 화합물(C)을 얻었다 (수율 53%).
2-aminoethanthiol 3.91g을 trifluoroacetic acid 40ml에 용해한 후 14.1g의 trityl chloride를 투입하였다. 실온에서 3시간 교반한 후 감압하여 용매를 제거하였다. Ethyl acetate 50ml를 가하여 용해한 후 3N NaOH 수용액 15ml를 이용하여 4회 세척하고 증류수 15ml로 세척한 후 무수 MgSO4를 이용하여 유기층을 건조하였다. 감압 농축한 후 dichloromethane과 hexane으로 재결정하여 13.8g의 흰색 고체 화합물 (D)을 얻었다 (수율 85%).
DMF 5ml에 5Boc-ACP4 225mg, HATU 57mg, triethylamine 50ml를 주입하고 실온에서 5분 교반한 후 화합물 (D) 48mg을 투입하였다. 실온에서 3시간 교반 후 감압하여 용매를 제거한 후 reverse phase column chromatography (MeOH 60 -> 90%)를 이용하여 158mg의 흰색 고체 화합물 (E)을 얻었다 (수율 62%).
화합물 (E) 80mg을 dichloromethane 1ml에 용해한 후 triethylsilane 100mg을 주입하고 trifluoroacetic acid 3ml를 주입하였다. 실온에서 1시간 교반 후 감압농축한 후 reverse phase column chromatography (MeOH 30 -> 70%)를 이용하여 48mg의 흰색 고체 화합물 (F)을 얻었다 (수율 85%).
화합물 (F) 40mg (0.022mmole)을 5ml의 0.05M sodium phosphate buffer (pH 7.0)에 용해한 후 화합물 (C) 36mg (0.040mmole)을 methanol 0.2ml에 용해하여 주입하고 실온에서 12시간 교반하였다. 감압하여 용매를 제거한 후 reverse phase column chromatography (acetonitrile 10 -> 85%, water0.1% acetic acid)를 이용하여 분리하였다. 분취된 부분을 농축하여 조습성 있는 화합물 (G)10mg을 얻었다 (수율 17%).
1-6-4. ACP5-NH-Acr-S-Et-PTX
Paclitaxel 500mg (0.585mmole)을 MC 7ml에 용해한 후 trimethylamine 200l를 주입하고 0℃로 냉각하였다. Acryloylchloride 75mg 을 MC 1.0ml에 용해하여 주입하고 10시간 교반하였다. 용매를 감압하여 제거한 후 column chromatography(EA:MeOH=20:1)로 정제하여 270mg의 백색 고체 화합물을 얻었다 (수율 51%).
정제수 10ml와 methanol 15ml 혼합용액에 sodium bicarbonate 1.00g과 ACP5 1000mg (1.133mmole)을 투입한 후 di-tert-butyl dicarbonate 1100mg (5.046mmole)을 주입하고 24시간 교반하였다. 감압하여 용매를 완전히 제거하였다. Methanol 10ml로 희석한 후 reverse phase column chromatography (MeOH 20 -> 80%)로 정제하여 940mg의 백색 고체를 얻었다 (수율70%).
DMF 10ml에 3Boc-ACP 5300mg(0.254mmole), HATU 145mg, triethylamine 110ml를 주입하고 실온에서 5분 교반한 후 2-(tritylthio)ethan-1-amine 121mg을 투입하였다. 실온에서 3시간 교반 후 감압하여 용매를 제거하고 reverse phase column chromatography(MeOH 60 -> 90%)를 이용하여 249mg의 흰색 고체 화합물 (A)을 얻었다 (수율66%).
화합물 (A) 200mg (0.135mmole)을 dichloromethane 1ml에 희석한 후 triethylsilane 50mg을 주입하고 trifluoroacetic acid 5ml를 주입하였다. 실온에서 4시간 교반 후 감압농축하고 reverse phase column chromatography (MeOH 30 -> 70%)를 이용하여 66mg의 흰색 고체 화합물 (B)을 얻었다 (수율52%).
화합물 (B) 50mg (0.053mmole), PTX-ACR 50mg (0.055mmole)을 DMF 2ml에 용해한 후 trimethylamine 2ml를 주입하고 실온에서 6시간 교반하였다. 감압하여 용매를 제거한 후 reverse phase column chromatography (MeOH water gradient elution; MeOH 40 -> 95%)로 정제하여 흰색 고체 (C) 41mg을 얻었다 (수율 42%).
