WO2015127862A1 - 一种三萜-多肽缀合物、其药物组合物及用途 - Google Patents

一种三萜-多肽缀合物、其药物组合物及用途 Download PDF

Info

Publication number
WO2015127862A1
WO2015127862A1 PCT/CN2015/072819 CN2015072819W WO2015127862A1 WO 2015127862 A1 WO2015127862 A1 WO 2015127862A1 CN 2015072819 W CN2015072819 W CN 2015072819W WO 2015127862 A1 WO2015127862 A1 WO 2015127862A1
Authority
WO
WIPO (PCT)
Prior art keywords
βala
nnytslihslieesqnqqekneqell
innytslihslieesqnqqekneqell
compound
stereoisomer
Prior art date
Application number
PCT/CN2015/072819
Other languages
English (en)
French (fr)
Inventor
刘克良
王潮
娜荷芽
姜喜凤
许笑宇
Original Assignee
中国人民解放军军事医学科学院毒物药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事医学科学院毒物药物研究所 filed Critical 中国人民解放军军事医学科学院毒物药物研究所
Publication of WO2015127862A1 publication Critical patent/WO2015127862A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the invention belongs to the field of biomedicine and relates to a triterpene-polypeptide conjugate, a pharmaceutical composition thereof and use thereof.
  • the invention relates to a conjugate of formula I, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.
  • the present invention also relates to a pharmaceutical composition comprising the above-described conjugate of Formula I, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, and a conjugate of Formula I, a derivative thereof, and a stereoisomer thereof Or a pharmaceutically acceptable salt thereof for use in the treatment or prevention of a disease associated with HIV infection, particularly acquired immunodeficiency syndrome (AIDS).
  • AIDS acquired immunodeficiency syndrome
  • HIV-1 human immunodeficiency virus type 1
  • the currently used anti-HIV-1 drugs supplemented by highly active antiretroviral therapy, can prolong the survival time and improve the quality of life of HIV-infected patients to some extent.
  • HIV fusion inhibitors are novel anti-HIV drugs that interfere with the entry of viruses into target cells. They cut off the spread of the virus at the initial stage of infection, which has special significance for the prevention and control of HIV-1 infection, and thus becomes a new mechanism. Hot spots in HIV drug research.
  • Gp41 is a specific protein that mediates the fusion of HIV-1 to target cell membranes and is a target of fusion inhibitors.
  • HR1 N-terminal repeat
  • HR2 interacts with HR1 to form a hexagonal core structure (6-HB).
  • T20 is a 36-amino acid fusion-inhibiting polypeptide derived from the gp41 HR2 region. It was approved by the US FDA in 2003 and is the only HIV-1 fusion inhibitor currently marketed. T20 can compete with the helix trimer composed of HR1, occupying the site of action of HR2, thereby inhibiting the formation of 6-HB, making the membrane fusion process impossible. carry out.
  • T20 The launch of T20 opens up new areas of peptide control for HIV-1.
  • T20 itself has some defects and deficiencies.
  • the first is the drug resistance problem: Since T20 is completely derived from the natural HR2 sequence, it has low resistance to target mutations and is prone to drug resistance. Residues 36-45 of HR1 (GIVQQQNNLL) are the major site of T20 binding. Mutations in a single residue result in a 5-10 fold decrease in T20 sensitivity, and mutations in both residues result in a 100-fold decrease in sensitivity.
  • T20 has poor stability in vivo, is easily degraded by proteases, and has low bioavailability. Again, T20 has a higher synthesis cost. Therefore, how to solve drug resistance, improve enzymatic stability and reduce the synthesis cost of peptide HIV-1 fusion inhibitors under the premise of ensuring biological activity is the main direction of research on novel HIV-1 fusion inhibitors.
  • the main solution strategy is to avoid the T20 target binding site and introduce a new functional sequence different from T20 to overcome drug resistance.
  • the second-generation peptide fusion inhibitor T-1249 has an N-trimer hydrophobic pocket binding sequence (WQEWEQKI) at its N-terminus, which increases its activity by an order of magnitude over T20; T-1144, which is completely different from the target site of T20, is mainly the hydrophobic pocket area of HR1 (WEAWERAI).
  • Terpenoids are hydrocarbons whose molecular formula is a multiple of isoprene and its oxygen-containing derivatives.
  • the terpenoids may be present alone or in the form of aglycons in the saponin molecule. Terpenoids are widely found in nature and have a variety of physiological activities. Recent studies have found that certain terpenoids have certain anti-HIV activity.
  • Betulinic acid (BA) belongs to pentacyclic triterpenoids. In 1994, Fujioka et al. first discovered the anti-HIV activity of BA, which inhibited the replication of HIV in H9 cells. Subsequent research shows that one Some BA analogs, such as Ursolic acid (UA) and Oleanic acid (OA), also have anti-HIV activity.
  • the terpenoids may be present alone or in the form of aglycons in the saponin molecule.
  • Saponins are composed of aglycon and sugar, which are widely distributed in nature. Aglycones mainly include structures such as terpenoids, steroids and steroidal alkaloids; the structure of sugar chains is many, but the composition of glycosyl groups is relatively simple. Saponins have long been an important research object in natural organic chemistry and medicinal chemistry, but most studies have only been limited to aglycons, ignoring the role of sugar. In recent years, with the progress of separation technology and structural research methods, the structure-activity relationship of saponins has been further clarified. Preliminary studies have shown that the sugar chains in saponins are closely related to their biological activities. In addition, many saponin compounds have a broad spectrum of antiviral activity, but are less active. This is mainly related to the poor binding ability of saponins to specific targets in the virus.
  • the compound (as shown in Formula I) is a triterpene-polypeptide conjugate.
  • the inventors have surprisingly found that the compounds of the invention have good inhibition of HIV fusion activity. The following invention is thus provided:
  • One aspect of the invention relates to a compound of formula I, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof,
  • XA 1 and XA 2 are mutually independent triterpenoids, and at least one of XA 1 and XA 2 is present;
  • L 1 is a linking arm between the linking polypeptide P and XA 1 , or L 1 is deleted, and XA 1 is also deleted at the same time when L 1 is deleted;
  • P is a polypeptide having an amino acid sequence of NNYTSLIHSLIEESQNQQEKNEQELL (SEQ ID NO: 1) or INNYTSLIHSLIEESQNQQEKNEQELL (SEQ ID NO: 2);
  • K is lysine, its side chain is linked to L 2 -XA 2 , or K is deleted, and L 2 -XA 2 is also deleted at the same time when K is deleted;
  • L 2 is a linking arm connecting lysine K and XA 2 molecules
  • L 2 is the same as or different from L 1 .
  • XA 1 and XA 2 are independent of each other means that XA 1 and XA 2 may be the same or different.
  • phrases "at least one of XA 1 and XA 2 exists" includes the case where only XA 1 is present, only XA 2 is present, or XA 1 and XA 2 are present at the same time.
  • L 1 or L 2 is a tether that allows small molecules to maintain spatial flexibility and bind to the target.
  • the purpose of introducing K at the carboxy terminus of polypeptide P is to introduce (L 2 -XA 2 ).
  • L 2 is linked to the side chain amino group of lysine K via an amide bond, and the other end is linked to XA 2 through a 1,2,3-triazole group; specifically, the 1,2,3-triazole
  • the azole group is formed by a "click reaction" of an azide group on L 2 and an alkynyl group on XA 2 .
  • the cyclotriterpenoid is preferably a pentacyclic triterpenoid.
  • a compound of the formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
  • XA 1 and XA 2 are independently selected from any of the following 12 structural formulas:
  • the alkynyl group in the above 12 structural formulas and the azide group of L 1 or L 2 form a 1,2,3-triazole group through a "click reaction", through 1, 2, 3-three.
  • the azole binds L 1 or L 2 to the above structural formula (any one of 12).
  • a compound of the formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
  • L 1 and L 2 are independently a compound formed by the condensation of azidoacetic acid with a natural or unnatural amino acid, or a compound of azidoacetic acid condensed with a polyethylene glycol having an amino group at one end and a carboxyl group at one end.
  • one end of L 1 is linked to polypeptide P via an amide bond; the other end of L 1 is an azide group.
  • the azide group is capable of forming a 1,2,3-triazole group by a "click reaction" with an alkynyl group on XA 1 to link XA 1 to L 1 .
  • one end of L 2 is linked to the side chain amino group of K via an amide bond; the other end of L 2 is an azide group.
  • the azide group is capable of forming a 1,2,3-triazole group by a "click reaction" with an alkynyl group on XA 2 to link XA 2 to L 2 .
  • a compound of the formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
  • the natural or unnatural amino acid is selected from the group consisting of:
  • L- or D-type glycine Gly
  • alanine Al
  • Leu leucine
  • isoleucine Ile
  • glutamic acid Glu
  • glutamine Gln
  • aspartic acid Asparagine
  • Asn valine
  • lysine Lys
  • serine Ser
  • threonine Thr
  • arginine Arg
  • His His
  • Trp tryptophan
  • Prp phenylalanine
  • Tyr tyrosine
  • cysteine Cys
  • methionine Metal
  • GABA Y-aminobutyric acid
  • Ethylene glycol propylene glycol, butylene glycol, pentanediol, hexanediol;
  • L 1 or L 2 is a structure shown by a broken line portion of the following formula:
  • Another aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of the formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, and Selected pharmaceutically acceptable excipients.
  • the term "pharmaceutical composition” can be used to effect treatment, prevention, alleviation and/or alleviation of the disease or condition of the present invention in a subject.
  • the pharmaceutical compositions of the invention contain from 0.01 to 90% by weight of a compound of the invention.
  • the pharmaceutical compositions can be prepared according to methods known in the art to form suitable administration forms or dosage forms for human use.
  • the compound of the present invention or a pharmaceutical composition containing the same may be administered in a unit dosage form, which may be enterally or parenterally, such as orally, muscle, subcutaneous, nasal, oral mucosa, skin, peritoneum or rectum.
  • a unit dosage form which may be enterally or parenterally, such as orally, muscle, subcutaneous, nasal, oral mucosa, skin, peritoneum or rectum.
  • Formulations such as tablets, capsules, pills, aerosols, pills, powders, solutions, suspensions, emulsions, granules, liposomes, transdermal agents, buccal tablets, suppositories, lyophilized powders Wait. It may be a general preparation, a sustained release preparation, a controlled release preparation, and various microparticle delivery systems.
  • various carriers well known in the art can be widely used.
  • carriers are, for example, diluents and absorbents such as starch, dextrin, calcium sulfate, lactose, mannitol, sucrose, sodium chloride, glucose, urea, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid.
  • diluents and absorbents such as starch, dextrin, calcium sulfate, lactose, mannitol, sucrose, sodium chloride, glucose, urea, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid.
  • wetting agent and binder such as water, glycerin, polyethylene glycol, ethanol, propanol, starch slurry, dextrin, syrup, honey, glucose solution, gum arabic, gelatin paste, sodium carboxymethyl cellulose , shellac, methyl cellulose, Potassium phosphate, polyvinylpyrrolidone, etc.
  • disintegrating agents such as dried starch, alginate, agar powder, brown algae starch, sodium hydrogencarbonate and citric acid, calcium carbonate, polyoxyethylene, sorbitol fatty acid ester, twelve Sodium alkane sulfonate, methyl cellulose, ethyl cellulose, etc.
  • disintegration inhibitors such as sucrose, glyceryl tristearate, cocoa butter, hydrogenated oil, etc.
  • absorption enhancers such as quaternary ammonium salts, twelve Sodium alkyl sulfate or the like
  • a lubricant such as talc, si
  • Tablets may also be further formed into coated tablets, such as sugar coated tablets, film coated tablets, enteric coated tablets, or bilayer tablets and multilayer tablets.
  • various carriers known in the art can be widely used.
  • the carrier are, for example, diluents and absorbents such as glucose, lactose, starch, cocoa butter, hydrogenated vegetable oil, polyvinylpyrrolidone, Gelucire, kaolin, talc, etc.; binders such as acacia, tragacanth, gelatin , ethanol, honey, liquid sugar, rice paste or batter; etc.; disintegrating agents, such as agar powder, dried starch, alginate, sodium dodecyl sulfate, methyl cellulose, ethyl cellulose, and the like.
  • the drug delivery unit as a suppository, various carriers well known in the art can be widely used.
  • the carrier are, for example, polyethylene glycol, lecithin, cocoa butter, higher alcohols, esters of higher alcohols, gelatin, semi-synthetic glycerides and the like.
  • the active ingredient compound of the formula I or a stereoisomer thereof is mixed with the various carriers described above, and the mixture thus obtained is placed in a hard gelatin capsule or soft capsule.
  • the active ingredient of the compound of the formula I or a stereoisomer thereof may also be prepared as a microcapsule, suspended in an aqueous medium to form a suspension, or may be enclosed in a hard capsule or used as an injection.
  • an injection preparation such as a solution, an emulsion, a lyophilized powder injection and a suspension
  • all diluents conventionally used in the art for example, water, ethanol, polyethylene glycol, 1, 3 may be used.
  • diluents conventionally used in the art for example, water, ethanol, polyethylene glycol, 1, 3 may be used.
  • an appropriate amount of sodium chloride, glucose or glycerin may be added to the preparation for injection, and a conventional solubilizer, a buffer, a pH adjuster or the like may be added.
  • coloring agents may also be added to the pharmaceutical preparations as needed.
  • each active ingredient in the pharmaceutical compositions of the invention may be varied so that the amount of active compound obtained is effective to the particular patient, composition and mode of administration required Therapeutic response.
  • the dosage level will be selected based on the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and past medical history of the patient to be treated. However, it is the practice in the art that the dosage of the compound be started from a level lower than that required to achieve the desired therapeutic effect, and the dosage is gradually increased until the desired effect is obtained.
