KR20230085956A - 고도로 왜곡된 샘플의 표면 프로파일 측정 - Google Patents

고도로 왜곡된 샘플의 표면 프로파일 측정 Download PDF

Info

Publication number
KR20230085956A
KR20230085956A KR1020207035150A KR20207035150A KR20230085956A KR 20230085956 A KR20230085956 A KR 20230085956A KR 1020207035150 A KR1020207035150 A KR 1020207035150A KR 20207035150 A KR20207035150 A KR 20207035150A KR 20230085956 A KR20230085956 A KR 20230085956A
Authority
KR
South Korea
Prior art keywords
sample
measurement
optical elements
profile
surface profile
Prior art date
Application number
KR1020207035150A
Other languages
English (en)
Inventor
마이클 그린
데이비드 오웬
하이구앙 첸
Original Assignee
케이엘에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이 코포레이션 filed Critical 케이엘에이 코포레이션
Publication of KR20230085956A publication Critical patent/KR20230085956A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

계측 도구는 조명 빔을 생성하기 위한 조명 소스, 조명 빔을 샘플로 지향시키기 위한 조정 가능한 광학 요소들을 포함하는 빔 성형기, 및 샘플로부터의 반사된 광에 기초하여 전단 인터페로그램을 생성하기 위한 적어도 하나의 측정 채널을 포함할 수 있고, 반사된 광은, 조정 가능한 광학 요소들이 디폴트 구성으로 되어 있고 샘플의 상부 표면이 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있다. 계측 도구는, 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 샘플 상에 조명 빔의 선택된 각도 프로파일을 제공하도록 조정가능한 광학 요소들의 구성을 조정하고, 하나 이상의 전단 인터페로그램에 기초하여 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성하기 위한 제어기를 더 포함할 수 있다.

Description

고도로 왜곡된 샘플의 표면 프로파일 측정
본 개시는 일반적으로 표면 프로파일 측정에 관한 것으로, 특히, 고도로 왜곡된 샘플(highly warped sample)의 표면 프로파일 측정에 관한 것이다.
광학 간섭계는 샘플의 표면 프로파일을 측정하기 위한 유연하고 민감한 도구이다. 관심 샘플에 투명한 광이 사용되는 일부 응용들에서, 광학 간섭계는 샘플 내의 다수의 표면의 표면 프로파일들 및/또는 샘플 두께의 측정을 더 제공할 수 있다. 그러나, 광학 간섭계에 기반한 통상적인 계측 도구들의 측정 범위는 고도로 왜곡된 샘플들의 표면 프로파일을 측정하기에는 불충분할 수 있다. 따라서, 통상적인 표면 프로파일링 기술들의 결함을 치유하기 위한 시스템들 및 방법들을 제공하는 것이 바람직할 수 있다.
본 개시의 하나 이상의 예시적인 실시예에 따른 계측 도구가 개시된다. 하나의 예시적인 실시예에서, 계측 도구는 조명 빔을 생성하기 위한 조명 소스를 포함한다. 다른 예시적인 실시예에서, 계측 도구는 조명 빔을 샘플로 지향시키기 위한 하나 이상의 조정가능한 광학 요소를 포함하는 빔 성형기를 포함한다. 다른 예시적인 실시예에서, 계측 도구는 빔 성형기를 통해 샘플로부터 반사된 광을 수신하고 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램을 생성하기 위한 하나 이상의 측정 채널을 포함하고, 반사된 광은, 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 샘플의 상부 표면이 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있다. 다른 예시적인 실시예에서, 계측 도구는 빔 성형기 및 하나 이상의 측정 채널에 통신가능하게 결합된 제어기를 포함한다. 다른 예시적인 실시예에서, 제어기는 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 샘플 상에 조명 빔의 선택된 각도 프로파일을 제공하도록 빔 성형기의 하나 이상의 조정 가능한 광학 요소의 구성을 조정한다. 다른 예시적인 실시예에서, 제어기는 하나 이상의 전단 인터페로그램에 기초하여 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성한다.
본 개시의 하나 이상의 예시적인 실시예에 따른 계측 도구가 개시된다. 하나의 예시적인 실시예에서, 계측 도구는 전단 간섭계(shearing interferometer)를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 조명 빔을 생성하기 위한 조명 소스를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 조명 빔을 샘플로 지향시키기 위한 하나 이상의 조정 가능한 광학 요소를 포함하는 빔 성형기를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 빔 성형기를 통해 샘플로부터 반사된 광을 수신하고 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램을 생성하기 위한 하나 이상의 측정 채널을 포함하고, 반사된 광은, 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 샘플의 상부 표면이 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있다. 다른 예시적인 실시예에서, 계측 도구는 샘플의 상부 표면의 대략적인 표면 프로파일 측정을 생성하도록 구성된 하나 이상의 프로파일링 센서를 포함하는 대략적인(coarse) 표면 프로파일러를 포함하고, 대략적인 표면 프로파일 측정은 하나 이상의 측정 채널보다 더 큰 측정 범위를 갖는다. 다른 예시적인 실시예에서, 계측 도구는 빔 성형기 및 하나 이상의 측정 채널에 통신가능하게 결합된 제어기를 포함한다. 다른 예시적인 실시예에서, 제어기는 대략적인 표면 프로파일 측정에 기초하여 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 샘플 상에 조명 빔의 선택된 각도 프로파일을 제공하도록 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정한다. 다른 예시적인 실시예에서, 제어기는 하나 이상의 전단 인터페로그램에 기초하여 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성한다.
본 개시의 하나 이상의 예시적인 실시예에 따른 계측 방법이 개시된다. 하나의 예시적인 실시예에서, 계측 방법은 대략적인 표면 프로파일러로 샘플의 상부 표면의 대략적인 표면 프로파일 측정을 수행하는 단계를 포함한다. 다른 예시적인 실시예에서, 계측 방법은 전단 간섭계에 샘플을 배치하는 단계를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 조명 빔을 생성하기 위한 조명 소스를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 조명 빔을 샘플로 지향시키기 위한 하나 이상의 조정 가능한 광학 요소를 포함하는 빔 성형기를 포함한다. 다른 예시적인 실시예에서, 전단 간섭계는 빔 성형기를 통해 샘플로부터 반사된 광을 수신하고 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램을 생성하기 위한 하나 이상의 측정 채널을 포함하고, 반사된 광은, 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 샘플의 상부 표면이 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있다. 다른 예시적인 실시예에서, 계측 방법은 대략적인 표면 프로파일 측정에 기초하여 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 샘플 상에 조명 빔의 선택된 각도 프로파일을 제공하도록 빔 성형기의 상기 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 단계를 포함한다. 다른 예시적인 실시예에서, 계측 방법은 하나 이상의 전단 인터페로그램에 기초하여 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성하는 단계를 포함한다.
전술한 일반적인 설명 및 다음의 상세한 설명 둘 다는 단지 예시적이고 설명적인 것이며, 청구되는 바와 같은 발명을 반드시 제한하는 것은 아니라는 것을 이해해야 한다. 본 명세서에 통합되고 그 일부를 구성하는 첨부 도면들은 본 발명의 실시예들을 예시하고, 일반적인 설명과 함께 본 발명의 원리들을 설명하는 역할을 한다.
본 개시의 다수의 이점들은 첨부 도면들을 참조하여 이 분야의 기술자들에 의해 더 잘 이해될 수 있다. 도면들에서:
도 1a는 본 개시의 하나 이상의 실시예에 따른 계측 시스템의 블록도이다.
도 1b는 본 개시의 하나 이상의 실시예에 따른 계측 시스템의 개략도이다.
도 2a는 본 개시의 하나 이상의 실시예에 따른, 왜곡된 샘플을 갖는 공칭 위치에 구성될 때의 계측 시스템을 통한 광의 광선 다이어그램을 포함하는 계측 시스템의 개략도이다.
도 2b는 본 개시의 하나 이상의 실시예에 따른, 도 2b의 왜곡된 샘플을 갖는 수정된 위치에 구성될 때의 계측 시스템을 통한 광의 광선 다이어그램을 포함하는 계측 시스템의 개략도이다.
도 3은 본 개시의 하나 이상의 실시예에 따른 대략적인 표면 프로파일러의 개략도이다.
도 4는 본 개시의 하나 이상의 실시예에 따른 계측 방법에서 수행되는 단계들을 예시하는 흐름도이다.
도 5는 본 개시의 하나 이상의 실시예에 따른, 샘플 상의 조명 빔의 각도 프로파일을 조정하는 것과 관련된 하위 단계들을 예시하는 흐름도이다.
도 6a는 본 개시의 하나 이상의 실시예에 따른, 전단 간섭계의 2개의 측정 채널로부터의 X 방향을 따른 위상 맵 및 Y 방향을 따른 위상 맵이다.
도 6b는 본 개시의 하나 이상의 실시예에 따른, 오프셋 분포 및 마운트 유도 뒤틀림(mount-induced distortion)의 기여들과 관련된 X 방향을 따른 예측된 위상 맵 및 Y 방향을 따른 예측된 위상 맵이다.
도 6c는 본 개시의 하나 이상의 실시예에 따른, 도 6b의 예측된 맵들로 도 6a의 측정된 위상 맵들을 보상함으로써 생성되는 것과 관련된 X 방향을 따른 보상된 위상 맵 및 Y 방향을 따른 보상된 위상 맵이다.
도 6d는 본 개시의 하나 이상의 실시예에 따른, X 방향을 따른 언랩핑된 위상 맵(unwrapped phase map) 및 Y 방향을 따른 언랩핑된 위상 맵이다.
도 7은 본 개시의 하나 이상의 실시예에 따른, 샘플 상의 조명 빔의 각도 프로파일을 조정하는 것과 관련된 하위 단계들을 예시하는 흐름도이다.
이제, 첨부 도면들에 예시된 개시된 주제에 대해 참조가 상세히 이루어질 것이다. 본 개시는 소정 실시예들 및 그들의 특정 특징들과 관련하여 구체적으로 도시되고 설명되었다. 본 명세서에 설명된 실시예들은 제한적인 것이 아니라 예시적인 것으로 간주된다. 본 개시의 사상 및 범위를 벗어나지 않고 형태 및 상세의 다양한 변경들 및 수정들이 이루어질 수 있다는 것이 이 분야의 통상의 기술자들에게 자명해야 한다.
본 개시의 실시예들은 왜곡된 표면들을 갖는 표면들의 표면 프로파일들을 측정하기 위한 시스템들 및 방법들에 관한 것이다. 달리 말하면, 본 개시의 실시예들은 표준 간섭계 도구의 측정 범위 근처이거나 그보다 클 수 있지만 비교적 낮은 공간 주파수들과 관련되는 프로파일 변화들을 갖는 표면들의 표면 프로파일들을 측정하기 위한 시스템들 및 방법들에 관한 것이다.
예를 들어, 반도체 웨이퍼들의 표면 프로파일들은 반도체 디바이스들의 제조의 다양한 단계들에서 일상적으로 검사된다. 이러한 반도체 웨이퍼들은 통상적으로 1 mm 미만의 두께와 함께 최대 300 mm 이상의 직경을 가질 수 있다. 또한, 이러한 웨이퍼들은 통상적으로 평탄한 표면들 상에 지지되는 것이 아니라, 오히려 웨이퍼와의 몇몇(예를 들어, 3개의) 접촉점들을 갖는 샘플 홀더들 상에 지지된다. 따라서, 이들 웨이퍼는 완전히 지지되는 상태에서 웨이퍼 형상을 나타내지 않을 수 있는 샘플 마운트 상에 지지될 때 왜곡, 휨, 만곡 또는 다른 형상 편차들을 보일 수 있다. 아래에서 일반적으로 왜곡(warping)이라고 지칭되는 이러한 형상 편차들은 표면 프로파일 측정들을 행할 때 문제들을 더 유발할 수 있다. 예를 들어, 왜곡은 통상적인 표면 프로파일러의 측정 범위보다 큰, 웨이퍼에 걸친 표면 프로파일(예를 들어, 표면 높이) 편차들을 유발할 수 있다. 이것은 측정의 특정 부분들을 무효화할 수 있거나, 완전한 샘플 표면을 캡처하기 위해 상이한 높이들에서의 다수의 측정의 스티칭(stitching)을 요구할 수 있다.
본 개시의 목적들을 위해, 측방 시야에 비해 낮은 공간 주파수들을 갖는 프로파일 편차들은 일반적으로 왜곡이라고 지칭된다. 이 용어는 예시적인 목적으로만 사용되며, 제한하는 것으로 해석되어서는 안된다는 것을 이해해야 한다. 예를 들어, 낮은 공간 주파수들을 갖는 프로파일 편차들은 의도적일 수 있거나, 기계적 응력들 이외의 이유들로 샘플 표면 상에 존재할 수 있다는 것이 본 명세서에서 고려된다. 본 개시에서의 예들 및 설명들 중 다수가 반도체 샘플들에 관련되지만, 반도체 샘플들과 관련된 본 명세서에서의 예들 및 설명들은 단지 예시적인 목적들을 위해 제공되며, 제한하는 것으로서 해석되지 않아야 한다는 점이 추가로 이해되어야 한다. 오히려, 본 명세서에 개시된 시스템들 및 방법들은 임의의 폼 팩터를 갖는 임의의 유형의 재료에 적합할 수 있다.
