KR20240025631A - 스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들 - Google Patents

스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들 Download PDF

Info

Publication number
KR20240025631A
KR20240025631A KR1020247002442A KR20247002442A KR20240025631A KR 20240025631 A KR20240025631 A KR 20240025631A KR 1020247002442 A KR1020247002442 A KR 1020247002442A KR 20247002442 A KR20247002442 A KR 20247002442A KR 20240025631 A KR20240025631 A KR 20240025631A
Authority
KR
South Korea
Prior art keywords
converter cell
level
switch
level converter
switches
Prior art date
Application number
KR1020247002442A
Other languages
English (en)
Inventor
데이비드 엠. 기우리아노
Original Assignee
피세미 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피세미 코포레이션 filed Critical 피세미 코포레이션
Priority claimed from PCT/US2022/031425 external-priority patent/WO2022271413A1/en
Publication of KR20240025631A publication Critical patent/KR20240025631A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Abstract

스위치-모드 전력 변환기들용 변환기 셀들 및 대응하는 전력 변환기 셀들을 수정하는 방법들. 수정된 변환기 셀들은 감소된 인덕턴스 요건들을 나타내고, 더 낮은 전압 및 더 작은 스위치들의 사용을 가능하게 하고, 개선된 전력 밀도와 효율성을 제공하고, 개선된 입력/출력 전압 동적 범위를 제공한다. 방법들의 실시예들은 "스위치들 분할 및 커패시터를 통한 연결" 동작을 연속적으로 적용함으로써 3개 이상의 노드 전압 레벨들을 갖는 변환기 셀 토폴로지들을 생성한다. 본 발명의 프로세스들 또는 이들 프로세스들의 변형들은 적어도 하나의 인덕턴스와 2개의 스위치들을 포함하는 2-레벨 변환기 셀들인 변환기 셀 토폴로지에 적용될 수 있고, 특히 2-레벨 변환기 셀들은 (1) 적어도 3의 차수(즉, 인덕턴스들 및 커패시턴스들의 일부 조합이지만, 적어도 하나의 인덕턴스를 갖는 3개 이상의 에너지 저장 요소들) 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계 인덕턴스 및 적어도 4개의 스위치들 중 어느 하나를 포함한다.