  • a further aspect of the invention relates to an HIV fusion inhibitor comprising at least one compound of the formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.
  • a further aspect of the invention relates to the use of a compound of formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, for the manufacture of an HIV fusion inhibitor.
  • a further aspect of the invention relates to a compound of formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, for use in the treatment and/or prophylaxis and/or adjuvant treatment Use in HIV-related diseases, especially AIDS drugs.
  • a further aspect of the invention relates to a method of inhibiting HIV fusion in vivo or in vitro comprising the use of an effective amount of a compound of formula I according to any one of the invention, a derivative thereof, a stereoisomer thereof, or The step of medicinal salts.
  • the method of inhibiting HIV fusion in vitro is for non-therapeutic purposes.
  • a further aspect of the invention relates to a method of treating and/or preventing and/or adjunctively treating a disease associated with HIV infection, in particular AIDS, comprising the use of an effective amount of a compound of the formula I according to any one of the invention, a derivative thereof a step of its stereoisomer, or a pharmaceutically acceptable salt thereof.
  • the dose of the compound or pharmaceutical composition of the present invention depends on a number of factors, such as the nature and severity of the disease to be prevented or treated, the sex, age, weight and individual response of the patient or animal, the particular compound employed, and the route of administration. And the number of doses, etc.
  • the above dosages may be administered in a single dosage form or divided into several, for example two, three or four dosage forms.
  • the term "effective amount” refers to a dose that can achieve treatment, prevention, alleviation and/or alleviation of the disease or condition of the invention in a subject.
  • subject can refer to a patient or other animal that receives the composition of the invention to treat, prevent, ameliorate and/or alleviate the disease or condition of the invention, particularly a mammal, such as a human, a dog, a monkey, a cow, Horse and so on.
  • disease and/or condition refers to a physical state of the subject that is associated with the disease and/or condition described herein.
  • the term "natural” means naturally occurring, unmodified, such as the amino acid sequence of HIV-1 gp41 itself.
  • non-native refers to an artificially designed, unlike natural one, such as a modified, modified sequence of a directly derived native sequence, and the like.
  • hydrophobic amino acid means an amino acid whose side chain is a hydrophobic group, and includes: Ala, Val, Leu, Ile, Met, Phe, Trp and the like.
  • hydrophilic amino acid means an amino acid having a hydrophilic group capable of forming a hydrogen bond with water in a side chain, and includes: Ser, Thr, Cys, Asp, Asn, Glu, Gln, Arg, Lys, His, Tyr, etc.
  • the term "acidic amino acid” means an amino acid having a carboxyl group in a side chain, and includes: Glu, Asp and the like.
  • basic amino acid means an amino acid having an amino group or a thiol group in a side chain, and includes: Lys, Arg and the like.
  • the compounds of the present invention have an activity of inhibiting fusion of HIV cells, for example, inhibition of HIV-1 cell fusion.
  • Figure 1 Sample preparation instructions. Four samples were prepared for each 96-well sample plate (12 holes per row, 8 rows; Costar 3799, Corning Incorporation, USA), and each sample was repeated 1 Times.
  • the sample of the selected concentration is placed in the S1 well, and the sequence is diluted 4 times (ie, the sample concentration of the latter hole is 1/4 of the previous well), and 10 concentration gradients are diluted accordingly.
  • the last two wells contained control medium only as the control, in which the 11th well contained the target cells and the effector cells were 100% fusion control (positive control), and the 12th well contained only the target cells as the unfused background control (negative control).
  • Env envelope glycoprotein
  • HIV Human Immunodeficiency Virus
  • HIV-1 human immunodeficiency virus type I HIV-1 human immunodeficiency virus type I
  • the solid phase synthesis carrier Rink amide resin used in the examples is Tianjin Nankai Synthetic Co., Ltd.; HBTU, HOBT, DIEA and Fmoc protected natural amino acids or D-type unnatural amino acids are Shanghai Jill Biochemical Co., Ltd. and Chengdu Chengnuo New Technology Co., Ltd. company's product.
  • N-methylpyrrolidone is a product of ACROS
  • trifluoroacetic acid is a product of Beijing Bomaijie Technology Co., Ltd.
  • 3,4-dihydroxyphenylacetic acid, 4-aminosalicylic acid, 5-aminosalicylide Acid, 2,5-hexanedione, tert-butanol and ethyl bromoacetate are products of ALFA
  • DMF and DCM are products of South Korea's Samsung
  • chromatographically pure acetonitrile is Fisher's product. Other reagents are domestically produced pure products if they are not described.
  • Peptide synthesis uses the standard Fmoc solid phase method.
  • RinkAmide resin was selected and the peptide chain was extended from the C-terminus to the N-terminus.
  • the condensing agent is HBTU/HOBt/DIEA.
  • the deprotecting agent is a piperidine/DMF solution.
  • the peptide sequence was synthesized using a CEM microwave polypeptide synthesizer, and azidoacetic acid was condensed as the last residue with the N-terminal amino group of the polypeptide.
  • the cleavage agent is trifluoroacetic acid (TFA), and the crude peptide is dissolved in water and stored by lyophilization.
  • Blocking reagent 20% v/v acetic anhydride in DMF solution.
  • peptide resin Pyrolysis of peptide resin: 2.05 g of a peptide resin synthesized by a microwave synthesizer was weighed, placed in a 250 ml eggplant-shaped flask, ice-cooled, and electromagnetically stirred. The lysate was prepared by adding 1 gram of the peptide resin to 10 ml. TFA needs to be cooled in the ice bath for 30 minutes in advance or stored in the refrigerator in advance; the prepared lysate is added to the peptide resin under ice bath conditions, electromagnetically stirred, the resin turns orange-red, and the reaction is carried out for 30 minutes under ice bath conditions, and then withdrawn. The reaction was stirred for 90 min at room temperature and the reaction was completed.
  • the resulting crude peptide linked to azide acetic acid was purified by medium pressure or high pressure chromatography.
  • the column was a C8 column and the eluent was acetonitrile, water and a small amount of acetic acid. Specific procedures: Weigh 1.00g of crude peptide, add 20ml of water, 5ml of acetonitrile to dissolve the solid, centrifuge for 10min (3000 rev / min), take the supernatant and load. The column was previously equilibrated with 200 ml of 15% acetonitrile/water/0.1% glacial acetic acid solution.
  • the sample was loaded, it was further washed with 200 ml of a 15% acetonitrile/water/0.1% glacial acetic acid solution, and the eluent component was detected in a high-performance liquid phase.
  • the acetonitrile content was gradually increased according to the liquid phase detection result until the main peak of the purified polypeptide conjugate was eluted.
  • the eluates were combined, and most of the solvent was removed by rotary evaporation, and the pure N-terminally azide-acetated polypeptide was lyophilized, and the content of HPLC detection was more than 90%.
  • the method is the same as in Example 1, except that BAc conjugated to the N-terminus of the polypeptide is replaced with UAc or OAc, or N-terminus of the polypeptide is introduced into Ile to obtain compound 2-3, 43-45.
  • Example 19 The procedure was the same as in Example 19 except that BApo conjugated to the N-terminus of the polypeptide was replaced with UApo or OApo, or the N-terminus of the polypeptide was introduced into Ile to give compounds 11-12, 52-54.
  • Peptide synthesis uses the standard Fmoc solid phase method.
  • RinkAmide resin was selected and the peptide chain was extended from the C-terminus to the N-terminus.
  • the condensing agent is HBTU/HOBt/DIEA.
  • the deprotecting agent is a piperidine/DMF solution.
  • the peptide sequence was synthesized using a CEM microwave polypeptide synthesizer, and the first amino acid residue was ligated with RinkAmide resin using Alloc protected side chain lysine.
  • azidoacetic acid is condensed with a lysine side chain amino group by the same polypeptide synthesis method.
  • the cleavage agent is trifluoroacetic acid (TFA), and the crude peptide is dissolved in water and stored by lyophilization. Separation and purification by medium pressure liquid chromatography or high pressure liquid chromatography (HPLC), the pure peptide content is >90%.
  • Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was used to determine the molecular weight of the peptide sequence.
  • Example 25 The procedure was the same as in Example 25 except that the BA derivative conjugated to the C-terminus of the polypeptide was replaced with a UA or OA derivative, or the N-terminus of the polypeptide was introduced into Ile to give the compound 14-24, 55-66.
  • Peptide synthesis uses the standard Fmoc solid phase method.
  • RinkAmide resin was selected and the peptide chain was extended from the C-terminus to the N-terminus.
  • the condensing agent is HBTU/HOBt/DIEA.
  • the deprotecting agent is a piperidine/DMF solution.
  • the peptide sequence was synthesized using a CEM microwave polypeptide synthesizer.
  • the first amino acid residue was ligated with Rink Amide resin using Alloc protected side chain lysine.
  • the N-terminus is finally attached to azide acetic acid (same method as Compound 1).
  • the Alloc protection was removed and the lysine side chain was condensed with azide acetic acid.
  • the cleavage agent is trifluoroacetic acid (TFA), and the crude peptide is dissolved in water and stored by lyophilization. Separation and purification by medium pressure liquid chromatography or high pressure liquid chromatography (HPLC), the pure peptide content is >90%. Matrix-assisted laser Analytical time-of-flight mass spectrometry (MALDI-TOF-MS) was used to determine the molecular weight of the peptide sequence.
  • TFA trifluoroacetic acid
  • HPLC high pressure liquid chromatography
  • MALDI-TOF-MS Matrix-assisted laser Analytical time-of-flight mass spectrometry
  • the synthesis method of BAc is as described above.
  • Compound 25 was synthesized using the same Click chemistry as in the preparation of Compound 1, except that the amount of BAc, copper sulfate pentahydrate, and sodium ascorbate was doubled.
  • Example 48 The procedure was the same as in Example 48 except that the BA derivative conjugated to the C-terminus of the polypeptide was replaced with a UA or OA derivative, or the N-terminus of the polypeptide was introduced into Ile to give compound 26-36, 67-78.
  • Peptide synthesis uses the standard Fmoc solid phase method.
  • RinkAmide resin was selected and the peptide chain was extended from the C-terminus to the N-terminus.
  • the condensing agent is HBTU/HOBt/DIEA.
  • the deprotecting agent is a piperidine/DMF solution.
  • the peptide sequence was synthesized using a CEM microwave polypeptide synthesizer, and the first amino acid residue was ligated with Rink Amide resin using cysteine.
  • the N-terminus is finally attached to azide acetic acid (same method as Compound 1).
  • the cleavage agent is trifluoroacetic acid (TFA), and the crude peptide is dissolved in water and stored by lyophilization.
  • the synthesis method of BAc is as described above.
  • the synthesis of the compound using the same Click chemistry as in the preparation of Compound 1 was first conjugated to the N-terminus of the above polypeptide intermediate. Separation and purification by medium pressure liquid chromatography or high pressure liquid chromatography (HPLC), the pure peptide content is >90%.
  • Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was used to determine the molecular weight of the peptide sequence.
  • Example 71 The procedure was the same as in Example 71 except that the BA derivative conjugated to the C-terminus of the polypeptide was replaced with a UA or OA derivative, or the N-terminus of the polypeptide was introduced into Ile to give the compound 38-42, 79-84.
  • Example 85 Evaluation of Compounds Inhibiting HIV-1 Mediated Cell-Cell Fusion Activity (IC 50 )
  • the cell cryotube was taken out from the liquid nitrogen, and the temperature was rapidly raised in a 37 ° C water bath.
  • the cell cryopreservation solution (1 ml) was taken out, added to a 15 ml centrifuge tube, and 1 ml of the medium was added, and centrifuged (800 rpm, 10 min) to remove the medium and re- 1 ml of fresh medium was added, and the cells were uniformly suspended by light blowing, and the whole cell suspension was transferred to a 75 cm 2 culture flask containing 15 ml of the medium, and cultured at 37 ° C, 5% CO 2 .
  • the TZM-bl cells (supplied by the NIH AIDS Research and Reference Reagent Program) were diluted to 500,000/ml, and placed in a 96-well cell culture plate, 50 ⁇ l/well, and cultured for 24 hours.
  • the blank solvent contains only the medium and does not contain the sample to be tested, and 11 of them are positive controls, and TZM-bl cells and HL2/3 cells mixed at a concentration of 1:3 without the sample inhibitor; 12 Listed as a negative control, is the chemiluminescent signal of a single TZM-bl cell; DMSO content ⁇ 6%.
  • Sample preparation instructions ( Figure 1): Each 96-well sample plate (12 wells per row, 8 rows in total; Costar 3799, Corning Incorporation, USA) was prepared for 4 samples, one for each sample, as shown in Figure 1.
  • the sample of the selected concentration was placed in the S1 well, and the sequence was diluted 4 times (ie, the sample concentration of the latter well was 1/4 of the previous well), and 10 concentration gradients were diluted accordingly.
  • the last two wells contained control medium only as the control, in which the 11th well contained the target cells and the effector cells were 100% fusion control (positive control), and the 12th well contained only the target cells as the unfused background control (negative control).
  • step D Immediately take the 20 ⁇ l/well sample from step B and add to the cell plate for 6 h.
  • LA buffer (Luciferase Assay Buffer, Promega Cooperation, USA) was added to the LA substrate (Luciferase Assay Substrate, Promega Cooperation, USA) and mixed, and 40 ⁇ l/well was added to the 96-well phosphor plate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • AIDS & HIV (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供了一种三萜-多肽缀合物、其立体异构体,或其可药用盐。还提供了含有所述缀合物、其立体异构体,或其可药用盐的药物组合物,以及所述缀合物、其立体异构体,或其可药用盐在治疗或预防HIV感染所致相关疾病尤其是获得性免疫缺陷综合症(艾滋病)中的用途。