본 개시의 실시예들은 전단 간섭계에 기반한 표면 프로파일 측정들을 위한 계측 도구에 관한 것이고, 테스트 중인 샘플에 입사하는 광의 각도 프로파일은 샘플의 왜곡에 의해 유발되는 편차들과 같은, 그러나 이에 제한되지 않는 낮은 공간 주파수 프로파일 편차들을 보상하도록 조정가능하다. 예를 들어, 전단 간섭계는 광(예를 들어, 조명 또는 조명 빔)을 표면으로 지향시키고, 표면에 의해 반사된 광을 캡처하고, 반사된 광을 2개의 전단 빔으로 전단하고, 검출기 상에서 전단 빔들을 간섭시켜 인터페로그램을 생성함으로써 표면의 표면 프로파일을 생성할 수 있다. 이러한 구성에서, 인터페로그램의 프린지들의 변화들은 전단 방향을 따른 샘플 경사의 변화들과 상관된다. 또한, 표면 프로파일 측정은 측정된 샘플 경사 프로파일을 적분함으로써 생성될 수 있다.
전단 간섭계는 일반적으로 광을 샘플로 지향시키고, 샘플로부터 반사된 광(예를 들어, 역반사된 광)을 수집하고, 반사된 광을 하나 이상의 측정 채널로 지향시키기 위한 하나 이상의 광학 요소를 포함할 수 있다. 이와 관련하여, 샘플에 걸친 반사된 광의 위상 분포는 샘플의 토포그래피와 관련된 정보를 포함할 수 있다. 또한, 샘플로부터의 이러한 반사된 광은 샘플로부터의 반사된 광을 전단하고 전단 광으로 하나 이상의 측정 방향을 따른 전단 인터페로그램들을 생성하기 위한 전단 광학계(shearing optics)를 포함하는 하나 이상의 측정 채널로 지향된다. 표면 프로파일로메트리(surface profilometry)를 위한 전단 간섭계는 일반적으로 2017년 10월 10일에 허여된 미국 특허 제9,784,570호에 설명되어 있고, 이 미국 특허는 그 전체가 본 명세서에 참고로 통합된다.
일부 실시예들에서, 전단 간섭계는 빔 성형기 및 하나 이상의 측정 채널을 포함하고, 빔 성형기는 샘플로 지향되는 조명 소스로부터의 조명의 공간 및 각도 프로파일들을 성형하기 위한 하나 이상의 광학 요소를 포함한다. 예를 들어, 빔 성형기는 빔 확장기로서 동작할 수 있고, 샘플의 크기와 매칭하도록 조명 빔의 직경을 확장할 수 있다. 또한, 빔 성형기는 샘플로부터 반사된 광을 수집하고 이 반사된 광을 하나 이상의 측정 채널로 지향시킬 수 있다. 빔 성형기 및 하나 이상의 측정 채널은 미국 특허 제9,784,570호에 설명된 바와 같이 일반적으로 구성될 수도 있지만, 그럴 필요까지는 없고, 본 명세서에 개시된 바와 같은 변화들 및 추가적인 특징들을 포함할 수 있다.
전단 간섭계는 왜곡을 적어도 부분적으로 보상하기 위해 샘플로 지향되는 조명의 각도 프로파일을 수정함으로써 샘플의 왜곡을 보상하도록 조정될 수 있다는 것이 본 명세서에서 고려된다. 일부 실시예들에서, 전단 간섭계는 하나 이상의 조정 가능한 광학 요소를 포함하고, 조정 가능한 광학 요소들을 조정하는 것은 샘플로 지향되는 조명의 각도 프로파일을 수정하는 효과를 갖는다. 예를 들어, 하나 이상의 조정가능한 광학 요소는 빔 성형기에 통합될 수도 있지만, 그것이 요구되지는 않는다.
일부 실시예들에서, 조정가능한 광학 컴포넌트들은 디폴트 또는 공칭 구성에서 시준된 광을 샘플에 제공하도록 구성될 수 있다. 예를 들어, 빔 성형기의 광학 축에 수직으로 배향된 샘플 표면으로부터의 광은 디폴트 구성에서 시준된 광으로서 빔 성형기로 다시 역반사될 수 있다. 이어서, 하나 이상의 측정 채널은 빔 성형기로부터 시준된 광을 수신할 수 있다. 그러나, 왜곡된 샘플 표면(예를 들어, 낮은 공간 주파수 프로파일 편차들을 갖는 표면)은 시준된 상태로부터 역반사된 광의 편차들을 유도할 수 있다는 것이 본 명세서에서 고려된다. 예를 들어, 표면의 휨(bowing)은 역반사된 광이 휨의 방향에 따라 수렴 또는 발산하게 할 수 있다. 더 복잡한 뒤틀림(distortion)들은 유사하게 샘플로부터의 반사된 빔의 각도 프로파일의 더 복잡한 편차들을 생성할 수 있다. 이어서, 이러한 편차들은 하나 이상의 측정 채널에서 전단 인터페로그램들의 변화들로서 나타날 것이다. 왜곡의 정도에 따라, 시준된 상태로부터의 반사된 빔의 각도 프로파일의 편차들은 전체 시야에 걸친 샘플의 표면 프로파일의 측정을 불가능하게 할 만큼(또는 적어도 부정적으로 영향을 미칠 만큼) 충분히 심각할 수 있다.
일부 실시예들에서, 빔 성형기의 하나 이상의 광학 요소는 샘플로 지향되는 조명의 각도 프로파일의 수정을 제공하도록 조정가능하다. 또한, 일부 실시예들에서, 빔 성형기 내의 적어도 하나의 조정가능한 광학 요소의 위치들은 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 샘플로 지향되는 조명의 각도 프로파일을 수정하도록 조정된다. 예를 들어, 빔 성형기 내의 적어도 하나의 광학 요소의 위치들은 샘플로부터의 반사된 광을 시준하도록(또는 시준을 적어도 부분적으로 개선하도록) 조정될 수 있다. 이와 관련하여, 측정 채널들은 빔 성형기로부터 시준된 광(또는 적어도 빔 성형기의 조정이 없는 경우보다 더 시준된 광)을 수신할 수 있다.
일반적으로, 하나 이상의 조정가능한 광학 요소의 조정들이 정의되는 디폴트 또는 공칭 구성은 임의의 선택된 구성을 포함할 수 있다. 예를 들어, 위에서 설명된 바와 같이, 디폴트 구성은 시준된 조명을 샘플에 제공하는 구성에 대응할 수 있다. 그러나, 다른 경우에, 디폴트 구성은 샘플 상에 조명의 시준되지 않은 각도 프로파일을 제공하는 구성에 대응할 수 있다. 일부 경우들에서, 이 디폴트 구성은 샘플의 알려진 또는 추정된 왜곡에 기초할 수 있다. 또한, 이러한 구성은 특정 샘플 또는 응용에 대한 최적화된 구성으로서 설명될 수도 있지만, 그것이 요구되지는 않는다.
샘플로 지향되는 조명의 각도 프로파일을 수정하는 것은 유도된 오프셋 분포를 측정된 표면 프로파일 내로 도입하는 효과를 가질 수 있다는 것이 본 명세서에서 고려된다. 예를 들어, 조명 빔의 각도 프로파일이 샘플의 왜곡에 대항하고 시준된 반사된 광을 제공하도록 완벽하게 매칭되는 경우, 측정 채널들은 샘플이 왜곡이 없음을 나타내는 표면 프로파일 측정을 제공할 것이다. 따라서, 측정 채널들에 의해 제공된 표면 프로파일은 샘플로 지향된 조명의 수정된 각도 분포를 나타내는 유도된 오프셋 분포로 바이어스되는 바이어스 측정 프로파일(biased measurement profile)로 간주될 수 있다.
일부 실시예들에서, 전단 간섭계는 바이어스 표면 프로파일 측정을 제공할 수 있다. 예를 들어, 일부 응용들에서는 왜곡이 없는 샘플의 표면 프로파일을 제공하는 것이 유용할 수 있다. 이 경우, 표면 프로파일은 샘플 상의 결함, 표면 불규칙성 또는 제조된 특징부와 같은, 그러나 이에 제한되지 않는 왜곡 이외의 변화들을 반영할 수 있다.
일부 실시예들에서, 전단 간섭계는 유도된 오프셋 분포가 바이어스 표면 프로파일로부터 제거되는 바이어스되지 않은 표면 프로파일 측정을 제공할 수 있다. 이와 관련하여, 바이어스되지 않은 표면 프로파일 측정은 왜곡을 포함하는 샘플의 실제 레이아웃을 반영할 수 있다. 그러나, 특히, 본 명세서에 개시된 시스템들 및 방법들은 바이어스되지 않은 표면 프로파일 측정이 통상적인 전단 간섭계가 없는 상황들에서 샘플의 전체 레이아웃을 정확하게 캡처할 수 있는 것을 제공할 수 있다.
일부 실시예들에서, 전단 간섭계는 샘플 마운트(예를 들어, 3개의 접촉점을 갖는 3-핀 샘플 마운트) 또는 다른 지지 메커니즘으로 인한 표면 프로파일 변형들이 제거되는 조정된 표면 프로파일을 제공할 수 있다. 예를 들어, 3개의 접촉점으로 지지하는 3-핀 샘플 마운트에 의해 지지되는 수평 위치의 샘플은 중력으로 인해 새그(sag)를 보일 수 있다. 다른 예로서, 하나 이상의 에지 파지기(edge gripper)로 수직 위치에 장착된 샘플은 에지 파지기들에 의해 유도된 응력을 보일 수 있다. 추가의 예로서, 샘플을 평탄한 표면 상에 지지하는 것은 샘플 내에 달리 존재하는 변형들의 평탄화를 유발할 수 있다. 일반적으로, 임의의 구성의 임의의 샘플 마운트를 사용하여 샘플을 장착하는 것이 샘플의 크기, 샘플의 조성, 및 샘플 홀더 상의 접촉점들의 레이아웃과 같은, 그러나 이들로 제한되지 않는 파라미터들에 기초하여 샘플의 소정의 변형을 유발할 수 있다는 것이 본 명세서에서 고려된다. 또한, 샘플 마운트와 관련된 형상 변형들은 이러한 파라미터들에 기초하여 모델링될 수 있어서, 이러한 마운트 유도 변형의 기여가 샘플의 자연 형상을 더 정확하게 반영하기 위해 출력 표면 프로파일로부터 선택적으로 제거될 수 있게 한다. 또한, 이러한 마운트 유도 뒤틀림은 샘플로 지향된 조명의 각도 프로파일의 수정에 의해 적어도 부분적으로 보상될 수 있는 샘플의 왜곡에 기여할 수 있지만, 반드시 기여하지는 않는다.
왜곡을 적어도 부분적으로 보상하기 위해(예를 들어, 시준된 상태로부터의 반사된 광의 편차를 적어도 부분적으로 보상하기 위해) 요구되는 샘플로 지향되는 조명 빔의 각도 프로파일은 다양한 기술들을 사용하여 결정될 수 있다는 것이 본 명세서에서 추가로 고려된다.
일부 실시예들에서, 샘플로 지향되는 조명 빔의 각도 프로파일은 대략적인 표면 프로파일 계측 도구(예를 들어, 대략적인 표면 프로파일러)을 사용하여 생성된 샘플의 대략적인 표면 프로파일에 기초하여 수정된다. 예를 들어, 대략적인 표면 프로파일러는 전단 간섭계보다 (예를 들어, 측면 또는 높이 차원들을 따른) 더 낮은 해상도를 갖는 표면 프로파일 측정을 제공할 수 있지만, 더 큰 측정 범위를 제공할 수 있다. 일부 경우들에서, 대략적인 표면 프로파일러는 왜곡을 포함하는 샘플의 전체 프로파일 변화들을 측정할 만큼 충분히 큰 측정 범위를 가질 수 있다. 이와 관련하여, 왜곡의 측정은 왜곡을 적어도 부분적으로 보상하는 각도 프로파일을 제공하기에 적합한 빔 성형기의 구성을 결정하는 데 사용될 수 있다. 본 개시의 추가적인 실시예들은 대략적인 표면 프로파일러에 관한 것이다. 일부 실시예들에서, 대략적인 표면 프로파일러는 샘플보다 더 작은 시야를 갖는 하나 이상의 센서를 포함한다. 이와 관련하여, 샘플 또는 그의 일부를 센서들로 스캐닝함으로써 대략적인 표면 프로파일이 생성될 수 있다. 일부 실시예들에서, 대략적인 표면 프로파일러는 정렬 도구 또는 버퍼와 같은, 그러나 이에 제한되지 않는 전처리 도구에 통합된다. 이와 관련하여, 다수의 샘플의 효율적인 처리를 위해 샘플을 간섭계에 배치하기 전에 대략적인 표면 프로파일이 생성될 수 있다.
일부 실시예들에서, 샘플로 지향되는 조명 빔의 각도 프로파일은 전단 간섭계에 의해 생성된 하나 이상의 표면 프로파일 측정에 기초하여 수정된다. 예를 들어, 표면 프로파일(또는 측정 채널들로부터의 하나 이상의 전단 인터페로그램(shearing interferogram))은 빔 성형기 내의 하나 이상의 조정가능한 광학 요소가 순차적으로 조정됨에 따라 모니터링될 수 있다. 이와 관련하여, 왜곡을 적어도 부분적으로 보상하는 빔 성형기의 구성이 선택될 수 있다.