Description

스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들
관련 출원들에 대한 상호 참조
본 출원은 "스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들"에 대해 2021년 6월 24일에 출원된 미국 가출원 번호 제 63/214,474 호 및 "스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들"에 대해 2021년 12월 22일에 출원된 미국 특허 출원 번호 제 17/559,945 호에 대한 우선권을 주장하고, 두 항목 모두 그의 전체 내용이 참조로 여기에 통합된다.
본 발명은 전자 회로들에 관한 것으로, 특히 DC-DC 전력 변환기 회로들을 포함하는 전력 변환기 회로들에 관한 것이다.
많은 전자 제품, 특히 모바일 컴퓨팅 및/또는 통신 제품들 및 구성요소들(예를 들면, 휴대폰들, 노트북 컴퓨터들, 울트라북 컴퓨터들, 태블릿 장치들, LCD 및 LED 디스플레이들)은 다중 전압 레벨들을 필요로 한다. 예를 들면, 무선 주파수(RF) 송신기 전력 증폭기들은 상대적으로 높은 전압들(예를 들면, 12V 이상)을 필요로 할 수 있는 반면, 논리 회로는 낮은 전압 레벨(예를 들면, 1-3V)을 필요로 할 수 있다. 또 다른 회로에는 중간 전압 레벨(예를 들면, 5~10V)을 필요로 할 수 있다.
직류 전력 변환기들은 배터리들, 태양 전지들, 연료 전지들, 및 정류된 AC 소스들과 같은 공통 전원들로부터 더 낮거나 더 높은 전압을 생성하는 데 종종 사용된다. 더 높은 입력 전압 전원에서 더 낮은 출력 전압 레벨을 생성하는 전력 변환기들은 일반적으로 벅 컨버터들(buck converters)로 알려지는데, 출력 전압(VOUT)이 입력 전압(VIN)보다 작아서, 컨버터가 입력 전압을 "버킹(bucking)"하기 때문에 그렇게 불린다. 더 낮은 입력 전압 전원에서 더 높은 출력 전압 레벨을 생성하는 전력 변환기들은 VOUT이 VIN보다 크기 때문에 일반적으로 부스트 변환기들(boost converters)로 알려진다. 일부 전력 변환기들은 입력 및 출력에 사용되는 단자들에 따라 벅 변환기 또는 부스트 변환기일 수 있다. 일부 전력 변환기들은 반전된 출력을 제공할 수 있다.
감소된 전압 리플(voltage ripple)을 나타내고, 더 낮은 전력 및 더 작은 스위치들의 사용을 가능하게 하고, 개선된 전력 밀도 및 효율성을 제공하고, 개선된 입력/출력 전압 동적 범위를 제공하는 전력 변환기들용 변환기 셀 토폴로지들을 개발하는 것이 유리할 것이다.
본 발명은 감소된 인덕턴스 요건들을 나타내고, 더 낮은 전압 및 더 작은 스위치들의 사용을 가능하게 하며, 개선된 전력 밀도 및 효율성을 제공하고, 개선된 입력/출력 전압 동적 범위를 제공하는 스위치-모드 전력 변환기들용 수정된 변환기 셀들을 포함한다. 본 발명은 2-레벨 변환기 셀로 시작할 수 있는 "스플릿 스위치들 및 커패시터를 통한 연결" 동작을 연속적으로 적용함으로써 3개 이상의 노드 전압 레벨들을 포함하는 변환기 셀 토폴로지들을 생성하는 방법들을 더 포함한다.
본 발명의 프로세스들 또는 이러한 프로세스들의 변형들은 적어도 하나의 인덕턴스 및 2개의 스위치들을 포함하는 2-레벨 변환기 셀들인 변환기 셀 토폴로지들에 적용될 수 있다. 이러한 2-레벨 변환기 셀들의 유용한 서브세트는 (1) 적어도 3의 차수의 내부 설계된 에너지 저장 요소들(즉, 내부 설계된 인덕턴스들 및/또는 커패시턴스들의 일부 조합이지만, 적어도 하나의 인덕턴스를 포함하는 3개 이상의 에너지 저장 요소들) 및 적어도 2개의 스위치들, 또는 (2) 적어도 하나의 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함한다. 이러한 2-레벨 변환기 셀들은 변압기 또는 결합된 인덕터들을 포함할 수 있다.
본 발명의 일 실시예는 적어도 하나의 인덕턴스 및 2개의 스위치들을 포함하는 2-레벨 변환기 셀을 수정하는 방법을 포함하고, 방법은 2-레벨 변환기 셀 내의 임의의 다이오드 스위치들을 단극, 단투 스위치들(single-pole, single-throw switches)로 대체하는 단계; 정상 상태 동작(steady-state operation) 동안 동시에 전도성이 아닌 2-레벨 변환기 셀 내에서 한 쌍의 스위치를 선택하는 단계; 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계로서, 그에 의해 2개의 직렬 연결된 선택된 스위치들 사이에 중간 노드를 형성하는, 상기 분할 단계; 및 새롭게 형성된 개재된 노드들을 커패시터를 통해 연결하는 단계를 포함한다. 일부 실시예들에서, 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계는 2개의 선택된 스위치들의 각각을 유지하는 단계 및 2개의 선택된 스위치들의 각각을 각각의 추가된 스위치와 직렬로 결합하는 단계를 포함한다.
본 발명의 하나 이상의 실시예들의 상세들은 첨부 도면들 및 이하의 상세한 설명에서 설명된다. 본 발명의 다른 특징들, 목적들, 및 이점들은 상세한 설명 및 도면들로부터, 및 청구범위로부터 명백해질 것이다.
도 1은 종래 기술의 전력 변환기를 포함하는 회로의 블록도.
도 2a는 특정 변환기 셀을 포함하는 종래 기술의 2-레벨 DC-DC 벅 변환기 회로의 일부의 개략도.
도 2b는 도 2a의 회로에 대한 시간의 함수로서 노드(LX)에서의 전압 레벨을 도시하는 그래프.
도 3a는 특정 변환기 셀을 포함하는 종래 기술의 3-레벨 DC-DC 벅 변환기 회로의 일부의 개략도.
도 3b는 도 3a의 회로에 대한 시간의 함수로서 노드(LX)에서의 전압 레벨을 도시하는 그래프.
도 4는 3-단자 변환기 셀의 기호 표현을 도시하는 도면.
도 5a는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 1 방법을 개략적으로 설명하는 프로세스 흐름도이며, 여기서 M≥3이다.
도 5b는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 2 방법을 개략적으로 설명하는 프로세스 흐름도이며, 여기서 M≥3이다.
도 5c는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 3 방법을 개략적으로 설명하는 프로세스 흐름도이며, 여기서 M≥3이다.
도 6은 종래 기술의 2-레벨 비절연 변환기 셀의 개략도.
도 7a는 신규의 3-레벨 비절연 변환기 셀의 개략도.
도 7b는 신규의 4-레벨 비절연 변환기 셀의 개략도.
도 8은 종래 기술의 2-레벨 절연 변환기 셀의 개략도.
도 9a는 신규의 3-레벨 절연 변환기 셀의 개략도.
도 9b는 신규의 4-레벨 절연 변환기 셀의 개략도.
도 10a는 종래 기술의 2-레벨 Zeta 변환기 셀의 개략도.
도 10b는 종래 기술의 2-레벨 SEPIC 변환기 셀의 개략도.
도 11a는 신규의 3-레벨 Zeta/SEPIC 변환기 셀의 개략도.
도 11b는 신규의 4-레벨 Zeta/SEPIC 변환기 셀의 개략도.
도 12a는 종래 기술의 2-레벨 플라이백 변환기 셀의 개략도.
도 12b는 변형된 종래 기술의 2-레벨 플라이백 변환기 셀의 개략도.
도 12c는 또 다른 변형된 2-레벨 플라이백 변환기 셀의 개략도.
도 13a는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의하여 도 12a의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 플라이백 변환기 셀의 개략도.
도 13b는 2-스위치 플라이백 변환기 셀의 개략도.
도 13c는 본 발명의 방법들 중 하나의 2-폴드 적용 후 도시된 도 12c에 기초하는 2-스위치 플라이백 변환기 셀의 개략도.
도 14는 종래 기술의 2-레벨 순방향 변환기 셀(2-level Forward converter cell)의 개략도.
도 15a는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 14의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 순방향 변환기 셀의 개략도.
도 15b는 2-스위치 순방향 변환기 셀의 개략도.
도 15c는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들에 따라 3-레벨 토폴로지로 변환 후의 2-레벨 2-스위치 순방향 변환기 셀의 개략도.
도 16은 4개의 스위치들을 사용하는 종래 기술의 1차의 2-레벨 변환기 셀의 개략도.
도 17은 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 16의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 변환기 셀의 개략도.
도 18은 각각 새로운 스위치들의 쌍들로 분할되고 새로운 스위치들의 쌍들 사이의 노드들 사이의 커패시터에 의해 결합될 수 있는 원으로 표시된 연관된 스위치들의 쌍들을 도시하는, 4개의 스위치들을 사용하는 1차의 2-레벨 변환기 셀의 개략도.
도 19 내지 도 30은 도 5a 내지 도 5c에 설명된 프로세스들 또는 그들의 프로세스들의 변형들을 적용함으로써 더 높은 레벨의 변환기 셀들로 변환될 수 있는 변환기 셀 회로 토폴로지들의 몇 가지 예들의 개략도들.
도 31 내지 도 33은 도 5a 내지 도 5c에 설명된 프로세스들 또는 그들의 프로세스들의 변형들을 적용함으로써 더 높은 레벨의 변환기 셀들로 변환될 수 있는 더 복잡한 변환기 셀 회로 토폴로지들의 몇 가지 예들의 개략도들.
도 34는 공통 입력들(VIN) 및 공통 출력들(VOUT)과 병렬로 결합된 2개 이상의 변환기 셀들(1-n)을 포함하는 다중-셀 구성의 일 예를 도시하는 블록도.
도 35는 인덕터(L) 및 출력 커패시터(COUT)를 포함하는 출력 블록에 결합된 M-레벨 변환기 셀에 대한 제어 회로의 일 실시예의 블록도(개념적으로, 인덕터(L)는 또한 M-레벨 변환기 셀 내에 포함되는 것으로 간주될 수 있음).
다양한 도면들에서 유사한 참조 번호들 및 명칭들은 유사한 요소들을 나타낸다.
본 발명은 (인덕터 단자들에 제공되는 더 낮은 전압들로 인해) 감소된 인덕턴스 요건들을 나타내고, 더 낮은 전압 및 더 작은 스위치들의 사용을 가능하게 하고, 개선된 전력 밀도 및 효율성을 제공하고, 개선된 입력/출력 전압 동적 범위를 제공하는 스위치-모드 전력 변환기들용 수정된 변환기 셀들을 포함한다. 본 발명은 2-레벨 변환기 셀로 시작할 수 있는 "스플릿 스위치들 및 커패시터를 통한 연결" 동작을 연속적으로 적용함으로써 3개 이상의 노드 전압 레벨들을 갖는 변환기 셀 토폴로지들을 생성하는 방법들을 더 포함한다.
스위치-모드 전력 변환기들
도 1은 종래 기술의 전력 변환기(100)를 포함하는 회로의 블록도이다. 도시된 예에서, 전력 변환기(100)는 변환기 셀(102) 및 제어기(104)를 포함한다. 변환기 셀(102)은 단자들(N1, N3)(공통)에 걸쳐 전압원(106)(예를 들면, 배터리)으로부터 입력 전압(VIN)을 수신하고, 단자들(N2, N3)(공통)에 걸쳐 입력 전압(VIN)을 출력 전압(VOUT)으로 변환도하록 구성된다. 출력 전압(VOUT)은 일반적으로 등가 저항(R)으로 표시되는 부하에 연결될 수 있는 출력 커패시터(COUT)에 걸쳐 결합된다. 전력 변환기(100)의 일부 실시예들에서, 바이어스 전압 발생기(들), 클록 발생기, 전압 제어 회로 등과 같은 보조 회로(도시되지 않음)가 또한 제공될 수 있고 변환기 셀(102) 및 제어기(104)에 결합될 수 있다.
제어기(104)는 입력 신호들의 세트를 수신하고 출력 신호들의 세트를 생성한다. 이들 입력 신호들 중 일부는 변환기 셀(102)에 연결된 신호 경로(110)를 따라 도착한다. 일부 입력 신호들은 변환기 셀(102)의 동작 상태를 나타내는 정보를 전달한다. 제어기(104)는 일반적으로 적어도 클록/타이밍 신호(CLK) 및 아날로그, 디지털(인코딩된 또는 직접 신호 라인들), 또는 이 둘의 조합일 수 있는 하나 이상의 외부 입력/출력 신호들(I/O)을 또한 수신한다. 수신된 입력 신호들에 기초하여, 제어기(104)는 변환기 셀(102)의 내부 구성요소들(예를 들면, FETs, 특히 MOSFETs과 같은 내부 통합 또는 외부 개별 스위치들)을 제어하는 신호 경로(110)상에 변환기 셀(102)로 돌아가는 제어 신호들의 세트를 생성하여 변환기 셀(102)이 VIN을 VOUT으로 변환하게 한다.
일부 전력 변환기 설계들에서, 변환기 셀(102)은 에너지 저장 요소로서 인덕터를 사용한다. 예를 들면, 도 2a는 특정 변환기 셀(102a)을 포함하는 종래 기술의 2-레벨 DC-DC 벅 변환기 회로(200)의 일부의 개략도이다. 변환기 셀(102a) 내에서, 2개의 스위치들(QH, QL)의 세트는 VIN(단자(N1)에 인가됨)과 공통 기준 전압(예를 들면, 단자(N3)에 결합된 회로 접지(GND)) 사이에 직렬 결합된다. 에너지 저장 인덕터(L)는 스위치들(QH, QL)의 세트 사이의 노드(Lx)로부터 고주파수들(예를 들면, 스위칭 주파수)의 평활화 및 에너지 저장을 제공하는 출력 커패시터(COUT)에 결합된다. 단자(N2)로부터 출력 커패시터(COUT)에 걸친 전압은 VOUT이고 부하(R)에 결합된다.
인덕터(L)와 출력 커패시터(COUT)의 하나의 기능은 에너지 전달 및 저장이다. 변환기 셀(102a)에 대한 제어기 회로의 일부는 일반적으로 스위치들(QH, QL)(예를 들면, MOSFETs의 게이트들)의 입력들을 제어하기 위해 결합된 펄스 폭 변조(PWM) 듀티 사이클 제어기(도시되지 않음)를 포함하여 스위치들(QH, QL)을 교대로 활성화(폐쇄 또는 턴 "온")하고 비활성화(개방 또는 턴 "오프")하여 부하(R)에 대한 에너지 흐름을 제어한다. PWM 듀티 사이클 제어기는 일반적으로 클록 또는 타이밍 신호 및 VOUT을 피드백 전압으로 수신한다. 피드백 전압은 PWM 듀티 사이클 제어기가 스위치들(QH, QL)에 대한 PWM 제어 신호의 듀티 사이클을 변경하여 부하(R)에서 변화들을 오프셋할 수 있게 함으로써, VOUT을 조절할 수 있다.
도 2a에 도시된 예에서, 변환기 셀(102a)은 2개의 스위치 상태들, 즉 QH 폐쇄 및 QL 개방(노드(LX)에서의 전압 레벨 = VIN), 또는 QH 개방 및 QL 폐쇄(노드(LX)에서의 전압 레벨 = GND) 사이에서 전환한다. 도 2b는 도 2a의 회로에 대한 시간의 함수로서 노드(LX)에서의 전압 레벨을 도시하는 그래프이다. 그래프 라인(202)은 스위치들(QH, QL)이 2개의 이용 가능한 스위치 상태들(즉, 충전 상태 동안 QH 폐쇄 및 QL 개방, 또는 방전 상태 동안 QH 개방 및 QL 폐쇄) 사이를 토글링할 때 노드(LX)에서의 평균 전압 레벨이다. PWM 듀티 사이클 제어기는 각 스위치 상태의 지속 시간을 설정하며, 이는 노드(LX)에서 평균 전압의 진폭을 결정한다. 이러한 변환기 셀들(102)에 기초한 전력 변환기들(100)은 스위치-모드 전원 공급 장치(SMPS)로도 알려진다.
도 2b를 고려함으로써 알 수 있는 바와 같이, 인덕터(L)는 GND에서 VIN으로 그리고 다시 GND로 노드(LX)에서 전압 레벨에서 큰 점프들을 보여준다. 인덕터(L)에 걸쳐 결과적인 전압(또는 전압 리플)은 평탄한 VOUT을 생성하기 위해 상당한 양의 필터링을 필요로 하는데, 이는 일반적으로 COUT이 큰 정전 용량을 가질 수 있다는 것을 의미한다(일반적으로 큰 구성요소를 필요로 함). 또한, 스위치들(QH, QL)은 VIN에서 GND까지 전체 전압 범위를 견딜 필요가 있을 수 있는데, 이는 일반적으로 스위치들(QH, QL)이 FET들로 구현될 때 물리적으로 크다는 것을 의미한다(예를 들면, 각 스위치가 전체 전압 범위를 견디기 위하여 긴 드리프트 영역 또는 직렬-결합된-"적층된" 다수의 FETs을 포함하기 때문이다).
인덕터(L)에 걸친 전압 리플 및 임의의 하나의 스위치에 걸친 전압 스윙은 VIN에서 VOUT으로 전하를 전달하기 위한 에너지 저장 요소들로서 더 많은 직렬 스위치들 및 전하 전달 커패시터들을 추가함으로써 감소될 수 있다. 이러한 전하 전달 커패시터들은 일반적으로 "플라이 커패시터들" 또는 "펌프 커패시터들"로 알려지고 변환기 회로의 집적 회로 실시예에 결합된 외부 구성요소들일 수 있다.
예를 들면, 도 3a는 특정 변환기 셀(102b)을 포함하는 종래 기술의 3-레벨 DC-DC 벅 변환기 회로(300)의 일부의 개략도이다. 4개의 스위치들의 세트(QH2, QH1, QL1, QL2)는 VIN(단자(N1)에 적용됨)와 공통 기준 전압(예를 들면, 단자(N3)에 결합된 회로 접지(GND)) 사이에 직렬 결합된다. 플라이 커패시터(C1)는 스위치들(QH2, QH1) 사이의 "하이 측" 노드(NH)에서 스위치들(QL1, QL2) 사이의 "로우 측" 노드(NL)에 결합된다. 에너지 저장 인덕터(L)는 스위치들(QH1, QL1)의 가장 안쪽 세트 사이의 노드(LX)에서 출력 커패시터(COUT)에 결합된다. 또한, 출력 커패시터(COUT)에 걸친 전압은 단자(N2)에서 VOUT이다.
도시된 예에서, 변환기 회로(200)에서 플라이 커패시터(C1)의 존재는 아래 표 1에 설명된 바와 같이 노드(LX)에서 3개의 "노드" 전압 레벨들 중 하나를 각각 생성하는 4개의 스위치 상태들을 가능하게 한다.
도 3b는 도 3a의 회로에 대한 시간의 함수로서 노드(LX)에서의 전압 레벨을 나타내는 그래프이다. 그래프 선(302)은 스위치들이 GND와 두 레벨-2(즉, VIN/2) 스위치 상태들 사이를 순환할 때 노드(LX)에서의 평균 전압 레벨이고 도 2b의 그래프 선(202)과 동일한 값을 갖는다. 도 3b를 고려함으로써 알 수 있듯이, 인덕터(L)는 GND(레벨-1)에서 단지 VIN/2(레벨-2)로 갔다가 다시 GND로 돌아가는 노드(LX)의 전압 레벨에서 훨씬 작은 점프들을 보인다. 인덕터(L)에 걸쳐 감소된 결과적인 전압 리플은 작은 전압 리플을 갖는 VOUT을 생성하기 위해 훨씬 더 적은 필터링을 필요로 한다.
도 3a의 변환기 셀(102b)의 토폴로지는 일반적으로 "다중-레벨 변환기"(보다 구체적으로, 3-레벨 다중-레벨 변환기)로 알려진다. 그러나, 도 1에 도시된 것과 유사한 전력 변환기에 사용될 수 있는 수십 가지의 상이한 유형들의 변환기 셀들 토폴로지들이 존재한다.
스위치-모드 전력 변환기들에서 변환기 셀 토폴로지들을 사용하는 것이 유리할 수 있지만, 감소된 전압 리플 및/또는 인덕턴스 요건들을 나타내도록 수정되고, 더 낮은 전압 및 더 작은 스위치들의 사용을 가능하게 하고, 개선된 전력 밀도 및 효율을 제공하고, 향상된 입력/출력 전압 동적 범위를 제공한다.
일반화된 변환기 셀들
변환기 셀은 적어도 하나의 내부 설계된(즉, 기생이 아닌) 인덕턴스 또는 설계된 기생 인덕턴스, 및 입력 전압 소스와 출력 전압 부하가 연결될 때, 듀티 사이클이 출력 전압을 제어하도록 배열된 적어도 한 쌍의 상보 스위치들(일부 설계들에서 다이오드들과 같은 스위치 등가물들을 포함함)의 토폴로지 조합으로 규정될 수 있다. 또한, 상보 스위치들의 쌍이 동시에 꺼질 때도 있을 수 있다(예를 들면, 데드 타임(dead-time) 또는 비중첩 시간). 변압기가 없는 변환기 셀들은 도 1에 도시된 일반적인 전력 변환기 구조를 유지하면서 상이한 변환기들을 생성하도록 입력 전압 소스, 출력 전압 부하, 및 공통 라인에 3개 또는 6개의 상이한 가능한 방식들(변환기 셀의 대칭성에 따라)로 연결될 수 있는 3-단자 장치(입력 전압 소스, 출력 전압 부하, 및 공통)로 모델링될 수 있다. 변압기 형태의 인덕턴스를 포함하는 변환기 셀들은 별개의 접지들을 갖는 4-단자 장치로 모델링될 수 있지만, 아래에 개시된 방법들은 여전히 적용한다. 변환기 셀은 (1) 변환기 셀의 2개의 단자들 및 (2) 적어도 하나의 내부 설계된 인덕턴스와 직렬로 결합된(또는 스위치를 통해 결합 가능한) 하나 이상의 내부 설계된 내부 또는 외부 커패시턴스들을 포함할 수 있다.