Description

一种三萜-多肽缀合物、其药物组合物及用途 技术领域
本发明属于生物医药领域,涉及一种三萜-多肽缀合物、其药物组合物及用途。具体地,本发明涉及式I所示的缀合物、其衍生物、其立体异构体、或其可药用盐。本发明还涉及含有上述的式I缀合物、其衍生物、其立体异构体、或其可药用盐的药物组合物,以及式I缀合物、其衍生物、其立体异构体、或其可药用盐在治疗或预防HIV感染所致相关疾病尤其是获得性免疫缺陷综合征(AIDS,即艾滋病)的用途。
XA1-L1-P-K(L2-XA2)   式I。
背景技术
艾滋病主要是由于人免疫缺陷病毒I型(HIV-1)感染导致的致死性传染疾病,在全球范围流行。目前临床上应用的抗HIV-1药物,辅以高效抗逆转录病毒疗法,可以在一定程度上延长HIV感染者的生存时间和改善其生活质量。但是,由于HIV疫苗研究进展缓慢以及耐药性问题日益明显,研发新型抗HIV药物仍是当务之急。HIV融合抑制剂(HIV fusion inhibitors)是干扰病毒进入靶细胞的新型抗HIV药物,其在感染的初始环节切断病毒的传播,这对于预防及控制HIV-1感染具有特殊意义,因而成为新机制抗HIV药物研究的热点。
Gp41是介导HIV-1与靶细胞膜融合的特异性蛋白,是融合抑制剂的作用靶标。Gp41的胞外区存在着两个与膜融合密切相关的螺旋结构功能区,即N末端重复序列(HR1)和C末端重复序列(HR2)。在膜融合过程中,HR2与HR1相互作用,形成一个六螺旋体核心结构(6-HB)。T20是衍生于gp41HR2区域的具有36个氨基酸残基的融合抑制多肽,于2003年经美国FDA批准上市,是目前唯一上市的HIV-1融合抑制剂。T20能竞争性的和HR1构成的螺旋三聚体结合,占据HR2的作用位点,进而抑制6-HB的形成,使得膜融合过程不能 完成。
T20的上市开辟了多肽类药物控制HIV-1的新领域。但是,T20本身存在着一些缺陷和不足。首先是耐药性问题:由于T20完全衍生于天然HR2序列,对靶标突变的抵抗力低,容易产生耐药性。HR1第36-45位残基(GIVQQQNNLL)是T20结合的主要部位,单个残基的突变导致T20敏感度下降5-10倍,两个残基突变则会导致敏感度下降100倍。其次,T20体内稳定性差,易被蛋白酶降解,生物利用度低。再次,T20具有较高的合成成本。因此,在保证生物活性的前提下如何解决耐药性、提高酶解稳定性以及降低多肽类HIV-1融合抑制剂的合成成本是新型HIV-1融合抑制剂研究的主要方向。
基于上述问题,目前主要的解决策略是避开T20的靶标结合部位,引入不同于T20的新的功能序列来克服耐药性;同时,加入螺旋形成及稳定因子,提高序列的螺旋性及稳定性,提高酶解稳定性及抑制活性。如第二代多肽类融合抑制剂T-1249,在其N端增加了与N-trimer疏水性口袋结合序列(WQEWEQKI),使其活性比T20提高了一个数量级;又如第三代融合抑制剂T-1144,和T20的靶标作用位点完全不同,主要为HR1的疏水性口袋区(WEAWERAI)。I期临床研究结果表明,T-1144能够显著抑制T20耐药性毒株,同时比T20显示了更高的活性及更好的药代动力学性质。此外,5HR系列多肽开创了基于靶标gp41HR1螺旋三聚体的三维晶体结构应用计算机辅助设计完全非天然α螺旋肽的新思路。以5HR为先导结构,在其N端引入口袋结合区(WMEWDRE),C端引入脂膜结合区(WASLWNWF),使得抑制融合活性得到了显著提高。
萜类化合物是指分子式为异戊二烯单位倍数的烃类及其含氧衍生物。萜类化合物可以单独存在,也可以以苷元的形式存在于皂苷分子当中。萜类化合物广泛存在于自然界中,具有多种生理活性。近年研究发现,某些萜类化合物具有一定的抗HIV活性。桦木酸(betulinic acid,BA)属于五环三萜类化合物。1994年Fujioka等首先发现了BA的抗HIV活性,可抑制HIV在H9细胞中复制。随后的研究表明,一 些BA的类似物,如熊果酸(Ursolic acid,UA)和齐墩果酸(Oleanic acid,OA)同样具有抗HIV活性。在桦木酸的3位羟基上引入一个3,3-二甲基琥珀酰基团可显著提高其抗HIV活性。实验表明该类化合物是通过结合于Gag蛋白,干扰其裂解过程,抑制病毒蛋白的组装。在桦木酸的28位羧基上修饰同样具有较好的抗HIV活性。有实验表明它的这种抗HIV活性是通过抑制膜融合过程的后融合阶段实现的。
萜类化合物可以单独存在,也可以以苷元的形式存在于皂苷分子当中。皂苷是由苷元和糖两部分组成的,它在自然界的分布极为广泛。苷元主要包括萜类、甾体和甾体生物碱等结构;糖链的结构很多,但是糖基组成比较简单。长期以来,皂苷一直是天然有机化学和药物化学的重要研究对象,但多数研究仅仅局限在苷元上面,而忽略了糖的作用。近年来,随着分离技术和结构研究方法的进展,皂苷的构效关系得到了进一步的阐明。初步研究表明,皂苷中的糖链与其生物活性有着密切的关系。另外,许多皂苷化合物都具有广谱的抗病毒活性,但是活性都较弱。这主要和皂苷与病毒中特异性靶标的结合能力不强有关。
目前尚需要新的思路来开发新的HIV融合抑制剂。
发明内容
本发明人经过深入的研究和创造性的劳动,将衍生于gp41HR2的肽类药效团与三萜类药效团缀合,设计全新结构HIV融合抑制剂,探索抑制耐药性,得到了一种化合物(如式I所示)即三萜-多肽缀合物。本发明人惊奇地发现,本发明的化合物具有良好的抑制HIV融合活性。由此提供了下述发明:
本发明的一个方面涉及式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,
XA1-L1-P-K(L2-XA2)      式I
其中,
XA1和XA2为相互独立的三萜类化合物,并且XA1和XA2至少存在其中一个;
L1为连接多肽P与XA1间的连接臂,或者L1缺失,并且L1缺失时XA1也同时缺失;
P是氨基酸序列为NNYTSLIHSLIEESQNQQEKNEQELL(SEQID NO:1)或者INNYTSLIHSLIEESQNQQEKNEQELL(SEQ ID NO:2)的多肽;
K为赖氨酸,其侧链与L2-XA2连接,或者K缺失,并且K缺失时L2-XA2也同时缺失;
L2为连接赖氨酸K与XA2分子间的连接臂;
L2与L1相同或不同。
所述“XA1和XA2为相互独立的”表示XA1和XA2可以相同或不同。
所述“XA1和XA2至少存在其中一个”包括如下情况:仅存在XA1,仅存在XA2,或者XA1和XA2同时存在。
不拘于理论的限制,L1或L2为使得小分子能够保持空间灵活性而与靶标结合的连接臂。
不拘于理论的限制,在多肽P的羧基端引入K的目的是为了引入(L2-XA2)。
根据权利要求1本发明任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中,L1的一端与多肽P通过酰胺键连接,另一端通过1,2,3-三氮唑基团与XA1连接;具体地,所述1,2,3-三氮唑基团为L1上的叠氮基与XA1上的炔基通过“click反应”形成;和/或
L2的一端与赖氨酸K的侧链氨基通过酰胺键连接,另一端通过1,2,3-三氮唑基团与XA2连接;具体地,所述1,2,3-三氮唑基团为L2上的叠氮基与XA2上的炔基通过“click反应”形成。
根据本发明任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中,所述三萜类化合物为五环三萜类化合物或四环三萜类化合物,优选为五环三萜类化合物。
根据本发明任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中:
XA1和XA2独立地选自如下的12个结构式中的任意一个:
Figure PCTCN2015072819-appb-000001
不拘于理论的限制,上面12个结构式中的炔基与L1或L2的叠氮基通过“click反应”形成1,2,3-三氮唑基团,通过1,2,3-三氮唑将L1或L2与上面的结构式(12个中的任一个)相连接。
根据本发明的任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中:
L1与L2独立地为叠氮乙酸与天然或非天然氨基酸缩合形成的化合物,或者叠氮乙酸与一端为氨基,一端为羧基的聚乙二醇缩合形成的化合物。
不拘于理论的限制,L1的一端与多肽P通过酰胺键连接;L1的另一端为叠氮基。叠氮基能够与XA1上的炔基通过“click反应”形成1,2,3-三氮唑基团,将XA1与L1连接。
不拘于理论的限制,L2的一端与K的侧链氨基通过酰胺键连接;L2的另一端为叠氮基。叠氮基能够与XA2上的炔基通过“click反应”形成1,2,3-三氮唑基团,将XA2与L2连接。
根据本发明的任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中:
所述天然或非天然氨基酸选自:
L型或D型的甘氨酸(Gly),丙氨酸(Ala),亮氨酸(Leu),异亮氨酸(Ile),谷氨酸(Glu),谷酰胺(Gln),天冬氨酸(Asp),天冬酰胺(Asn),缬氨酸(Val),赖氨酸(Lys),丝氨酸(Ser),苏氨酸(Thr),精氨酸(Arg),组氨酸(His),色氨酸(Trp),苯丙氨酸(Phe),酪氨酸(Tyr),半胱氨酸(Cys),甲硫氨酸(Met);
β-丙氨酸(βAla);
Y-氨基丁酸(GABA);
6-氨基己酸(Aca);
乙二酸,丙二酸,丁二酸,戊二酸,己二酸;
乙二胺,丙二胺,丁二胺,戊二胺,己二胺;
乙二醇,丙二醇,丁二醇,戊二醇,己二醇;
NH2-CH2CH2-O-CH2CH2-COOH(PEG1);
NH2-CH2CH2-O-CH2CH2-O-CH2CH2-COOH(PEG2);和
NH2-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-COOH(PEG3)。
为了便于理解,这里仅以βAla为示例(并不表示对本发明进行限制),L1或L2为下式的虚线部分所示的结构:
Figure PCTCN2015072819-appb-000002
根据本发明的任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,其中,所述式I化合物选自如下的化合物:
(1)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(2)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(3)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(4)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(5)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(6)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(7)BApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(8)UApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(9)OApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(10)BApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(11)UApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(12)OApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
(13)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-Bac);
(14)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
(15)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