일부 실시예들에서, 샘플로 지향되는 조명 빔의 각도 프로파일은 예측된 새그의 양에 기초하여 수정된다. 예를 들어, 본 명세서에서 전술한 바와 같이, 샘플 및 샘플 홀더의 알려진 특성들에 기초하여 휨과 같은 형상 변형들이 예측될 수 있다. 이와 관련하여, 새그의 예측된 양 또는 분포는 새그를 보상하기에 적합한 조명의 각도 프로파일을 제공하는 빔 성형기의 구성을 선택하는 데 사용될 수 있다.
이제, 도 1-6을 참조하여, 본 개시의 하나 이상의 실시예에 따른, 표면 왜곡의 존재 시의 표면 프로파일 측정들을 위한 시스템들 및 방법들이 더 상세히 설명된다.
도 1a는 본 개시의 하나 이상의 실시예에 따른 계측 시스템(100)의 블록도이다. 일 실시예에서, 계측 시스템(100)은 전단 간섭계(102)를 포함하고, 전단 간섭계(102)는 조명 빔(106)을 생성하기 위한 조명 소스(104), 빔 성형기(108), 및 하나 이상의 측정 채널(110)을 포함한다. 빔 성형기(108)는 샘플(112)로 지향되는 조명 빔(106)의 공간 및 각도 프로파일을 제어할 수 있고, 또한 샘플(112)로부터 반사된 광(예를 들어, 역반사된 광)을 수집하고 이 반사된 광을 하나 이상의 측정 채널(110)로 지향시킬 수 있다. 측정 채널(110)은 샘플(112)로부터의 반사된 광을 측정 방향을 따라 전단 빔들로 전단하기 위한 하나 이상의 전단 광학계 및 검출기 상에 전단 빔들을 결합하기 위한 하나 이상의 광학 요소를 포함할 수 있다. 이와 관련하여, 인터페로그램(예를 들어, 전단 인터페로그램)이 검출기 상에 생성되고 검출기에 의해 캡처될 수 있으며, 샘플(112)과 관련된 토포그래피 정보는 인터페로그램의 변화들로서 표현될 수 있다. 특히, 인터페로그램의 변화들은 측정 방향을 따른 샘플(112)의 표면 경사의 프로파일에 대응할 수 있다. 이어서, 표면 프로파일 정보(예를 들어, 표면 높이 맵)가 표면 경사의 프로파일을 통합함으로써 생성될 수 있다. 또한, 계측 시스템(100)은 완전한 3D 토포그래피 정보를 캡처하기 위해 상이한 측정 방향들을 갖는 다수의 측정 채널(110)을 포함할 수 있다. 예를 들어, 계측 시스템(100)은 직교하는 측정 방향들을 갖는 2개의 측정 채널(110)을 포함할 수 있다.
다른 실시예에서, 빔 성형기(108)는 하나 이상의 조정가능한 광학 요소(114)를 포함한다. 예를 들어, 하나 이상의 조정가능한 광학 요소(114)의 위치들을 조정하는 것은 샘플(112) 상의 조명 빔(106)의 공간 프로파일 및/또는 각도 프로파일의 제어를 제공할 수 있다. 예를 들어, 조정가능한 광학 요소들(114)은 하나 이상의 렌즈, 하나 이상의 필드 스톱(field stop), 또는 하나 이상의 퓨필 스톱(pupil stop)을 포함할 수 있지만, 이들로 제한되지 않는다.
도 1b는 본 개시의 하나 이상의 실시예에 따른 계측 시스템(100)의 개략도이다.
조명 소스(104)은 가간섭성 조명 빔(106)을 생성하기에 적합한 이 분야에 공지된 임의 유형의 조명 소스를 포함할 수 있다. 일 실시예에서, 조명 소스(104)은 레이저 조명 빔(106)을 생성하도록 구성된 레이저 소스를 포함한다. 또한, 조명 소스(104)은 임의의 파장 또는 스펙트럼을 갖는 조명 빔(106)을 생성할 수 있다. 그러나, 반사를 촉진하고 샘플(112)에 의한 조명 빔(106)의 투과를 최소화하기 위해 샘플(112)의 조성에 기초하여 조명 빔(106)의 파장을 선택하는 것이 바람직할 수 있다는 것이 본 명세서에서 인식된다. 이와 관련하여, 계측 시스템(100)에 의해 캡처된 반사된 광은 배타적이지는 않지만 주로, 샘플(112)의 상부 표면(116)(예를 들어, 측정 표면)으로부터 반사된 광을 포함할 수 있다. 예를 들어, 조명 소스(104)는 실리콘 웨이퍼들과 같은, 그러나 이들로 제한되지 않는 반도체 웨이퍼들과 함께 사용하기에 적합할 수 있는 대략 633 nm의 파장을 갖는 헬륨-네온 레이저를 포함할 수 있지만, 이를 포함할 필요는 없다.
일 실시예에서, 계측 시스템(100)은 샘플(112)을 고정하기 위한 샘플 마운트(117)를 포함한다. 샘플 마운트(117)는 임의의 위치 또는 배향으로 샘플(112)을 고정하기에 적합한 이 분야에 공지된 임의의 유형의 마운트를 포함할 수 있다. 예를 들어, 샘플 마운트(117)는 3개 이상의 접촉 핀으로 수평 위치에서 샘플(112)을 고정하거나 달리 지지할 수 있다. 예를 들어, 3-핀 샘플 마운트(117)는 샘플(112)이 놓이는 3개의 핀을 포함할 수 있다. 다른 예로서, 샘플 마운트(117)는 수직 위치에서 샘플(112)을 고정하거나 달리 지지할 수 있다. 예를 들어, 샘플 마운트(117)는 샘플(112) 상의 하나 이상의 에지 지점에 접촉하기 위한 하나 이상의 에지 파지기를 포함할 수 있다. 또한, 도시되지는 않았지만, 샘플 마운트(117)는 측정을 위해 계측 시스템(100) 내에 샘플(112)을 위치시키기 위한 선형 병진 스테이지들, 회전 병진 스테이지들, 또는 팁/틸트 병진 스테이지들과 같은, 그러나 이에 제한되지 않는 하나 이상의 병진 스테이지를 포함할 수 있다.
일 실시예에서, 계측 시스템(100)은 조명 소스(104)로부터 조명 빔(106)을 수신하고 샘플 경로(120)를 따라 빔 성형기(108) 및 샘플(112)로 조명 빔(106)의 적어도 일부를 투과시키도록 구성된 빔스플리터(118)를 포함한다. 또한, 빔스플리터(118)는 샘플(112)로부터 반사된 광(122)을 빔 성형기(108)를 통해 수신하고 이 반사된 광(122)을 측정 경로(124)를 따라 하나 이상의 측정 채널(110)로 지향시킬 수 있다. 예를 들어, 도 1b는 X 및 Y(예를 들어, 직교하는) 측정 채널들(110)을 갖는 계측 시스템(100)을 예시한다. 도 1b에 예시된 바와 같이, 계측 시스템(100)은 또한 반사된 광(122)을 2개의 측정 채널(110) 사이에 분할하기 위한 채널 빔스플리터(126) 및 광의 광학 경로를 원하는 폼 팩터로 접기 위한 터닝 미러(128)를 포함할 수 있다.
도시되지는 않았지만, 계측 시스템(100)은 계측 시스템(100) 전반에서의 임의의 지점에서의 광의 편광을 조정하기 위한 하나 이상의 편광 제어 요소를 포함할 수 있다. 예를 들어, 조명 소스(104)으로부터의 조명 빔(106)은 선형 편광되거나 선형 편광기로 편광될 수 있다. 이어서, 빔스플리터(118)는 최소한의 손실로 조명 빔(106)을 샘플(112)로 전달하도록 배향된 편광 빔스플리터로서 구성될 수 있다. 또한, 계측 시스템(100)은 샘플(112) 전에 조명 빔(106) 내로 원형 편광을 유도하기 위해 샘플 경로(120) 내에 1/4 파장판(quarter-wave plate)을 포함할 수 있다. 이러한 방식으로, 반사된 광(122)은 입사 조명 빔(106)으로서 직교 편광을 갖는 선형 편광된 빔으로 변환될 수 있으며, 따라서 편광 빔스플리터(118)는 반사된 광(122)을 손실없이 측정 경로(124)로 지향시킬 수 있다.
측정 채널(110)은 반사된 광(122)을 측정 방향을 따라 전단하고 검출기(130) 상에 전단 인터페로그램을 캡처하기에 적합한 광학 요소들의 임의의 조합을 포함할 수 있다. 일 실시예에서, 측정 채널(110)은 반사된 광(122)의 수신된 부분을 전단하기 위한 하나 이상의 전단 광학계(132)를 포함한다. 전단 광학계(132)는 하나 이상의 론치(Ronchi) 격자, 웰라스톤(Wollaston) 프리즘, 또는 노마스키(Nomarski) 프리즘을 포함하지만 이들로 제한되지 않는 이 분야에 공지된 임의 유형의 전단 요소들을 포함할 수 있다. 이와 관련하여, 계측 시스템(100)은 임의의 유형의 전단 간섭계로서 동작할 수 있다. 예를 들어, 도 1b의 2개의 측정 채널(110)은 2개의 론치 격자(134)를 포함한다.
일 실시예에서, 빔 성형기(108)는 빔 확장기를 포함하거나 그렇지 않으면 빔 확장기로 형성된다. 예를 들어, 샘플(112)(또는 적어도 샘플(112) 상의 원하는 측정 영역)의 직경과 매칭하도록 조명 빔(106)의 직경을 확장하는 것이 바람직할 수 있다. 그러나, 반사된 광(122)이 측정 채널들(110)에서 이러한 직경을 갖는 것은 바람직하지 않을 수 있다. 따라서, 빔 성형기(108)는 측정 채널들(110)에서 사용하기에 적합한 제1 직경(136)의 조명 빔(106)을 수신하고 조명 빔(106)을 샘플(112)을 조사하기에 적합한 제2 직경(138)으로 확장할 수 있다. 예를 들어, 조명 빔(106)은 대략 웨이퍼의 직경으로 확장될 수 있다. 이러한 반도체 웨이퍼들의 경우, 이러한 직경은 약 300 mm 이상일 수도 있지만, 그것이 요구되지는 않는다. 유사하게, 빔 성형기(108)는 역 동작에서 제2 직경(138)의 샘플(112)로부터의 반사된 광(122)을 다시 제1 직경(136)으로 축소할 수 있다.
다른 실시예에서, 계측 시스템(100)은 조명 빔(106)의 직경을 조명 소스(104)에 의해 제공된 원래의 직경(142)으로부터 제1 직경(136)으로 조정하기 위한 입력 빔 확장기(140)를 포함한다. 이와 관련하여, 제1 직경(136) 및 제2 직경(138)은 원래의 직경(142)과 무관하게 선택될 수 있다.
일 실시예에서, 조정가능한 광학 요소들(114)은 빔 성형기(108)의 하나 이상의 렌즈를 포함한다. 예를 들어, 빔 성형기(108)는 빔 확장기/축소기로서 동작하도록 구성된 하나 이상의 렌즈를 포함할 수 있고, 이들 렌즈 중 하나 이상의 렌즈의 위치들을 수정하는 것은 샘플(112)로 지향되는 바와 같은 조명 빔(106)의 각도 프로파일을 조정할 수 있다. 특히, 빔 성형기(108)의 렌즈들은 조명 빔(106)이 시준된 빔으로서(예를 들어, 시준된 상태에서) 빔 성형기(108)에 들어가고 나가는 디폴트 또는 공칭 위치를 가질 수 있다. 이러한 방식으로, 빔 성형기(108)의 광학 축(144)을 따른 빔 성형기(108)의 렌즈들 중 임의의 렌즈의 위치들에 대한 조정들은 샘플(112)로 지향된 조명 빔(106)의 각도 프로파일에 방사 대칭 수렴 또는 발산을 도입할 수 있다. 또한, 광학 축(144)에 수직인 가로 방향들을 따른 빔 성형기(108)의 렌즈들 중 임의의 렌즈의 위치들에 대한 조정들은 조명 빔(106)의 각도 프로파일에 비대칭 변화들을 도입할 수 있다. 이와 관련하여, 더 복잡한 토포그래피들(예를 들어, 안장 형상들, 타코 형상들 등)을 더 잘 측정하기에 적합한 더 복잡한 각도 프로파일들이 생성될 수 있다.
다른 실시예에서, 빔 성형기(108)의 조정가능한 광학 요소들(114)은 샘플(112) 상의 조명 빔(106)의 공간 및/또는 각도 분포를 추가로 수정하기 위해 각각의 평면에 걸쳐 선택된 투과 프로파일들을 갖는 필드 스톱들 또는 퓨필 스톱들과 같은, 그러나 이에 제한되지 않는 하나 이상의 비-포커싱 광학계를 포함할 수 있다.
다른 실시예에서, 빔 성형기(108)는 전용화된 조정가능한 광학 요소들(114)을 포함할 수 있다. 예를 들어, 빔 성형기(108)는 본 명세서에서 전술한 바와 같이 빔 직경을 확장/축소시키기 위한 광학 요소들의 제1 세트 및 샘플(112)로 지향되는 조명 빔(106)의 각도 프로파일을 조정하기 위한 광학 요소들의 제2 세트를 포함할 수 있다.
이제 도 2a 및 2b를 참조하여, 본 개시의 하나 이상의 실시예에 따른 조명 빔(106)의 각도 프로파일의 수정이 더 상세하게 설명된다.