도 4는 3-단자 변환기 셀(400)의 상징적 표현이다. 연결들에 따라, 단자들(N1, N2 또는 N3) 중 임의의 단자가 입력 전압을 갖는 소스에 결합될 수 있다. 나머지 단자들 중 하나는 부하에 결합되어 대응하는 변환 출력 전압을 출력하고, 마지막 나머지 단자는 공통 라인에 결합된다. 예를 들면, N3은 공통 라인(예를 들면, 회로 접지)에 결합되고, N1은 입력 전압 소스(V1)에 결합되고, N2는 출력 전압(V2)이 공급될 출력 전압 부하에 결합될 수 있다. V2 > V1인 경우, 변환기 셀(400)은 부스트 구성에 있다. V2 < V1인 경우, 변환기 셀(400)은 벅 구성에 있다. 일부 변환기 셀 토폴로지들에 대한 단자들에 대한 결합들을 전환함으로써, 반전 구성이 이용 가능하거나, 변환기 셀(400) 내의 스위치들의 듀티 사이클이 변환기 셀(400)이 공급된 입력 전압을 버킹하는지 또는 부스팅하는지를 결정하는 벅-부스트 구성이 이용 가능할 수 있다. 단자들(N1, N2, N3)은 직접 또는 하나 이상의 스위치들 및/또는 커패시터들을 통해 변환기 셀(400) 내부의 인덕터(L)에 결합될 수 있다.
본 발명의 방법의 대상인 변환기 셀들의 핵심 양태는 적어도 한 쌍의 상보 스위치들이 변환기 셀의 에너지 저장 요소를 통해 출력 단자를 제 1 전위(궁극적으로 입력 단자로부터) 및 제 2 전위(궁극적으로 공통 단자로부터)에 간헐적으로 결합한다는 것이다. -즉, 이러한 변환기 셀들은 적어도 2-레벨 장치들이다. 지정된 출력 단자에 이용 가능한 실제 출력 전압은 변환기 셀 외부의 제어 회로에 의해 설정된 스위치 듀티 사이클의 함수이다.
2-레벨 변환기 셀의 토폴로지는 또한 사용된 에너지 저장 요소들(내부 설계된 인덕턴스들 및 커패시턴스들)의 수를 나타내는 그의 차수에 따라, 및 사용된 단극, 단투(SPST; single-pole, single-throw) 스위치들의 수에 따라 분류될 수 있다. 예를 들면, 2-레벨 변환기 셀들의 하나의 집계는 변환기 셀들의 4가지 클래스들을 식별하며, 각 클래스는 하나 이상의 "패밀리 멤버들"을 포함하고 각 패밀리 멤버는 표 2에 설명된 기본 변환기 셀 회로 토폴로지의 다수의 변형들을 포함한다.
이 집계는 기본 변환기 셀들을 식별하고 따라서 기초가 되는 기본 변환기 셀의 기본 행동을 변경하지 않는 사소한 변형들을 포함하지 않는다는 것에 유의해야 한다. 그러나, 기본 변환기 셀들, 이러한 변환기 셀들의 변형들, 및 더 복잡한 변환기 셀들은 그들이 적어도 하나의 인덕턴스와 두 개의 상보 스위치들을 포함하는 적어도 2-레벨 변환기 셀들인 한 본 발명에 따른 수정의 후보들일 수 있다. 2-레벨 변환기 셀들의 유용한 서브세트는 (1) 적어도 3의 차수의 내부 설계된 에너지 저장 요소들(즉, 내부 설계된 인덕턴스들 및/또는 커패시턴스들의 일부 조합이지만, 적어도 하나의 인덕턴스를 포함하는 3개 이상의 에너지 저장 요소들) 및 적어도 2개의 스위치들, 또는 (2) 적어도 하나의 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함한다. 이러한 2-레벨 변환기 셀들은 변압기 또는 결합된 인덕터들을 포함할 수 있다.
2-레벨 변환기 셀들을 M-레벨 변환기 셀들로 수정하는 일반적인 방법
도 5a는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 1 방법의 개요를 설명하는 프로세스 흐름도(500)이고, 여기서 M ≥ 3이다. 예시된 방법은 다음 단계들을 포함하며, 이들 중 일부는 상이한 순서로 수행될 수 있다.
블록(502): M의 값(노드 전압들의 수)이 (예를 들면, 회로 설계자에 의해) 3 이상의 값으로 설정된다.
블록(504): 선택된 2-레벨 변환기 셀 토폴로지부터 시작하여, 변환기 셀의 출력에 영향을 미치는 각각의 다이오드 스위치(2-레벨 변환기 셀 토폴로지에 포함된 경우)는 SPST 스위치로 대체된다. 물론, 다이오드 스위치들이 변환기 셀 토폴로지에 존재하지 않는 경우, 이 단계는 생략될 수 있다.
블록(506): 접지에 대한 단락이 생성될 수 있도록 정상 상태 동작 동안 동시에 ON으로 전환되지 않는(즉, 전도성이 없으므로 OFF인) 한 쌍의 스위치들을 선택한다. 또한, 선택된 스위치들의 쌍은 변환기 셀이 유용한 레벨의 DC-DC 전력 변환을 제공할 수 있도록 해야 한다. 이 단계는 처음에 2개보다 많은 스위치들을 가질 수 있는 2-레벨 변환기 셀 설계들을 수용한다(예를 들면, 순방향 변환기). 이러한 스위치들의 다수의 쌍들이 이용가능한 경우, 임의의 쌍이 선택될 수 있다.
블록(508): 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 "분할"하여, 2개의 직렬 연결된 스위치들의 각 쌍 사이에 중간 노드를 형성한다. 개념적으로, "분할"은 선택된 두 스위치들이 직렬 결합 스위치들의 각각의 쌍으로 대체되는 것을 의미한다. 실제로, 원래 스위치들(각 관련 다이오드 스위치를 SPST 스위치로 대체한 후)은 간단하게 다시 라벨링될 수 있고 이후 두 개의 새로운 스위치들이 다시 라벨링된 스위치들에 직렬 결합하여 한 쌍의 직렬 결합 스위치들을 형성한다.
블록(510): 새롭게 형성된 중간 노드들을 커패시터를 통해 연결한다. 추가된 스위치들 및 커패시터는 변환기 셀에 또 다른 노드 전압 레벨을 추가한다.
블록(512): 완성된 3-레벨 토폴로지 설계가 이 시점에서 출력될 수 있다. 일부 애플리케이션들에 대하여, 3-레벨 토폴로지는 프로세스가 완료된 것으로 간주될 수 있는 2-레벨 토폴로지에 비해 충분한 이익들을 제공할 수 있다.
블록(514): M이 3보다 큰지의 여부를 테스트한다.
블록(516): M이 3보다 크지 않은 경우, 프로세스가 완료된다.
블록(518): M이 3보다 큰 경우, 레벨 카운터 n = 3으로 설정한다.
블록(520): 레벨 카운터 n = n + 1을 증가시킨다.
블록(522): 이전 관통-커패시터 루프 내부 또는 외부의 다음 스위치들의 쌍 중 각각의 것을 2개의 직렬 연결된 스위치들로 "분할"하여, 그에 의해 2개의 직렬 연결된 스위치들의 각각의 쌍 사이에 중간 노드를 형성한다. 이 시점에서는 분할하기 위해 오직 내부 또는 오직 외부 스위치들만 사용한다는 요건은 없다는 것을 주의하라-혼합이 사용될 수 있다. 예를 들면, 3-레벨 토폴로지가 2-레벨 토폴로지의 내부 스위치들을 분할함으로써 생성되는 경우, 4-레벨 토폴로지는 생성된 3-레벨 토폴로지의 외부 스위치들을 분할함으로써 생성된다.
블록(524): 새롭게 형성된 중간 노드들을 커패시터를 통해 연결한다. 추가된 스위치들 및 커패시터는 변환기 셀에 또 다른 노드 전압 레벨을 추가한다.
블록(526): 완성된 n-레벨 토폴로지 설계가 이 지점에서 출력될 수 있다.
블록(528): M이 n보다 큰지의 여부를 테스트한다; 그렇지 않은 경우, 블록(520)으로 루프한다.
블록(530): M이 n보다 큰 경우, 프로세스가 완료된다.
상기 프로세스의 변형들이 동일한 효과를 위해 사용될 수 있다. 예를 들면, 도 5b는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 2 방법의 개요를 설명하는 프로세스 흐름도(550)이고, 여기서 M ≥ 3이다. 예시된 방법은 다음 단계들을 포함하고, 그 중 일부는 상이한 순서로 수행될 수 있다.
블록(552): M의 값(노드 전압들의 수)이 (예를 들면, 회로 설계자에 의해) 3 이상의 값으로 설정된다.
블록(554): 선택된 2-레벨 변환기 셀 토폴로지로 시작하여, 변환기 셀의 출력에 영향을 미치는 각 다이오드 스위치(2-레벨 변환기 셀 토폴로지에 포함된 경우)는 SPST 스위치로 대체된다. 물론, 다이오드 스위치들이 변환기 셀 토폴로지에 존재하지 않는 경우, 이 단계는 생략된다.
블록(556): 접지에 대한 단락이 생성될 수 있도록 정상 상태 동작 동안 동시에 ON으로 전환되지 않는(즉, 전도성이 없으므로 OFF인) 한 쌍의 스위치들을 선택한다. 또한, 선택된 스위치들의 쌍은 변환기 셀이 유용한 레벨의 DC-DC 전력 변환을 제공하게 해야 한다. 이 단계는 처음에 2개보다 많은 스위치들을 가질 수 있는 2-레벨 변환기 셀 설계들을 수용한다(예를 들면, 순방향 변환기).
블록(558): 2개의 선택된 스위치들 각각을 2개의 직렬 스위치들로 "분할"하여, 그에 의해 2개의 직렬 스위치들의 각 쌍 사이에 중간 노드를 형성한다.
블록(560): 새롭게 형성된 중간 노드들을 커패시터를 통해 연결한다. 추가된 스위치들 및 커패시터는 또 다른 노드 전압 레벨을 변환기 셀에 추가한다.
블록(562): M을 1만큼 감소시킨다.
블록(564): M이 3보다 작은지의 여부를 테스트한다.
블록(566): M이 3보다 작지 않은 경우, 하나의 대응하는 분할 스위치들의 쌍(블록(556)에서 선택된 스위치들에 대응하는 스위치들일 수 있음)을 선택하고 블록(558)로 루프한다. 따라서, 예를 들면, 스위치 쌍(A, B)이 A1-A2 및 B1-B2로 "분할"되는 경우, A1 및 B1 또는 A2 및 B2가 추가 "분할"을 위해 선택될 수 있다.
블록(568): M이 3보다 작은 경우, 최종 완성된 토폴로지 설계가 출력될 수 있다.
블록(570): 프로세스가 완료된다.
도 5a에 도시된 프로세스의 변형의 또 다른 예로서, 도 5c는 선택된 2-레벨 변환기 셀을 M-레벨 변환기 셀로 수정하는 제 3 방법의 개요를 설명하는 프로세스 흐름도(580)이고, 여기서 M ≥ 3이다. 예시된 방법은 다음 단계들을 포함하고, 그 중 일부는 다른 순서로 수행될 수 있다.
블록(582): M의 값(노드 전압들의 수)이 (예를 들면, 회로 설계자에 의해) 3 이상의 값으로 설정된다.
블록(584): 선택된 2-레벨 변환기 셀 토폴로지로 시작하여, 변환기 셀의 출력에 영향을 미치는 각 다이오드 스위치(2-레벨 변환기 셀 토폴로지에 포함된 경우)는 SPST 스위치로 대체된다. 물론, 다이오드 스위치들이 변환기 셀 토폴로지에 존재하지 않는 경우, 이 단계는 생략될 수 있다.
블록(586): 접지에 대한 단락이 생성될 수 있도록 정상 상태 동작 동안 동시에 ON으로 전환되지 않는(즉, 전도성이 없으므로 OFF인) 한 쌍의 스위치들을 선택한다. 또한, 선택된 스위치들의 쌍은 변환기 셀이 유용한 레벨의 DC-DC 전력 변환을 제공하게 해야 한다. 이 단계는 처음에 2개보다 많은 스위치들을 가질 수 있는 2-레벨 변환기 셀 설계들을 수용한다(예를 들면, 순방향 변환기).
블록(588): 2개의 선택된 스위치들의 각각을 2개의 직렬 스위치들로 "분할"하고, 그에 의해 2개의 직렬 스위치들의 각 쌍 사이에 중간 노드를 형성한다.
블록(590): 새롭게 형성된 중간 노드를 커패시터를 통해 연결한다. 추가된 스위치들 및 커패시터는 변환기 셀에 또 다른 노드 전압 레벨을 추가한다.
블록(592): M을 1만큼 감소시킨다.
블록(594): M이 3보다 작은지 테스트하고, M이 3보다 작지 않은 경우, 블록(586)으로 루프한다.
블록(596): M이 3보다 작은 경우, 최종 완성된 토폴로지 설계가 출력될 수 있다.
블록(598): 프로세스가 완료된다.
명확한 바와 같이, 상기 프로세스들의 다른 변형들이 동일한 효과를 위해 사용될 수 있다. 예를 들면, 어느 프로세스든 2-레벨 변환기 셀(예를 들면, 3-레벨 변환기 셀)보다 높은 레벨을 갖는 변환기 셀 토폴로지로 시작할 수 있다.
다음은 적어도 하나의 내부 설계된 인덕턴스 및 적어도 한 쌍의 상보 스위치들(일부 설계들의 다이오드들과 같은 스위치 등가물들을 포함함)을 포함하는 다양한 2-레벨 변환기 셀들에 상기 프로세스들의 적용 예들이다. 이러한 2-레벨 변환기 셀들의 유용한 서브세트는 (1) 적어도 3의 차수의 내부 설계된 에너지 저장 요소들(즉, 내부 설계된 인덕턴스들 및/또는 커패시턴스들의 일부 조합이지만, 적어도 하나의 인덕턴스를 포함하는 3개 이상의 에너지 저장 요소들) 및 적어도 2개의 스위치들, 또는 (2) 적어도 하나의 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함한다. 이러한 2-레벨 변환기 셀들은 변압기 또는 결합된 인덕터들을 포함할 수 있다.
비절연 변환기 셀 실시예들
도 6은 종래 기술의 2-레벨 비절연 변환기 셀(600)의 개략도이다. 도시된 예에서, 변환기 셀(600)은 커패시터(C0)에 직렬 결합된 제 1 인덕터(L1)를 포함하고, 이는 차례로 제 2 인덕터(L2)에 직렬 결합된다. 변환될 전압은 단자(N1)에 인가될 수 있고, 변환된 출력은 단자(N2)에서 이용 가능하다. 제 1 스위치(QL)는 L1와 C0 사이의 노드로부터 단자(N3)에 결합된다(도시된 예에서, 단자(N3)는 회로 접지와 같은 기준 전위에 결합된다). 다이오드 형태의 제 2 스위치(QR)는 C0와 L2 사이의 노드로부터 단자(N3)에 결합된다. 대안적인 실시예들에서, QR은 QL과 같은 스위치로 대체될 수 있다.
기술 분야에 알려진 바와 같이, 비절연 변환기 셀의 주요 이점은 변환기 셀의 입력 및 출력에서의 연속 전류들이다. 주요 단점은 스위치(QL)에 대한 높은 전류 스트레스이다.
스위치(QL)에 대한 스트레스는 도 5a 내지 도 5c에 설명된 것과 같은 방법들에 따라 도 6의 회로의 토폴로지를 수정함으로써 완화될 수 있고 일부 구성요소들의 크기는 감소될 수 있다. 도 7a는 신규의 3-레벨 비절연 변환기 셀(700)의 개략도이다. 도 6의 2-레벨 회로로 시작하여, 다이오드 스위치(QR)가 단극, 단투(SPST) 스위치로 대체된다. 이후 QL 및 QR 스위치들은 모두 직렬로 결합된 두 개의 스위치들로 "분할"되는데, 이는 두 스위치들 모두 한 쌍의 각각의 직렬 결합된 스위치들(QL1, QL2 및 QR1, QR2)로 "대체"된다는 것을 의미한다. 또한, 다른 관점에서 보면, 도 6으로부터의 원래의 스위치들(다이오드 스위치(QR)를 SPST 스위치로 교체한 후)은 "QL1" 및 "QR1"으로 다시 라벨링되고, 두 개의 새로운 스위치들(QL2, QR2)은 다시 라벨링된 스위치들에 직렬 결합된다. 이후 커패시터(C1)는 QL1과 QL2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다.
결과적인 토폴로지는 변환기 셀(700)의 노드(LX)에서 3개의 전압 레벨들을 제공한다. 결과적으로, 변환기 셀(700)의 출력 전압 리플 및 임의의 하나의 스위치에 걸친 전압 스윙이 감소된다(동일한 수동 구성요소들을 가정). 감소된 스위치 전압 스윙은 더 작은 스위치들의 사용을 상당한 정도로 허용한다. 예를 들면, 도 7a의 3-레벨 변환기 셀은 도 6의 2-레벨 변환기 셀에 비해 2× 내지 4×의 인자만큼 크기가 감소될 수 있다. 이러한 크기의 감소는 일반적으로 스위칭을 위한 전력 소비의 감소를 또한 의미한다. 감소된 물리적 크기 및 더 양호한 전력 효율성 양쪽 모두는 배터리로 구동되는 휴대용 전자 장치들(예를 들면, 모바일 휴대폰들)과 같은 애플리케이션들에서 전력 변환 솔루션들을 구현하기 위해 특히 중요하다.
도 7a의 비절연 변환기 셀(700)에 대해 적용된 방법은 3개보다 많은 노드 전압들을 갖는 토폴로지들을 생성하기 위해 반복적으로 적용될 수 있다. 예를 들면, 도 7b는 신규의 4-레벨 비절연 변환기 셀(710)의 개략도이다. 도 5a에 도시된 방법에 의하여, M은 4로 설정된다.
3-레벨 수정이 도 7a에 도시되어 있으므로(즉, 블록들(502-512)이 완료됨), 프로세스는 그 회로로 시작할 수 있다. 따라서, 도 7a의 3-레벨 회로로 시작하여, 프로세스는 도 5a의 블록(518)에서 계속된다. n을 설정하고 증가시킨 후, 대응하는 "분할" 스위치들의 쌍이 선택된다(예를 들면, "외부 분할"의 경우 QL1 및 QR1, 또는 "내부 분할"의 경우 QL2 및 QR2). 선택된 스위치들의 각각은 직렬로 결합된 두 개의 스위치들로 "분할"된다(또한, 또 다른 관점으로부터, 두 개의 새로운 스위치들은 다시 라벨링된 기존 스위치들의 쌍에 직렬 결합된다). 예를 들면, 도 7b에서, 스위치들(QL2, QR2)의 "내부" 쌍은 직렬 결합 스위치들(QL21, QL22 및 QR21, QR22)의 각 쌍들로 "분할"된다. 이후 커패시터(C2)는 QL21과 QL22 사이의 노드에서 QR21과 QR22 사이의 노드로 결합된다.
결과적인 토폴로지는 변환기 셀(710)의 노드(LX)에서 4개의 전압 레벨들을 제공한다. 결과적으로, 변환기 셀(710)의 출력 전압 리플 및 임의의 하나의 스위치에 걸친 전압 스윙은 도 7a의 3-레벨 변환기 셀(700)(동일한 인덕턴스들 및 커패시턴스들을 가정)에 비해 더 감소된다. 감소된 스위치 전압 스윙은 더 작은 스위치들의 사용을 상당한 정도로 허용한다. 4개보다 많은 노드 전압 레벨들을 제공하는 추가 토폴로지들은 도 5a 또는 도 5b의 것과 같은 방법들을 도 7b의 토폴로지에 반복적으로 적용함으로써 생성될 수 있다.
변환기 셀들(700, 710)에 대한 노드(LX)의 전압 레벨들은 단자(N2)가 하나 이상의 쌍들의 스위치들을 통해 단자(N1) 또는 단자(N3)에 결합되도록 각 토폴로지의 다양한 스위치들을 스위칭함으로써 달성된다.
절연 변환기 셀 실시예들
도 8은 종래 기술의 2-레벨 절연 변환기 셀(800)의 개략도이다. 도시된 예에서, 변환기 셀(800)은 커패시터(C0L)에 직렬 결합된 제 1 인덕터(L1)를 포함하고, 이는 차례로 도시된 바와 같이 절연 변압기(T1)의 제 1 측면에 직렬 결합된다. 제 1 스위치(QL)는 L1과 C0L 사이의 노드에서 제 1 기준 전위에 결합된다. 절연 변압기(T1)의 제 1 측면은 또한 도시된 바와 같이 제 1 기준 전위에 결합된다. 변환될 전압은 단자(N1)에 인가될 수 있고, 변환된 출력은 단자(N2) 에서 이용 가능하다. 도시된 예에서, 단자(N3)은 기준 전위(예를 들면, 회로 접지)에 결합된다.
제 2 인덕터(L2)는 커패시터(C0R)에 직렬 결합되고, 이는 차례로 도시된 바와 같이 절연 변압기(T1)의 제 2 측면에 직렬 결합된다. 다이오드 형태의 제 2 스위치(QR)는 C0R과 L2 사이의 노드에서 제 2 기준 전위에 결합된다. 절연 변압기(T1)의 제 2 측면은 또한 도시된 바와 같이 제 2 기준 전위에 결합된다.
도 9a는 신규의 3-레벨 절연 변환기 셀(900)의 개략도이다. 3-레벨 절연 변환기 셀(900)은 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 생성된 토폴로지를 갖는다. 도 6의 2-레벨 회로로 시작하여, 다이오드 스위치(QR)는 SPST 스위치로 대체된다. 이후 QL 및 QR 스위치들 모두는 직렬로 결합된 두 개의 스위치들로 "분할"되어, 각각의 직렬 결합된 스위치들의 쌍(QL1, QL2 및 QR1, QR2)이 된다. 이후 커패시터(C1)는 QL1과 QL2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다.
결과적인 토폴로지는 3개의 내부 전압 레벨들을 제공한다. 결과로서, 변환기 셀(900)의 출력 전압 리플 및 임의의 하나의 스위치에 걸친 전압 스윙이 감소된다. 또한, 감소된 스위치 전압 스윙은 더 작은 스위치들의 사용을 상당한 정도로 허용한다.
도 9a의 절연 변환기 셀(900)에 대해 적용되는 방법은 4개보다 많은 노드 전압들을 갖는 토폴로지들을 생성하기 위해 반복적으로 적용될 수 있다. 예를 들면, 도 9b는 신규의 4-레벨 절연 변환기 셀(910)의 개략도이다. 도 9a의 3-레벨 회로로 시작하여, 대응하는 "분할" 스위치들의 쌍이 선택된다(예를 들면, "외부 분할"의 경우 QL1 및 QR1, 또는 "내부 분할"의 경우 QL2 및 QR2). 각각의 선택된 스위치들은 이후 직렬로 결합된 두 개의 스위치들로 "분할"된다. 예를 들면, 도 9b에서, 스위치들(QL2, QR2)의 "내부" 쌍은 직렬 결합 스위치들의 각각의 쌍들(QL21, QL22 및 QR21, QR22)로 "분할"된다. 이후 커패시터(C2)는 QL21과 QL22 사이의 노드에서 QR21과 QR22 사이의 노드로 결합된다.
결과적인 토폴로지는 4개의 내부 전압 레벨들을 제공한다. 결과로서, 변환기 셀(910)의 출력 전압 리플 및 임의의 하나의 스위치에 걸친 전압 스윙은 도 9a의 3-레벨 변환기 셀(900)에 비해 더 감소된다. 감소된 스위치 전압 스윙은 훨씬 더 작은 스위치들의 사용을 상당한 정도로 허용한다. 4개보다 많은 노드 전압 레벨들을 제공하는 추가 토폴로지들은 도 5a 또는 도 5b의 것들과 같은 방법들을 도 9b의 토폴로지에 반복적으로 적용함으로써 생성될 수 있다.
Zeta/SEPIC 실시예들
도 10a는 종래 기술의 2-레벨 Zeta 변환기 셀(1000)의 개략도이다. 도시된 예에서, 변환기 셀(1000)은 차례로 제 1 인덕터(L1)에 직렬 결합되는 커패시터(C0)에 직렬 결합되는 제 1 스위치(QL)를 포함한다. 변환될 전압은 단자(N1)에 인가될 수 있고, 변환된 출력은 단자(N2)에서 이용 가능하다. 제 2 인덕터(L2)는 QL과 C0 사이의 노드에서 단자(N3)에 결합된다(도시된 예에서, 단자(N3)는 회로 접지와 같은 기준 전위에 결합된다). 다이오드 형태의 제 2 스위치(QR)는 C0와 L1 사이의 노드에서 단자(N3)에 결합된다. 대안적인 실시예들에서, 다이오드(QR)는 QL과 같은 스위치로 대체될 수 있다.