(16)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
(17)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
(18)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
(19)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(20)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(21)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(22)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(23)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(24)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
(25)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
(26)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
(27)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
(28)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
(29)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
(30)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
(31)BApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(32)UApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(33)OApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(34)BApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(35)UApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(36)OApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
(37)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(38)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(39)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(40)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(41)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(42)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
(43)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(44)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(45)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(46)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(47)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(48)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(49)BApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(50)UApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(51)OApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(52)BApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(53)UApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(54)OApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
(55)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
(56)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
(57)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
(58)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
(59)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
(60)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
(61)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(62)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(63)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(64)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(65)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(66)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
(67)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
(68)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
(69)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
(70)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
(71)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
(72)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
(73)BApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(74)UApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(75)OApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(76)BApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(77)UApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(78)OApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
(79)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
(80)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
(81)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
(82)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
(83)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
(84)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-Oapo)。
根据本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,其用于治疗和/或预防和/或辅助治疗HIV感染相关疾病或者用于抑制HIV融合;具体地,所述HIV感染相关疾病是艾滋病。
本发明的另一方面涉及一种药物组合物,其含有至少一种本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,以及任选的药学上可接受的辅料。
在本发明中,术语“药物组合物”,可用于在受试者中实现治疗、预防、减轻和/或缓解本发明所述疾病或病症。
通常本发明药物组合物含有0.01-90重量%的本发明的化合物。药物组合物可根据本领域已知的方法制备,制成可作为人用的适当的施用形式或剂量形式。
本发明的化合物或含有它的药物组合物可以单位剂量形式给药,给药途径可为肠道或非肠道,如口服、肌肉、皮下、鼻腔、口腔粘膜、皮肤、腹膜或直肠等。给药剂型例如片剂、胶囊、滴丸、气雾剂、丸剂、粉剂、溶液剂、混悬剂、乳剂、颗粒剂、脂质体、透皮剂、口含片、栓剂、冻干粉针剂等。可以是普通制剂、缓释制剂、控释制剂及各种微粒给药系统。为了将单位给药剂型制成片剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如淀粉、糊精、硫酸钙、乳糖、甘露醇、蔗糖、氯化钠、葡萄糖、尿素、碳酸钙、白陶土、微晶纤维素、硅酸铝等;湿润剂与粘合剂,如水、甘油、聚乙二醇、乙醇、丙醇、淀粉浆、糊精、糖浆、蜂蜜、葡萄糖溶液、阿拉伯胶浆、明胶浆、羧甲基纤维素钠、紫胶、甲基纤维素、 磷酸钾、聚乙烯吡咯烷酮等;崩解剂,例如干燥淀粉、海藻酸盐、琼脂粉、褐藻淀粉、碳酸氢钠与枸橼酸、碳酸钙、聚氧乙烯、山梨糖醇脂肪酸酯、十二烷基磺酸钠、甲基纤维素、乙基纤维素等;崩解抑制剂,例如蔗糖、三硬脂酸甘油酯、可可脂、氢化油等;吸收促进剂,例如季铵盐、十二烷基硫酸钠等;润滑剂,例如滑石粉、二氧化硅、玉米淀粉、硬脂酸盐、硼酸、液体石蜡、聚乙二醇等。还可以将片剂进一步制成包衣片,例如糖包衣片、薄膜包衣片、肠溶包衣片,或双层片和多层片。为了将给药单元制成丸剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如葡萄糖、乳糖、淀粉、可可脂、氢化植物油、聚乙烯吡咯烷酮、Gelucire、高岭土、滑石粉等;粘合剂如阿拉伯胶、黄蓍胶、明胶、乙醇、蜂蜜、液糖、米糊或面糊等;崩解剂,如琼脂粉、干燥淀粉、海藻酸盐、十二烷基磺酸钠、甲基纤维素、乙基纤维素等。为了将给药单元制成栓剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如聚乙二醇、卵磷脂、可可脂、高级醇、高级醇的酯、明胶、半合成甘油酯等。为了将给药单元制成胶囊,将有效成分式I化合物或其立体异构体与上述的各种载体混合,并将由此得到的混合物置于硬的明明胶囊或软胶囊中。也可将有效成分式I化合物或其立体异构体制成微囊剂,混悬于水性介质中形成混悬剂,亦可装入硬胶囊中或制成注射剂应用。为了将给药单元制成注射用制剂,如溶液剂、乳剂、冻干粉针剂和混悬剂,可以使用本领域常用的所有稀释剂,例如,水、乙醇、聚乙二醇、1,3-丙二醇、乙氧基化的异硬脂醇、多氧化的异硬脂醇、聚氧乙烯山梨醇脂肪酸酯等。另外,为了制备等渗注射液,可以向注射用制剂中添加适量的氯化钠、葡萄糖或甘油,此外,还可以添加常规的助溶剂、缓冲剂、pH调节剂等。