일 실시예에서, 빔 성형기(108)는 3-렌즈 어셈블리(202)를 포함한다. 예를 들어, 도 2a 및 2b에 예시된 빔 성형기(108)는 더블릿 렌즈(204), 포지티브 메니스커스 렌즈(206) 및 평면-볼록 렌즈(208)를 포함한다. 그러나, 빔 성형기(108)의 특정 컴포넌트들의 예시는 단지 예시 목적들을 위해 본 명세서에서 제공되며, 제한하는 것으로 해석되어서는 안 된다는 것을 이해해야 한다. 오히려, 빔 성형기(108)는 샘플(112) 상의 조명 빔(106)의 공간 및/또는 각도 프로파일을 제어하기에 적합한 임의의 수, 유형 또는 구성의 렌즈들을 가질 수 있다.
샘플(112)의 표면들이 광학 축(144)에 직교하는 평면에 놓여 있을 때 샘플(112)로부터의 반사된 광(122)이 (예를 들어, 시준된 상태에서) 시준될 수 있는 것이 본 명세서에서 고려된다. 이 경우, 측정 채널들(110)로 지향되는 빔 성형기(108)로부터 나가는 반사된 광(122)이 또한 시준될 수 있다.
일 실시예에서, 측정 채널들(110)은 반사된 광(122)이 시준된 상태에 있거나 시준된 상태로부터 허용가능한 편차들의 범위 내에 있을 때 검출기(130) 상에 인터페로그램을 생성하도록 설계된다. 예를 들어, 도 2a에 예시된 바와 같이, 측정 채널(110)은 한 쌍의 론치 격자(예를 들어, 전단 광학계(132))를 포함할 수 있고, 각각의 론치 격자는 반사된 광(122)을 2개 이상의 회절 차수로 회절시킨다. 또한, 측정 채널(110)은 검출기(130)의 센서(212) 상의 인터페로그램으로서 론치 격자들로부터의 선택된 회절 차수들을 결합하기 위한 하나 이상의 채널 렌즈(210)를 포함할 수 있다. 다른 실시예에서, 측정 채널(110)은 선택된 회절 차수들을 검출기(130)에 전달하고 나머지 회절 차수들을 배제하기 위한 애퍼처(214)를 포함한다. 예를 들어, 애퍼처(214)는 각각의 회절 차수를 푸리에 평면의 별개의 부분에 포커싱하는 전단 광학계(132)에 대해 푸리에 평면에 위치될 수도 있다.
다른 실시예에서, 도 2a 및 2b에 예시된 바와 같이, 계측 시스템(100)은 다른 측정 채널들(110)에 대한 현재의 측정 채널(110)의 광학 경로 길이 차이들을 보상하기 위한 보상기 판(216)을 포함할 수 있다. 예를 들어, 보상기 판(216)은 다른 측정 채널(110)(도시되지 않음)로 지향되도록 채널 빔스플리터(126)를 통한 광선들(도시되지 않음)의 전파와 관련된 광학 경로 차이들을 보상할 수 있다.
샘플(112)로부터의 반사된 광(122)은 샘플(112)의 표면들이 왜곡될 때 시준된 상태로부터 벗어날 수 있다는 것이 본 명세서에서 추가로 고려된다. 이 경우, 측정 채널들(110)로 지향된 빔 성형기(108)로부터 나가는 반사된 광(122)은 또한 시준된 상태로부터 벗어날 수 있다. 시준된 상태로부터의 반사된 광(122)의 이러한 편차의 정도가 너무 큰 경우, 측정 채널들(110)은 관련된 검출기들 상에 인터페로그램을 적절하게 생성하지 못할 수 있거나, 인터페로그램들은 너무 뒤틀려서 신뢰성있는 측정 데이터를 제공하지 못할 수 있다.
도 2a는 본 개시의 하나 이상의 실시예에 따른, 왜곡된 샘플(112)을 갖는 공칭 위치에 구성될 때의 계측 시스템(100)을 통한 광의 광선 다이어그램을 포함하는 계측 시스템(100)의 개략도이다. 특히, 도 2a의 샘플(112)은 -1 mm의 휨을 보이며, 따라서 샘플(112)은 계측 시스템(100)에 대해 오목하다. 또한, 반사된 광(122)의 다수의 회절 차수가 계측 시스템(100)을 통한 광의 경로에 대한 왜곡의 영향을 예시하도록 도시된다. 또한, 도 2a는 조명 빔(106)을 조명 소스(104)로부터 빔 성형기(108)로 지향시키기 위한 광학 요소들(200)을 포함한다.
도 2a에 도시된 바와 같이, 샘플(112)의 휨은 시준된 상태로부터의 샘플(112)의 편차를 유발할 수 있다. 예를 들어, 도 2a는 측정 경로(124)를 따라 포커스(218)로 오는 반사된 광(122)을 예시한다. 또한, 샘플(112)의 휨은 론치 격자들로부터의 회절 차수들이 포커스에 오는 위치(예를 들어, 푸리에 평면의 위치)를 수정할 수 있다. 그 결과, 애퍼처(214)는 선택된 회절 차수들을 통과시키는 데 비효율적일 수 있다. 예를 들어, 푸리에 평면의 시프팅은 (예를 들어, 애퍼처(214)의 평면에서의 반사된 광(122)의 스폿 크기의 증가로 인해) 애퍼처(214)를 통한 선택된 회절 차수들의 투과의 감소를 유발할 수 있고, 이는 인터페로그램 내의 프린지들의 콘트라스트를 감소시킬 수 있다. 다른 예로서, 푸리에 평면의 시프팅은 추가적인 회절 차수들로부터의 광이 검출기로 전파되는 것을 허용할 수 있고, 이는 인터페로그램에 잡음 또는 아티팩트들을 도입할 수 있다.
도 2b는 본 개시의 하나 이상의 실시예에 따른, 도 2a의 왜곡된 샘플(112)을 갖는 수정된 위치에 구성될 때의 계측 시스템(100)을 통한 광의 광선 다이어그램을 포함하는 계측 시스템(100)의 개략도이다.
도 2b에 도시된 바와 같이, 빔 성형기(108)의 하나 이상의 렌즈는 샘플(112)로 지향된 조명 빔(106)의 각도 프로파일을 수정하기 위한 조정가능한 광학 요소들(114)로서 동작할 수 있다. 특히, 도 2b는 포지티브 메니스커스 렌즈(206)가 조정가능한 광학 요소(114)이고 샘플(112) 내의 왜곡을 보상하기 위해 빔 성형기(108)의 광학 축(144)을 따라 67 mm만큼 이동되는 구성을 도시한다. 예를 들어, 이러한 조정은 빔 성형기(108)로부터 나가는 반사된 광(122)이 적절하게 시준되는 것을 제공한다. 그 결과, 애퍼처(214)는 선택된 회절 차수들을 검출기(130)에 효과적으로 전달할 수 있다. 일 실시예에서, 측정 채널(110)의 애퍼처(214) 및/또는 검출기(130)는 조정가능한 광학 요소들(114)의 조정들에 기초하여 푸리에 평면 및/또는 이미징 평면에서의 차이들을 보상하도록 애퍼처(214) 및/또는 검출기(130)의 위치들이 조정될 수 있도록 선형 병진 스테이지에 장착된다. 또한, 아래에 더 상세히 설명되는 바와 같이, 애퍼처(214) 및/또는 검출기(130)의 위치들은 조정가능한 광학 요소들(114)의 알려진 구성들에 기초하여 교정될 수 있다. 이와 관련하여, 애퍼처(214) 및/또는 검출기(130)의 위치들은 조정가능한 광학 요소들(114)의 구성이 조정될 때 조정될 수 있다.
도 2a 및 2b에 예시된 계측 시스템(100)은 단일 획득 사이클에서 최대 ±1200 ㎛의 휨을 갖는 방사 대칭 구면 형상들(예를 들어, 오목 또는 볼록 형상들)을 갖는 샘플들(112)을 측정하기에 적합할 수 있다는 것이 본 명세서에서 고려된다. 그러나, 빔 성형기(108)의 특정 설계 및 조정가능한 광학 요소(114)로서의 포지티브 메니스커스 렌즈(206)의 특정 사용은 단지 예시 목적들을 위해 본 명세서에서 제공되며, 제한하는 것으로 해석되어서는 안 된다는 것을 이해해야 한다. 예를 들어, 빔 성형기(108)는 샘플(112) 상의 조명 빔(106)의 공간 및/또는 각도 프로파일을 제어하기 위한 임의의 적합한 광학 설계를 가질 수 있다. 다른 예로서, 임의의 광학 요소 또는 광학 요소들의 조합이 샘플(112)의 왜곡을 보상하기 위해 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 수정하기 위한 조정가능한 광학 요소들(114)로서 동작할 수 있다. 다른 예로서, 도 2a 및 2b는 샘플(112) 상의 조명 빔(106)의 각도 프로파일의 방사 대칭 변화들을 제공하기 위한 빔 성형기(108)의 광학 축을 따른 조정가능한 광학 요소들(114)의 위치들의 변화들을 예시하지만, 이러한 설명은 단지 예시 목적들을 위해 제공되고, 제한하는 것으로 해석되어서는 안 된다. 오히려, 빔 성형기(108)의 광학 축에 직교하는 방향들을 따른 조정가능한 광학 요소들(114)의 위치의 변화들은 샘플(112) 상의 조명 빔(106)의 각도 프로파일의 더 복잡한 변화들을 제공할 수 있다. 일반적으로, 샘플(112)로 지향된 조명 빔(106)의 빔 성형의 복잡성은 조정가능한 광학 요소들(114)과 관련된 자유도의 수에 기초하여 결정될 수 있다.
도 1a를 다시 참조하여, 본 개시의 하나 이상의 실시예에 따른 계측 시스템(100)의 추가적인 컴포넌트들이 더 상세하게 설명된다.
일 실시예에서, 계측 시스템(100)은 제어기(146)를 포함한다. 제어기(146)는 메모리(150)(예를 들어, 메모리 매체, 메모리 디바이스 등) 상에 유지되는 프로그램 명령어들을 실행하도록 구성되는 하나 이상의 프로세서(148)를 포함할 수 있다. 또한, 제어기(146)는 빔 성형기(108), 특정한 조정가능한 광학 요소들(114), 또는 검출기들(130)을 포함하지만 이에 제한되지 않는 계측 시스템(100)의 컴포넌트들 중 임의의 것과 통신가능하게 결합될 수 있다. 이와 관련하여, 제어기(146)의 하나 이상의 프로세서(148)는 본 개시 전반에 걸쳐 설명된 다양한 프로세스 단계들 중 임의의 것을 실행할 수 있다. 예를 들어, 제어기(146)의 하나 이상의 프로세서(148)는 측정 채널들(110)로부터 측정 신호들(예를 들어, 검출기들(130)로부터의 인터페로그램 데이터)을 수신하고, 측정 신호들로부터 토포그래피 데이터를 추출하기 위해 하나 이상의 분석 단계를 수행할 수 있다. 다른 예로서, 제어기(146)의 하나 이상의 프로세서(148)는 샘플(112)로 지향된 조명의 각도 프로파일을 조정하기 위해 조정가능한 광학 요소들에 대한 제어 신호들을 생성할 수 있다. 다른 예로서, 제어기(146)의 하나 이상의 프로세서(148)는 샘플(112)의 왜곡을 적어도 부분적으로 보상하기에 적합한 하나 이상의 조정가능한 광학 요소(114)의 구성을 선택하고 이 구성을 달성하기 위해 적합한 제어 신호들을 생성할 수 있다.
제어기(146)의 하나 이상의 프로세서(148)는 이 분야에 공지된 임의의 프로세서 또는 처리 요소를 포함할 수 있다. 본 개시의 목적들을 위해, 용어 "프로세서" 또는 "처리 요소"는 하나 이상의 처리 또는 논리 요소를 갖는 임의의 디바이스(예를 들어, 하나 이상의 마이크로프로세서 디바이스, 하나 이상의 주문형 집적 회로(ASIC) 디바이스, 하나 이상의 필드 프로그래머블 게이트 어레이(FPGA), 또는 하나 이상의 디지털 신호 프로세서(DSP))를 포함하도록 넓게 정의될 수 있다. 이러한 의미에서, 하나 이상의 프로세서(148)는 알고리즘들 및/또는 명령어들(예를 들어, 메모리에 저장된 프로그램 명령어들)을 실행하도록 구성된 임의의 디바이스를 포함할 수 있다. 일 실시예에서, 하나 이상의 프로세서(148)는 데스크톱 컴퓨터, 메인프레임 컴퓨터 시스템, 워크스테이션, 이미지 컴퓨터, 병렬 프로세서, 네트워킹된 컴퓨터, 또는 본 개시 전반에 걸쳐 설명된 바와 같이 계측 시스템(100)과 함께 동작하거나 동작하도록 구성된 프로그램을 실행하도록 구성된 임의의 다른 컴퓨터 시스템으로서 구현될 수 있다.
메모리(150)는 관련된 하나 이상의 프로세서(148)에 의해 실행가능한 프로그램 명령어들을 저장하기에 적합한 이 분야에 공지된 임의의 저장 매체를 포함할 수 있다. 예를 들어, 메모리(150)는 비일시적 메모리 매체를 포함할 수 있다. 다른 예로서, 메모리(150)는 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), 자기 또는 광학 메모리 디바이스(예를 들어, 디스크), 자기 테이프, 고체 상태 드라이브 등을 포함할 수 있지만, 이에 제한되지 않는다. 메모리(150)는 하나 이상의 프로세서(148)와 함께 공통 제어기 하우징에 하우징될 수 있다는 점에 또한 유의한다. 일 실시예에서, 메모리(150)는 하나 이상의 프로세서(148) 및 제어기(146)의 물리적 위치에 대해 원격적으로 위치할 수 있다. 예를 들어, 제어기(146)의 하나 이상의 프로세서(148)는 네트워크(예를 들어, 인터넷, 인트라넷 등)를 통해 액세스 가능한 원격 메모리(예를 들어, 서버)에 액세스할 수 있다.