실험예 1: 사이클로스포린 (Cyclosporin)의 용해도 증가 확인
사이클로스포린은 물에서의 용해도가 5~10μM인 것이 알려져 있고, 이는 약 6~12μg/mL으로, 이는 환산하면 0.0006 내지 0.0012w/v%로 용해도가 매우 낮은 것이다. 반면 본 발명의 ACP2-CsA 및 ACP4-CsA와 같이 세포 투과 펩티드와 결합함으로서 사이클로스포린의 용해도 증가 수준을 확인하였다. 실험에 사용된 ACP2 및 ACP4의 서열은 다음과 같다.
이름 서열번호 아미노산 서열
ACP2 펩티드 서열번호 1 VKCFNCGKEGHTARNCRAPRKKG
ACP4 펩티드 서열번호 2 ARAPRKKGARAPRKKG
ACP5 펩티드 서열번호 3 ARAPRKKG
구체적으로, 물 중량 대비 50% 중량의 사이클로스포린을 용해시킨 튜브 (50% CsA), 물 중량 대비 50% 중량의 본 발명의 ACP2-CsA를 용해시킨 튜브 (50% CsA-linker-ACP2) 및 물 중량 대비 50% 중량의 본 발명의 ACP4-CsA를 용해시킨 튜브 (50% CsA-linker-ACP4)를 비교하였고, 물 중량 대비 2% 중량의 사이클로스포린을 용해시킨 튜브 (2% CsA), 물 중량 대비 2% 중량의 본 발명의 ACP2-CsA를 용해시킨 튜브 (2% CsA-linker-ACP2) 및 물 중량 대비 2% 중량의 본 발명의 ACP4-CsA를 용해시킨 튜브 (2% CsA-linker-ACP4)를 비교하였다.
그 결과 도 1 및 2에서 확인되는 바와 같이, 물 중량 대비 50%중량 및 2% 중량의 사이클로스포린을 용해시킨 튜브 (50% CsA, 2% CsA)에서는 용해되지 않고 침전된 사이클로스포린을 확인할 수 있다 (도 15 및 16 동그라미 표시). 이에 비하여 물 중량 대비 2% 중량의 본 발명의 ACP2-CsA를 용해시킨 튜브 (2% CsA-linker-ACP2) 및 물 중량 대비 2% 중량의 본 발명의 ACP4-CsA를 용해시킨 튜브 (2% CsA-linker-ACP4)에서는 침전물이 확인되지 않았다 (도 16). 또한, 용해량을 늘린 경우 (50% CsA-linker-ACP2에서는 무색 액체 및 50% CsA-linker-ACP4에서는 황색 액체)에서도 침전물이 확인되지 않아, 용해도가 적어도 100000배 증가하는 것을 알 수 있다.
실험예 2: 타크로리무스(Tacrolimus), 시로리무스 (Sirolimus) 용해도 증가 확인
타크로리무스는 물에서의 용해도가 4~12μg/mL인 것이 알려져 있고, 이는 환산하면 0.0004 내지 0.0012w/v%로 용해도가 매우 낮은 것이다. 반면 본 발명의 ACP2-Tacrolimus 및 ACP4-Tacrolimus와 같이 세포 투과 펩티드와 결합함으로서 타크로리무스의 용해도 증가 수준을 확인하였다.
구체적으로, PBS 중량 대비 0.0005% 중량의 타크로리무스를 용해시킨 튜브 (0.0005% Tacrolimus/PBS), PBS 중량 대비 0.5% 중량의 타크로리무스를 용해시킨 튜브 (0.5% Tacrolimus/PBS), PBS 중량 대비 5% 중량의 타크로리무스를 용해시킨 튜브 (5% Tacrolimus/PBS), PBS 중량 대비 5% 중량의 ACP2-Tacrolimus 를 용해시킨 튜브 (5% Tacrolimus-ACP2/PBS), PBS 중량 대비 5% 중량의 ACP4-Tacrolimus 를 용해시킨 튜브 (5% Tacrolimus-ACP4/PBS) 및 PBS 중량 대비 50% 중량의 ACP4-Tacrolimus를 용해시킨 튜브 (50% Tacrolimus-ACP4/PBS)를 비교하였다.
그 결과 도 3 및 4에서 확인되는 바와 같이, PBS 중량 대비 0.0005% 중량의 타크로리무스를 용해시킨 튜브 (0.0005% Tacrolimus/PBS)에서는 타크로리무스가 모두 용해되었으나, PBS 중량 대비 0.5% 중량의 타크로리무스를 용해시킨 튜브 및 PBS 중량 대비 5% 중량의 타크로리무스를 용해시킨 튜브에서는 용해되지 않은 타크로리무스를 확인할 수 있다 (도 17의 0.5% Tacrolimus/PBS 및 5% Tacrolimus/PBS에서의 동그라미 표시). 그에 비하여 PBS 중량 대비 5% 중량의 ACP2-Tacrolimus를 용해시킨 튜브 (5% ACP2-Tacrolimus/PBS), PBS 중량 대비 5% 중량의 ACP4-Tacrolimus를 용해시킨 튜브 (5% ACP4-Tacrolimus/PBS) 및 PBS 중량 대비 50% 중량의 ACP4-Tacrolimus를 용해시킨 튜브 (50% ACP4-Tacrolimus/PBS)에서는 침전물이 확인되지 않았다.