此外,如需要,也可以向药物制剂中添加着色剂、防腐剂、香料、矫味剂、甜味剂或其它材料。
可改变本发明药物组合物中各活性成分的实际剂量水平,以便所得的活性化合物量能有效针对具体患者、组合物和给药方式得到所需 的治疗反应。剂量水平须根据具体化合物的活性、给药途径、所治疗病况的严重程度以及待治疗患者的病况和既往病史来选定。但是,本领域的做法是,化合物的剂量从低于为得到所需治疗效果而要求的水平开始,逐渐增加剂量,直到得到所需的效果。
本发明的再一方面涉及一种HIV融合抑制剂,其含有至少一种本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐。
本发明的再一方面涉及本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐在制备HIV融合抑制剂中的用途。
本发明的再一方面涉及本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐在制备用于治疗和/或预防和/或辅助治疗HIV感染相关疾病尤其是艾滋病的药物中的用途。
本发明的再一方面涉及一种在体内或体外抑制HIV融合的方法,包括使用有效量的本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐的步骤。
在本发明的一个实施方案中,所述在体外抑制HIV融合的方法是非治疗目的的。
本发明的再一方面涉及一种治疗和/或预防和/或辅助治疗HIV感染相关疾病尤其是艾滋病的方法,包括使用有效量的本发明中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐的步骤。
本发明的化合物或药物组合物的给药剂量取决于许多因素,例如所要预防或治疗疾病的性质和严重程度,患者或动物的性别、年龄、体重及个体反应,所用的具体化合物,给药途径及给药次数等。上述剂量可以单一剂量形式或分成几个,例如二、三或四个剂量形式给药。
本发明中,术语“有效量”是指可在受试者中实现治疗、预防、减轻和/或缓解本发明所述疾病或病症的剂量。
术语“受试者”可以指患者或者其它接受本发明组合物以治疗、预防、减轻和/或缓解本发明所述疾病或病症的动物,特别是哺乳动物,例如人、狗、猴、牛、马等。
术语“疾病和/或病症”是指所述受试者的一种身体状态,该身体状态与本发明所述疾病和/或病症有关。
在本发明中,术语“天然”是指自然存在的,未经人为修饰的,如HIV-1gp41本身的氨基酸序列等。
在本发明中,术语“非天然”是指人为设计的,与天然不同的,如对直接衍生的天然序列经改造、修饰后的序列等。
在本发明中,术语“疏水性氨基酸”是指侧链为疏水性基团的氨基酸,包括:Ala,Val,Leu,Ile,Met,Phe,Trp等。
在本发明中,术语“亲水性氨基酸”是指侧链含有能与水作用形成氢键的亲水基团的氨基酸,包括:Ser,Thr,Cys,Asp,Asn,Glu,Gln,Arg,Lys,His,Tyr等。
在本发明中,术语“酸性氨基酸”是指侧链含羧基的氨基酸,包括:Glu,Asp等。
在本发明中,术语“碱性氨基酸”是指侧链含氨基或胍基的氨基酸,包括:Lys,Arg等。
发明的有益效果
本发明的化合物具有抑制HIV细胞融合例如抑制HIV-1细胞融合的活性。
附图说明
图1:样品配制说明。每个96孔样品板(每行12孔,共8行;Costar3799,Corning Incorporation,USA)配制4个样品,每个样品重复1 次。以第一行为例,将选定浓度的样品放置第S1孔,序列稀释4倍(即后一个孔的样品浓度是前一个孔的1/4),按此稀释10个浓度梯度。最后两个孔作为对照只含有培养基,其中第11孔含有靶细胞和效应细胞为100%融合对照(阳性对照),第12孔只含靶细胞为无融合背景对照(阴性对照)。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本发明中使用的缩写具有下面的含义:
AIDS(Acquired Immure Deficiency Syndrome)            艾滋病,获得性免疫缺陷综合征
Ala(Alanine,A)                                      丙氨酸
Asn(Asparagine,N)                                   天冬酰氨
DCM(Dichloromethane)                                 二氯甲烷
DMF(N,N-Dimethyl malonate)                          二甲基甲酰胺
Env(Envelope glycoprotein)                           包膜糖蛋白
ESI-MS(Electronic spray ion mass spectroscopy)       电喷雾质谱
Fmoc(Fluorenylmethoxycarbonyl)                       芴甲氧羰基
Gln(Glutamine,Q)                                    谷酰氨
Glu(Glutamic acid,E)                                谷氨酸
6-HB(six-helix bundle)                               六螺旋体
HBTU        2-(1H-1-羟基苯并三唑)-1,1,3,3-四甲基脲六氟磷酸
His(Histidine,H)                                    组氨酸
HoBt(1-Hydroxylbenzotriazole anhydrous)    1-羟基苯并三氮唑
HR1(N-terminal heptad repeat,NHR)         N末端重复序列
HR2(C-terminal heptad repeat,CHR)         C末端重复序列
HIV(Human Immunodeficiency Virus))         人免疫缺陷病毒
HIV-1                                      人免疫缺陷病毒I型
HPLC(High performance liquid chromatography) 高效液相色谱
Ile(Isoleucine,I)                             异亮氨酸
Leu(Leucine,L)                                  亮氨酸
Lys(Lysine,K)                                   赖氨酸
Ser(Serine,S)                                   丝氨酸
TFA(trifluoroacetic acid)                       三氟乙酸
Thr(Threonie,T)                                 苏氨酸
Tyr(Tyrosine,Y)                                 酪氨酸
实施例所用固相合成载体Rink酰胺树脂为天津南开合成责任有限公司产品;HBTU、HOBT、DIEA以及Fmoc保护的天然氨基酸或D型的非天然氨基酸为上海吉尔生化公司以及成都诚诺新技术有限责任公司产品。N-甲基吡咯烷酮(NMP)为ACROS公司产品;三氟乙酸(TFA)为北京博迈杰科技有限公司产品;3,4-二羟基苯乙酸、4-氨基水杨酸、5-氨基水杨酸、2,5-己二酮、叔丁醇以及溴代乙酸乙酯为ALFA公司产品;DMF、DCM为韩国三星公司产品;色谱纯乙腈为Fisher公司产品。其它试剂如无说明均为国产分析纯产品。
实施例1:化合物1的制备
1.1小分子化合物BAc的合成
Figure PCTCN2015072819-appb-000003
中间体2的合成:
氮气保护下用2mlDMF溶解0.3g(0.66mmol)化合物1,0.11g咪唑及8mg DMAP。加入TBDPSCl 0.23mL(0.79mmol)。回流搅拌过夜。反应完成后加入25mL DCM,有机相分别用1N盐酸,饱和氯化钠溶液洗,无水硫酸钠干燥。柱层析分离纯化得白色固体,收率72%。
中间体3的合成:
将0.25g中间体2及40mg DMAP溶于10mL DCM中,加入0.11g戊炔酸。在搅拌下加入0.23g DIC,继续室温搅拌至反应完全。加入25mL DCM稀释后分别用10%柠檬酸、饱和碳酸氢钠及饱和氯化钠溶液洗三遍,无水硫酸钠干燥。柱层析分离纯化得白色固体,收率71%。
化合物4的合成:
氮气保护下将0.27g(0.34mmol)中间体3溶于5ml无水四氢呋喃中,加入TBAF 0.14g(0.52mmol),室温搅拌3小时。反应结束后加入15mL DCM,有机相分别用1N HCl和饱和氯化钠洗三遍,无水硫酸钠干燥。柱层析分离纯化,得白色固体,收率80%。
1.2BAc与肽缀合物(化合物1)的制备
多肽合成采用标准的Fmoc固相方法。选用RinkAmide树脂,肽链由C端向N端延长。缩合剂为HBTU/HOBt/DIEA。脱保护剂为哌啶/DMF溶液。利用CEM微波多肽合成仪合成肽序列,叠氮乙酸可以作为最后的残基与多肽N端氨基缩合。裂解剂为三氟乙酸(TFA),粗肽水溶解后冻干保存。用中压液相色谱法或高压液相色谱法(HPLC)进行分离纯化,纯肽含量>90%。基质辅助激光解析飞行时间质谱(MALDI-TOF-MS)确定肽序列分子量。
合成条件如下:
保护氨基酸或叠氮乙酸:0.2M的DMF溶液,
活化剂:0.45M HBTU/HOBt的DMF溶液,
活化碱:2M DIEA的NMP溶液,
脱保护剂:20%v/v哌啶的DMF溶液,
封闭试剂:20%v/v乙酸酐的DMF溶液。
称取Rink Amide树脂0.5g(0.25mmol)置入CEM微波多肽合成仪反应器中,然后将氨基酸,叠氮乙酸,活化剂,活化碱,脱保护试剂,封闭试剂按上述浓度配置好后,用CEM微波全自动多肽合成仪进行合成。完成后肽树脂用DMF洗涤3遍后用无水甲醇收缩,室温真空干燥,得肽树脂2.05g。
裂解液(体积百分比):三氟乙酸:乙二硫醇:间甲酚:水=82.5∶10∶5∶2.5。
肽树脂的裂解:称取微波合成仪合成好的肽树脂2.05g,放入250ml茄形瓶中,冰浴,电磁搅拌。按1克肽树脂加入10ml的量配制裂解液。TFA需预先冰浴降温30min或者预先存放于冰箱中使用;将配制好的裂解液加入到冰浴条件下的肽树脂中,电磁搅拌,树脂变橙红色,冰浴条件下反应30min,然后,撤冰浴,室温再继续搅拌反应90min,反应完成。剧烈搅拌下向反应器中加入冷乙醚200ml,析出白色沉淀,继续搅拌30min;用G4的砂芯抽虑漏斗滤出析出物,用冷乙醚反复洗涤3遍,晾干。加入双蒸水50ml,乙腈5ml使固体充分溶解,抽虑,滤液冻干得N端连接叠氮乙酸的粗肽1.03g。
所得连接叠氮乙酸的粗肽用中压或高压色谱进行纯化。色谱柱为C8柱,洗脱剂为乙腈,水及少量乙酸。具体操作步骤:称取粗肽1.00g,加水20ml,乙腈5ml使固体溶解,离心10min(3000转/分钟),取上清液上样。色谱柱预先用15%乙腈/水/0.1%冰乙酸溶液200ml平衡。上样后继续用15%乙腈/水/0.1%冰乙酸溶液200ml冲洗,高效液相检测洗脱液成分。根据液相检测结果逐渐升高乙腈含量,直至所纯化的多肽缀合物主峰被洗脱出来。合并洗脱液,旋转蒸发去除大部分溶剂,冻干得纯的N端连有叠氮乙酸的多肽,HPLC检测含量大于90%。
Click化学制备缀合物:称取N端连有叠氮乙酸的多肽20mg,用1mL水溶解;称取BAc 2mg,用1mL叔丁醇溶解。将溶解有BAc的叔丁醇溶液加到溶有肽的水溶液中,加入1mg五水合硫酸铜及1mg抗坏血酸,涡旋后置于超生仪中反应4小时。高效液相色谱检测反应。反应完成后用制备色谱分离纯化,分离方法如前所述。