일 실시예에서, 사용자 인터페이스(152)가 제어기(146)에 통신가능하게 결합된다. 일 실시예에서, 사용자 인터페이스(152)는 하나 이상의 데스크톱, 랩톱, 태블릿 등을 포함할 수 있지만, 이들로 제한되지 않는다. 다른 실시예에서, 사용자 인터페이스(152)는 계측 시스템(100)의 데이터를 사용자에게 디스플레이하기 위해 사용되는 디스플레이를 포함한다. 사용자 인터페이스(152)의 디스플레이는 이 분야에 공지된 임의의 디스플레이를 포함할 수 있다. 예를 들어, 디스플레이는 액정 디스플레이(LCD), 유기 발광 다이오드(OLED) 기반 디스플레이, 또는 CRT 디스플레이를 포함할 수 있지만, 이들로 제한되지 않는다. 이 분야의 기술자들은 사용자 인터페이스(152)와 통합할 수 있는 임의의 디스플레이 디바이스가 본 개시의 구현에 적합하다는 것을 인식해야 한다. 다른 실시예에서, 사용자는 사용자 인터페이스(152)의 사용자 입력 디바이스를 통해 사용자에게 디스플레이된 데이터에 응답하는 선택들 및/또는 명령어들을 입력할 수 있다.
다른 실시예에서, 계측 시스템(100)은 샘플(112)(예를 들어, 샘플(112)의 상부 표면(116))의 대략적인 프로파일 측정을 생성하기 위한 대략적인 표면 프로파일러(154)를 포함한다. 예를 들어, 대략적인 프로파일 측정은 하나 이상의 측정 채널(110)에 의해 제공되는 것보다 더 큰 측정 범위를 가질 수 있다. 또한, 대략적인 프로파일 측정은 축방향 차원을 따라(예를 들어, 빔 성형기(108)의 광학 축(144)을 따라) 그리고/또는 (예를 들어, 광학 축(144)에 직교하는) 측방 차원을 따라 더 낮은 해상도를 가질 수 있다. 이와 관련하여, 대략적인 프로파일 측정은 하나 이상의 측정 채널(110)의 측정 범위를 넘을 수 있는 샘플(112)의 임의의 왜곡의 매핑을 제공할 수 있다.
아래에 더 상세히 설명되는 바와 같이, 대략적 프로파일 측정은 다양한 방식으로 계측 시스템(100)에 의해 사용될 수 있다. 예를 들어, 대략적인 프로파일 측정은 샘플(112)의 왜곡을 적어도 부분적으로 보상하기 위해 샘플(112) 상의 조명 빔(106)의 각도 위치를 어떻게 수정할지를 결정하기 위한 피드포워드 데이터로서 사용될 수 있다. 다른 예로서, 대략적인 프로파일 측정은 샘플 마운트(예를 들어, 3-핀 지지 홀더)의 기하구조에 기초하여 샘플 새그의 추정을 제공하는 데 사용될 수 있다. 이러한 샘플 새그는 측정 채널들(110)로부터의 인터페로그램들에 기초하여 표면 프로파일 측정으로부터 제거될 수도 있지만, 그것이 요구되지는 않는다.
도 3은 본 개시의 하나 이상의 실시예에 따른 대략적인 표면 프로파일러(154)의 개략도이다.
일 실시예에서, 대략적인 표면 프로파일러(154)는 적어도 하나의 프로파일링 센서(302)를 포함한다. 대략적인 표면 프로파일러(154)는 간섭계 두께 센서, 공동 포커스 거리 센서, 또는 샤크 하트만(Shack-Hartmann) 센서를 포함하지만 이에 제한되지 않는, 샘플(112)의 토포그래피의 프로파일을 생성하기에 적합한 이 분야에 공지된 임의의 유형의 프로파일링 센서(302)를 포함할 수 있다. 일 실시예에서, 프로파일링 센서(302)는 기준 플레이트(304) 사이의 거리를 결정한다. 또한, 프로파일링 센서(302)는 샘플(112)의 두께를 측정할 수도 있지만, 그것이 요구되지는 않는다. 따라서, 샘플(112)의 상부 표면(116)의 대략적인 프로파일은 프로파일링 센서(302)에 의해 직접 측정될 수 있거나, 샘플(112)의 하부 표면(306)의 측정 및 샘플(112)의 알려진 또는 가정된 두께(308)에 기초하여 결정될 수 있다. 예를 들어, 샘플(112)의 두께(308)는 샘플(112)에 걸쳐 일정한 것으로 가정될 수도 있지만, 그것이 요구되지는 않는다.
대략적인 표면 프로파일러(154)는 임의의 수의 프로파일링 센서(302)를 포함할 수 있다. 일 실시예에서, 도 3에 예시된 바와 같이, 대략적인 표면 프로파일러(154)는 병진 스테이지(310)에 부착된 단일 프로파일링 센서(302)를 포함한다. 예를 들어, 대략적인 프로파일 측정은 2차원 병진 스테이지(310)를 이용하여 샘플(112)의 적어도 일부에 걸쳐 프로파일링 센서(302)를 스캐닝함으로써 생성될 수 있다. 다른 예로서, 도 3에 예시된 바와 같이, 대략적인 프로파일 측정은 1차원 병진 스테이지(310)를 이용하여 프로파일링 센서(302)를 선형으로 스캐닝하는 동시에 회전 스테이지(312)를 이용하여 샘플(112)을 회전시킴으로써 생성될 수 있다. 이러한 방식으로, 대략적인 프로파일 측정은 나선형 프로파일을 가질 수 있다. 다른 실시예에서, 대략적인 표면 프로파일러(154)는 둘 이상의 프로파일링 센서(302)를 포함한다. 예를 들어, 대략적인 표면 프로파일러(154)는 대략적인 프로파일 측정을 동시에 캡처하도록 구성된 프로파일링 센서들(302)의 2차원 어레이를 포함할 수 있다. 다른 예로서, 대략적인 표면 프로파일러(154)는 대략적인 프로파일 측정을 생성하기 위해 샘플(112)에 걸쳐 스캐닝되도록 구성된 프로파일링 센서들(302)의 선형 어레이를 포함할 수 있다. 예를 들어, 프로파일링 센서들(302)의 선형 어레이는 샘플(112)에 걸친 스캐닝을 위해 병진 스테이지(도시되지 않음) 상에 위치할 수 있다. 다른 경우에, 샘플(112)은 병진 스테이지 상에 위치하고 프로파일링 센서들(302)의 선형 어레이의 측정 필드를 통해 스캐닝될 수 있다.
또한, 대략적인 표면 프로파일러(154)는 도 1에 예시된 바와 같이 계측 시스템(100)에 통합되고, 따라서 그 일부를 형성할 수 있거나, 계측 시스템(100)과 분리되고 별개일 수 있다는 것이 본 명세서에서 고려된다. 이와 관련하여, 계측 시스템(100)(예를 들어, 계측 시스템(100) 내의 제어기(146))은 외부 소스로부터 대략적인 프로파일 측정들을 수신할 수 있다.
이제, 도 4-6을 참조하여, 샘플(112)의 왜곡을 적어도 부분적으로 보상하기 위해 조정가능한 광학 요소들(114)의 위치들을 수정하기 위한 방법들이 설명된다.
도 4는 본 개시의 하나 이상의 실시예에 따른 계측 방법(400)에서 수행되는 단계들을 예시하는 흐름도이다. 출원인은 계측 시스템(100)과 관련하여 본 명세서에서 이전에 설명된 실시예들 및 인에이블링 기술들이 방법(400)으로 확장되도록 해석되어야 한다는 점에 주목한다. 방법(400)은 계측 시스템(100)의 아키텍처로 제한되지 않는다는 점이 추가로 주목된다. 그러나, 아래의 방법 단계들은 예시의 목적으로 계측 시스템(100)을 참조하여 설명된다.
일 실시예에서, 방법(400)은 샘플(112)에 조명 빔(106)을 지향시키도록 구성된 하나 이상의 조정가능한 광학 요소(114)를 갖는 빔 성형기(108)를 포함하는 전단 간섭계에 샘플(112)을 배치하는 단계 402를 포함하고, 샘플(112)로부터의 반사된 광(122)은, 하나 이상의 조정가능한 광학 요소(114)가 디폴트 구성으로 되어 있고 샘플(112)의 상부 표면(116)이 빔 성형기(108)의 광학 축(144)에 직교할 때, 시준된 상태에 있다. 예를 들어, 전단 간섭계는 계측 시스템(100) 또는 그 일부를 포함할 수 있지만, 이에 제한되지 않는다.
다른 실시예에서, 방법(400)은 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상하기 위해 샘플(112) 상에 조명 빔(106)의 선택된 각도 프로파일을 제공하도록 빔 성형기(108)의 하나 이상의 조정가능한 광학 요소(114)의 구성을 조정하는 단계 404를 포함한다. 하나 이상의 조정가능한 광학 요소(114)는 하나 이상의 렌즈, 하나 이상의 필드 스톱, 또는 하나 이상의 퓨필 스톱과 같은, 그러나 이에 제한되지 않는, 빔 성형기(108) 내의 임의의 유형의 광학 요소를 포함할 수 있다.
본 명세서에서 전술한 바와 같이, 시준된 상태로부터의 반사된 광(122)의 편차들은 샘플(112)의 왜곡에 의해 유발될 수도 있지만, 그럴 필요까지는 없는 샘플(112)의 상부 표면(116)의 프로파일의 낮은 공간 주파수 변화들에 의해 유도될 수 있다. 따라서, 단계 404는 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상하기 위해 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정하는 것을 포함할 수 있다.
일 실시예에서, 하나 이상의 조정가능한 광학 요소(114)의 디폴트 구성은 빔 성형기(108)의 광학 축(144)을 따른 하나 이상의 조정가능한 광학 요소(114)의 디폴트 위치들(또는 상대적 위치들)을 포함한다. 따라서, 단계 404는 디폴트 구성에 대해 빔 성형기(108)의 광학 축(144)을 따른 조정가능한 광학 요소들(114)의 위치들을 조정하거나 달리 수정하는 것을 포함할 수 있다. 예를 들어, 빔 성형기(108)의 하나 이상의 렌즈의 위치를 수정하는 것은 샘플(112) 상의 조명 빔(106)의 각도 프로파일에 수렴 또는 발산을 도입할 수 있다. 또한, 디폴트 구성은 조정가능한 광학 요소들(114)의 임의의 선택된 초기 구성을 포함할 수 있다. 일 실시예에서, 디폴트 구성은 샘플(112) 상에 시준된 조명 빔(106)을 제공하는 구성에 대응한다. 다른 실시예에서, 디폴트 구성은 샘플(112)의 왜곡을 적어도 부분적으로 보상할 것으로 예상되는 구성에 대응한다. 예를 들어, 디폴트 구성은 대략적인 표면 프로파일러(예를 들어, 대략적인 표면 프로파일러(154))로부터의 대략적인 프로파일 측정에 기초하여 샘플(112)에 대해 선택될 수 있다. 다른 예로서, 디폴트 구성은 샘플 홀더 상의 샘플(112)의 배치와 관련된 측정된 또는 추정된 새그에 기초하여 샘플(112)에 대해 선택될 수 있다. 이와 관련하여, 디폴트 구성은 상이한 샘플들(112)에 대해 상이할 수 있다.
다른 실시예에서, 방법(400)은 하나 이상의 전단 인터페로그램에 기초하여 샘플(112)의 상부 표면(116)의 출력 표면 프로파일 측정을 생성하는 단계 406을 포함한다.
하나 이상의 측정 채널(110)로부터의 인터페로그램들로부터 직접 생성되는 표면 프로파일은 다양한 아티팩트들, 오프셋들, 및 잡음을 포함할 수 있다는 것이 본 명세서에서 고려된다. 예를 들어, 측정된 프로파일(
Figure pct00001
)은 다음과 같이 특성화될 수 있다.
Figure pct00002
여기서,
Figure pct00003
은 측정 동안의 샘플(112)의 실제(예를 들어, 물리적) 표면 프로파일이고,
Figure pct00004
은 시준된 상태로부터의 샘플(112) 상의 조명 빔(106)의 각도 프로파일의 시스템 오프셋들, 광학 수차들 또는 수정들과 관련된 오프셋 분포이다. 또한, 수학식 1에 포함되지 않았지만, 측정된 프로파일(
Figure pct00005
)은 측정과 관련된 잡음(예를 들어, 랜덤 잡음)을 포함할 수 있다. 따라서, 단계 406에서 제공되는 출력 표면 프로파일 측정(
Figure pct00006
)은 일반적으로, 측정된 프로파일(
Figure pct00007
)은 물론,
Figure pct00008
또는 그의 일부를 보상하기 위한 임의의 수정들도 포함할 수 있다.