이러한 결과를 통해 타크로리무스가 본 발명의 세포투과 펩티드 (ACP2, ACP4)와 결합함으로써 용해도가 적어도 10000배 증가하는 것을 알 수 있다.
동일한 실험을 시로리무스에 수행하였다. 구체적으로, 시로리무스를 10mg/mL 농도가 되도록 DW에 용해시킨 튜브, 실시예 1-2의 ACP2-링커-시로리무스를 50mg/mL 농도가 되도록 DW에 용해시킨 튜브 또는 ACP4-링커-시로리무스를 20mg/mL 농도가 되도록 DW에 용해시킨 튜브를 준비하였다.
그 결과 도 5에서 확인되는 바와 같이, 시로리무스 단독으로 용해시킨 경우에는 10mg/mL에서도 과포화되어 용해되지 않은 시로리무스가 확인된 반면, ACP와 결합된 경우 (ACP2-링커-시로리무스, ACP4-링커-시로리무스) 훨씬 높은 농도 (각 50mg/mL, 20mg/mL)에서도 완전 용해된 것을 확인하였다.
실험예 3: 탐스로신(Tamsulosin) 용해도 증가 확인
탐스로신은 물에서의 용해도가 6.55mg/mL인 것이 알려져 있고, 이는 환산하면 0.000655%로 용해도가 매우 낮은 것이다. 반면 본 발명의 Tamsulosin-Gly-ACP4와 같이 세포 투과 펩티드와 결합함으로서 탐스로신의 용해도 증가 수준을 확인하였다.
구체적으로, 물 중량 대비 2% 중량의 탐스로신-Gly-ACP4를 용해시킨 튜브 (20mg/ml Tamsulosin-Gly-ACP4/DW), 물 중량 대비 2% 중량의 탐스로신을 용해시킨 튜브 (20mg/ml Tamsulosin HCl/DW)를 비교하였다.
그 결과, 도 6에서 확인되는 바와 같이 탐스로신은 20mg/ml의 농도에서도 과포화상태인 반면, 탐스로신-Gly-ACP4는 20mg/ml의 농도에서도 완전히 용해된 것을 확인하였다.
실험예 4: 피나스테라이드(Finasteride) 용해도 증가 확인
피나스테라이드는 물에서의 용해도가 11.7μg/mL인 것이 알려져 있고, 이는 환산하면 0.00117%로 용해도가 매우 낮은 것이다. 반면 본 발명의 Finasteride-ACP4와 같이 세포 투과 펩티드와 결합함으로서 피나스테라이드의 용해도 증가 수준을 확인하였다.
구체적으로, 물 중량 대비 1% 중량의 피나스테라이드-ACP4를 용해시킨 튜브 (10mg/ml Finasteride-ACP4/DW), 물 중량 대비 0.1% 중량의 피나스테라이드를 용해시킨 튜브 (1mg/ml Finasteride/DW)를 비교하였다.
그 결과, 도 7에서 확인되는 바와 같이 피나스테라이드는 1mg/ml의 농도에서도 과포화상태인 반면, 피나스테라이드-ACP4는 10mg/ml의 농도에서도 완전히 용해된 것을 확인하였다.
실험예 5: 니클로사마이드 (Niclosamide) 용해도 증가 확인
본 발명의 아미노산 서열이 니클로사마이드의 용해도를 증가시키는지 확인하였다.
니클로사마이드는 물에서의 용해도가 0.005~0.008mg/mL인 것이 알려져 있고, 이는 환산하면 0.0005 내지 0.0008w/v%로 용해도가 매우 낮은 것이다. 반면 본 발명의 Niclosamide-linker, ACP4-linker-Niclosamide, ACP5-linker-Niclosamide와 같이 세포 투과 펩티드와 결합함으로서 니클로사마이드의 용해도 증가 수준을 확인하였다.
구체적으로, 물 중량 대비 1% 중량의 니클로사마이드를 용해시킨 튜브 (10mg/ml Niclosamide/DW), 물 중량 대비 1% 중량의 니클로사마이드-링커 (10mg/ml Niclosamide-linker/DW), 물 중량 대비 1% 중량의 ACP4-링커-니클로사마이드를 용해시킨 튜브 (10mg/ml ACP4-linker-Niclosamide/DW), 물 중량 대비 2% 중량의 ACP5-링커-니클로사마이드를 용해시킨 튜브 (20mg/ml ACP5-linker-Niclosamide/DW)를 비교하였다.
도 8에서 확인되는 바와 같이, HPLC를 이용하여 Niclosamide, Niclosamide-linker, ACP4-linker-niclosamide peak를 분석하였을 때, Niclosamide-linker 및 ACP4-linker-niclosamide의 용해도는 각각 19.31mg/ml, 305.83mg/ml로 도출되었으며 Niclosamide는 1mg/ml 농도에서도 peak를 관찰할 수 없었다.
또한, 도 9에서 확인되는 바와 같이, niclosamide는 10mg/ml 수준에서 과포화 상태로 확인되나, Niclosamide-linker, ACP4-linker-niclosamide는 10mg/ml에서 ACP5-linker-niclosamide는 20mg/ml에서 투명한 용액 상태로 완전히 용해됨을 확인하였다.