도 10b는 종래 기술의 2-레벨 SEPIC 변환기 셀(1010)의 개략도이다. 도시된 예에서, SEPIC("단일 종단 1차 인덕터 변환기"를 나타냄) 변환기 셀(1010)은 커패시터(C0)에 직렬 결합된 제 1 인덕터(L1)를 포함하고, 커패시터(C0)는 차례로 다이오드 형태의 제 1 스위치(QR)에 직렬 결합된다. 변환될 전압은 단자(N1)에 인가될 수 있고, 변환된 출력은 단자(N2)에서 이용 가능하다. 제 2 스위치(QL)는 L1와 C0 사이의 노드에서 단자(N3)에 결합된다(도시된 예에서, 단자(N3)는 회로 접지와 같은 기준 전위에 결합된다). 제 2 인덕터(L2)는 C0와 QR 사이의 노드에서 단자(N3)에 결합된다. 대안적인 실시예들에서, 다이오드(QR)는 QL과 같은 스위치로 대체될 수 있다.
SEPIC 변환기 셀(1010)은 본질적으로 다이오드 기반 스위치들을 SPST 스위치들로 대체함으로써 개념적으로 가장 쉽게 볼 수 있는 Zeta 변환기 셀(1000)의 미러 또는 역 버전이다.
도 11a는 신규의 3-레벨 Zeta/SEPIC 변환기 셀(1100)의 개략도이다. 3-레벨 Zeta/SEPIC 변환기 셀(1100)은 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 생성된 토폴로지를 갖는다. 도 11a 또는 도 11b의 2-레벨 회로로 시작하여, 다이오드 스위치(QR)는 SPST 스위치로 대체된다. 이후 QL 및 QR 스위치들의 각각은 직렬로 결합된 두 개의 스위치들로 "분할"되고 각각의 직렬 결합된 스위치들의 쌍(QL1, QL2 및 QR1, QR2)으로 대체된다. 이후 커패시터(C1)는 QL1과 QL2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다.
도 11b는 신규의 4-레벨 Zeta/SEPIC 변환기 셀(1110)의 개략도이다. 4-레벨 Zeta/SEPIC 변환기 셀(1110)은 도 11a의 3-레벨 Zeta/SEPIC 변환기 셀(1100)에 도 5a 내지 도5c에 설명된 것들과 같은 방법들의 반복 적용에 의해 생성된 토폴로지를 갖는다.
4개보다 많은 노드 전압 레벨들을 제공하는 추가의 토폴로지들은 도 11b의 토폴로지에 도 5a 또는 도 5b의 것들와 같은 방법들을 반복적으로 적용함으로써 생성될 수 있다.
도 11a 및 도 11b에 도시된 3-레벨 Zeta/SEPIC 변환기 셀들(1100, 1110)과 같은 다중-레벨 변환기 셀 토폴로지들의 주목할만한 특징은 그들이 적절한 제어 회로를 사용하여 그의 스위치 상태들의 선택된 설정들을 통해 시퀀싱함으로써 벅 또는 부스트 모드에서 선택적으로 동작될 수 있다는 것이다. 예를 들면, 도 11a에 도시된 3-레벨 Zeta/SEPIC 변환기 셀(1100)에 대하여, 스위치 상태들은 표 3에 설명된 바와 같이 연관된 제어 회로 내에서 규정될 수 있다.
이후 이들 스위치 상태들은 벅 모드 또는 부스트 모드 중 어느 하나에서 Zeta/SEPIC 변환기 셀(1100)을 동작시키기 위해 특정 순서들로 시퀀스될 수 있다. 일부 경우들에서, 스위칭 듀티 사이클이 벅 또는 부스트 모드를 결정하는 인자일 수 있다. 예를 들면, 표 4는 표 3으로부터의 3개 또는 4개의 스위치 상태들 중 어느 하나와 결과의 동작 모드를 포함하는 시퀀스들을 보여준다.
선택 가능한 벅 또는 부스트 모드들의 개념은 도 11b에 도시된 4-레벨 Zeta/SEPIC 변환기 셀(1110)과 같은 더 높은 레벨의 Zeta/SEPIC 변환기 셀들로 확장될 수 있다.
플라이백 변환기 셀 실시예들
도 12a는 종래 기술의 2-레벨 플라이백 변환기 셀(1200)의 개략도이다. 또한 때때로 "플라이캡" 변환기라고도 불리며, 단자(N1)는 도시된 바와 같이 변압기(T1)의 제 1 측면에 결합된다. 제 1 스위치(QL)는 변압기(T1)의 제 1 측면과 제 1 기준 전위 사이에 직렬 결합된다. 다이오드 형태의 제 2 스위치(QR)는 도시된 바와 같이 변압기(T1)의 제 2 측면과 단자(N2) 사이에 직렬 결합된다. 도시된 바와 같이, 변압기(T1)의 제 2 측면은 또한 제 2 기준 전위에 결합된다. 대안적인 실시예들에서, 다이오드(QR)는 QL과 같은 스위치로 대체될 수 있다.
도 12b는 변형된 종래 기술의 2-레벨 플라이백 변환기 셀(1220)의 개략도이다. 이 실시예에서, 다이오드(QR)(또는 등가 스위치)는 도 12a에 도시된 바와 같이 "상부”레그가 아닌 변압기(T1)의 제 2 측면의 "하부" 레그상에 결합된다.
도 12c는 또 다른 변형 2-레벨 플라이백 변환기 셀(1240)의 개략도이다. 이 실시예에서, 다이오드(QR1)(또는 등가 스위치)는 도 12a에 도시된 바와 같이 변압기(T1)의 제 2 측면의 "상부" 레그상에 결합되고, 다이오드(QR2)(또는 동등한 스위치)는 도 12b에 도시된 바와 같이 변압기(T1)의 제 2 측면의 "하부" 레그상에 결합된다.
도 13a는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 12a의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 플라이백 변환기 셀(1300)의 개략도이다. 구체적으로, 스위치(QL)는 스위치들(QL1, QL2)로 "분할"되고, 스위치(QR)는 스위치들(QR1, QR2)로 "분할"된다. 커패시터(C1)는 이후 QL1과 QL2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다. 유사한 프로세스가 도 12b에 도시된 토폴로지에 적용될 수 있다.
도 13b는 2-스위치 플라이백 변환기 셀(1320)의 개략도이다. 도 12a에 도시된 토폴로지에 추가하여, 스위치(QT)는 단자(N1)와 변압기(T1)의 제 1 측면상의 "상부" 단자 사이에 결합되고, 스위치(QL)는 또한 다이오드(D1)를 통해 단자(N1)에 결합되고, 기준 전위는 다이오드(D2)를 통해 변압기(T1)의 제 1 측면상의 "상부" 단자에 결합된다. 변압기(T1)의 제 1 측면에 대한 회로의 유사한 추가는 도 12b 또는 도 12c에 기초할 수 있다. 도 13b의 예시적인 구성은 도 5a 내지 도 5c에 설명된 것들과 같은 방법들에 따라 각각 새로운 스위치들의 쌍들로 분할되고 새롭게 형성된 스위치간 노드들 사이의 커패시터에 의해 결합될 수 있는 원으로 표시된 연관된 스위치들의 쌍들(SPST 스위치로 변환될 다이오드(QR)를 포함)을 보여준다. 원으로 표시된 연관된 스위치들의 쌍들은 QT와 QR(라인(1322)으로 연결됨) 및 QL과 QR(라인(1324)으로 연결됨)이다. 유사한 연관 프로세스가 도 12b및 도 12c에 도시된 토폴로지들에 적용될 수 있다.
도 13c는 본 발명의 방법들 중 하나의 2-폴드 적용 후 도시된 도 12c에 기초한 2-스위치 플라이백 변환기 셀(1340)의 개략도이다. 단자(N1)와 변압기(T1)의 제 1 측면상의 "상부" 단자 사이에 결합된 스위치(QT)는 한 쌍의 스위치들(QT1, QT2)로 분할될 수 있다. 스위치(QL)는 한 쌍의 스위치들(QT1, QT2)로 분할될 수 있다. 도 12c로부터의 다이오드(QR1)는 한 쌍의 스위치들(QR11, QR12)로 분할될 수 있다. 유사하게, 도 12c로부터의 다이오드(QR1)는 한 쌍의 스위치들(QR21, QR22)로 분할될 수 있다. 도시된 예는 커패시터(C1)가 스위치 쌍들(QL1-QL2, QR21-QR22)의 스위치간 노드들에 결합될 수 있고, 커패시터(C2)가 스위치 쌍들(QT1-QT2 및 QR11-QR12)의 스위치간 노드들에 결합될 수 있다는 것을 보여준다. 본 개시로부터 명확해지는 바와 같이, 분할 스위치 쌍들의 다른 연관들은 커패시터와 상호결합될 수 있다.
상기에 설명된 예시적인 실시예들에서와 같이, 도 5a 내지 도 5c에 설명된 것들과 같은 방법들은 4개보다 많은 노드 전압들을 갖는 플라이백 변환기 셀 토폴로지들을 생성하기 위해 반복적으로 적용될 수 있다.
순방향 변환기 셀 실시예들
도 14는 종래 기술의 2-레벨 순방향 변환기 셀(1400)의 개략도이다. 단자(N1)는 도시된 바와 같이 변압기(T1)의 제 1 측면에 결합된다. 제 1 스위치(QL)는 변압기(T1)의 제 1 측면과 제 1 기준 전위 사이에 직렬 결합된다. 다이오드 형태의 제 2 스위치(QH)는 도시된 바와 같이 변압기(T1)의 제 2 측면과 인덕터(L1) 사이에 직렬 결합되고, 인덕터(L1)는 차례로 단자(N2)에 직렬 결합된다. 다이오드 형태의 제 3 스위치(QR)는 단자(N2)와 제 2 기준 전위 사이에 결합된다. 변압기(T1)의 제 2 측면은 도시된 바와 같이 제 2 기준 전위에 또한 결합된다.
도 15a는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 14의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 순방향 변환기 셀(1500)의 개략도이다. 도 15a에 관하여 주목해야 할 한 가지 사항은 2-레벨 순방향 변환기 셀(1400)이 출력에 영향을 미치는 3개의 스위치들(QL, QH, QR)을 갖는다는 것이다. 그러나, 도 5a의 블록(506)의 적용에 의해(정상 상태 동작 동안 "동시에 ON으로 전환되지 않는 한 쌍의 스위치들을 선택"), "분할"을 위해 선택된 스위치들은 QH 및 QR이다. 따라서, 스위치(QH)는 스위치들(QH1, QH2)로 "분할"되고, 스위치(QR)는 스위치들(QR1, QR2)로 "분할"된다. 커패시터(C1)는 이후 QH1과 QH2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다.
대안적인 실시예에서, 수정하기 위해 선택된 스위치들의 처음 쌍은 QL 및 QR일 수 있다. 따라서, 스위치(QL)는 스위치들(QL1, QL2)로 "분할"되고, 스위치(QR)는 스위치들(QR1, QR2)로 "분할"된다. 커패시터(C1)는 이후 QL1과 QL2 사이의 노드에서 QR1과 QR2 사이의 노드로 결합된다.
도 15b는 2-스위치 순방향 변환기 셀(1520)의 개략도이다. 도 14에 도시된 토폴로지에 추가하여, 스위치(QT)는 단자(N1)와 변압기(T1)의 제 1 측면상의 "상부" 단자 사이에 결합되고, 스위치(QL)는 또한 다이오드(D1)를 통해 단자(N1)에 결합되고, 기준 전위는 다이오드(D2)를 통해 변압기(T1)의 제 1 측면상의 "상부" 단자에 결합된다. 도시된 예는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들에 따라 각각 새로운 스위치들의 쌍들로 분할되고 새롭게 형성된 스위치간 노드들 사이의 커패시터에 의해 결합될 수 있는 원으로 표시된 연관 스위치들의 쌍들(SPST 스위치로 변환되는 다이오드(QR)를 포함)을 보여준다. 원으로 표시된 연관 스위치들의 쌍들은 QT와 QR, 및 QL과 QR이다.
도 15c는 도 5a 내지 도 5c에 설명된 것들과 같은 방법들에 따라 3-레벨 토폴로지로 변환 후의 2-레벨 2-스위치 순방향 변환기 셀(1540)의 개략도이다. 도시된 예에서, 스위치(QT) 및 스위치(QR)(다이오드를 SPST 스위치로 변환한 후)는 각각 스위치 쌍들(QT1, QT2 및 QR1, QR2)로 분할되었고 그들의 각각의 스위치간 노드들은 커패시터(C1)에 의해 결합되었다.
상기에 설명된 예시적인 실시예들에서와 같이, 도 5a 내지 도 5c에서 설명된 것들과 같은 방법들은 4개보다 많은 노드 전압들을 갖는 순방향 변환기 셀 토폴로지들을 생성하기 위해 반복적으로 적용될 수 있다.
4-스위치 벅-부스트 실시예들
상기에 설명된 변환기 셀 실시예들의 대부분은 모두 적어도 차수 3이었다(즉, 내부 설계된 인덕턴스들 및 커패시턴스들의 일부 조합이지만, 적어도 하나의 인덕턴스를 포함하는 3개 이상의 에너지 저장 요소들을 가짐). 본 발명의 방법들은 또한 적어도 2개의 스위치들을 갖는 차수 1의 변환기 셀들에 적용될 수 있다. 예를 들면, 도 16은 4개의 스위치들을 사용하는 차수 1의 종래 기술의 2-레벨 변환기 셀(1600)의 개략도이다. 이러한 변환기 셀들은 또한 4-스위치 벅-부스트 변환기 셀들로 불릴 수 있다.
도시된 예에서, 변환기 셀(1600)은 인덕터(L1)에 직렬 결합된 제 1 스위치(Q1)를 포함하고, 인덕터(L1)는 차례로 제 2 스위치(Q4)에 직렬 결합된다. 변환될 전압은 단자(N1)에 인가될 수 있고, 변환된 출력은 단자(N2)에서 이용 가능하다. 제 3 스위치(Q2)는 Q1과 L1 사이의 노드에서 단자(N3)에 결합된다(도시된 예에서, 단자(N3)는 회로 접지와 같은 기준 전위에 결합된다). 제 4 스위치(Q3)는 L1과 Q4 사이의 노드에서 단자(N3)에 결합된다.
도 17은 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 16의 회로로부터 생성된 토폴로지를 갖는 신규의 3-레벨 변환기 셀(1700)의 개략도이다. 도시된 예에서, Q1은 스위치들(Q11, Q12)로 "분할"되고, 스위치(Q2)는 스위치들(Q21, Q22)로 "분할"된다. 커패시터(C1)는 이후 노드(Q11, Q12)로부터 Q21과 Q22 사이의 노드에 결합된다.
대안적인 실시예들에서, 도 16으로부터 다른 스위치 쌍들은 2개의 스위치들의 두 개의 쌍들로 분할될 수 있고, 새로운 스위치들의 쌍들 사이에 새롭게 형성된 노드들 사이에 커패시터가 삽입될 수 있다. 예를 들면, 도 18은 4개의 스위치들을 사용하는 차수 1의 2-레벨 변환기 셀(1800)의 개략도이고, 새로운 스위치들의 쌍들로 각각 분할되고 새롭게 형성된 스위치간 노드들 사이에 커패시터에 의해 결합될 수 있는 원으로 표시된 연관된 스위치들의 쌍들의 예들을 보여준다. 원으로 표시된 연관된 스위치들의 쌍들은 다음과 같다: Q1 및 Q2(도 17에 도시됨)[라인(1)]; Q3 및 Q4[라인(2)]; Q1 및 Q4[라인(3)]; 및 Q2 및 Q3[라인(4)].
3개보다 많은 노드 전압 레벨들을 제공하는 추가 토폴로지들은 도 5a 또는 도 5b의 것들과 같은 방법들을 도 17의 토폴로지에 반복적으로 적용함으로써 생성될 수 있다. 예를 들면, 4-레벨 컨버터 토폴로지는 다음 스위치 쌍들의 세트들을 분할하고 새롭게 형성된 스위치간 노드들을 각각의 커패시터들에 연결함으로써 도 5a 내지 도 5c에 설명된 것들과 같은 방법들의 적용에 의해 도 17b의 회로로부터 생성될 수 있다: (Q1 및 Q2[라인(1802)] + Q3 및 Q4[라인(1804)], 또는 Q1 및 Q4[라인(1806)] + Q2 및 Q3[라인(1808)].
도 17에 도시된 3-레벨 벅-부스트 변환기 셀과 같은 다중-레벨 변환기 셀 토폴로지들의 주목할만한 특징은 그들이 적절한 제어 회로를 사용하여 그들의 스위치 상태들의 선택된 설정들에 의해 하위-레벨 변환기 셀로 동작될 수 있다는 것이다. 예를 들면, 도 17에 도시된 3-레벨 토폴로지는 스위치들(Q11, Q12)을 닫고, 스위치들(Q21, Q22)을 열고, 스위치들(Q3, Q4)을 상이한 주파수들에서 사이클링함으로써 2-레벨 부스트 변환기 셀로 동작될 수 있다. 또 다른 예로서, 도 17에 도시된 3-레벨 토폴로지는 3-레벨 벅 변환기 셀이 되도록 스위치(Q4)를 닫고, 스위치(Q3)를 열고, 스위치들(Q11, Q12, Q21, Q22)을 주파수 및 선택된 상태 시퀀스에서 동작시킴으로써 3-레벨 벅 변환기 셀로서 동작될 수 있다.
추가의 변환기 셀 실시예들
인식되어야 하는 바와 같이, 도 5a 내지 도 5c에 설명된 프로세스들 또는 이들 프로세스들의 변형들은 다른 변환기 셀 토폴로지들에 적용될 수 있다. 이러한 2레벨 변환기 셀들은 변압기 또는 결합된 인덕터들을 포함할 수 있다.
예를 들면, 도 19 내지 도 30은 도 5a 내지 도 5c에 설명된 프로세스들 또는 그들의 프로세스들의 변형들을 적용함으로써 더 높은 레벨의 변환기 셀들로 변환될 수 있는 몇 개의 2-레벨 변환기 셀 회로 토폴로지들의 개략도들이다. 각각의 도면은 곡선 이중 화살표 연결선으로 연결된 원으로 표시된 연관된 스위치들의 쌍들의 예들을 보여준다. 본 개시의 프로세스들을 적용함으로써, 연관된 스위치들의 쌍들은 각각 새로운 스위치들의 쌍들로 분할될 수 있고, 새로운 스위치들의 쌍들 사이에 위치한 새롭게 형성된 노드들 사이에 커패시터들에 의해 결합되어 3-레벨 변환기 셀들을 형성할 수 있다. 명확한 바와 같이, 본 개시의 프로세스들은 훨씬 더 높은 레벨의 변환기 셀들(예를 들면, 4-레벨 및 5-레벨)을 생성하기 위해 새롭게 변환된 토폴로지들에 반복적으로 적용될 수 있다.
본 발명은 단순한 변환기 셀 회로 토폴로지들로 제한되지 않는다. 예를 들면, 도 31 내지 도 33은 도 5a 내지 도 5c에 설명된 프로세스들, 또는 그들의 프로세스들의 변형들을 적용함으로써 더 높은 레벨의 변환기 셀들로 변환될 수 있는 더 복잡한 변환기 셀 회로 토폴로지들의 몇 개의 예들의 개략도이다. 각 도면은 곡선 이중 화살표 연결선으로 연결된 원으로 표시된 연관된 스위치들의 쌍들의 예들을 도시한다. 본 개시의 프로세스들을 적용함으로써, 연관된 스위치들의 쌍들은 각각 새로운 스위치들의 쌍들로 분할될 수 있고, 새로운 스위치들의 쌍들 사이에 새롭게 형성된 노드들에 삽입된 커패시터에 의해 결합될 수 있다. 명한한 바와 같이, 본 개시의 프로세스들은 훨씬 더 높은 레벨의 변환기 셀들(예를 들면, 4-레벨 및 5-레벨)을 생성하기 위해 새롭게 변환된 토폴로지들에 반복적으로 적용될 수 있다.
다수의 변환기 셀들의 구성들
도 34는 공통 입력(VIN) 및 공통 출력(VOUT)과 병렬로 결합된 2개 이상의 변환기 셀들(1-n)을 포함하는 다중-셀 구성(3402)의 일례를 도시하는 블록도(3400)이다. 변환기 셀들(1-n) 중 적어도 하나는 M-레벨 변환기 셀이 되도록 본 개시의 교시들에 따라 개선된 수정된 2-레벨 변환기 셀이다. 다중-셀 구성(3402)은 변환기 셀들(1-n)로부터 피드백 및 모니터링 신호들을 수신하고 스위칭 신호들을 변환기 셀들(1-n)에 제공하는 제어기(3404)에 결합된 것으로 도시된다. 피드백 및 모니터링 신호들은, 예를 들면, 변환기 셀들(1-n) 내의 커패시터 전압들, VIN 및/또는 VOUT의 값, 각 변환기 셀을 통과하는 전류 등일 수 있다. 제어기(3404)는 입력/출력(I/O) 신호들을 통해 다른 회로에 결합될 수 있다. 도 34의 제어기(3404)는 본 개시에 설명된 유형들의 하나 이상의 다중-레벨 변환기 셀들을 포함하는 다른 다중-레벨 아키텍처들을 제어하도록 구성될 수 있는 제어기의 단순화된 표현이다.
일부 실시예들에서, 2개 이상의 선택된 변환기 셀들(1-n)은 대응하는 선택적 인덕터들(L1-Ln)(총칭적으로, "Lx")을 통해 출력 단자에 결합된다. 인덕터들(L1-Ln)은 대응하는 변환기 셀들(1-n)의 외부에 있거나, 대응하는 변환기 셀들(1-n)의 내부에 있을 수 있다. 단지 예시의 목적들로, 인덕터들(L1-Ln)은 대응하는 변환기 셀들(1-n)의 외부에 있는 것으로 도시된다.
다중-셀 구성(3402)의 제 1 실시예에서, 2개 이상의 선택된 변환기 셀들(1-n)은 (제어기(3404)를 통해) 차동 클록킹 위상들로 동작하는데, 이는 각각의 선택된 변환기 셀에 대한 스위칭 신호들이 서로 선택된 변환기 셀에 대한 스위칭 신호들에 대한 시간에 왜곡된다는 것을 의미한다. 예를 들면, 다중-셀 구성(3402)의 실시예는 4개의 위상들로 동작할 수 있고, 각 위상은 서로에 대해 90도 위상차가 있다. 다른 예로서, 다중-셀 구성(3402)의 실시예는 5개의 위상들로 동작할 수 있고, 각 위상은 서로에 대해 60도 위상차가 있다. 이러한 "다상(multi-phase)" 구성은 VOUT에서 전압 리플들을 감소시키는 데 도움이 된다.
적어도 2개의 선택된 변환기 셀들(1-n)에 대한 각각의 인덕터들(Lx)을 포함하는 다중-셀 구성(3402)의 제 2 실시예에서, 적어도 2개의 인덕터들은 선택적으로 자기적으로 결합될 수 있다. 도시된 예에서, 결합 라인(3406)은 변환기 셀 1 및 변환기 셀 2에 대응하는 인덕터들(L1, L2)이 반대 극들과 자기적으로 결합된 것을 나타낸다. 이러한 결합된 인덕터 구성에서, 자기적으로 결합된 인덕터들에 대한 결합 인자(즉, 결합된 전력에 대한 입사 전력의 비율, 둘 다 dB로 측정됨)가 높은(예를 들면, 0보다 1-이상적 결합-에 더 가까운) 것이 일반적으로 바람직하다.