또한, 제어기(146)에 의해 제공되는 표면 프로파일 측정은 샘플 마운트(예를 들어, 3개의 접촉점을 갖는 3-핀 샘플 마운트) 또는 샘플(112)를 고정하기 위한 다른 지지 메커니즘에 의해 유도된 새그 또는 휨을 포함하거나 배제할 수 있다. 예를 들어, 평탄한 샘플 마운트가 아니라 지지점들에 의해 지지되는 샘플(112)은 일반적으로 중력으로 인해 굽거나 휠 수 있다. 이와 관련하여, 측정 동안의 실제 표면 프로파일(
Figure pct00009
)은 다음과 같이 특성화될 수 있다.
Figure pct00010
여기서,
Figure pct00011
은 샘플(112)의 자연 표면 프로파일(예를 들어, 샘플 마운트에 의해 유도된 뒤틀림이 없음)이고,
Figure pct00012
는 특정 샘플 홀더에 의한 자연 표면 프로파일(
Figure pct00013
)의 뒤틀림과 관련된 마운트 오프셋 분포이다. 예를 들어, 수평 위치에서 샘플(112)을 고정하는 3-핀 샘플 마운트의 경우에,
Figure pct00014
는 샘플 마운트에 의해 유도되는 새그 또는 휨과 관련된 오프셋 분포에 대응할 수 있다.
일 실시예에서, 마운트 오프셋 분포(
Figure pct00015
)는 측정된 표면 프로파일(
Figure pct00016
)로부터 제거된다. 이 경우, 출력 표면 프로파일(
Figure pct00017
)은 다음과 같이 쓰여질 수 있다.
Figure pct00018
Figure pct00019
의 값은 다양한 기술들을 사용하여 결정될 수 있다. 일 실시예에서, 마운트 오프셋 분포(
Figure pct00020
)는 샘플(112)의 알려진 또는 측정된 특성들(예를 들어, 조성, 크기, 두께, 형상, 측정된 대략적인 표면 프로파일 등) 및 샘플 홀더의 기하구조에 기초하여 추정되거나 계산된다. 예를 들어, 새그는 (두께)-2의 인자에 의해 샘플(112)의 두께에 기초하여 스케일링되는 것으로 추정될 수 있다. 다른 실시예에서, 마운트 오프셋 분포(
Figure pct00021
)는 샘플(112)의 대략적인 표면 프로파일 및 대략적인 표면 프로파일러(154)로부터 수신된 두께 측정들에 의해 결정된다. 예를 들어, 대략적인 표면 프로파일러(154)는 샘플(112)의 마운트 유도 뒤틀림(예를 들어, 새그, 휨 등)이 (샘플(112)의 표면 상에 존재할 수 있는 패터닝된 특징부들을 제외하고) 평탄한 것으로부터의 샘플(112)의 편차와 직접 상관될 수 있도록 샘플(112) 상의 다양한 위치들에서 대략적인 표면 프로파일 및 두께를 동시에 측정할 수 있다. 그러나, 평탄한 것으로부터의 샘플(112)의 형상의 측정된 편차들은 항상 샘플 홀더에 의해 유도된 새그에 직접 대응하는 것은 아닐 수 있다는 것이 본 명세서에서 고려된다. 특히, 마운트 오프셋 분포(
Figure pct00022
)에 대한 웨이퍼 형상의 기여는 면외 편향들 또는 변위들이 두께의 중대한 분율에 대응할 때 중대해질 수 있다. 예를 들어, 3-핀 샘플 마운트 상의 수평 위치에 장착되는 300 mm 직경 및 775 ㎛ 두께를 갖는 실리콘 웨이퍼 샘플(112)의 경우, 웨이퍼 휨이 1000 ㎛일 때, 웨이퍼 형상 기여는 대략 8 ㎛이다(즉, 웨이퍼는 웨이퍼 형상 효과를 무시한 예측보다 8 ㎛ 또는 ~0.8 %만큼 덜 휜다). 일 실시예에서, 마운트 오프셋 분포(
Figure pct00023
)에 대한 웨이퍼 형상의 기여는 측정 전에 생성된 탐색표를 사용하여 결정된다. 예를 들어, 탐색표는 (예를 들어, 대략적인 표면 프로파일러(154)에 의해 측정된 바와 같은 샘플(112)의 형상과 관련된) 샘플(112)의 대략적인 표면 프로파일을 설명하는 샘플 두께 및 맞춤 계수들에 기초하는 유한 요소 분석을 사용하여 생성될 수 있다. 이러한 방식으로, 마운트 오프셋 분포(
Figure pct00024
)에 대한 웨이퍼 형상의 기여는 대략적인 표면 프로파일러(154)로부터의 두께 및 맞춤 계수들의 값들이 이용하여 추정될 수 있다.
수학식 1로 되돌아가면, 오프셋 분포(
Figure pct00025
)는 다양한 소스들로부터의 기여들을 포함할 수 있다. 예를 들어, 측정된 프로파일(
Figure pct00026
)은 다음과 같이 특성화될 수 있다.
Figure pct00027
여기서,
Figure pct00028
은 시준된 상태로부터의 샘플(112) 상의 조명 빔(106)의 각도 프로파일의 수정과 관련된 유도된 오프셋이고,
Figure pct00029
는 조명 빔(106)에서의 광학 수차들에 의해 유도된 오프셋이다.
분포(
Figure pct00030
)는 하나 이상의 조정가능한 광학 요소(114)의 특정 구성을 포함하지만 이에 제한되지 않는 전단 간섭계(102)의 특정 구성과 관련된 광학 수차들에 의해 유발되는 체계적 오프셋들을 포함할 수 있다. 이러한 분포는 일반적으로 출력 표면 프로파일(
Figure pct00031
)로부터 제거될 수 있도록 결정가능하거나 추정될 수 있다. 이 경우, 출력 표면 프로파일(
Figure pct00032
)은 다음과 같이 쓰여질 수 있다.
Figure pct00033
예를 들어, 분포(
Figure pct00034
)는 상이한 광학 구성들로 생성된 측정된 표면 프로파일(
Figure pct00035
)을 비교함으로써 적어도 부분적으로 결정될 수 있다.
Figure pct00036
과 관련하여, (예를 들어, 단계 404에서) 샘플(112)로 지향되는 조명 빔(106)의 각도 프로파일을 수정하는 것은 유도된 오프셋 분포(
Figure pct00037
)를 측정된 표면 프로파일(
Figure pct00038
)에 도입할 수 있다는 것이 본 명세서에서 고려된다. 예를 들어, 조명 빔(106)의 각도 프로파일이 샘플(112)의 상부 표면(116)의 프로파일의 왜곡 또는 다른 변화들에 대항하고, 시준된 반사된 광(122)을 제공하도록 완벽하게 매칭되는 경우, 하나 이상의 측정 채널(110)에 의해 제공되는 전단 인터페로그램들은 왜곡이 없는 표면 프로파일을 나타낼 것이다. 이와 관련하여, 하나 이상의 측정 채널(110)로부터의 인터페로그램들에만 기초하는 원시 표면 프로파일 측정(예를 들어,
Figure pct00039
)은 일반적으로 조명 빔(106)의 각도 프로파일에 기초하는 유도된 오프셋 분포(
Figure pct00040
)를 포함할 수 있다. 그러나, 이러한 유도된 오프셋 분포(
Figure pct00041
)는 공지되거나, 아니면 측정 동안 샘플(112)로 지향되는 조명 빔(106)의 선택된 각도 프로파일에 기초하여 결정될 수 있다. 예를 들어, 광학 수차들과 관련된 오프셋 분포와 같이, 유도된 오프셋 분포(
Figure pct00042
)는 상이한 광학 구성들로 생성된 측정된 표면 프로파일(
Figure pct00043
)을 비교함으로써 적어도 부분적으로 결정될 수 있다.
따라서, 제어기(146)는 이러한 유도된 오프셋 분포를 갖거나 갖지 않는 표면 프로파일 측정을 제공할 수 있다. 예를 들어, 출력 표면 프로파일(
Figure pct00044
)은 유도 오프셋 분포(
Figure pct00045
)가 제거되는 바이어스되지 않은 표면 프로파일 분포를 포함할 수 있다. 이 경우, 출력 표면 프로파일(
Figure pct00046
)은 다음과 같이 쓰여질 수 있다.
Figure pct00047
조명 빔(106)의 각도 프로파일이 샘플(112)의 상부 표면(116)의 토포그래피와 완벽하게 매칭되지 않는 경우에, 인터페로그램들 및 바이어스 표면 프로파일 측정은 불완전한 매칭에 의해 도입된 잔여 오프셋들을 포함할 수 있다는 것이 본 명세서에서 추가로 고려된다. 그러나, 일부 응용들에서, 이러한 잔여 오프셋들은 허용가능할 수 있다. 또한, (예를 들어, 대략적인 표면 프로파일러(154)로부터) 대략적인 표면 프로파일 측정이 수신되는 경우, 이러한 에러들은 또한 결정가능할 수 있고, 따라서 샘플(112)의 실제 토포그래피의 정확한 묘사를 제공하기 위해 제거되거나 달리 보상될 수 있다.
도 4를 다시 참조하면, (예를 들어, 단계 404와 관련된) 빔 성형기(108)의 하나 이상의 조정가능한 광학 요소(114)의 구성을 조정하는 것은 다양한 방식들로 구현될 수 있다는 것이 본 명세서에서 추가로 고려된다.
예를 들어, 사용자는 사용자 인터페이스(152)를 통해 그리고/또는 조정 가능한 광학 요소들(114)의 수동 조정을 통해 하나 이상의 조정가능한 광학 요소(114)를 수동으로 조정할 수 있다. 또한, 사용자는 조정 가능 광학 요소들(114)을 조정할 때 하나 이상의 측정 채널(110)로부터의 하나 이상의 전단 인터페로그램, 또는 전단 인터페로그램들에 기초하여 생성된 제어기(146)로부터의 토포그래피 데이터를 포함하지만 이에 제한되지 않는 피드백을 위한 임의의 유형의 데이터를 이용할 수 있다.
다른 예로서, 제어기(146)는 (예를 들어, 하나 이상의 프로세서(148)를 통해) 조정가능한 광학 요소들(114)에 대한 자동화된 또는 자동적인 조정들을 제공할 수 있다.
일 실시예에서, 제어기(146)는 측정 채널들(110)에 의해 수신된 하나 이상의 인터페로그램에 기초하여 샘플(112)의 상부 표면(116)의 낮은 공간 주파수 변화들(예를 들어, 왜곡)을 결정 또는 추정한다. 예를 들어, 제어기(146)는 일반적으로 하나 이상의 측정 채널(110)로부터 수신된 인터페로그램들에 기초하여 (예를 들어, 단계 406에서와 같이) 표면 프로파일 측정 또는 다른 토포그래피 정보를 결정할 수 있다. 따라서, 제어기(146)는 또한, 생성된 표면 프로파일 측정이 시준된 상태로부터의 반사된 광(122)의 편차와 관련된 잔여 오프셋들을 포함할 때를 결정할 수 있다. 예를 들어, 제어기(146)는 인터페로그램들의 국부화된 부분들을 식별할 수 있거나, 결정된 표면 프로파일 측정은 다른 부분들로부터 벗어난다. 다른 예에서, 제어기(146)는 인터페로그램들의 일부 또는 결정된 표면 프로파일 측정의 낮은 공간 주파수 변화들(예를 들어, 왜곡)을 식별할 수 있다. 기술에 관계없이, 제어기(146)는 이러한 정보를 조명 빔(106)의 각도 프로파일을 수정하기 위한 피드백으로서 이용할 수 있다. 일부 실시예들에서, 제어기(146)는 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상하기 위해 조명 빔(106)의 각도 프로파일에 대한 연속적인 변경들을 제공하기 위한 제어 루프를 구현할 수 있다.
다른 실시예에서, 제어기(146)는 조정가능한 광학 요소들(114)의 구성을 순차적으로 조정하고, 인터페로그램들 또는 결정된 표면 프로파일 측정을 모니터링하고, 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상할 수 있는 구성을 식별할 수 있다.
도 5는 본 개시의 하나 이상의 실시예에 따른, 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정하는 것과 관련된 하위 단계들을 예시하는 흐름도(408)이다. 예를 들어, 하위 단계들(408)은 위의 방법(400)의 단계 404와 관련될 수 있다.
일 실시예에서, 단계 404는 하나 이상의 조정 가능한 요소의 구성을 후보 구성들의 세트로 순차적으로 조정하는 하위 단계 410을 포함한다. 예를 들어, 후보 구성들의 세트는 조정가능한 광학 요소들(114)의 스캐닝 위치들을 개별적으로 또는 조합하여 나타낼 수 있다. 다른 실시예에서, 단계 404는 하나 이상의 전단 인터페로그램 또는 출력 표면 프로파일 측정 중 적어도 하나를 모니터링하는 하위 단계 412를 포함한다. 또한, 전단 인터페로그램을 모니터링하는 것은 원시 인터페로그램, 또는 임의의 처리된 버전의 인터페로그램을 모니터링하는 것을 포함할 수 있다. 예를 들어, 전단 인터페로그램을 모니터링하는 것은 (예를 들어, 도 6a 내지 도 6d와 관련하여 설명된 바와 같이) 추가적인 보상들을 갖거나 갖지 않는 관련된 위상 맵을 모니터링하는 것을 포함할 수 있다. 다른 실시예에서, 단계 404는 시준된 상태로부터의 반사된 광의 편차들을 적어도 부분적으로 보상하기에 적합한 후보 구성들의 세트 중의 구성을 식별하는 하위 단계 414를 포함한다. 다른 실시예에서, 단계 404는 하나 이상의 조정가능한 광학 요소의 구성을 식별된 구성으로 조정하는 하위 단계 416을 포함한다.