실험예 6: 파크리탁셀 (Paclitaxel)의 용해도 증가 확인
파크리탁셀은 물에서의 용해도가 5.56mg/mL인 것이 알려져 있고, 이는 환산하면 0.000556%로 용해도가 매우 낮은 것이다. 반면 본 발명의 ACP2-linker-paclitaxel 또는 ACP4-linker-paclitaxel과 같이 세포 투과 펩티드와 결합함으로서 파크리탁셀의 용해도 증가 수준을 확인하였다.
구체적으로, 물 중량 대비 5% 중량의 ACP2-MI-linker-파크리탁셀을 용해시킨 튜브 (50mg/ml ACP2-MI-linker1-PAC/DW), 10% 중량의 ACP4-NH-Et-S-MI-파크리탁셀을 용해시킨 튜브 (100mg/ml ACP4-NH-Et-S-MI-paclitaxel/DW), 2% 중량의 파크리탁셀-Acr-S-Et-NH-ACP4를 용해시킨 튜브 (20mg/ml paclitaxel-Acr-S-Et-NH-ACP4/DW), 0.1% 중량의 파크리탁셀을 용해시킨 튜브 (1mg/ml paclitaxel/DW)를 비교하였다.
그 결과, 도 10에서 확인되는 바와 같이 파크리탁셀은 1mg/ml의 농도에서도 과포화상태인 반면, 물 중량 대비 5% 중량의 ACP2-MI-linker-파크리탁셀을 용해시킨 튜브 (50mg/ml ACP2-MI-linker1-PAC/DW), 10% 중량의 ACP4-NH-Et-S-MI-파크리탁셀을 용해시킨 튜브 (100mg/ml ACP4-NH-Et-S-MI-paclitaxel/DW), 2% 중량의 파크리탁셀-Acr-S-Et-NH-ACP4를 용해시킨 튜브 (20mg/ml paclitaxel-Acr-S-Et-NH-ACP4/DW), 1% 중량의 ACP5-NH-Acr-S-Et-PTX를 용해시킨 튜브 (10mg/ml ACP5-NH-Acr-S-Et-PTX/DW)에서는 완전히 용해됨을 확인하였다.
실험예 7: 본 발명 화합물의 항 바이러스능 효과 확인
SARS-CoV-2에 대한 본 발명의 용해도 개선 조성물 (ACP4-linker-niclosamide)과 화합물 (Niclosamide-linker)의 항바이러스 효능을 검증하였다. 구체적으로, SARS-CoV-2는 한국질병관리본부(KCDC)에서 제공되었으며, Vero 세포는 ATCC(ATCC-CCL81)로부터 획득하였다. Lopinavir, Remdesivir를 대조 화합물로 사용하였다. Anti-SARS-CoV-2 N단백질에 특이적인 1차 항체는 Sino Biological에서 구입하였으며 2차 항체인 Alexa Fluor 488 goat anti-rabbit IgG와 Hoechst 33342는 Molecular Probes에서 구입하였다.
면역 형광법에 의한 용량 반응 곡선 분석을 위하여 384-조직배양 플레이트에 웰당 1.2x104개의 Vero세포를 접종하였다. 24시간 후, DMSO에 2배 연속 희석하여 10 포인트로 준비된 화합물의 최고 농도를 50μM 로 하여 세포에 처리하였다. 화합물 처리 약 1시간 후, BSL3시설에서 세포에 SARS-CoV-2 (0.0125MOI)를 감염시키고 37
Figure pat00013
에서 24시간 동안 배양하였다. 이후 4% prarformaldehyde (PFA)로 세포를 고정한 뒤, permeabilization 하였다. 그 후 anti-SARS-CoV-2 nucleocapsid (N) 1차 항체를 처리하고, Alexa Flror 488-conjugated goat anti-rabbit IgG 2차 항체와 Hoechst 33342를 처리하여 세포를 염색하였다. 감염된 세포의 형광 이미지는 대용량 이미지 분석 기기인 Operetta (Perkin Elmer)를 이용하여 획득하였다.
획득된 이미지는 columbus 소프트웨어를 이용하여 분석되었다. 웰당 총 세포수는 Hoechst로 염색된 핵 수로 산출하였고, 감염된 세포수는 바이러스 N 단백질을 발현하는 세포수로 산출하였다. 감염도 (infection ratio)는 N 단백질을 발현하는 세포수/총 세포수로 계산하였다. 각 웰당 감염도는 동일한 플레이트에서 감염되지 않은 세포 (mock)를 포함한 웰들의 평균 감염도와 0.5% DMSO (v/v)가 처리된 감염세포를 포함한 웰들의 평균 감염도로 노말라이제이션 되었다. 화합물의 세포 생존율은 각 웰의 세포수를 mock 그룹 웰들의 평균 세포수로 노말라이제이션하여 그래프에 'cell viability'로 표기하였다. 약물 농도에 따른 반응 곡선과 IC-50, CC50 값은 XLFit 4 (IDBS) 소프트웨어의 Y=Bottom + (Top-Bottom)/(1+(IC50/X)Hillslope) 수식을 활용해 도출하였다. 모든 IC50와 CC50 값은 두번의 반복실험으로 획득한 적합 용량반응곡선 (fitted dose-response curve)에서 산출하였고, 선택지수 (Selective index; SI) 값은 CC50/IC50-으로 계산되었다.