인덕터(Lx)는 전류 변화들에 저항한다. 정상 상태 동작에서, 다중-셀 구성(3402)에 대한 부하가 상대적으로 안정적일 때, 큰 값의 인덕터들은 병렬 변환기 셀들(1-n)의 출력을 안정화하는 데 도움이 된다. 그러나, 부하가 변할 때와 같은 과도 조건들 동안, 값이 큰 인덕터들은 그들이 새로운 부하 조건들에 적응하려고 시도할 때 병렬 변환기 셀들(1-n)의 출력에서 급격한 변화들에 저항한다. 결합 인덕터 구성의 하나의 이점은, 과도 현상 동안, 자기 결합 인덕터들이 본질적으로 서로 상쇄되어, 결합 변환기 셀들의 각 출력들에서 "동적" 낮은 인덕턴스를 효과적으로 발생시켜서, 그에 의해 변환기 셀들(1-n)에 의해 새로운 부하 조건들에 더 빠른 적응을 허용한다는 것이다.
다중-셀 구성(3402)의 제 3 실시예는 다중-위상 구성을 결합 인덕터 구성과 조합한다.
다중-셀 구성(3402)의 제 4 실시예는 종래의 변환기 셀 설계들(즉, 도 5a 내지 도 5c에 설명된 것들과 같은 프로세스들에 의해 수정되지 않은 변환기 셀 토폴로지들)을 사용하여 다중 위상 구성을 결합 인덕터 구성과 조합한다.
M-레벨 변환기 셀을 위한 예시적인 제어 회로
도 35는 인덕터(L) 및 출력 커패시터(COUT)를 포함하는 출력 블록(3504)에 결합된 M-레벨 변환기 셀(3502)에 대한 제어 회로(3500)의 일 실시예의 블록도이다(개념적으로, 인덕터(L)는 또한 M-레벨 변환기 셀(3502) 내에 포함되는 것으로 간주될 수 있음). 이 예시적인 제어 회로(3500)는, 본 발명의 양수인에게 양도된, "다중-레벨 전력 변환기에서 전하 균형 및 과도 현상 제어"라는 제목의 2021년 11월 8일에 출원된 미국 특허 출원 일련 번호 제 63276923 호에 설명된 교시들로부터 채택되었고[대리인 문서. 제 PER-370-PROV 호], 그 내용은 참조로 통합된다. 그러나, 본 발명은 M-레벨 변환기 셀(3502)에 대한 다른 유형들의 제어 회로와 조합하여 사용될 수 있다.
제어 회로(3500)는 M-레벨 변환기 셀(3502)의 출력 및 M-레벨 변환기 셀(3502)의 스위치 제어 입력들에 결합된 제어 루프로서 기능한다. 일반적으로, 제어 회로(3500)는 M-레벨 변환기 셀(3502)의 출력(예를 들면, 전압 및/또는 전류)을 모니터링하고 VIN 및 출력 부하의 변동들을 고려하여 출력 전압 및/또는 전류를 지정된 값으로 안정화시키려고 시도하는 M-레벨 변환기 셀(3502)에 대한 스위치 제어 입력들의 세트를 동적으로 생성하도록 구성된다. 대안적인 실시예들에서, 제어 회로(3500)는 M-레벨 변환기 셀(3502)의 입력(예를 들면, 전압 및/또는 전류) 및/또는 M-레벨 변환기 셀(3502)의 내부 노드(예를 들면, 하나 이상의 플라이 커패시터들에 걸친 전압 또는 하나 이상의 전력 스위치들을 통한 전류)를 모니터링하도록 구성될 수 있다. 따라서, 가장 일반적으로, 제어 회로(3500)는 M-레벨 변환기 셀(3502)의 노드(예를 들면, 입력 단자, 내부 노드, 또는 출력 단자)의 전압 및/또는 전류를 모니터링하도록 구성될 수 있다. 제어 회로(3500)는 M-레벨 변환기 셀(3502)을 구현하는 전력 변환기(100)에 대한 전체 제어기(104)에 통합되거나 그로부터 분리될 수 있다.
제 1 블록은 피드백 제어기(3506)를 포함하는데, 이는 고정 주파수 전압 모드 또는 전류 모드 제어기, 고정 온 타임 제어기(constant-on-time controller), 히스테리틱 제어기(hysteretic controller), 또는 임의의 다른 변형과 같은 종래의 제어기일 수 있다. 피드백 제어기(3506)는 M-레벨 변환기 셀(3502)로부터의 VOUT에 결합되는 것으로 도시된다. 대안적인 실시예들에서, 피드백 제어기(3506)는 M-레벨 변환기 셀(3502)의 입력 및/또는 M-레벨 변환기 셀(3502)의 내부 노드를 모니터링하도록 구성될 수 있다. 피드백 제어기(3506)는 VOUT에 대한 원하는 값(충전, 방전, 또는 3상태(즉, 전류 흐름이 없는 개방))을 유지하기 위해 M-레벨 변환기 셀(3502)에서 행해져야 할 필요가 있는 것을 일반적으로 결정하는 VOUT의 전압을 직접적으로 또는 간접적으로 나타내는 신호를 생성한다.
도시된 예에서, 피드백 제어기(3506)는 피드백 회로(3508), 보상 회로(3510), 및 PWM 발생기(3512)를 포함한다. 피드백 회로(3508)는, 예를 들면, VOUT(또는 VOUT의 감쇠 버전)을 원하는 VOUT 목표 전압(동적일 수 있음)을 나타내는 기준 전압과 비교하고 VOUT이 목표 전압보다 높은지 낮은지를 나타내는 제어 신호를 출력하는 피드백-루프 전압 검출기를 포함할 수 있다. 피드백-루프 전압 검출기는 연산 증폭기(op-amp) 또는 트랜스컨덕턴스 증폭기(gm 증폭기)와 같은 비교 장치로 구현될 수 있다.
보상 회로(3510)는 진동을 유발할 수 있는 포지티브 피드백의 의도하지 않은 생성을 방지함으로써 및 피드백 제어기(3506)의 계단 응답에서 오버슈트(overshoot) 및 링잉을 제어함으로써 피드백 제어기(3506)의 폐루프 응답을 안정화하도록 구성된다. 보상 회로(3510)는 공지된 방식으로 구현될 수 있고, LC 및/또는 RC 회로들을 포함할 수 있다.
PWM 발생기(3512)는 M-레벨 변환기 셀(3502)의 스위치들의 듀티 사이클을 궁극적으로 설정하는 실제 PWM 제어 신호를 생성한다. 일부 실시예들에서, PWM 발생기(3512)는, 예를 들면, VOUT과 기준 전압 사이의 차이의 크기(따라서 M-레벨 변환기 셀(3502)의 일부 레벨들이 더 높거나 낮은 레벨들에 도달하기 위해 바이패스되어야 하는 것을 나타냄) 및 그 차이의 방향(예를 들면, VOUT은 기준 전압보다 크거나 작다)을 나타내는 추가적인 선택적인 제어 신호들(CTRL)을 전달할 수 있다. 다른 실시예들에서, 선택적인 제어 신호들(CTRL)은 보상 회로(3510)의 출력으로부터, 또는 피드백 회로(3508)의 출력으로부터, 또는 예를 들면, VOUT에 결합된 별도의 비교기(도시되지 않음)로부터 도출될 수 있다. 선택적인 제어 신호들(CTRL)의 하나의 목적은 VOUT이 목표 출력 전압에서 얼마나 멀리 떨어져 있는지 아는 것이 유익할 수 있을 때, 그에 따라 VOUT이 심하게 아래로 조절된 경우 인덕터(L)의 더 빠른 충전을 허용하는, 진보된 제어 알고리즘을 위한 것이다.
제 2 블록은 M-레벨 제어기(3514)를 포함하고, 그 주요 기능은 과거에 어떤 스위치 상태 또는 상태들이 사용되었는지에 관계없이 출력 전압 레벨이 선택될 때마다 M-레벨 변환기 셀(3502) 내의 플라이 커패시터들에 대한 전하-균형 상태를 유지하면서 원하는 VOUT을 생성하는 스위치 상태들을 선택하는 것이다.
M-레벨 제어기(3514)는 PWM 제어 신호 및 이용 가능한 경우 추가 제어 신호들(CTRL)을 수신하는 전압 레벨 선택기(3516)를 포함한다. 또한, 전압 레벨 선택기(3516)는 VOUT 및/또는 VIN에 결합될 수 있고, 일부 실시예들에서, M-레벨 변환기 셀(3502) 내의 대응하는 플라이 커패시터(CFx)에 결합된 전압 검출기들로부터의 HIGH/LOW 상태 신호들(CFx_H/L)에 결합될 수 있다. 전압 레벨 선택기(3516)의 기능은 수신된 신호들을 목표 출력 전압 레벨(예를 들면, 사이클 단위로)로 변환하는 것이다. 전압 레벨 선택기(3516)는 일반적으로 어느 목표 레벨이 M-레벨 변환기 셀(3502)의 출력을 원하는 레이트로 충전 또는 방전해야 하는지를 결정하기 위해 적어도 VOUT 및 VIN을 고려할 것이다.
전압 레벨 선택기(3516)의 출력은 플라이 커패시터들(CFx)에 대하여 커패시터 전압 검출기들로부터 일반적으로 상태 신호들(CFx_H/L)에 결합되는 M-레벨 스위치 상태 선택기(3518)에 결합된다. 전압 레벨 선택기(3516)에 의해 생성된 목표 레벨을 고려하여, M-레벨 스위치 상태 선택기(3518)는 원하는 출력 레벨에 대한 스위치 상태가 커패시터 전하 균형에 가장 적합한지를 결정한다. M-레벨 스위치 상태 선택기(3518)는, 예를 들면, 룩-업 테이블(look-up table; LUT)로서 또는 비교 회로 및 조합 논리 또는 더 일반화된 프로세서 회로로서 구현될 수 있다. M-레벨 스위치 상태 선택기(3518)의 출력은 M-레벨 변환기 셀(3502)의 스위치들에 결합되고(특정 변환기 셀에 필요할 수 있는 적절한 레벨-시프터 회로들 및 구동기 회로들을 통해) M-레벨 스위치 상태 선택기(3518)에 의해 결정된 스위치 상태 설정들을 포함한다 (선택된 목표 레벨에 대응하는 M-레벨 변환기 셀(3502) 내의 스위치들의 구성을 선택함).
일반적으로(항상 그런 것은 아님), 전압 레벨 선택기(3516) 및 M-레벨 스위치 상태 선택기(3518)는 단지 PWM 신호가 변경될 때 그들의 상태들을 변경한다. 예를 들면, PWM 신호가 높아질 때, 전압 레벨 선택기(3516)는 인덕터(L)를 충전하는 레벨을 선택하고 M-레벨 스위치 상태 선택기(3518)는 상기 레벨을 사용할 버전을 설정한다. 이후 PWM 신호가 낮아질 때, 전압 레벨 선택기(3516)는 인덕터(L)를 방전해야 하는 레벨을 선택하고 M-레벨 스위치 상태 선택기(3518)는 사용할 상기 레벨의 버전을 설정한다. 따라서, 전압 레벨 선택기(3516) 및 M-레벨 스위치 상태 선택기(3518)는 일반적으로 단지 PWM 신호가 변경될 때 상태들을 변경한다(PWM 신호는 사실상 그들의 클록 신호임). 그러나, CTRL 신호들이 전압 레벨 선택기(3516)의 상태를 변경하는 것이 바람직한 상황들이나 이벤트들이 있을 수 있다. 또한, M-레벨 변환기 셀(3502) 내의 플라이 커패시터들(CFx)에 결합된 전압 검출기들로부터 CFx_H/L 상태 신호(들)이 M-레벨 스위치 상태 선택기(3518)가 심각한 중간 사이클 불균형이 발생할 때와 같이 전력 스위치 설정들의 특정 구성을 선택하게 하는 바람직한 상황들이나 이벤트들이 있을 수 있다. 일부 실시예들에서, 예를 들면, 잠재적으로 충전 불균형들을 야기하는 매우 긴 시간 동안 한 레벨에 "고착"되는 것을 방지하기 위해 M-레벨 스위치 상태 선택기(3518)가 상태의 최적 버전을 주기적으로 재평가하도록 강제하는 타이밍 기능을 포함하는 것이 유용할 수 있다.
상기에 참조된 "다중-레벨 전력 변환기에서 전하 균형 및 과도 현상 제어"라는 제목의 특허 출원에 설명된 교시들을 활용하는 실시예들에서, M-레벨 제어기(3514)는 과거에 어떤 스위치 상태 또는 상태들이 사용되었는지에 관계없이 LX 노드의 전압 레벨이 선택될 때마다 플라이 커패시터들(CFx)을 전하 균형 상태 쪽으로 이동시키는 본질적으로 최적의 스위치 상태를 선택하는 M-레벨 변환기 셀(3502)에 대한 제어 방법을 구현한다. 따라서, 이러한 다중-레벨 변환기 회로들은 임의의 이전 스위치 상태 또는 스위치 상태들의 시퀀스를 추적할 필요 없이 스위칭 사이클마다 다른 스위치 상태 또는 LX 전압 레벨을 자유롭게 선택할 수 있다.
도 35에 도시된 제어 회로의 하나의 주목할만한 이점은 종래의 다중-레벨 DC-DC 변환기 회로들에서는 도달할 수 없는 출력 전압들을 나타내는 전압 레벨들 사이의 경계 영역들에서 전압들의 생성을 가능하게 한다는 것이다.
대안적인 조절되지 않은 전하-펌프들 실시예들에서, 피드백 제어기(3506) 및 전압 레벨 선택기(3516)는 생략될 수 있고, 대신 클록 신호(CLK)가 M-레벨 스위치 상태 선택기(3518)에 인가될 수 있다. M-레벨 스위치 상태 선택기(3518)는 과거에 어떤 스위치 상태 또는 상태들이 사용되었는지에 상관없이(상태들의 미리 규정된 시퀀스를 순환하는 것과는 대조적으로) 플라이 커패시터들(CFx)을 주기적으로 충전 균형을 유지하는 스위치 상태 설정들의 패턴을 생성한다. 이는 VIN이 변경되거나 비정상적인 이벤트가 발생하는 경우, 시스템은 일반적으로 항상 플라이 커패시터들(CFx)에 대한 전하 균형을 찾는 것을 보장한다.
일부 실시예들에서, M-레벨 스위치 상태 선택기(3518)는 종래의 방식으로 구현될 수 있는 선택적인 전류-측정 입력(3520)에 의해 인덕터(L)을 통해 흐르는 전류(IL)를 고려할 수 있다.
도 35가 본 발명에 따라 수정된 M-레벨 변환기 셀에 대한 제어 회로의 특정 실시예를 도시하지만, 변환기 셀 내의 스위치들에 대한 적절한 스위칭 신호들을 제공하도록 다른 제어 회로들이 적응되거나 생각될 수 있다는 것이 이해되어야 한다.
다중-레벨 변환기들의 공통 회로 상세들
전력 변환기들, 특히 다중-레벨 전력 변환기들에서, 전력 스위치들은 FET들, 특히 MOSFET들로 구현될 수 있다. 각 전력 FET에 대해, 레벨 시프터 및 드라이버 회로는 일반적으로 아날로그 또는 디지털 제어기로부터 접지 기준 저전압 로직 ON/OFF 신호들을 동일한 전압 스윙을 갖는 신호로 변환하기 위해 필요로 되지만 전력 FET의 게이트를 충전 또는 방전하고 그에 의해 전력 FET의 전도 또는 차단 상태를 제어하기 위해 신호가 구동되는 전력 FET의 소스 전압이 참조된다. 일부 애플리케이션들에서, 레벨 시프터와 드라이버 회로의 기능들이 하나의 회로에 통합될 수 있다.
일반적인 이점들
종래의 2-레벨 변환기 셀들과 비교할 때, 도 5a 내지 도 5c에 설명된 것들과 같은 프로세스들의 적용에 의해 생성된 M-레벨 토폴로지들은 입력/출력 전압들의 넓은 동적 범위에서 더 높은 전력 밀도 및/또는 효율성을 제공한다. 예를 들면, 3-레벨 수정된 변환기 셀은 아래에 있는 2-레벨 변환기 셀에 비해 2× 내지 4×의 팩터만큼 크기가 감소될 수 있다. 위에서 주목된 바와 같이, 이러한 크기의 감소는 일반적으로 스위칭을 위한 전력 소비의 감소를 또한 의미한다. 감소된 물리적 크기 및 양호한 전력 효율성 양쪽 모두는 배터리로 구동되는 휴대용 전자 장치들(예를 들면, 모바일 휴대폰들)과 같은 애플리케이션들에서 전력 변환 솔루션들을 구현하기 위해 특히 중요하다.
도 5a 내지 도 5c에서 설명된 것들과 같은 프로세스들의 적용에 의해 생성된 M-레벨 토폴로지들은 또한 많은 노드들에서 전압을 감소시킴으로써 수동 요소들 및 스위치들(예를 들면, FET 장치들)에 걸쳐 스트레스의 감소를 가능하게 한다. 결과적으로, 스위치들, 커패시터들, 및/또는 인덕터들은 더 작아질 수 있다.
따라서, 명백한 역설로, 도 5a 내지 도 5c에 설명된 것들과 같은 프로세스들의 적용에 의해 스위치들 및 커패시터들을 추가함으로써, 구성요소들의 총 수는 다른 프로세스들을 적용함으로써 생성된 다중-레벨 변환기에 비해 실제로 줄어들 수 있다. 예를 들면, 전압 노출의 감소에 의해, 스위치는 훨씬 더 낮은 수준의 트랜지스터들의 적층들을 필요로 할 수 있고, 그에 의해 하나 이상의 트랜지스터들을 배제한다. 이러한 다중-레벨 변환기는 또한 더 적은 정전 용량이 필요할 수도 있어서, 더 적은 수의 병렬 커패시터들이 정전 용량 요건들을 충족시키기 위해 필요될 수 있다.
추가 제어 및 동작 고려사항들
본 개시에 따라 설계된 다중-레벨 변환기 셀을 활용하는 전력 변환기의 신뢰성 있고 효율적인 동작을 가능하게 하는 추가적인 제어 및 동작 회로(또는 하나 이상의 셧다운 절차들)를 제공하는 것이 바람직할 수 있다. 예를 들면, 스텝-다운 변환기(step-down power converter)에서, 변환기 셀의 출력 전압은 변환기 셀의 입력 전압보다 적다. 출력 부하 전류가 0이 아닌 동안 출력에 연결된 내부 설계 인덕턴스를 갖는 변환기 셀을 셧 다운하거나 비활성화하는 것은(예를 들면, 단락과 같은 오류 이벤트로 인해) 일반적으로 인덕터 전류를 방전시키기 위한 몇 가지 수단을 필요로 한다. 일부 실시예들에서, 바이패스 스위치는 변환기 셀의 출력에 연결된 내부 설계 인덕턴스와 병렬로 연결될 수 있고 정상 동작 동안 개방되도록 제어되고 변환기 셀을 셧 다운할 때 또는 오류 이벤트가 발생할 경우 폐쇄되도록 제어될 수 있다. 이상적으로, 과도 링잉을 방지하고 인덕터 전류의 안전한 방전을 제공하기 위해, 바이패스 스위치는 변환기 셀 스위칭을 비활성화하기 전에 폐쇄될 수 있다. 변환기의 메인 스위치들용 MOSFET들을 사용하는 대안적인 실시예들에서, 각 MOSFET의 본체와 드레인 단자들 사이에 연결된 고유 본체 다이오드는 또한 인덕터 전류를 방전할 수 있다. 이들 솔루션들, 또한 대안적인 셧다운 솔루션들의 상세들은 본 발명의 양수인에게 양도된, "단열 충전 펌프들의 효율적인 셧다운을 위한 장치 및 방법"이라는 제목의 2020년 6월 16일에 발행된 미국 특허 번호 제 10,686,367 호에 교시되고, 그의 내용은 참조로 통합된다.
변환기 셀들을 병렬로 조합할 때의 또 다른 고려 사항은 돌입 전류(in-rush current)(예를 들면, 전력 변환기들에 대한 소프트-스타트 기간 동안)를 방지하고/하거나 모든 전력 변환기들이 시동 중이나 오류 조건이 발생할 때와 같이 완전히 동작하지 않는 경우에 과도한 스트레스를 전환하기 위해 다수의 병렬 전력 변환기들을 제어하는 것이다. 조건부 제어는 전압 및/또는 전류를 모니터링하기 위해 병렬 연결된 전력 변환기들 내의 선택된 노드들에 결합된 노드 상태 검출기들을 사용함으로써 달성될 수 있다. 이러한 노드 상태 검출기들은 일부 실시예들에서 시동 동안 연관된 전력 변환기의 출력 전압을 측정하는 출력 상태 검출기와 병렬로 작동하도록 구성될 수 있다. 노드 상태 검출기들은 병렬 전력 변환기들의 최대 전력 정상 상태 동작을 활성화하기 전에 전력 변환기들의 변환기 셀(들) 내의 중요한 구성요소들(예를 들면, 플라이 커패시터들 및/또는 스위치들)에 걸친 전압들이 원하는 범위 내에 있는 것을 보장하고, 그렇지 않으면 최대 전력 정상 상태 동작을 방해한다. 노드 상태 검출기들은 하나 이상의 공통 제어 신호들을 사용하여 하나 이상의 병렬 전력 변환기들을 제어하는 마스터 제어기에 결합될 수 있다. 마스터 제어기 구성의 조성에서, 병렬 전력 변환기들은 최대 전력 정상 상태 동작을 위해 시동 위상를 떠날 준비가 되면 각각 전력 양호 신호(Pgood)를 보고할 수 있다. 마스터 제어기는 본질적으로 이러한 모든 Pgood 신호들을 함께, 가능하게는 다른 회로들로부터의 하나 이상의 상태 신호들과 함께 "AND"할 수 있어서, 마스터 제어기는 모든 병렬 전력 변환기들이 해당 상태에 대한 준비가 되지 않으면 모든 병렬 전력 변환기들의 전체 전력 정상 상태 동작을 활성화하지 않는다. 본질적으로, 각 병렬 전력 변환기로부터의 Pgood 신호들은 모든 Pgood 신호들이 정상 동작에 대해 이행할 준비가 되었음을 나타낼 때까지 병렬 전력 변환기들이 시동 위상 외에 이행하지 않도록 모두 함께 묶여 있다. 또한, 하나 이상의 병렬 전력 변환기들의 오류 상태로 인해 Pgood 신호들이 변경되는 경우, 병렬 전력 변환기들은 정상 상태 동작에서 자동 재시작 또는 셧다운 동작으로 이행할 수 있다. 이들 솔루션들, 또한 대안적인 셧다운 솔루션들의 상세들은 본 발명의 양수인에게 양도된, "병렬 전력 변환기들을 위한 시동 검출(Startup Detection for Parallel Power Converters)"라는 제목의, 2021년 4월 27일에 발행된 미국 특허 번호 제 10,992,226 호에 교시되고, 그의 내용은 참조로 통합된다.
다중-레벨 변환기 셀들을 동작시킬 때의 또 다른 고려 사항은 불균형한 플라이 커패시터들이 고전압들에 대한 노출로 인해 스위치(특히 FET 스위치들)의 고장을 초래할 수 있으므로 모든 스위치들이 유사한 전압 스트레스를 겪도록 본질적으로 완전히 비례적으로 균형을 이루는 플라이 커패시터 전압들을 획득(즉, 사전 충전)하고 유지하는 것이다. 다중-레벨 DC-DC 변환기 회로에서 커패시터 전압들을 사전 충전하는 것 및 커패시터 전압의 동작 균형을 유지하는 것 양쪽 모두에 대한 하나의 솔루션은, 모든 것은 실시간 커패시터 전압 측정들의 제어하에 있는, 상기 커패시터를 사전 충전하기 위해 플라이 커패시터를 전압 소스 또는 다른 회로에 조건부로 결합하거나, 더 높은 전압 커패시터에서 더 낮은 전압 커패시터로 전하를 전송하기 위해 두 개 이상의 플라이 커패시터들을 함께 조건부로 결합하거나, 상기 커패시터를 방전하기 위해 플라이 커패시터를 전압 싱크에 조건부로 결합하는 병렬 "섀도우" 회로를 제공하는 것이다. 각각의 병렬 "섀도우" 회로는 다중-레벨 변환기 셀의 일부인 메인 스위치와 병렬로 결합된 스위치 및 저항기를 포함할 수 있다(일부 경우들에서, 하나의 스위치-저항기 쌍이 2개의 직렬 연결된 스위치들에 걸쳐 있을 수 있음). 플라이 커패시터들의 사전 충전 및/또는 충전 균형을 위한 이러한 특정 솔루션은 매우 빠르고, 사전 충전 기간 동안 플라이 커패시터들의 느린 사전 충전을 제공하고, 돌입 전류로부터 스위치들을 보호하고, 변환기 셀 스위치들에 안정적인 전압들을 제공한다. 이러한 솔루션, 또한 대안적인 사전 충전 및 전하 균형 유지 솔루션들의 상세들은, 본 발명의 양수인에게 양도된, "손실 전압 균형 유지를 갖는 다중-레벨 DC-DC 변환기(Multi-Level DC-DC Converter with Lossy Voltage Balancing)"라는 제목의, 2020년 7월 21일에 발행된, 미국 특허 번호 제 10,720,843 호에 교시되고, 그의 내용들은 참조로 통합된다.