实施例2-6:化合物2-3,43-45的制备
方法同实施例1,只是将与多肽N端缀合的BAc替换为UAc或OAc,或将多肽N端引入Ile,得化合物2-3,43-45。
实施例7:化合物4的制备
7.1小分子化合物BAo的合成
Figure PCTCN2015072819-appb-000004
称取0.5g化合物1用10mL DMF溶解,加入0.46g碳酸钾及171微升溴丙炔。室温搅拌4小时,TLC监测反应。反应完成后过滤除盐滤液蒸干后柱层析分离纯化,得白色固体,收率65%。
7.2BAc与肽缀合物(化合物4)的制备:和化合物1的合成过程相同,只是将肽链N端的小分子更换为BAo。
实施例8-12:化合物5-6,46-48的制备
方法同实施例7,只是将与多肽N端缀合的BAo替换为UAo或OAo,或将多肽N端引入Ile,得化合物5-6,46-48。
实施例13:化合物7的制备
13.1小分子化合物BApc的合成
称取1.0g化合物1用10mL DMF溶解,加入0.61g碳酸钾及284微升溴丙炔。室温搅拌4小时,TLC监测反应。反应完成后过滤除盐滤液蒸干后柱层析分离纯化,得中间体6,白色固体,收率65%。
称取0.15g中间体6及0.04g DMAP溶于6mL DCM中。依次加 入戊炔酸0.09g及0.23g DIC。室温搅拌4小时,TLC检测反应。反应完成后一次用10%柠檬酸、饱和碳酸氢钠及饱和氯化钠溶液洗三遍,无水硫酸钠干燥。柱层析分离纯化得白色固体,收率70%。
13.2BApc与肽缀合物(化合物7)的制备:和化合物1的合成过程相同,只是将肽链N端的小分子更换为BApc。
实施例14-18:化合物8-9,49-51的制备
方法同实施例13,只是将与多肽N端缀合的BApc替换为UApc或OApc,或将多肽N端引入Ile,得化合物8-9,49-51。
实施例19:化合物10的制备
19.1小分子化合物BApo的合成
Figure PCTCN2015072819-appb-000006
称取4.0g化合物1置于茄瓶中,加入25mL吡啶及3.5mL乙酸酐室温搅拌过夜至澄清,TLC监测反应。反应完成后加入25mL水,继续搅拌30min。中间体8析出,抽滤得白色固体,收率80%。
称取1.0g中间体8用10mL DMF溶解,加入碳酸钾0.91g及溴丙炔342微升。室温搅拌4小时,TLC检测反应。反应完成后抽滤除去盐,减压浓缩。柱层析分离纯化得白色固体,收率78%。
19.2BApo与肽缀合物(化合物10)的制备:和化合物1的合成过程相同,只是将肽链N端的小分子更换为BApc。
实施例20-24:化合物11-12,52-54的制备
方法同实施例19,只是将与多肽N端缀合的BApo替换为UApo或OApo,或将多肽N端引入Ile,得化合物11-12,52-54。
实施例25:化合物13的制备
多肽合成采用标准的Fmoc固相方法。选用RinkAmide树脂,肽链由C端向N端延长。缩合剂为HBTU/HOBt/DIEA。脱保护剂为哌啶/DMF溶液。利用CEM微波多肽合成仪合成肽序列,第一个氨基酸残基选用Alloc保护侧链的赖氨酸与RinkAmide树脂相连。在多肽合成完成后,加入用2mL DCM/THF溶解的四三苯基膦钯(1eq)及5,5-二甲基环己基-1,3-二酮(10eq)溶液,避光搅拌6小时。用DIPEA/DMF洗树脂五次,后用DCM洗树脂5次。此时肽树脂中Alloc保护侧链的赖氨酸的Alloc基团脱除,侧链氨基暴露。此时用同样的多肽合成方法将叠氮乙酸与赖氨酸侧链氨基缩合。裂解剂为三氟乙酸(TFA),粗肽水溶解后冻干保存。用中压液相色谱法或高压液相色谱法(HPLC)进行分离纯化,纯肽含量>90%。基质辅助激光解析飞行时间质谱(MALDI-TOF-MS)确定肽序列分子量。
BAc的合成方法如前所述。用与制备化合物1相同的Click化学合成化合物13。
实施例26-48:化合物14-24,55-66的制备
方法同实施例25,只是将与多肽C端缀合的BA衍生物替换为UA或OA衍生物,或将多肽N端引入Ile,得化合物14-24,55-66。
实施例49:化合物25的制备
多肽合成采用标准的Fmoc固相方法。选用RinkAmide树脂,肽链由C端向N端延长。缩合剂为HBTU/HOBt/DIEA。脱保护剂为哌啶/DMF溶液。利用CEM微波多肽合成仪合成肽序列,第一个氨基酸残基选用Alloc保护侧链的赖氨酸与Rink Amide树脂相连。N端最后连接叠氮乙酸(与化合物1合成方法相同)。随后采用化合物13的合成方法脱除Alloc保护并将赖氨酸侧链与叠氮乙酸缩合。裂解剂为三氟乙酸(TFA),粗肽水溶解后冻干保存。用中压液相色谱法或高压液相色谱法(HPLC)进行分离纯化,纯肽含量>90%。基质辅助激光 解析飞行时间质谱(MALDI-TOF-MS)确定肽序列分子量。
BAc的合成方法如前所述。用与制备化合物1相同的Click化学合成化合物25,区别在于BAc、五水合硫酸铜、抗坏血酸钠的投料量加倍。
实施例50-72:化合物26-36,67-78的制备
方法同实施例48,只是将与多肽C端缀合的BA衍生物替换为UA或OA衍生物,或将多肽N端引入Ile,得化合物26-36,67-78。
实施例73:化合物37的制备
71.1多肽中间体的合成
多肽合成采用标准的Fmoc固相方法。选用RinkAmide树脂,肽链由C端向N端延长。缩合剂为HBTU/HOBt/DIEA。脱保护剂为哌啶/DMF溶液。利用CEM微波多肽合成仪合成肽序列,第一个氨基酸残基选用半胱氨酸与Rink Amide树脂相连。N端最后连接叠氮乙酸(与化合物1合成方法相同)。裂解剂为三氟乙酸(TFA),粗肽水溶解后冻干保存。用中压液相色谱法或高压液相色谱法(HPLC)进行分离纯化,纯肽含量>90%。基质辅助激光解析飞行时间质谱(MALDI-TOF-MS)确定肽序列分子量。
71.2BAc与多肽中间体N端缀合
BAc的合成方法如前所述。用与制备化合物1相同的Click化学合成化合物首先将BAc缀合在上述多肽中间体的N端。用中压液相色谱法或高压液相色谱法(HPLC)进行分离纯化,纯肽含量>90%。基质辅助激光解析飞行时间质谱(MALDI-TOF-MS)确定肽序列分子量。
71.3BApc溴代乙酸酯(BApc-Br)的合成
依次称取溴乙酸6.95g,BApc7.73g,EDC·HCl 13.43g,DMAP122mg加入500ml茄形瓶中,加入DCM 500ml,冰浴下搅拌,溶液呈黄色。30min后撤除冰浴,室温下反应24h,溶液呈红褐色。依次用饱和NaHCO3、饱和NaCl洗涤,无水MgSO4干燥。适当浓缩后用硅 胶柱湿法装柱上样纯化。先用石油醚∶乙酸乙酯=10∶1作为洗脱剂洗脱500ml之后将洗脱剂更换为石油醚∶乙酸乙酯=9∶1,洗脱下产物,蒸除溶剂,真空干燥后得到白色固体6.3g,产率62%。
71.4将BApc缀合在BAc-多肽的C端
取纯化后的BAc-多肽(>90%)20mg溶于0.3ml DMSO中,分别加入0.2ml BApc-Br 3.0mg的THF溶液,混合均匀后用滴管加入DIEA2滴,室温反应3h,用C4半制备反相色谱柱分离纯化,MALDI-TOF-MS确证分子量。
实施例74-84:化合物38-42,79-84的制备
方法同实施例71,只是将与多肽C端缀合的BA衍生物替换为UA或OA衍生物,或将多肽N端引入Ile,得化合物38-42,79-84。
实施例85:化合物抑制HIV-1介导的细胞-细胞融合活性评价 (IC50)
1.TZM-bl细胞和HL2/3细胞的复苏/冻存
将细胞冻存管从液氮中取出,37℃水浴迅速升温,取出细胞冻存液(1ml),加至15ml离心管,并加入1ml培养基,离心(800rpm,10min),除去培养基,重新加入1ml新鲜培养基,并轻吹使细胞均匀悬浮,将细胞悬浮液全部转移至含有15ml培养基的75cm2培养瓶中,在37℃、5%CO2下培养。
消化细胞并计数后,离心,弃上清,加冻存液轻吹使细胞均匀悬浮(100万/ml),分装至冻存管(1ml/管),分别置于4℃(30min)、-20℃(2h)、-80℃(12h)、-196℃保存。
2.传代培养
取出细胞培养瓶,倒去培养基,加入2ml消化液,轻晃使其在细胞表面平铺均匀,倒去消化液,重新加入2ml消化液,铺匀,37℃消化2min,加入4ml培养基终止消化,取出所有液体,离心,弃上清,加4ml培养基并轻吹使细胞均匀悬浮,取10μl计数,取40-50万细胞置于75cm2培 养瓶中传代培养。
3.融合实验
A.取TZM-bl细胞(由美国NIH AIDS Research and Reference Reagent Program提供)悬浮液稀释至50万/ml,铺入96孔细胞培养板,50μl/孔,培养24h。
B.配样品:取待测化合物,先估计化合物的IC50值,以这个估计的值为基础,乘以两个4,再乘以6得到待测化合物的配制浓度,例如:估计样品的IC50为10nM,则样品的配制浓度为10*4*4*6=960nM,以此浓度为基础,在96孔板上第(1-10)列依次将待测化合物稀释四倍,11列和12列为空白溶剂(空白溶剂即只含培养基,不含待测样品,其中11列为阳性对照,为无样品抑制剂条件下以1∶3浓度混合的TZM-bl细胞和HL2/3细胞;12列为阴性对照,为单一TZM-bl细胞的化学发光信号);DMSO含量≤6%。
样品配制说明(如附图1):每个96孔样品板(每行12孔,共8行;Costar 3799,Corning Incorporation,USA)配制4个样品,每个样品重复1次,如图1所示,以第一行为例将选定浓度的样品放置第S1孔,序列稀释4倍(即后一个孔的样品浓度是前一个孔的1/4),按此稀释10个浓度梯度。最后两个孔作为对照只含有培养基,其中第11孔含有靶细胞和效应细胞为100%融合对照(阳性对照),第12孔只含靶细胞为无融合背景对照(阴性对照)。
C.取HL2/3细胞(由美国NIH AIDS Research and Reference Reagent Program提供)悬浮液稀释至100万/ml,加入细胞板的(1-11)×(A-H),50μl/孔,第12×(A-H)补加50μl/孔培养基。
D.立即取步骤B中的20μl/孔样品加入细胞板,培养6h。
E.去除细胞板中每孔中的培养基(120μl/孔),以PBS洗2次,150μl/次。
加入稀释后的裂解液(1×),50μl/孔,裂解5min;其中稀释后的裂解液(1×)即将Luciferase试剂盒(Promega,USA)中(5×)的裂解液用水稀释,根据用量新鲜配制。
F.取20μl/孔细胞裂解液铺在96孔磷光板上。
G.将融化后的LA缓冲液(Luciferase Assay Buffer,Promega Cooperation,USA)加入LA底物(Luciferase Assay Substrate,Promega Cooperation,USA)中混匀,加40μl/孔于96孔磷光板中。
H.立即在酶标仪上检测发光。实验的阴性对照为单一TZM-bl细胞的化学发光信号,用Min表示;阳性对照为无样品抑制剂条件下以1∶3浓度混合的TZM-bl细胞和HL2/3细胞,用Max表示;测定值为某一样品在某一浓度下的信号值,用X表示;细胞融合率=(X-Min)/(Max-Min)*100%。
按照上述方法,活性测定结果见下面的表1。
表1:抑制HIV-1介导的细胞融合活性(IC50)
Figure PCTCN2015072819-appb-000007
Figure PCTCN2015072819-appb-000008
Figure PCTCN2015072819-appb-000009
由表1的活性结果可见,所有三萜-多肽缀合物均显示了抑制HIV-1细胞融合活性,其中化合物4、13、14、19、22、57、61、64、25、28、31、34、37、40、67、70、73、76、79、82抑制HIV融合活性达到较低的nM水平,与阳性对照药C34和T20相当甚至更好。
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理解。根据已经公开的所有教导,可以对那些细节进行各种修改和替换,这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (12)