그 결과 도 11 및 표 1에서 확인되는 바와 같이 Remdesivir는 IC50 4.28 μM, Lopinavir는 IC50 11.59 μM, Niclosamide는 IC50 0.24 μM, Niclosamide-linker는 IC50 0.15 μM, ACP4-linker-niclosamide는 IC50 12.16 μM 로서 Niclosamide 및 대조 화합물 Remdisivir, Lopinavir에 비해 Niclosamide-linker의 SARS-Cov-2에 대한 항 바이러스 효능이 향상된 것을 확인 할 수 있다.
Code IC50 (μM) CC50 (μM) SI
Remdesivir 4.28 >50 11.68
Lopinavir 11.59 >50 4.31
Niclosamide 0.24 >50 204.8
Niclosamide-linker 0.15 >50 344.7
ACP4-linker-niclosamide 12.16 >50 4.11
SI: Selectivity index; CC50/IC50
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3으로 표시되는 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하는 용해도 개선용 펩티드.
  2. 제1항에 있어서, 상기 서열번호 3의 서열은 1 또는 2회 반복되는 것인 용해도 개선용 펩티드.
  3. 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열을 포함하고,
    상기 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)가 결합되어 있는 용해도 개선 조성물.
  4. 제3항에 있어서, 상기 서열번호 3의 서열은 1 또는 2회 반복되는 것인 용해도 개선 조성물.
  5. 제3항에 있어서, 상기 세포 내 운반 대상의 카고는 화학물질, 폴리펩티드, 핵산, 탄수화물 또는 지질인 것인 용해도 개선 조성물.
  6. 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열의 N-말단 또는 C-말단에 세포 내 운반 대상인 카고(cargo)를 결합하는 단계를 포함하는 용해도 개선 조성물 제조방법.
  7. 제6항에 있어서, 상기 서열번호 3은 1 또는 2회 반복되는 것인 용해도 개선 조성물 제조방법.
  8. 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열;
    상기 아미노산 서열의 N-말단 또는 C-말단에 결합된 링커; 및
    상기 링커에 결합된 세포 내 운반 대상인 카고(cargo)를 포함하는 용해도 개선 조성물.
  9. 세포 내 운반 대상인 카고(cargo)를 링커에 결합시키는 단계; 및
    상기 링커에 서열번호 1 로 표시되는 아미노산 서열 또는 서열번호 3의 서열이 1 내지 7회 반복되는 아미노산 서열의 N-말단 또는 C-말단을 결합시키는 단계를 포함하는 용해도 개선 조성물 제조방법.
  10. 하기 화학식 1 또는 이의 약학적으로 허용 가능한 염으로 이루어진 화합물:
    [화학식 1]
    .
KR1020220105039A 2022-08-22 2022-08-22 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물 KR20240027904A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220105039A KR20240027904A (ko) 2022-08-22 2022-08-22 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물
PCT/KR2023/012369 WO2024043651A1 (ko) 2022-08-22 2023-08-22 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220105039A KR20240027904A (ko) 2022-08-22 2022-08-22 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물