다중-레벨 DC-DC 변환기 회로에서 커패시터 전압들의 균형을 유지하기 위한 또 다른 솔루션은 다중-레벨 DC-DC 변환기 셀의 비순차적 상태 천이들이 정상 동작 동안 발생하도록 허용되는 무손실 전압 균형 유지 솔루션(lossless voltage balancing solution)을 제공하는 것이다. 비순차적 상태 천이들의 순수 효과는 특정 플라이 커패시터들에 걸친 전압을 증가시키거나 감소시키는 것이고, 이렇게 하여 DC-DC 변환기의 메인 스위치들상에 전압 과잉 스트레스를 방지한다. 일부 실시예들에서, 천이 상태 토글링을 감소시키거나 피하기 위해 상태 천이들의 전체 시퀀스에 제한이 가해지며, 그에 의해 다른 커패시터의 전압의 균형을 유지하기 전에 하나의 커패시터가 전압 균형 유지되도록 허용하기보다, 각 커패시터가 필요에 따라 그의 전압이 조정되게 하는 기회를 허용한다. 이 솔루션, 또한 대안적인 전하 균형 유지 솔루션들의 상세들은, 본 발명의 양수인에 의해 양도된, "무손실 전압 균형 유지를 갖는 다중-레벨 DC-DC 변환기(Multi-Level DC-DC Converter with Lossless Voltage Balancing)"라는 제목의, 2020년 9월 8일에 발행된 미국 특허 번호 제 10,770,974 호에 교시되고, 그 내용들은 참조로 통합된다.
일부 실시예들에 대한 추가 고려 사항은 전압들이 전압 레벨들 사이의 경계 영역들에서 생성될 수 있도록 다중-레벨 변환기 셀들의 동작을 가능하게 하는 것이다. "경계 영역들"은 종래의 다중-레벨 DC-DC 변환기 회로들에 도달할 수 없는 출력 전압들을 나타낸다. 경계 영역 내에서 출력 전압들을 생성하기 위해, 일부 실시예들은 경계 영역 천이 패턴에서 변환기 셀 스위치들의 상태들을 설정함으로써 인접한(또는 심지어 가까운) 영역들 중에서 본질적으로 교대(토글)한다. 예를 들면, 3-레벨 DC-DC 변환기 회로는 선택된 시간 동안 영역 1에서 동작하고 선택된 시간 동안 인접한 영역 2에서 동작할 수 있다. 따라서, 영역들 1 및 2는 단일 "슈퍼-영역"으로 처리된다. 보다 일반적으로, 일부 경우들에서, 인접하지 않은 영역들을 사용하거나 두 개보다 많은 영역들(인접 및/또는 인접하지 않음)을 사용하여 슈퍼-영역들을 생성하는 것이 유용할 수 있다. 이 솔루션의 상세들은, 본 발명의 양수인에게 양도된, "경계 천이 제어를 갖는 다중-레벨 DC-DC 변환기(Multi-level DC-DC Converter with Boundary Transition Control)"라는 제목의, 2020년 7월 21일에 발행된, 미국 특허 번호 제 10,720,842 호에 교시되고, 그 내용들은 참조로 통합된다.
일부 실시예들에 대한 또 다른 고려 사항은 스트레스 조건들로부터, 특히 이러한 스위치들(특히 FET 스위치들)의 항복 전압을 초과하는 전압들로부터 전력 변환기 내의 주 전원 스위치들 및 다른 구성요소들의 보호이다. 다중-레벨 전력 변환기를 보호하기 위한 하나의 수단은 적어도 하나의 고전압 FET 스위치를 사용하고 동시에 모든 또는 대부분의 다른 주 전원 스위치들이 저전압 FET 스위치들이 되도록 허용하는 것이다.
전력 변환기들, 특히 다중-레벨 전력 변환기들에서, 전력 스위치들은 FET들, 특히 MOSFET들로 구현될 수 있다. 각 전력 FET에 대하여, 드라이버 회로가 일반적으로 필요하다. 또한, 일부 전력 FET들에 대하여, 레벨 시프터는 아날로그 또는 디지털 제어기로부터의 접지 기준 저전압 로직 ON/OFF 신호를 동일한 전압 스윙을 갖는 신호로 변환하기 위해 필요로 될 수 있지만, 신호가 전력 FET의 게이트를 충전 또는 방전하고 그에 의해 전력 FET의 전도 또는 차단 상태를 제어하기 위해 구동하고 있는 전력 FET의 소스 전압에 대해 참조될 수 있다. 일부 애플리케이션들에서, 레벨 시프터 및 드라이버 회로의 기능들은 하나의 회로에 통합될 수 있다.
명확한 바와 같이, 본 개시에 설명된 다중-레벨 전력 변환기 실시예들은 이 섹션에 설명된 하나 이상의 추가의 제어 및 동작 회로들 및 방법들의 교시들과 상승적으로 조합될 수 있다.
다중-레벨 전력 변환기들의 일반적인 이익들 및 이점들
본 발명의 실시예들은 통합 회로들 및 회로 모듈들 또는 블록들의 전력 밀도 및/또는 전력 효율성을 개선한다. 당업자가 이해해야 하는 바와 같이, 시스템 아키텍처는, 더 낮은 전력 및/또는 더 긴 배터리 수명을 포함하는, 중요한 방식들로 본 발명의 실시예들을 활용하여 유익한 영향을 받는다. 따라서, 본 발명은 대규모 시스템 설계 및 애플리케이션에 포함시킴으로써 창의적으로 가능해지는 시스템-레벨 실시예들을 구체적으로 포함한다.
특히, 다중-레벨 전력 변환기들은 다음을 포함하여 수많은 이익들 및 이점들을 제공하거나 가능하게 한다:
- 입력 및/또는 출력 전압들이 넓은 동적 범위(예를 들면, 다양한 배터리 입력 전압 레벨들, 다양한 출력 전압들)를 가질 수 있는 애플리케이션들에 대한 적응성;
- 휴대용 전기 에너지 소스들(액체 또는 기체 연료들을 사용하는 배터리들, 발전기들 또는 연료 전지들, 태양 전지들 등)에서 동작하는 장치들의 런타임에 대한 효율성 개선들;
- 열 관리, 특히 과도한 열로부터 다른 구성요소들(예를 들면, 디스플레이들, 근처 IC들)을 보호하기 위해 효율성이 중요한 경우 효율성 개선들;
- 전력 변환기의 전력 효율성, 전력 밀도, 및 폼 팩터에 대한 설계 최적화들을 가능하게 한다-예를 들면 더 작은 크기의 다중-레벨 전력 변환기들은 전력 변환기들을 부하들에 근접하게 배치하게 하여, 효율성을 증가시킬 수 있고/있거나 전체 자재 명세서를 낮추는 것을 허용할 수 있다;
- 더 작은, 저전압 트랜지스터들의 성능을 활용하는 능력;
- 배터리들, 다른 전력 변환기들, 액체 또는 기체 연료들을 사용하는 발전기들 또는 연료 전지들, 태양 전지들, 라인 전압(AC), 및 DC 전압 소스(예를 들면, USB, USB-C, 이더넷 전원 장치(PoE; Power-over Ethernet) 등)와 같이 전원들이 광범위하게 달라질 수 있는 애플리케이션들에 대한 적응성
- 일반적인 IC들(마이크로프로세서들 및 메모리 IC들을 포함), 전기 모터들 및 액추에이터들, 트랜듀서들, 센서들, 및 디스플레이들(예를 들면, 모든 유형들의 LCD들 및 LED들)과 같이 부하들이 광범위하게 달라질 수 있는 애플리케이션들에 대한 적응성
- 다수의 IC 기술들(예를 들면, MOSFET들, GaN, GaAs, 및 벌크 실리콘) 및 패키징 기술들(예를 들면, 플립 칩들, 볼-그리드 어레이들, 웨이퍼 레벨 스케일 칩 패키지들, 와이드-팬 아웃 패키징, 및 내장형 패키징)에서 구현되는 능력.
다중-레벨 전력 변환기들의 이점들과 이익들은 다양한 애플리케이션들에서의 사용을 가능하게 한다. 예를 들면, 다중-레벨 전력 변환기들의 애플리케이션들은 휴대용 및 모바일 컴퓨팅 및/또는 통신 제품들 및 부품들(예를 들면, 노트북 컴퓨터들, 울트라북 컴퓨터들, 태블릿 장치들, 및 휴대폰들), 디스플레이들(예를 들면, LCD들, LED들), 무선 기반 장치들 및 시스템들(예를 들면, 셀룰러 시스템들, WiFi, 블루투스, 지그비(Zigbee), Z-파 및 GPS 기반 장치들), 유선 네트워크 장치들 및 시스템들, 데이터 센터들(예를 들면, 배터리 백업 시스템들용 및/또는 처리 시스템들용 전력 변환 및/또는 전자/광 네트워킹 시스템들용), 사물 인터넷(IOT) 장치들(예를 들면, 스마트 스위치들 및 조명들, 안전 센서들, 및 보안 카메라들), 가전제품 및 전자 제품(예를 들면, 셋톱 박스들, 배터리로 동작되는 진공 청소기들, 세탁기들, 건조기들, 및 냉장고들과 같은 무선 송수신기가 내장된 기기들), AC/DC 전력 변환기들, 모든 유형의 전기 차량들(예를 들면, 드라이브 트레인들, 제어 시스템들, 및/또는 인포테인먼트 시스템들용), 및 휴대용 전기 발전원들을 활용하거나 및/또는 전력 변환을 필요로 하는 다른 장치들 및 시스템들을 포함한다.
무선 시스템 사용은 다양한 유형들의 직교 주파수 분할 다중화("OFDM"), 직교 진폭 변조("QAM"), 코드 분할 다중 접속("CDMA"), 시분할 다중 접속("TDMA"), 광대역 코드 분할 다중 접속("W-CDMA"), 글로벌 이동 통신 시스템("GSM"), 롱 텀 에볼루션("LTE"), 5G, 및 WiFi(예를 들면, 802.1la, b, g, ac, ax), 뿐만 아니라 다른 무선 통신 표준들 및 프로토콜들을 포함하는 다양한 기술들 및 프로토콜들을 사용하는 무선 RF 시스템들(기지국들, 중계국들, 및 핸드-헬드 트랜시버들을 포함)을 포함한다.
제조 기술들 및 옵션들
다중-레벨 전력 변환기들의 다양한 실시예들에서, 특히 플라이 커패시터들에 대해 특정 유형들의 커패시터들을 사용하는 것이 유리할 수 있다. 예를 들면, 이러한 커패시터들은 낮은 등가 직렬 저항(ESR), 낮은 DC 바이어스 저하, 높은 정전용량, 및 작은 부피를 갖는 것이 일반적으로 유용하다. 낮은 ESR은 전압 레벨들의 수를 증가시키기 위해 추가 스위치들 및 플라이 커패시터들을 통합하는 다중-레벨 전력 변환기들에 특히 중요하다. 특정 커패시터의 선택은 전력 레벨, 효율성, 크기 등에 대한 사양들을 고려한 후에 이루어져야 한다. 다양한 유형들의 커패시터 기술들이 세라믹(다층 세라믹 커패시터들을 포함), 전해 커패시터들(electrolytic capacitors), 필름 커패시터들(전력 필름 커패시터들을 포함), 및 IC 기반 커패시터들을 포함하여 사용될 수 있다. 커패시터 유전체들은 특정 애플리케이션들에 대한 필요에 따라 달라질 수 있고, 이산화규소(SiO2), 이산화하프늄(HFO2), 또는 산화알루미늄(Al2O3)과 같은 상유전성, 유전체들을 포함할 수 있다. 또한, 다중-레벨 전력 변환기 설계들은 회로 크기를 감소시키고 및/또는 회로 성능을 증가시키기 위해 설계된 커패시터들과 함께 또는 그 대신에 고유 기생 커패시턴스들(예를 들면, 전력 FET들에 고유한)을 유리하게 활용할 수 있다. 다중-레벨 전력 변환기용 커패시터들의 선택은 또한 커패시터 구성요소 변화들, DC 바이어스로 인한 감소된 유효 정전 용량, 및 세라믹 커패시터 온도 계수들(최소 및 최대 온도 동작 한계들, 및 온도에 의한 정전 용량 변화)와 같은 요인들도 고려할 수 있다.
유사하게, 다중-레벨 전력 변환기들의 다양한 실시예들에서, 특정 유형들의 인덕터들을 사용하는 것이 유리할 수 있다. 예를 들면, 인덕터들이 낮은 DC 등가 저항, 높은 인덕턴스, 및 작은 부피를 갖는 것이 일반적으로 유용하다.
다중-레벨 전력 변환기의 시동 및 동작을 제어하는 데 사용된 제어기(들)는 마이크로프로세서, 마이크로컨트롤러, 디지털 신호 프로세서(DSP), 레지스터-전송 레벨(RTL) 회로, 및/또는 조합 논리로서 구현될 수 있다.
본 명세서에 사용된 용어 "MOSFET"은 전압이 트랜지스터의 전도성을 결정하는 절연 게이트를 갖는 임의의 전계 효과 트랜지스터(FET)를 포함하고, 금속 또는 금속 유사(metal-like), 절연체, 및/또는 반도체 구조를 갖는 절연 게이트를 포함한다. 용어 "금속" 또는 "금속 유사"는 적어도 하나의 전기 전도성 재료(알루미늄, 구리, 또는 다른 금속, 또는 고도로 도핑된 폴리실리콘, 그래핀, 또는 다른 전기 전도체와 같은)를 포함하고, "절연체"는 적어도 하나의 절연체 재료를 포함하고(산화규소 또는 다른 유전체 재료와 같은), "반도체"는 적어도 하나의 반도체 재료를 포함한다.
본 개시물에서 사용되는, 용어 "무선 주파수"(RF)는 약 3kHz 내지 약 300GHz 범위의 진동의 레이트를 지칭한다. 이 용어는 또한 무선 통신 시스템들에서 사용된 주파수들을 포함한다. RF 주파수는 전자파의 주파수이거나 회로의 교류 전압이나 전류의 주파수일 수 있다.
본 개시에서 참조된 도면들과 관련하여, 다양한 요소들에 대한 치수들은 일정한 비율로 나타낸 것이 아니고; 일부 치수들은 명확성 또는 강조를 위해 수직 및/또는 수평으로 크게 과장되었다. 또한, 배향들 및 방향들(예를 들면, "상부", "하부", "위", "아래", "측면", "수직", "수평" 등)에 대한 참조들은 예시 도면들과 관련이 있고, 반드시 절대적인 배향들이나 방향들은 아니다.
본 발명의 다양한 실시예들은 다양한 사양들을 충족하도록 구현될 수 있다. 위에서 달리 언급하지 않는 한, 적절한 구성요소 값들의 선택은 설계 선택의 문제이다. 본 발명의 다양한 실시예들은 임의의 적절한 집적 회로(IC) 기술(MOSFET 구조들을 포함하지만 이에 제한되지 않음), 또는 하이브리드 또는 별개의 회로 형태들로 구현될 수 있다. 집적 회로 실시예들은 표준 벌크 실리콘, 고저항 벌크 CMOS, 실리콘 온 인슐레이터(SOI; silicon-on-insulator), 및 실리콘-온-사파이어(SOS; silicon-on-sapphire)를 포함하지만 이에 제한되지 않는 임의의 적합한 기판들 및 프로세스들을 사용하여 제조될 수 있다. 위에서 달리 언급하지 않는 한, 본 발명의 실시예들은 바이폴라, BiCMOS, LDMOS, BCD, GaAs HBT, GaN HEMT, GaAs pHEMT, 및 MESFET 기술들과 같은 다른 트랜지스터 기술들로 구현될 수 있다. 그러나, 본 발명의 실시예들은 SOI 또는 SOS 기반 프로세스를 사용하여 제조될 때, 또는 유사한 특성들을 갖는 프로세스들로 제조될 때 특히 유용하다. SOI 또는 SOS 프로세스들을 사용한 CMOS의 제조는 낮은 전력 소비, FET 적층으로 인해 동작 동안 고전력 신호들을 견딜 수 있는 능력, 우수한 선형성, 및 고주파 동작(즉, 300GHz 이상의 무선 주파수들)을 갖는 회로들을 가능하게 한다. 모놀리식 IC 구현은 신중한 설계에 의해 기생 용량이 일반적으로 낮게 유지(또는 그들이 보상되는 것을 허용하여 최소한 모든 유닛들에 걸쳐 균일하게 유지)될 수 있기 때문에 특히 유용하다.
특정 사양 및/또는 구현 기술(예를 들면, NMOS, PMOS, 또는 CMOS, 및 향상 모드 또는 공핍 모드 트랜지스터 장치들)에 따라 전압 레벨들이 조정될 수 있고/있거나 전압 및/또는 논리 신호 극성이 반전될 수 있다. 구성요소 전압, 전류, 및 전력 처리 기능들은, 예를 들면, 장치 크기들을 조정하고, 구성요소들(특히 FETs)을 직렬로 "적층하여" 더 큰 전압들을 견디거나, 및/또는 더 큰 전류를 처리하기 위해 다수의 구성요소들을 병렬로 사용함으로써, 필요에 따라 적응될 수 있다. 개시된 회로들의 기능을 크게 변경하지 않고 개시된 회로들의 기능들을 향상시키고 및/또는 추가 기능을 제공하기 위해 추가의 회로 구성요소들이 추가될 수 있다.
본 발명에 따른 회로들 및 장치들은 단독으로 또는 다른 구성요소들, 회로들, 및 장치들과 조합하여 사용될 수 있다. 본 발명의 실시예들은 집적 회로들(IC)로 제조될 수 있고, 이는 취급 용이성, 제조, 및/또는 개선된 성능을 위해 IC 패키지들 및/또는 모듈들에 내장될 수 있다. 특히, 본 발명의 IC 실시예들은 그러한 IC들 중 하나 이상이 다른 회로 구성요소들 또는 블록들(예를 들면, 필터들, 증폭기들, 수동 구성요소들, 및 가능하게는 추가 IC들)과 하나의 패키지로 조합되는 모듈들에 종종 사용된다. IC들 및/또는 모듈들은 이후 일반적으로 휴대폰, 랩톱 컴퓨터, 또는 전자 태블릿과 같은 최종 제품의 일부를 형성하거나 또는 차량들, 테스트 장비, 의료 장치들 등과 같은 다양한 제품들에 사용될 수 있는 상위 레벨 모듈을 형성하기 위해, 종종 인쇄 회로 기판상에, 다른 구성요소들과 조합된다. 모듈들 및 어셈블리들의 다양한 구성들을 통해, 이러한 IC들은 일반적으로 통신 모드, 종종 무선 통신을 가능하게 한다.
프로그래밍된 실시예들
본 발명의 일부 또는 모든 양태들은 하드웨어나 소프트웨어, 또는 둘 모두의 조합(예를 들면, 프로그램 가능한 논리 어레이들)으로 구현될 수 있다. 달리 명시되지 않는 한, 본 발명의 일부로서 포함된 방법들은 본질적으로 임의의 특정 컴퓨터 또는 다른 장치와 관련되지 않는다. 특히, 다양한 범용 컴퓨팅 기계들은 본 명세서의 교시에 따라 작성된 프로그램들과 함께 사용될 수 있거나, 특정 기능들을 수행하기 위해 특수 목적 컴퓨터 또는 특수 목적 하드웨어(집적 회로들과 같이)를 사용하는 것이 더 편리할 수 있다. 따라서, 본 발명의 실시예들은 각각이 적어도 하나의 프로세서, 적어도 하나의 데이터 저장 시스템(휘발성 및 비휘발성 메모리 및/또는 저장 요소들을 포함할 수 있음), 적어도 하나의 입력 장치 또는 포트, 및 적어도 하나의 출력 장치 또는 포트를 포함하는 하나 이상의 프로그래밍된 또는 프로그래밍 가능한 컴퓨터 시스템들(분산형, 클라이언트/서버, 또는 그리드와 같은 다양한 아키텍처들일 수 있음)상에서 실행되는 하나 이상의 컴퓨터 프로그램들(즉, 명령들 또는 코드들의 세트)로 구현될 수 있다. 여기에 설명된 기능들을 수행하고 출력 정보를 생성하기 위해 프로그램 명령들 또는 코드가 입력 데이터에 적용된다. 출력 정보는 알려진 방식으로 하나 이상의 출력 장치들에 적용된다.
각각의 이러한 컴퓨터 프로그램은 컴퓨터 시스템과 통신하기 위해 임의의 원하는 컴퓨터 언어(기계, 어셈블리, 또는 고레벨 절차적, 논리, 객체 지향 프로그래밍 언어들 또는 사용자 정의 언어/스크립트를 포함)로 구현될 수 있고, 소프트웨어에 의해 지정된 계산의 상이한 부분들이 상이한 프로세서들에 의해 수행되는 분산 방식으로 구현될 수 있다. 어떤 경우에는, 컴퓨터 언어는 컴파일된 언어이거나 해석된 언어일 수 있다. 본 발명의 일부 또는 전부를 구현하는 컴퓨터 프로그램들은 더 큰 프로그램의 하나 이상의 모듈들 또는 프로그램들의 시스템을 형성할 수 있다. 컴퓨터 프로그램의 요소들의 일부 또는 전부는 컴퓨터 판독 가능 매체에 저장된 데이터 구조들 또는 데이터 저장소에 저장된 데이터 모델에 따르는 다른 조직화된 데이터로 구현될 수 있다.
각각의 이러한 컴퓨터 프로그램은 시간 기간 동안(예를 들면, 동적 RAM과 같은 동적 메모리 장치의 리프레시 기간들 사이의 시간, 또는 반영구적으로, 또는 영구적으로) 유형의 비일시적 저장 매체들 또는 장치(예를 들면, 고체 상태 메모리 매체들 또는 장치들, 또는 자기 또는 광학 매체들)상에 (예를 들면, 전파된 신호로 인코딩되어 네트워크와 같은 통신 매체를 통해 전달됨으로써) 저장되거나 다운로드될 수 있고, 상기에 설명된 절차들을 수행하기 위해 저장 매체들 또는 장치가 컴퓨터 시스템에 의해 판독될 때 저장 매체들 또는 장치는 컴퓨터를 구성하고 동작시키기 위해 범용 또는 특수 목적의 프로그래밍 가능한 컴퓨터로 판독 가능할 수 있다. 본 발명의 시스템은 또한 컴퓨터 프로그램으로 구성된 비일시적 컴퓨터 판독 가능 저장 매체로 구현되는 것으로 간주될 수 있고, 이렇게 구성된 저장 매체는 컴퓨터 시스템이 상기에 설명된 기능들을 수행하기 위해 특정 또는 미리 규정된 방식으로 동작하게 한다.
결론
본 발명의 다수의 실시예들이 설명되었다. 본 발명의 사상 및 범위를 벗어나지 않고 다양한 변형들이 이루어질 수 있음이 이해되어야 한다. 예를 들면, 상기에 설명된 단계들 중 일부는 순서 독립적일 수 있고 그래서 설명된 것과 상이한 순서로 수행될 수 있다. 또한, 상기에 설명된 단계들 중 일부는 선택적일 수 있다. 상기에 식별된 방법들과 관련하여 설명된 다양한 활동들은 반복적, 직렬, 및/또는 병렬 방식으로 실행될 수 있다.
전술한 설명은 예시하기 위한 것이며, 후속하는 청구항들의 범위에 의해 규정되는 본 발명의 범위를 제한하려는 것이 아니고, 다른 실시예들이 청구항의 범위 내에 있다는 것이 이해되어야 한다. 특히, 본 발명의 범위는 아래 청구항들에 설명된 하나 이상의 프로세스들, 기계들, 제조들, 또는 물질의 조성들의 임의의 및 모든 실현 가능한 조합들을 포함한다. (청구항 요소들에 대한 괄호 라벨들은 이러한 요소들을 쉽게 참조하기 위한 것이고, 그들 자체로 특정 필수 순서 또는 요소들의 열거를 나타내지 않는다는 것을 주의하라; 또한, 이러한 라벨들은 충돌하는 라벨링 시퀀스를 시작하는 것으로 간주되지 않고 추가 요소들에 대한 참조들로 종속항들에서 재사용될 수 있다.)