다시 도 4를 참조하면, 다른 실시예에서, 제어기(146)는 (예를 들어, 대략적인 표면 프로파일러(154)로부터 수신된) 대략적인 표면 프로파일 측정에 기초하여 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정할 수 있다. 예를 들어, 단계 404는 샘플(112)의 상부 표면(116)의 대략적인 표면 프로파일 측정을 수신하고, 대략적인 표면 프로파일 측정에 기초하여 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상하기 위해 샘플(112)로 지향된 조명 빔(106)의 선택된 각도 프로파일을 제공하도록 빔 성형기(108)의 하나 이상의 조정가능한 광학 요소(114)의 구성을 조정하는 것을 포함할 수 있다. 이와 관련하여, 대략적 표면 프로파일 측정이 주어진 응용에 필요한 해상도(축방향 또는 측방향)를 갖지 않을 수 있지만, 대략적 표면 프로파일 측정은 제어기(146)가 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 수정하여 이들 변화를 적어도 부분적으로 보상할 수 있게 하기 위해 샘플(112)의 낮은 공간 주파수 변화들(예를 들어, 왜곡)에 관한 충분한 정보를 제공할 수 있다.
일 실시예에서, 제어기(146)는 하나 이상의 측정 채널(110)로부터의 인터페로그램들 또는 관련된 위상 맵들 상의 프린지들의 수를 감소시키거나 최소화하도록 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정할 수 있다. 예를 들어, 통상적인 분석에서, 간섭 프린지들은 위상 2π의 사이클들을 나타낸다. 이러한 방식으로, 어두운 프린지에서 밝은 프린지로 그리고 어두운 프린지로의 강도 변화는 하나의 위상 사이클이며, 물리량에 대응한다. 또한, 강도 이미지들(간섭 패턴들)로부터 도출된 위상 신호는 -π 내지 +π의 사이클들을 갖는다. 픽셀 크기보다 큰 프린지 간격을 갖는 매끄럽고 느리게 변하는 반사 표면의 경우, 샘플(112)의 토포그래피 정보는 통상적인 위상 언랩핑 알고리즘들을 통해 복구될 수 있다. 그러나, 통상적인 위상 언랩핑 알고리즘들은 샘플(112)이 패터닝된 표면을 포함하거나 실질적으로 왜곡되는 경우들에 대해서는 에러들 또는 불일치들을 겪을 수 있다는 것이 본 명세서에서 고려된다. 따라서, 제어기(146)는 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정하여 인터페로그램들 상의 프린지들의 수를 감소시키거나 최소화할 수 있고, 그에 의해 토포그래피 정보를 복구하는 데 필요한 위상 언랩핑 단계들의 수를 감소시키거나 없앨 수 있다.
제어기(146)는 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 수정하기 위해 (예를 들어, 대략적인 표면 프로파일러(154)로부터의) 대략적인 표면 프로파일 측정 또는 마운트 오프셋 분포(
Figure pct00048
)와 같은, 그러나 이들로 제한되지 않는 임의의 정보를 이용할 수 있다.
제어기(146)는 다양한 방식으로, 인터페로그램들 또는 관련된 위상 맵들 상의 프린지들의 수를 최소화하기 위한 샘플(112) 상의 조명 빔(106)의 각도 프로파일, 및 하나 이상의 조정가능한 광학 요소(114)의 대응하는 구성을 결정할 수 있다.
일 실시예에서, 제어기(146)는 조정 가능 광학 요소들(114)의 하나 이상의 구성과 관련된 인터페로그램들 또는 위상 맵들을 추정 또는 예측할 수 있다. 예를 들어, 제어기(146)는 조정 가능 광학 요소들(114)의 하나 이상의 구성과 관련된 인터페로그램들 또는 관련된 위상 맵들을 추정 또는 예측할 수 있다. 달리 말하면, 제어기(146)는 측정된 표면 프로파일(
Figure pct00049
), 오프셋 분포(예를 들어,
Figure pct00050
,
Figure pct00051
,
Figure pct00052
등), 또는 마운트 유도 뒤틀림(
Figure pct00053
)의 임의의 조합을 추정 또는 예측할 수 있다. 이와 관련하여, 제어기(146)는 임의의 원하는 출력 표면 프로파일을 제공할 수 있다.
일부 응용들에서, 샘플(112)로 지향되는 조명 빔(106)의 각도 프로파일을 샘플(112)의 특정 토포그래피에 완벽하게 매칭시키는 것이 필요하거나 바람직하지 않을 수 있다. 예를 들어, 빔 성형기(108)와 관련된 특정 설계 제약들 내에서 조정가능한 광학 요소들(114)의 구성을 수정함으로써 모든 가능한 샘플 토포그래피들을 완전히 보상하는 것이 바람직하거나 실용적이지 않을 수 있다. 다른 예로서, 샘플(112)로 지향된 조명 빔(106)의 각도 프로파일을 샘플(112)의 특정한 토포그래피에 정확하게 매칭시키는 것의 이익들을 측정 처리량 요건들과 균형을 맞추는 것이 바람직할 수 있다. 또한, 본 명세서에서 전술한 바와 같이, 디폴트 위치로부터의 샘플(112)로 지향된 조명 빔(106)의 각도 프로파일의 임의의 수정은 일반적으로 결과적인 표면 프로파일 측정에서의 유도된 오프셋 분포를 유발할 수 있고, 이는 일반적으로 (예를 들어, 시스템 교정을 통해) 알려지고, 바이어스되지 않은 표면 프로파일 측정을 제공하기 위해 제거될 수 있다.
따라서, 시준된 상태로부터의 반사된 광(122)의 모든 편차들을 완전히 보상할 필요가 없을 수 있다. 오히려, 일부 응용들에서, 반사된 광(122)이 하나 이상의 측정 채널(110)에서 충분히 정확한 또는 높은 콘트라스트의 인터페로그램들의 생성을 가능하게 하도록 충분히 시준되도록 편차들을 부분적으로 보상하는 것으로 충분할 수 있다. 이와 관련하여, 샘플 토포그래피와 샘플(112)로 지향되는 조명 빔(106)의 각도 프로파일 사이의 불완전한 매칭과 관련된 결함들은 측정 후에 제어기(146)에 의해 보상될 수 있다.
이제 도 6a 내지 도 6d를 참조하며, 본 개시의 하나 이상의 실시예에 따른, 하나 이상의 측정 채널(110)에 의해 생성된 인터페로그램들에 기초한 위상 맵들 상의 프린지들의 감소가 더 상세히 설명된다.
도 6a는 본 개시의 하나 이상의 실시예에 따른, 전단 간섭계(102)의 2개의 측정 채널(110)로부터의 X 방향을 따른 위상 맵(602) 및 Y 방향을 따른 위상 맵(604)이다. 이 예에서, 도 6a의 위상 맵들(602, 604)은 샘플(112)의 형상을 적어도 부분적으로 보상하도록 선택된 샘플(112)로 지향된 조명 빔(106)의 수정된 각도 프로파일로 생성되었다. 도 6a에서 알 수 있는 바와 같이, X 방향을 따르는 위상 맵(602)은 2개의 프린지를 보이고, Y 방향을 따르는 위상 맵(604)은 3개의 프린지를 보인다. 따라서, 조명 빔(106)의 각도 프로파일은 샘플(112)과 완벽하게 매칭되지 않지만, 샘플(112) 상의 시준된 조명 빔(106)에 비해 프린지들의 수를 감소시킬 수 있다.
일 실시예에서, 조정가능한 광학 요소들(114)의 구성은 측정된 대략적인 표면 프로파일 측정에 기초하여 선택된다. 이러한 선택된 구성은 다양한 이유로 위상 맵들(602, 604) 내의 프린지들을 완전히 제거하지 못할 수 있다. 예를 들어, 대략적인 표면 프로파일 측정을 제공하는 대략적인 표면 프로파일러(154)는 전단 간섭계(102)와 동일한 해상도를 갖지 않을 수 있고, 따라서 샘플(112)의 상부 표면(116)의 정확한 형상은 대략적인 표면 프로파일 측정에 기초하여 알려지지 않을 수 있다. 다른 예로서, 프린지들을 완전히 제거하기 위해 조정가능한 광학 요소들(114)의 정확한 구성을 결정하는 것은 비실용적일 수 있다. 그러나, 아래에 도시된 바와 같이, 샘플(112) 상의 조명 빔(106)의 수정된 각도 프로파일에 기초하는 프린지들의 완전한 제거가 필요하지 않을 수 있다.
도 6b는 본 개시의 하나 이상의 실시예에 따른, 오프셋 분포(예컨대,
Figure pct00054
) 및 마운트 유도 뒤틀림(예컨대,
Figure pct00055
)의 기여들과 관련된 X 방향을 따른 예측된 위상 맵(606) 및 Y 방향을 따른 예측된 위상 맵(608)이다. 예를 들어, 도 6b의 위상 맵들(606, 608)은 조정가능 광학 요소들(114)의 선택된 구성과 관련된 유도된 오프셋 분포(
Figure pct00056
), 조정가능 광학 요소들(114)의 선택된 구성과 관련된 광학 수차들(
Figure pct00057
), 및 마운트 유도 뒤틀림(
Figure pct00058
)으로부터의 기여들에 대응할 수 있다.
도 6c는 본 개시의 하나 이상의 실시예에 따른, 도 6b의 예측된 위상 맵들(606, 608)으로 도 6a의 측정된 위상 맵들(602, 604)을 보상함으로써 생성되는 것과 관련된 X 방향을 따른 보상된 위상 맵(610) 및 Y 방향을 따른 보상된 위상 맵(612)이다. 도 6c에서, 프린지들과 관련된 불연속성들은 주로, 보상된 위상 맵들(610, 612)에서 완전히 제거되지 않는 경우에 존재한다.
도 6d는 본 개시의 하나 이상의 실시예에 따른 X 방향을 따른 언랩핑된 위상 맵(614) 및 Y 방향을 따른 언랩핑된 위상 맵(616)이다. 예를 들어, 도 6d의 언랩핑된 위상 맵들(614, 616)은 도 6c의 보상된 위상 맵들(610, 612)에 위상 언랩핑 기술을 적용함으로써 생성될 수 있다. 따라서, 언랩핑된 위상 맵들(614, 616)의 위상 정보는 샘플(112)의 상부 표면(116)의 토포그래피 정보(예를 들어, 표면 경사, 표면 프로파일 등)에 맵핑될 수 있다.
또한, 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 수정하는 것 및/또는 후속 처리는 일부 경우들에서 위상 언랩핑 단계를 불필요하게 만들 수 있는 것이 사실일 수 있다. 더 일반적으로, 위상 사이클들과 관련된 불연속성들의 수(및 일반적으로 위상 변화)를 감소시키는 것은 위상 언랩핑 프로세스를 간소화할 수 있고, 위상 업랩핑 프로세스에서의 잠재적인 에러들을 추가로 최소화 또는 감소시킬 수 있으며, 이는 출력 표면 프로파일 측정의 정확도를 증가 또는 최대화하는 효과를 가질 수 있다.
다시 도 4를 참조하면, 샘플(112)로 지향되는 조명 빔(106)의 각도 프로파일은 조정가능 광학 요소들(114)의 정의된 구성들의 세트와 관련된 교정된 각도 프로파일들의 세트로부터 선택함으로써 조정될 수 있다.
도 7은 본 개시의 하나 이상의 실시예에 따른, 샘플(112) 상의 조명 빔(106)의 각도 프로파일을 조정하는 것과 관련된 하위 단계들(418)을 예시하는 흐름도이다. 예를 들어, 하위 단계들(418)은 위의 방법(400)의 단계 404와 관련될 수 있다.
일 실시예에서, 단계 404는 빔 성형기(108)의 하나 이상의 조정 가능한 광학 요소(114)의 교정된 구성들의 세트와 관련된 조명 빔(106)의 교정된 각도 프로파일들의 세트를 수신하는 하위 단계 420을 포함한다. 또한, 하나 이상의 조정가능한 광학 요소(114)의 구성을 조정하는 것은 검출기(130) 또는 애퍼처(214)와 같은, 그러나 이에 제한되지 않는 측정 채널들(110) 내의 추가 요소들의 위치들에 대한 대응하는 조정들을 필요로 할 수 있는 것이 사실일 수 있다. 이 경우에, 측정 채널들(110) 내의 추가 요소들의 위치들에 대한 대응하는 조정들은 하위 단계 420에서 교정된 구성들의 세트와 관련될 수 있다.
또한, 빔 성형기(108)의 하나 이상의 조정 가능한 광학 요소(114)의 교정된 구성들의 세트와 관련된 조명 빔(106)의 교정된 각도 프로파일들의 세트는 다양한 기술들에 기초하여 생성될 수 있다. 예를 들어, 교정된 구성들의 세트는 위치들의 범위에 걸친 하나 이상의 조정가능한 광학 요소(114)의 체계적인 변화들에 대응할 수 있다. 다른 예로서, 교정된 구성들의 세트의 적어도 일부는 샘플(112) 내의 새그 또는 휨에 대한 적어도 부분적인 보상을 제공하는 공지된 구성들에 대응할 수 있다. 예를 들어, 본 명세서에서 전술한 바와 같이, 샘플(112)의 왜곡은 샘플 홀더에 의해 유도된 새그 또는 휨에 의해 적어도 부분적으로 유발될 수 있다. 따라서, 교정된 구성들의 세트의 적어도 일부는 샘플(112)의 알려진 또는 예상된 새그 또는 휨을 적어도 부분적으로 보상할 수 있다.