Publications (1)

Publication Number Publication Date
KR20240027904A true KR20240027904A (ko) 2024-03-05

Family

ID=90013721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220105039A KR20240027904A (ko) 2022-08-22 2022-08-22 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물

Country Status (2)

Country Link
KR (1) KR20240027904A (ko)
WO (1) WO2024043651A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113934A (ko) 2014-03-31 2015-10-08 한미약품 주식회사 면역글로불린 Fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211882B2 (en) * 2008-03-08 2012-07-03 Richard Delarey Wood Glutamate receptor modulators and therapeutic agents
US20190315809A1 (en) * 2016-12-16 2019-10-17 Avixgen Inc Cytoplasmic transduction peptide and intracellular messenger comprising same
US11547649B2 (en) * 2018-06-14 2023-01-10 Avixgen Inc. Fusion protein bound to cell-permeable peptide, and composition comprising fusion protein or cell-permeable peptide and epithelial cell growth factor as active ingredients

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113934A (ko) 2014-03-31 2015-10-08 한미약품 주식회사 면역글로불린 Fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법

Also Published As

Publication number Publication date
WO2024043651A1 (ko) 2024-02-29

Similar Documents

Publication Publication Date Title
US8071535B2 (en) Guanidinium derivatives for improved cellular transport
TWI341844B (en) Hiv fusion inhibitor peptides with improved biological properties
CN108992661B (zh) 一种多肽在制备静脉、腹腔或鼻腔给药药物中的应用
US20050176642A1 (en) Enhancing anti-HIV efficiency through multivalent inhibitors targeting oligomeric GP120
US7511051B2 (en) Cidofovir peptide conjugates as prodrugs
US7687603B2 (en) Guanidinium delivery carriers
CN102036966A (zh) 作为hcv丝氨酸蛋白酶抑制剂的二氟化三肽
JP2014111628A (ja) ウイルス融合のインヒビターのコレステロール誘導体
TWI298328B (en) Polyamide nucleic acid derivatives, and agents and process for preparing them
CN113769080B (zh) 多肽免疫偶联物及其应用
Lalani et al. Antiviral peptides against Enterovirus A71 causing hand, foot and mouth disease
CN101454309B (zh) 焦谷氨酸衍生物的合成和用途
US20140349952A1 (en) Mannosylated compounds useful for the prevention and the treatment of infectious diseases
Flores et al. Entry inhibitors directed towards glycoprotein gp120: an overview on a promising target for HIV-1 therapy
KR20240027904A (ko) 용해도 개선용 펩티드 및 이를 포함하는 용해도 개선 조성물
WO2007133033A1 (en) Novel analogues of antimicrobial and anticancer peptide synthesized and produced from gaegurin 5
JP2000309598A (ja) 多剤結合型新規化合物、その製造法および用途
WO2015127862A1 (zh) 一种三萜-多肽缀合物、其药物组合物及用途
JP2004538334A (ja) Hiv感染の治療に使用される薬剤とその成分と使用法
CA2281133C (en) Multiple-agents-binding compound and use thereof
JP4413427B2 (ja) ヌクレオシド
WO2013185575A1 (zh) 抑制hiv感染的小分子-多肽缀合物
WO2015003581A1 (zh) 抑制hiv感染的二价多肽
CN113166188A (zh) 两性霉素b肽衍生物
JP4332618B2 (ja) 抗hiv剤