Claims (78)

  1. 적어도 3개의 노드 전압 레벨들을 갖고 2-레벨 변환기 셀을 수정하여 만들어진 변환기 셀로서,
    상기 2-레벨 변환기 셀은 (1) 적어도 하나는 인덕턴스인, 적어도 3개의 내부 설계된 에너지 저장 요소들, 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함하고,
    상기 변환기 셀은 제 1 쌍 및 제 2 쌍의 스위치들을 포함하고, 각각은 정상 상태 동작 동안 동시에 전도성이 아닌 상기 2-레벨 변환기 셀 내의 스위치들의 쌍 중 하나를 대체하고, 상기 제 1 쌍의 스위치 사이의 제 1 중간 노드와 상기 제 2 쌍의 스위치 사이의 제 2 중간 노드는 커패시터에 연결되도록 구성되는, 변환기 셀.
  2. 제 1 항에 있어서,
    대체된 스위치들의 쌍의 스위치들 중 하나는 스위치로서 기능하는 다이오드인, 변환기 셀.
  3. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 변환기 셀.
  4. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 변환기 셀.
  5. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 변환기 셀.
  6. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 변환기 셀.
  7. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 변환기 셀.
  8. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (a) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (b) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (c) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (d) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, 변환기 셀.
  9. 제 1 항에 있어서,
    상기 2-레벨 변환기 셀은 도 12a, 도 12b, 도 12c, 도 13b, 도 15b, 도 18 또는 도 19 내지 도 33에 도시된 회로들 중 하나인, 변환기 셀.
  10. 적어도 1개의 내부 설계된 인덕턴스 및 적어도 2개의 스위치들을 포함하는 2-레벨 변환기 셀을 수정함으로써 3-레벨 변환기 셀을 구성하는 방법에 있어서,
    (e) 정상 상태 동작 동안 동시에 전도성이 아닌 상기 2-레벨 변환기 셀 내에서 한 쌍의 스위치들을 선택하는 단계;
    (f) 상기 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계로서, 그에 의해 상기 2개의 직렬 연결된 선택된 스위치들 사이에 중간 노드를 형성하는, 상기 분할 단계; 및
    (g) 새롭게 형성된 중간 노드들을 커패시터를 통해 연결하는 단계;를 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  11. 제 10 항에 있어서,
    상기 2-레벨 변환기 셀 내의 다이오드 스위치들을, 존재하는 경우, 대응하는 단극, 단투 스위치들로 대체하는 단계를 더 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  12. 제 10 항에 있어서,
    선택된 스위치를 2개의 직렬 연결된 스위치들로 분할하는 단계는 상기 선택된 스위치를 유지하고 상기 선택된 스위치를 추가된 스위치와 직렬로 결합하는 단계를 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  13. 제 10 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어진 3-레벨 변환기 셀에 있어서,
    상기 2-레벨 변환기 셀은 (1) 적어도 2개의 내부 설계된 인덕턴스들 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 3개의 스위치들 중 하나를 포함하는, 3-레벨 변환기 셀.
  14. 제 10 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어진 3-레벨 변환기 셀에 있어서,
    상기 2-레벨 변환기 셀은 (1) 적어도 하나는 인덕턴스인 적어도 3개의 내부 설계된 에너지 저장 요소들, 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함하는, 3-레벨 변환기 셀.
  15. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 3-레벨 변환기 셀.
  16. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 3-레벨 변환기 셀.
  17. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 3-레벨 변환기 셀.
  18. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 3-레벨 변환기 셀.
  19. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 3-레벨 변환기 셀.
  20. 제 14 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (h) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (i) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (j) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (k) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, 3-레벨 변환기 셀.
  21. 2-레벨 변환기 셀을 수정함으로써 3-레벨 변환기 셀을 구성하는 방법으로서,
    상기 2-레벨 변환기 셀은 (1) 적어도 하나는 인덕턴스인, 적어도 3개의 내부 설계된 에너지 저장 요소들, 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함하고,
    상기 3-레벨 변환기 셀을 구성하는 방법은,
    (a) 정상 상태 동작 동안 동시에 전도성이 아닌 상기 2-레벨 변환기 셀 내에서 한 쌍의 스위치들을 선택하는 단계;
    (b) 상기 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계로서, 그에 의해 상기 2개의 직렬 연결된 선택된 스위치들 사이에 중간 노드를 형성하는, 상기 분할 단계; 및
    (c) 새롭게 형성된 중간 노드를 커패시터를 통해 연결하는 단계를 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  22. 제 21 항에 있어서,
    상기 2-레벨 변환기 셀 내의 다이오드 스위치들을, 존재하는 경우, 대응하는 단극, 단투 스위치들로 대체하는 단계를 더 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  23. 제 21 항에 있어서,
    선택된 스위치를 2개의 직렬 연결된 스위치들로 분할하는 단계는 상기 선택된 스위치를 유지하는 단계 및 상기 선택된 스위치를 추가된 스위치와 직렬로 결합하는 단계를 포함하는, 3-레벨 변환기 셀을 구성하는 방법.
  24. 제 21 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어진 3-레벨 변환기 셀에 있어서,
    상기 2-레벨 변환기 셀은 (1) 적어도 하나는 인덕턴스인, 적어도 3개의 내부 설계된 에너지 저장 요소들, 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함하는, 3-레벨 변환기 셀.
  25. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 3-레벨 변환기 셀.
  26. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 3-레벨 변환기 셀.
  27. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 3-레벨 변환기 셀.
  28. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 3-레벨 변환기 셀.
  29. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 3-레벨 변환기 셀.
  30. 제 24 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (d) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (e) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (f) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (g) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, 3-레벨 변환기 셀.
  31. 2-레벨 변환기 셀을 수정함으로써 M-레벨 변환기 셀을 구성하는 방법으로서,
    상기 2-레벨 변환기 셀은 (1) 적어도 하나는 인덕턴스인, 적어도 3개의 내부 설계된 에너지 저장 요소들, 및 적어도 2개의 스위치들, 또는 (2) 적어도 1개의 내부 설계된 인덕턴스 및 적어도 4개의 스위치들 중 하나를 포함하고, M > 3이고,
    상기 M-레벨 변환기 셀을 구성하는 방법은
    (h) 동시에 전도성이 아닌 상기 2-레벨 변환기 셀 내에서 한 쌍의 스위치들을 선택하는 단계;
    (i) 상기 2개의 선택된 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계로서, 그에 의해 상기 2개의 직렬 연결된 선택된 스위치들 사이에 중간 노드를 형성하는, 상기 분할 단계;
    (j) 새롭게 형성된 중간 노드들을 커패시터를 통해 연결하는 단계; 및
    (k) M이 3보다 큰 경우:
    (1) 이전에 분할된 스위치들 중에서 한 쌍의 대응하는 스위치들을 선택하는 단계;
    (2) 상기 2개의 선택된 대응하는 스위치들의 각각을 2개의 직렬 연결된 스위치들로 분할하는 단계로서, 그에 의해 상기 2개의 직렬 연결된 선택된 스위치들 사이에 중간 노드를 형성하는, 상기 분할 단계;
    (3) 상기 새롭게 형성된 중간 노드를 커패시터를 통해 연결하는 단계;
    (4) M을 1씩 감소시키는 단계; 및
    (5) 단계 (d)를 반복하는 단계;를 포함하는, M-레벨 변환기 셀을 구성하는 방법.
  32. 제 31 항에 있어서,
    상기 2-레벨 변환기 셀 내의 다이오드 스위치들을, 존재하는 경우, 대응하는 단극, 단투 스위치들로 대체하는 단계를 더 포함하는, M-레벨 변환기 셀을 구성하는 방법.
  33. 제 31 항에 있어서,
    선택된 스위치를 2개의 직렬 연결된 스위치들로 분할하는 단계는 상기 선택된 스위치를 유지하는 단계 및 상기 선택된 스위치를 추가된 스위치와 직렬로 결합하는 단계를 포함하는, M-레벨 변환기 셀을 구성하는 방법.
  34. 제 31 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어진, M-레벨 변환기 셀.
  35. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, M-레벨 변환기 셀.
  36. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, M-레벨 변환기 셀.
  37. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, M-레벨 변환기 셀.
  38. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, M-레벨 변환기 셀.
  39. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, M-레벨 변환기 셀.
  40. 제 34 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (l) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (m) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (n) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (o) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, M-레벨 변환기 셀.
  41. 적어도 3개의 레벨들을 포함하는 비절연 변환기에 있어서:
    (p) 제 1 커패시터의 제 1 단자에 결합된 제 1 인덕터;
    (q) 상기 제 1 커패시터의 제 2 단자에 결합된 제 2 인덕터;
    (r) 상기 제 1 인덕터와 상기 제 1 커패시터의 제 1 단자 사이의 노드에 결합된 제 1 스위치;
    (s) 상기 제 2 인덕터와 상기 제 1 커패시터의 제 2 단자 사이의 노드에 결합된 제 2 스위치;
    (t) 상기 제 1 스위치에 결합된 제 3 스위치;
    (u) 상기 제 2 스위치에 결합된 제 4 스위치; 및
    (v) 상기 제 1 스위치와 상기 제 3 스위치 사이의 노드로부터 상기 제 2 스위치와 상기 제 4 스위치 사이의 노드에 결합된 제 2 커패시터;를 포함하는, 비절연 변환기.
  42. 적어도 3개의 레벨들을 포함하는 절연 변환기 셀에 있어서:
    (w) 제 1 커패시터의 제 1 단자에 결합된 제 1 인덕터;
    (x) 제 2 커패시터의 제 1 단자에 결합된 제 2 인덕터;
    (y) 상기 제 1 인덕터와 상기 제 1 커패시터의 제 1 단자 사이의 노드에 결합된 제 1 스위치;
    (z) 상기 제 2 인덕터와 상기 제 2 커패시터의 제 1 단자 사이의 노드에 결합된 제 2 스위치;
    (aa) 상기 제 1 커패시터의 제 2 단자에 결합된 제 1 단자, 상기 제 2 커패시터의 제 2 단자에 결합된 제 2 단자, 제 3 단자, 및 제 4 단자를 포함하는 변압기;
    (bb) 상기 제 1 스위치와 상기 변압기의 제 3 단자 사이에 결합된 제 3 스위치;
    (cc) 상기 제 2 스위치와 상기 변압기의 제 4 단자 사이에 결합된 제 4 스위치; 및
    (dd) 상기 제 1 스위치와 상기 제 3 스위치 사이의 노드로부터 상기 제 2 스위치와 상기 제 4 스위치 사이의 노드에 결합된 제 3 커패시터;를 포함하는, 절연 변환기 셀.
  43. 적어도 3개의 레벨들을 포함하는 Zeta/SEPIC 변환기 셀에 있어서:
    (ee) 제 1 커패시터의 제 1 단자에 결합된 제 1 인덕터;
    (ff) 상기 제 1 커패시터의 제 2 단자에 결합된 제 2 인덕터;
    (gg) 상기 제 1 커패시터의 제 2 단자에 결합된 제 1 스위치;
    (hh) 상기 제 1 스위치에 결합된 제 2 스위치;
    (ii) 상기 제 1 인덕터와 상기 제 1 커패시터의 제 1 단자 사이의 노드에 결합된 제 3 스위치;
    (jj) 상기 제 3 스위치에 결합된 제 4 스위치; 및
    (kk) 상기 제 1 스위치와 상기 제 2 스위치 사이의 노드로부터 상기 제 3 스위치와 상기 제 4 스위치 사이의 노드에 결합된 제 2 커패시터;를 포함하는, Zeta/SEPIC 변환기 셀.
  44. 적어도 3개의 레벨들을 포함하는 플라이백 변환기 셀에 있어서:
    (ll) 제 1 스위치;
    (mm) 상기 제 1 스위치에 결합된 제 2 스위치;
    (nn) 제 1 단자 및 제 3 단자와 제 4 단자로부터 절연된 제 2 단자를 포함하는 변압기로서, 상기 제 2 단자는 상기 제 2 스위치에 결합되는, 상기 변압기;
    (oo) 상기 변압기의 제 3 단자에 결합된 제 3 스위치;
    (pp) 상기 제 3 스위치에 결합된 제 4 스위치;
    (qq) 상기 제 4 스위치와 상기 변압기의 제 4 단자 사이에 결합된 제 1 커패시터; 및
    (rr) 상기 제 1 스위치와 상기 제 2 스위치 사이의 노드로부터 상기 제 3 스위치와 상기 제 4 스위치 사이의 노드에 결합된 제 2 커패시터;를 포함하는, 플라이백 변환기 셀.
  45. 적어도 3개의 레벨들을 포함하는 순방향 변환기 셀에 있어서:
    (ss) 제 1 스위치;
    (tt) 제 1 단자와 제 3 단자 및 제 4 단자로부터 절연된 제 2 단자를 포함하는 변압기로서, 상기 제 2 단자는 상기 제 2 스위치에 결합되는, 상기 변압기;
    (uu) 상기 변압기의 제 3 단자에 결합된 제 2 스위치;
    (vv) 상기 제 2 스위치에 결합된 제 3 스위치;
    (ww) 상기 제 3 스위치에 결합된 인덕터;
    (xx) 상기 제 3 스위치와 상기 인덕터 사이의 노드에 결합된 제 4 스위치;
    (yy) 상기 제 4 스위치와 상기 변압기의 제 4 단자 사이에 결합된 제 5 스위치; 및
    (zz) 상기 제 2 스위치와 상기 제 3 스위치 사이의 노드로부터 상기 제 4 스위치와 상기 제 5 스위치 사이의 노드에 결합된 제 2 커패시터;를 포함하는, 순방향 변환기 셀.
  46. 적어도 3개의 레벨들을 포함하는 변환기 셀에 있어서:
    (aaa) 제 1 단자와 제 2 단자를 포함하는 인덕터;
    (bbb) 상기 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (ccc) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (ddd) 상기 인덕터의 제 1 단자에 결합된 제 3 스위치;
    (eee) 상기 인덕터의 제 2 단자에 결합된 제 4 스위치;
    (fff) 상기 제 1, 제 2, 제 3, 또는 제 4 스위치들 중 하나에 결합된 제 5 스위치;
    (ggg) 상기 제 1, 제 2, 제 3, 또는 제 4 스위치 중 하나에 결합되는 제 6 스위치로서, 상기 제 5 및 제 6 스위치들은 상기 제 1, 제 2, 제 3, 및 제 4 스위치들 중 동일한 스위치들에 결합되지 않는, 상기 제 6 스위치; 및
    (hhh) 상기 제 5 스위치와 그에 결합된 제 1, 제 2, 제 3, 또는 제 4 스위치 사이의 노드로부터 상기 제 6 스위치와 그에 결합된 제 1, 제 2, 제 3, 또는 제 4 스위치 사이의 노드에 결합된 제 1 커패시터;를 포함하는, 변환기 셀.
  47. 전력 변환기에 있어서:
    (iii) 제 31항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어진 M-레벨 변환기 셀로서, 입력 전압을 수신하고 상기 수신된 입력 전압을 출력 전압으로 변환하도록 구성된, 상기 M-레벨 변환기 셀;
    (jjj) 상기 M-레벨 변환기 셀에 결합된 전압 조정기로서, 상기 M-레벨 변환기 셀의 출력 전압을 표시하는 신호를 생성하도록 구성된, 상기 전압 조정기; 및
    (kkk) 상기 전압 조정기 및 상기 M-레벨 변환기 셀에 결합된 M-레벨 제어기로서, 상기 전압 조정기에서 생성된 상기 신호에 응답하여 상기 M-레벨 변환기 셀에 대해 원하는 출력 전압을 생성하는 상기 M-레벨 변환기 셀 내의 스위치 상태들의 세트를 선택하도록 구성된, 상기 M-레벨 제어기;를 포함하는, 전력 변환기.
  48. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 전력 변환기.
  49. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 전력 변환기.
  50. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 전력 변환기.
  51. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 전력 변환기.
  52. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 전력 변환기.
  53. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (lll) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (mmm) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (nnn) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (ooo) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, 전력 변환기.
  54. 제 47 항에 있어서,
    상기 2-레벨 변환기 셀은 도 12a, 도 12b, 도 12c, 도 13b, 도 15b, 도 18 또는 도 19 내지 도 33에 도시된 회로들 중 하나인, 전력 변환기.
  55. 적어도 2개의 선택된 M-레벨 변환기 셀들이 차동 클로킹 위상들로 동작되는 다중-위상 구성으로 병렬로 결합된 복수의 M-레벨 변환기 셀들에 있어서,
    상기 M-레벨 변환기 셀들의 각각은 입력 전압을 수신하고 상기 수신된 입력 전압을 출력 전압으로 변환하도록 구성되고, 상기 적어도 2개의 선택된 M-레벨 변환기 셀들은 제 31 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어지는, 복수의 M-레벨 변환기 셀들.
  56. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  57. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  58. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 복수의 M-레벨 변환기 셀들.
  59. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  60. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  61. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (ppp) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (qqq) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (rrr) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (sss) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 연결된 제 4 스위치;를 포함하는, 복수의 M-레벨 변환기 셀들.
  62. 제 55 항에 있어서,
    상기 2-레벨 변환기 셀은 도 12a, 도 12b, 도 12c, 도 13b, 도 15b, 도 18, 또는 도 19 내지 도 33에 도시된 회로들 중 하나인, 복수의 M-레벨 변환기 셀들.
  63. 적어도 2개의 선택된 M-레벨 변환기 셀들이 각각의 M-레벨 변환기 셀들에 결합된 인덕터들을 통해 자기적으로 결합되는 구성으로 병렬로 결합된 복수의 M-레벨 변환기 셀들에 있어서,
    각각의 M-레벨 변환기 셀들은 입력 전압을 수신하고 상기 수신된 입력 전압을 출력 전압으로 변환하도록 구성되고, 상기 적어도 2개의 선택된 M-레벨 변환기 셀들은 제 31 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어지는, 복수의 M-레벨 변환기 셀들.
  64. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  65. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  66. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 복수의 M-레벨 변환기 셀들.
  67. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  68. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  69. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (ttt) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (uuu) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (vvv) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (www) 상기 인덕터와 상기 제 2 사이의 노드에 결합된 제 4 스위치;를 포함하는, 복수의 M-레벨 변환기 셀들.
  70. 제 63 항에 있어서,
    상기 2-레벨 변환기 셀은 도 12a, 도 12b, 도 12c, 도 13b, 도 15b, 도 18 또는 도 19 내지 도 33에 도시된 회로들 중 하나인, 복수의 M-레벨 변환기 셀들.
  71. 적어도 제 1의 2개의 선택된 M-레벨 변환기 셀들이 각각의 M-레벨 변환기 셀들에 결합된 인덕터들을 통해 자기적으로 결합되고 적어도 제 2의 2개의 선택된 M-레벨 변환기 셀들은 상이한 클로킹 위상들로 동작되는 다중-위상 결합-인덕터 구성으로 병렬로 결합된 복수의 M-레벨 변환기 셀들에 있어서,
    상기 M-레벨 변환기 셀들의 각각은 입력 전압을 수신하고 상기 수신된 입력 전압을 출력 전압으로 변환하도록 구성되고, 상기 적어도 2개의 선택된 M-레벨 변환기 셀들은 제 31 항의 방법에 의해 2-레벨 변환기 셀을 수정함으로써 만들어지는, 복수의 M-레벨 변환기 셀들.
  72. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 비절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  73. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 절연 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  74. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 SEPIC 변환기 셀 또는 2-레벨 Zeta 변환기 셀 중 하나인, 복수의 M-레벨 변환기 셀들.
  75. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 플라이백 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  76. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 2-레벨 순방향 변환기 셀인, 복수의 M-레벨 변환기 셀들.
  77. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은:
    (xxx) 인덕터의 제 1 단자에 결합된 제 1 스위치;
    (yyy) 상기 인덕터의 제 2 단자에 결합된 제 2 스위치;
    (zzz) 상기 제 1 스위치와 상기 인덕터 사이의 노드에 결합된 제 3 스위치; 및
    (aaaa) 상기 인덕터와 상기 제 2 스위치 사이의 노드에 결합된 제 4 스위치;를 포함하는, 복수의 M-레벨 변환기 셀들.
  78. 제 71 항에 있어서,
    상기 2-레벨 변환기 셀은 도 12a, 도 12b, 도 12c, 도 13b, 도 15b, 도 18 또는 도 19 내지 도 33에 도시된 회로들 중 하나인, 복수의 M-레벨 변환기 셀들.
KR1020247002442A 2021-06-24 2022-05-27 스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들 KR20240025631A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163214474P 2021-06-24 2021-06-24
US63/214,474 2021-06-24
US17/559,945 US20220416653A1 (en) 2021-06-24 2021-12-22 Multi-Level Structures and Methods for Switched-Mode Power Supplies
US17/559,945 2021-12-22
PCT/US2022/031425 WO2022271413A1 (en) 2021-06-24 2022-05-27 Multi-level structures and methods for switched-mode power supplies