  1. 式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,
    XA1-L1-P-K(L2-XA2)  式I
    其中,
    XA1和XA2为相互独立的三萜类化合物,并且XA1和XA2至少存在其中一个;
    L1为连接多肽P与XA1间的连接臂,或者L1缺失,并且L1缺失时XA1也同时缺失;
    P是氨基酸序列为NNYTSLIHSLIEESQNQQEKNEQELL(SEQ ID NO:1)或者INNYTSLIHSLIEESQNQQEKNEQELL(SEQ ID NO:2)的多肽;
    K为赖氨酸,其侧链与L2-XA2连接,或者K缺失,并且K缺失时L2-XA2也同时缺失;
    L2为连接赖氨酸K与XA2分子间的连接臂;
    L2与L1相同或不同。
  2. 根据权利要求1所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中,L1的一端与多肽P通过酰胺键连接,另一端通过1,2,3-三氮唑基团与XA1连接;具体地,所述1,2,3-三氮唑基团为L1上的叠氮基与XA1上的炔基通过“click反应”形成;和/或
    L2的一端与赖氨酸K的侧链氨基通过酰胺键连接,另一端通过1,2,3-三氮唑基团与XA2连接;具体地,所述1,2,3-三氮唑基团为L2上的叠氮基与XA2上的炔基通过“click反应”形成。
  3. 根据权利要求1所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中:
    XA1和XA2独立地选自五环三萜类化合物;
    具体地,
    XA1和XA2独立地选自如下的12个结构式中的任意一个:
    Figure PCTCN2015072819-appb-100001
  4. 根据权利要求1至3中任一项所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中:
    L1与L2独立地为叠氮乙酸与天然或非天然氨基酸缩合形成的化合物,或者叠氮乙酸与一端为氨基,一端为羧基的聚乙二醇缩合形成的化合物。
  5. 根据权利要求4所述的式I所示的化合物、其衍生物、其立体异构体、或其可药用盐,其中,
    所述天然或非天然氨基酸选自:
    L型或D型的甘氨酸(Gly),丙氨酸(Ala),亮氨酸(Leu),异亮氨酸(Ile),谷氨酸(Glu),谷酰胺(Gln),天冬氨酸(Asp),天冬酰胺(Asn),缬氨酸(Val),赖氨酸(Lys),丝氨酸(Ser),苏氨酸(Thr),精氨酸(Arg),组氨酸(His),色氨酸(Trp),苯丙氨酸(Phe),酪氨酸(Tyr),半胱氨酸(Cys),甲硫氨酸(Met);
    β-丙氨酸(βAla);
    γ-氨基丁酸(GABA);
    6-氨基己酸(Aca);
    乙二酸,丙二酸,丁二酸,戊二酸,己二酸;
    乙二胺,丙二胺,丁二胺,戊二胺,己二胺;
    乙二醇,丙二醇,丁二醇,戊二醇,己二醇;
    NH2-CH2CH2-O-CH2CH2-COOH(PEG1);
    NH2-CH2CH2-O-CH2CH2-O-CH2CH2-COOH(PEG2);和
    NH2-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-COOH(PEG3)。
  6. 根据权利要求1至5中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,其选自如下的化合物:
    (1)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (2)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (3)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (4)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (5)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (6)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (7)BApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (8)UApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (9)OApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (10)BApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (11)UApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (12)OApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL;
    (13)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-Bac);
    (14)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
    (15)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
    (16)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
    (17)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
    (18)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
    (19)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (20)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (21)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (22)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (23)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (24)NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
    (25)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
    (26)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
    (27)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
    (28)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
    (29)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
    (30)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
    (31)BApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (32)UApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (33)OApc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (34)BApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (35)UApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (36)OApo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
    (37)BAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (38)UAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (39)OAc-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (40)BAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (41)UAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (42)OAo-βAla-NNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
    (43)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (44)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (45)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (46)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (47)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (48)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (49)BApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (50)UApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (51)OApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (52)BApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (53)UApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (54)OApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL;
    (55)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
    (56)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
    (57)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
    (58)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
    (59)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
    (60)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
    (61)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (62)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (63)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (64)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (65)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (66)INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
    (67)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAc);
    (68)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAc);
    (69)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAc);
    (70)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BAo);
    (71)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UAo);
    (72)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OAo);
    (73)BApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (74)UApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (75)OApc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (76)BApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (77)UApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (78)OApo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApo);
    (79)BAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApc);
    (80)UAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApc);
    (81)OAc-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-OApc);
    (82)BAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-BApo);
    (83)UAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-UApo);
    (84)OAo-βAla-INNYTSLIHSLIEESQNQQEKNEQELL-K(βAla-Oapo);
    或者上述化合物的衍生物、立体异构体、或可药用盐。
  7. 一种药物组合物,其含有至少一种权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,以及任选的药学上可接受的辅料。
  8. 一种HIV融合抑制剂,其含有至少一种权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐。
  9. 权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐在制备HIV融合抑制剂,或者在制备用于治疗和/或预防和/或辅助治疗HIV感染相关疾病的药物中的用途;具体 地,所述HIV感染相关疾病是艾滋病。
  10. 一种在体内或体外抑制HIV融合的方法,包括使用有效量的权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐的步骤。
  11. 一种治疗和/或预防和/或辅助治疗HIV感染相关疾病的方法,包括使用有效量的权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐的步骤;具体地,所述HIV感染相关疾病是艾滋病。
  12. 根据权利要求1至6中任一项所述的式I化合物、其衍生物、其立体异构体、或其可药用盐,其用于治疗和/或预防和/或辅助治疗HIV感染相关疾病或者用于抑制HIV融合;具体地,所述HIV感染相关疾病是艾滋病。
PCT/CN2015/072819 2014-02-28 2015-02-12 一种三萜-多肽缀合物、其药物组合物及用途 WO2015127862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410069520.8 2014-02-28
CN201410069520.8A CN104877015B (zh) 2014-02-28 2014-02-28 一种三萜-多肽缀合物、其药物组合物及用途

Publications (1)

Publication Number Publication Date
WO2015127862A1 true WO2015127862A1 (zh) 2015-09-03

Family

ID=53944718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072819 WO2015127862A1 (zh) 2014-02-28 2015-02-12 一种三萜-多肽缀合物、其药物组合物及用途

Country Status (2)

Country Link
CN (1) CN104877015B (zh)
WO (1) WO2015127862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038462A1 (ko) * 2021-09-10 2023-03-16 연세대학교 산학협력단 Tat 펩타이드 변이체를 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성물

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR107512A1 (es) * 2016-02-04 2018-05-09 VIIV HEALTHCARE UK Nº 5 LTD Triterpenoides modificados en c-3 y c-17 como inhibidores del vih-1
CN113980098B (zh) * 2021-12-27 2022-03-29 浙江湃肽生物有限公司深圳分公司 一种九肽-1衍生物及其合成方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607979A (zh) * 2009-03-02 2009-12-23 中国药科大学 五环三萜-维生素c缀合物、其制备方法及其医药用途
US20100034758A1 (en) * 2007-08-07 2010-02-11 Muhammed Majeed Peptides Modified with Triterpenoids and Small Organic Molecules: Synthesis and use in Cosmeceuticals
WO2013185575A1 (zh) * 2012-06-11 2013-12-19 中国人民解放军军事医学科学院毒物药物研究所 抑制hiv感染的小分子-多肽缀合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769828A (en) * 1996-06-13 1998-06-23 Medtronic, Inc. Two-stage venous cannula with expandable reinforcing member
AU2001294959A1 (en) * 2000-09-29 2002-04-08 Robert M. Carlson Triterpenes having antibacterial activity
CN102089329B (zh) * 2008-06-25 2014-10-15 中国人民解放军军事医学科学院毒物药物研究所 抑制hiv感染的多肽及其衍生物
CN103122025B (zh) * 2011-11-21 2017-09-05 中国人民解放军军事医学科学院毒物药物研究所 抑制hiv感染的小分子‑多肽缀合物
CN103127135B (zh) * 2011-11-22 2018-05-04 北京大学 三萜衍生物,其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034758A1 (en) * 2007-08-07 2010-02-11 Muhammed Majeed Peptides Modified with Triterpenoids and Small Organic Molecules: Synthesis and use in Cosmeceuticals
CN101607979A (zh) * 2009-03-02 2009-12-23 中国药科大学 五环三萜-维生素c缀合物、其制备方法及其医药用途
WO2013185575A1 (zh) * 2012-06-11 2013-12-19 中国人民解放军军事医学科学院毒物药物研究所 抑制hiv感染的小分子-多肽缀合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, CHAO ET AL.: "Conjugation of a Nonspecific Antiviral Sapogenin with a Specific HIV Fusion Inhibitor: A Promising Strategy for Discovering New Antiviral Therapeutics", J. MED. CHEM., vol. 57, no. 17, 26 August 2014 (2014-08-26) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038462A1 (ko) * 2021-09-10 2023-03-16 연세대학교 산학협력단 Tat 펩타이드 변이체를 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성물

Also Published As

Publication number Publication date
CN104877015A (zh) 2015-09-02
CN104877015B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
JP3266311B2 (ja) 新規ポリペプチドおよびこれを用いる抗hiv剤
JP4682251B2 (ja) 改善された生物学的特性を有するhiv融合阻害剤ペプチド
WO2019223642A1 (zh) 抗病毒多肽及其药物组合物和用途
CN108727475B (zh) 强效抑制hiv的脂肽、其衍生物、其药物组合物及其用途
JP2010209097A (ja) Hiv感染のペプチド誘導体融合阻害剤
CN111643656A (zh) 广谱冠状病毒膜融合抑制剂及其抗艾滋病病毒的应用
WO2015127862A1 (zh) 一种三萜-多肽缀合物、其药物组合物及用途
KR102389792B1 (ko) Hiv를 강력하게 저해하는 리포펩티드, 그의 유도체, 그의 약학적 조성물 및 그의 용도
WO2004069166A2 (en) Inhibition of hiv-1 replication by disruption of the processing of the viral capsid-spacer peptide 1 protein
CN116444644A (zh) 一种广谱病毒膜融合抑制剂及其制备方法和用途
WO2023214576A1 (ja) Hrasおよびnrasに対して選択的なkras阻害作用を有する環状化合物
WO2013185575A1 (zh) 抑制hiv感染的小分子-多肽缀合物
CN113817026B (zh) 靶向刺突蛋白hr1的订书肽、制备方法及抗新型冠状病毒应用
WO2016173429A1 (zh) 定点共价交联的天然n肽类的hiv-1抑制剂
WO2011110049A1 (zh) 抗hiv的融合多肽及其用途
WO2001064716A1 (fr) Composes antiviraux
KR20190117541A (ko) 신규 화합물 (이뮤노렐린)
WO2013127288A1 (zh) 抗hiv-1多肽及其用途
US9233138B2 (en) Compositions for promoting HIV-1 virolysis and methods using same
CN104277113B (zh) 抑制hiv感染的二价多肽
WO2019223644A1 (zh) 多肽及其药物组合物和用途
WO2024099428A1 (zh) 抑制艾滋病病毒及其耐药毒株的膜融合抑制剂及其药物用途
US20190175688A1 (en) Cyclic Peptides and Methods Using Same
WO2013075606A1 (zh) 抑制hiv感染的小分子—多肽缀合物
WO2007068163A1 (fr) Peptides inhibiteurs de la fusion du vih et leur utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755193

Country of ref document: EP

Kind code of ref document: A1