Publications (1)

Publication Number Publication Date
KR20240025631A true KR20240025631A (ko) 2024-02-27

Family

ID=84541670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020247002442A KR20240025631A (ko) 2021-06-24 2022-05-27 스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들

Country Status (5)

Country Link
US (1) US20220416653A1 (ko)
KR (1) KR20240025631A (ko)
CN (1) CN117769798A (ko)
DE (1) DE112022003262T5 (ko)
GB (1) GB2622993A (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387789B2 (en) * 2019-06-05 2022-07-12 Qorvo Us, Inc. Charge pump tracker circuitry
US11646665B2 (en) 2021-06-24 2023-05-09 Psemi Corporation Efficient bootstrap supply generators for multi-level power converters
US11923765B2 (en) 2021-11-01 2024-03-05 Psemi Corporation Multi-level power converters having a top and bottom high-voltage protective switches
US11936291B2 (en) 2021-11-08 2024-03-19 Psemi Corporation Controlling charge-balance and transients in a multi-level power converter

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US656522A (en) * 1899-07-06 1900-08-21 Max Deri Apparatus for converting alternating currents into continuous currents.
US4257087A (en) * 1979-04-02 1981-03-17 California Institute Of Technology DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits
US4654769A (en) * 1984-11-02 1987-03-31 California Institute Of Technology Transformerless dc-to-dc converters with large conversion ratios
US4720668A (en) * 1986-06-20 1988-01-19 Lee Fred C Zero-voltage switching quasi-resonant converters
GB2335317A (en) * 1998-03-11 1999-09-15 Simon Richard Greenwood Bi-directional voltage converter
US5969484A (en) * 1998-05-14 1999-10-19 Optimum Power Conversion, Inc. Electronic ballast
US6304460B1 (en) * 2000-05-05 2001-10-16 Slobodan Cuk Switching DC-to-DC converter utilizing a soft switching technique
US7230405B2 (en) * 2004-10-26 2007-06-12 Delta Electronics, Inc. Non-isolated power conversion system having multiple switching power converters
US7304461B2 (en) * 2004-11-18 2007-12-04 Honda Motor Co., Ltd. DC/DC converter
GB2441358B (en) * 2006-08-31 2011-07-06 Wolfson Microelectronics Plc DC-DC converter circuits,and methods and apparatus including such circuits
US7777459B2 (en) * 2006-12-30 2010-08-17 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including capacitive switching pre-converter and down inductive switching post-regulator
JP5169039B2 (ja) * 2007-06-29 2013-03-27 Nec東芝スペースシステム株式会社 Dc‐dcコンバータ
US7894211B2 (en) * 2008-01-24 2011-02-22 Honeywell International Inc. Micro wind turbine topology for small scale power generation
US20100259240A1 (en) * 2009-04-11 2010-10-14 Cuks, Llc Bridgeless PFC converter
US8350540B2 (en) * 2009-09-10 2013-01-08 Cuks, Llc Storageless step-down switching DC-DC converter
CN102934340B (zh) * 2010-03-31 2016-06-29 黑拉许克联合股份有限公司 具有Cuk电路的直流转换器和负载电流采集
US8928297B2 (en) * 2011-01-31 2015-01-06 Infineon Technologies Austria Ag Ćuk based current source
US20120262967A1 (en) * 2011-04-13 2012-10-18 Cuks, Llc Single-stage inverter with high frequency isolation transformer
US20120268969A1 (en) * 2011-04-20 2012-10-25 Cuks, Llc Dc-ac inverter with high frequency isolation transformer
US9882471B2 (en) * 2011-05-05 2018-01-30 Peregrine Semiconductor Corporation DC-DC converter with modular stages
US10381924B2 (en) * 2011-05-05 2019-08-13 Psemi Corporation Power converters with modular stages
DE102012101156A1 (de) * 2012-02-14 2013-08-14 Lti Drives Gmbh Netzeinspeisevorrichtung, Energieeinspeisesystem sowie Verfahren zum Betrieb einer Netzeinspeisevorrichtung
DE102012005974A1 (de) * 2012-03-23 2013-09-26 Tq-Systems Gmbh Elektrische Schaltung und Verfahren zu deren Betrieb
US9160232B2 (en) * 2013-02-15 2015-10-13 St-Ericsson Sa Efficient regulation of capacitance voltage(s) in a switched mode multilevel power converter
US9800193B2 (en) * 2013-03-15 2017-10-24 Hengchun Mao Dynamically reconfigurable motors and generators and systems
US9240748B2 (en) * 2013-03-15 2016-01-19 Hengchun Mao Dynamically reconfigurable motor and generator systems
JP6127290B2 (ja) * 2013-05-28 2017-05-17 国立研究開発法人宇宙航空研究開発機構 コンバータと多段倍電圧整流回路を併用した均等化機能付充放電器
JP6262557B2 (ja) * 2014-02-12 2018-01-17 株式会社小糸製作所 車両用灯具およびその駆動装置、その制御方法
DE102014102000B3 (de) * 2014-02-18 2014-09-11 Sma Solar Technology Ag Verfahren zum Betreiben eines blindleistungsfähigen Wechselrichters mit Polwender und blindleistungsfähiger Wechselrichter mit Polwender
US10770893B2 (en) * 2014-05-02 2020-09-08 The Governing Council Of The University Of Toronto Multi-port converter structure for DC/DC power conversion
WO2016149063A1 (en) * 2015-03-13 2016-09-22 Arctic Sand Technologies, Inc. Dc-dc transformer with inductor for the facilitation of adiabatic inter-capacitor charge transport
KR102613359B1 (ko) * 2015-09-28 2023-12-12 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 고전압 용량성 액추에이터용 드라이버
WO2017190007A1 (en) * 2016-04-29 2017-11-02 Massachusetts Institute Of Technology Wide-operating-range resonant-transition soft-switched converter
US10468965B2 (en) * 2016-07-07 2019-11-05 Queen's University At Kingston Multi-stage multilevel DC-DC step-down converter
JP6489099B2 (ja) * 2016-11-10 2019-03-27 株式会社豊田中央研究所 コンバータを含む電源回路及びそれを用いた電源システム
US10090763B1 (en) * 2017-06-19 2018-10-02 Dialog Semiconductor (Uk) Limited Multi-level buck converter having a regulated flying capacitor voltage used for high-side drive
US10811982B2 (en) * 2017-07-21 2020-10-20 Solaredge Technologies Ltd. Single inductor multiple output (SIMO) converter and control thereof
CN108092513B (zh) * 2017-12-26 2020-03-06 矽力杰半导体技术(杭州)有限公司 直流-直流转换器
CN110932560B (zh) * 2017-12-26 2021-03-30 矽力杰半导体技术(杭州)有限公司 直流-直流转换器
WO2019204935A1 (en) * 2018-04-25 2019-10-31 Ecole De Technologie Superieure Voltage level multiplier module for multilevel power converters
US10547241B1 (en) * 2018-08-29 2020-01-28 Linear Technology Holding Llc Hybrid inverting PWM power converters
US10720842B1 (en) * 2019-01-16 2020-07-21 Psemi Corporation Multi-level DC-DC converter with boundary transition control
US10770974B2 (en) * 2019-01-16 2020-09-08 Psemi Corporation Multi-level DC-DC converter with lossless voltage balancing
WO2020150175A1 (en) * 2019-01-16 2020-07-23 Psemi Corporation Multi-level dc-dc converter
US10720843B1 (en) * 2019-01-16 2020-07-21 Psemi Corporation Multi-level DC-DC converter with lossy voltage balancing
US10686367B1 (en) * 2019-03-04 2020-06-16 Psemi Corporation Apparatus and method for efficient shutdown of adiabatic charge pumps
US10992226B1 (en) 2020-03-03 2021-04-27 Psemi Corporation Startup detection for parallel power converters
US11695333B2 (en) * 2020-03-20 2023-07-04 The Trustees Of Dartmouth College Hybrid switched capacitor converters with real-time control of switching state duration, and associated methods
US20210367430A1 (en) * 2020-05-22 2021-11-25 Infineon Technologies Ag Modular converter for connecting two voltage levels
US11923733B2 (en) * 2020-08-28 2024-03-05 Quantentech Limited High efficiency high density motor and generator with multiple airgaps
CN112615553B (zh) * 2020-12-16 2023-09-08 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
CN112636613B (zh) * 2020-12-16 2022-09-16 矽力杰半导体技术(杭州)有限公司 交流-直流转换电路
US20220224231A1 (en) * 2021-01-13 2022-07-14 Infineon Technologies Austria Ag Power conversion and flying capacitor implementations
US11515789B2 (en) * 2021-01-30 2022-11-29 Ernest Henry Wittenbreder, Jr. Zero voltage switching flying capacitor power converters
US11646665B2 (en) * 2021-06-24 2023-05-09 Psemi Corporation Efficient bootstrap supply generators for multi-level power converters
EP4148964A1 (en) * 2021-09-14 2023-03-15 ABB E-mobility B.V. A method and a device for compensating a faulty switch in a multi-level flying capacitor converter
US20230231433A1 (en) * 2022-01-20 2023-07-20 Quantentech Limited Dynamically Reconfigurable Synchronous Motors and Generators

Also Published As

Publication number Publication date
US20220416653A1 (en) 2022-12-29
GB2622993A (en) 2024-04-03
DE112022003262T5 (de) 2024-04-25
CN117769798A (zh) 2024-03-26
GB202319777D0 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR20240025631A (ko) 스위치-모드 전원 공급 장치들을 위한 다중-레벨 구조들 및 방법들
CN106464135B (zh) 切换功率级及用于控制所述切换功率级的方法
US20230344352A1 (en) Efficient Bootstrap Supply Generators for Multi-Level Power Converters
KR20220134565A (ko) 스위치드 커패시터 스텝-다운 전력 변환기의 기동
CN211046763U (zh) 电子转换器和降压型开关转换器
KR20180004116A (ko) 레귤레이팅 회로들 및 스위칭 네트워크들을 구비한 유연한 전력 컨버터 구조
CN101743526A (zh) 使用斜率补偿的电流模式升压转换器
CN113054838A (zh) 一种混合双路径降压变换器
WO2023081610A1 (en) Improving light-load recovery in a multi-level converter
US20230142335A1 (en) Light-Load Recovery in a Multi-Level Converter
US11923765B2 (en) Multi-level power converters having a top and bottom high-voltage protective switches
CN103248205B (zh) 开关驱动器电路、电源系统和用于控制电源开关的方法
US10447161B2 (en) Inverting buck-boost power converter
US20240088789A1 (en) Power converters, power systems, and switch topologies
Mohammed et al. An 85%-efficiency reconfigurable multiphase switched capacitor DC-DC converter utilizing frequency, switch size, and interleaving scaling techniques
WO2021150428A1 (en) Power converters with integrated bidirectional startup
US11936291B2 (en) Controlling charge-balance and transients in a multi-level power converter
WO2023164566A1 (en) Methods, devices, and systems for power converters
WO2022271413A1 (en) Multi-level structures and methods for switched-mode power supplies
US10128758B1 (en) Automatic phase current balancing in multi-phase converters
US7193397B2 (en) Voltage converter
CN102457167B (zh) 多电平并联功率变换器
US11245329B2 (en) Power module
US20230387796A1 (en) Charging Circuit for Bootstrap Capacitors
CN113498575B (zh) 一种开关电源

Legal Events

Date Code Title Description
N231 Notification of change of applicant