다른 실시예에서, 단계 404는 시준된 상태로부터의 반사된 광(122)의 편차들을 적어도 부분적으로 보상하기 위해 교정된 각도 프로파일들의 세트 중 하나의 각도 프로파일을 선택하는 하위 단계 422를 포함한다. 예를 들어, 교정된 각도 프로파일들의 세트 중의 각도 프로파일은 본 명세서에서 이전에 설명된 바와 같이 대략적인 표면 프로파일 측정에 기초할 수도 있지만, 그것이 요구되지는 않는다. 다른 실시예에서, 단계 404는 선택된 각도 프로파일을 제공하기 위해 하나 이상의 조정가능한 광학 요소(114)의 구성을 교정된 구성들의 세트 중의 교정된 구성으로 조정하는 하위 단계 424를 포함한다. 또한, 하위 단계 424는 선택된 교정된 구성에 기초하여 측정 채널들(110) 내의 추가 요소들의 위치들을 조정하는 것을 포함할 수 있다.
본 명세서에 설명된 방법들 전부는 방법 실시예들의 하나 이상의 단계의 결과들을 메모리에 저장하는 단계를 포함할 수 있다. 결과들은 본 명세서에 설명된 결과들 중 임의의 것을 포함할 수 있고, 이 분야에 공지된 임의의 방식으로 저장될 수 있다. 메모리는 본 명세서에 설명된 임의의 메모리 또는 이 분야에 공지된 임의의 다른 적절한 저장 매체를 포함할 수 있다. 결과들이 저장된 후에, 결과들은 메모리에서 액세스될 수 있고, 본 명세서에 설명된 방법 또는 시스템 실시예들 중 임의의 것에 의해 사용되고, 사용자에게 디스플레이하기 위해 포맷팅되고, 다른 소프트웨어 모듈, 방법, 또는 시스템에 의해 사용되고, 기타 등등일 수 있다. 또한, 결과들은 "영구적으로", "반영구적으로", "일시적으로", 또는 소정 기간 동안 저장될 수 있다. 예를 들어, 메모리는 랜덤 액세스 메모리(RAM)일 수 있고, 결과들은 반드시 메모리에 무기한 유지되지는 않을 수 있다.
전술한 방법의 실시예들 각각은 본 명세서에 설명된 임의의 다른 방법(들)의 임의의 다른 단계(들)를 포함할 수 있다는 것이 추가로 고려된다. 또한, 전술한 방법의 실시예들 각각은 본 명세서에 설명된 시스템들 중 임의의 것에 의해 수행될 수 있다.
이 분야의 기술자는 본 명세서에 설명된 컴포넌트들, 동작들, 디바이스들, 객체들, 및 이들에 수반된 논의가 개념적 명확성을 위한 예들로서 사용되고, 다양한 구성 수정들이 고려된다는 것을 인식할 것이다. 결과적으로, 본 명세서에서 사용되는 바와 같이, 제시된 특정 예들 및 수반된 논의는 그들의 더 일반적인 클래스들을 나타내도록 의도된다. 일반적으로, 임의의 특정 예의 사용은 그의 클래스를 나타내도록 의도되고, 특정 컴포넌트들, 동작들, 디바이스들, 및 객체들의 비-포함은 제한하는 것으로 간주되어서는 안 된다.
본 명세서에서 사용되는 바와 같이, "상부", "하부", "앞", "뒤", "위", "아래", "상위", "상향", "하위", "아래", 및 "하향"과 같은 방향 용어들은 설명의 목적들을 위한 상대적 위치들을 제공하도록 의도되고, 절대적인 기준 프레임을 지정하도록 의도되지 않는다. 설명된 실시예들에 대한 다양한 수정들이 이 분야의 기술자들에게 명백할 것이며, 본 명세서에 정의된 일반적인 원리들은 다른 실시예들에 적용될 수 있다.
본 명세서에서의 실질적으로 임의의 복수 및/또는 단수 용어들의 사용과 관련하여, 이 분야의 기술자들은 상황 및/또는 응용에 적절한 바와 같이 복수로부터 단수로 그리고/또는 단수로부터 복수로 변환할 수 있다. 다양한 단수/복수 교환들은 명료화를 위하여 본 명세서에서 명시적으로 제시되지 않는다.
본 명세서에 설명된 주제는 때때로 다른 컴포넌트들 내에 포함되거나 다른 컴포넌트들과 접속되는 상이한 컴포넌트들을 예시한다. 이러한 설명된 아키텍처들은 단지 예시적인 것이고, 실제로 동일한 기능을 달성하는 많은 다른 아키텍처가 구현될 수 있다는 것을 이해해야 한다. 개념적 의미에서, 동일한 기능을 달성하기 위한 컴포넌트들의 임의의 배열은 원하는 기능이 달성되도록 효과적으로 "관련"된다. 그러므로, 하나의 특정 기능을 달성하도록 조합된 본 명세서의 임의의 2개의 컴포넌트는 아키텍처들 또는 중간 컴포넌트들에 관계없이 원하는 기능이 달성되도록 서로 "관련되는" 것으로 간주될 수 있다. 마찬가지로, 그렇게 관련된 임의의 2개의 컴포넌트는 또한, 원하는 기능을 달성하기 위해 서로 "접속" 또는 "결합"되는 것으로 간주될 수 있고, 그렇게 관련될 수 있는 임의의 2개의 컴포넌트는 또한, 원하는 기능을 달성하기 위해 서로 "결합가능한" 것으로 간주될 수 있다. 결합가능한 특정 예들은 물리적으로 짝을 이룰 수 있고/있거나 물리적으로 상호작용하는 컴포넌트들 및/또는 무선으로 상호작용 가능하고/하거나 무선으로 상호작용하는 컴포넌트들 및/또는 논리적으로 상호작용하고/하거나 논리적으로 상호작용 가능한 컴포넌트들을 포함하지만 이들로 제한되지 않는다.
또한, 본 발명은 첨부된 청구범위에 의해 정의된다는 것을 이해해야 한다. 일반적으로, 본 명세서에서, 특히 첨부된 청구범위(예를 들어, 첨부된 청구범위의 본문들)에서 사용된 용어들은 일반적으로 "개방적인" 용어들로서 의도된 것임을 이 분야의 기술자들은 이해할 것이다(예를 들어, 용어 "포함하는"은 "~을 포함하지만 이것으로 제한되지 않는"으로서 해석되어야 하고, 용어 "갖는"은 "적어도 ~을 갖는"으로서 해석되어야 하고, 용어 "포함한다"는 "~을 포함하지만 이것으로 제한되지 않는다"로서 해석되어야 하고, 기타 등등이다). 특정 수의 소개된 청구항 기재가 의도될 경우, 그러한 의도는 청구항에서 명시적으로 기재될 것이고, 그러한 기재의 부재 시에는 그러한 의도가 존재하지 않는다는 것이 이 분야의 기술자들에 의해 더 이해될 것이다. 예로서, 이해를 돕기 위해, 이하의 첨부된 청구범위는 청구항 기재들을 소개하기 위해 소개 어구들 "적어도 하나" 및 "하나 이상"의 사용을 포함할 수 있다. 그러나, 이러한 어구들의 사용은, 부정 관사 "하나(a 또는 an)"에 의한 청구항 기재의 소개가 그렇게 소개된 청구항 기재를 포함하는 어떤 특정 청구항을, 동일한 청구항이 소개 어구 "하나 이상" 또는 "적어도 하나" 및 "하나(a 또는 an)"과 같은 부정 관사를 포함하더라도, 단 하나의 그러한 기재만을 포함하는 발명들로 제한한다는 것을 암시하는 것으로 해석되어서는 안 되고(예를 들어, 부정 관사 "하나(a 및/또는 an)"는 통상적으로 "적어도 하나" 또는 "하나 이상"을 의미하는 것으로 해석되어야 함); 이는 청구항 기재를 소개하는 데 사용되는 정관사의 사용에 대해서도 마찬가지이다. 게다가, 특정 수의 소개된 청구항 기재가 명시적으로 기재되더라도, 이 분야의 기술자들은 이러한 기재가 적어도 기재된 수를 의미하도록 통상적으로 해석되어야 한다는 것을 인식할 것이다(예컨대, "2개의 기재"의 드러낸 기재는 다른 수식어들이 없다면, 적어도 2개의 기재, 또는 2개 이상의 기재를 통상적으로 의미함). 또한, "A, B, 및 C 등 중 적어도 하나"와 유사한 규약이 사용되는 사례들에서, 일반적으로 그러한 구성은 이 분야의 기술자가 규약을 이해할 것이라는 의미로 의도된다(예를 들어, "A, B, 및 C 중 적어도 하나를 갖는 시스템"은 A만, B만, C만, A 및 B 함께, A 및 C 함께, B 및 C 함께, 및/또는 A, B, 및 C 함께 등을 갖는 시스템들을 포함하지만 이에 제한되지 않을 것이다). "A, B, 또는 C 등 중의 적어도 하나"와 유사한 규약이 사용되는 경우들에서, 일반적으로 이러한 구성은 이 분야의 기술자가 그러한 규약을 이해할 것이라는 의미로 의도된다(예를 들어, "A, B, 또는 C 중 적어도 하나를 갖는 시스템"은 A만, B만, C만, A 및 B 함께, A 및 C 함께, B 및 C 함께, 및/또는 A, B, 및 C 함께 등을 갖는 시스템들을 포함하지만 이에 제한되지 않을 것이다). 또한, 2개 이상의 대안적 용어를 제시하는 사실상 임의의 분리성 단어 및/또는 어구는 상세한 설명, 청구범위, 또는 도면들에 관계없이 용어들 중 하나, 용어들 중 어느 하나, 또는 용어들 모두를 포함할 가능성을 고려하는 것으로 이해되어야 한다는 것을 이 분야의 기술자들은 이해할 것이다. 예를 들어, 어구 "A 또는 B"는, "A", 또는 "B", 또는 "A와 B"의 가능성을 포함하는 것으로 이해될 것이다.
본 개시 및 그에 수반되는 이점들 중 다수가 위의 설명에 의해 이해될 것으로 생각되며, 개시된 주제를 벗어나지 않거나 그의 중요한 이점들 모두를 희생시키지 않고, 컴포넌트들의 형태, 구성 및 배열에서 다양한 변경이 행해질 수 있다는 것이 명백할 것이다. 설명된 형태는 단지 설명을 하기 위한 것이며, 다음의 청구범위는 이러한 변경들을 포괄하고 포함하는 것으로 의도된다. 또한, 본 발명은 첨부된 청구범위에 의해 정의된다는 것을 이해해야 한다.

Claims (28)

  1. 계측 도구로서,
    조명 빔을 생성하도록 구성된 조명 소스;
    상기 조명 빔을 샘플로 지향시키도록 구성된 하나 이상의 조정가능한 광학 요소를 포함하는 빔 성형기;
    상기 빔 성형기를 통해 상기 샘플로부터 반사된 광을 수신하고, 상기 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램(shearing interferogram)을 생성하도록 구성된 하나 이상의 측정 채널 - 상기 반사된 광은, 상기 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 상기 샘플의 상부 표면이 상기 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있음 -; 및
    상기 빔 성형기 및 상기 하나 이상의 측정 채널에 통신가능하게 결합된 제어기를 포함하고,
    상기 제어기는 프로그램 명령어들을 실행하도록 구성된 하나 이상의 프로세서를 포함하고, 상기 프로그램 명령어들은 상기 하나 이상의 프로세서로 하여금:
    상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하고;
    상기 하나 이상의 전단 인터페로그램에 기초하여 상기 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성하게 하는, 계측 도구.
  2. 제1항에 있어서, 상기 출력 표면 프로파일 측정은 상기 샘플 상의 상기 조명 빔의 선택된 각도 프로파일과 관련된 유도된 오프셋 분포를 포함하는, 계측 도구.
  3. 제1항에 있어서, 상기 출력 표면 프로파일 측정은 상기 샘플 상의 상기 조명 빔의 선택된 각도 프로파일과 관련된 유도된 오프셋 분포를 제거하도록 보상되는, 계측 도구.
  4. 제1항에 있어서, 상기 하나 이상의 프로세서는, 상기 하나 이상의 프로세서로 하여금:
    샘플 마운트 상의 상기 샘플의 배치와 관련된 뒤틀림(distortion)으로 인한 상기 샘플의 마운트 오프셋 분포를 결정하게 하는 프로그램 명령어들을 실행하도록 또한 구성되고, 상기 출력 표면 프로파일 측정은 상기 마운트 오프셋 분포를 제거하도록 보상되는, 계측 도구.
  5. 제4항에 있어서, 상기 샘플 마운트 상의 샘플의 배치와 관련된 뒤틀림으로 인한 상기 샘플의 마운트 오프셋 분포를 결정하는 것은:
    상기 샘플의 알려진 특성들 및 상기 샘플과의 상기 샘플 마운트의 알려진 접촉점들에 기초하여 상기 마운트 오프셋 분포를 계산하는 것을 포함하는, 계측 도구.
  6. 제4항에 있어서, 상기 샘플 마운트 상의 샘플의 배치와 관련된 뒤틀림으로 인한 상기 샘플의 마운트 오프셋 분포를 결정하는 것은:
    상기 샘플의 형상 또는 두께 중 적어도 하나 및 상기 샘플과의 상기 샘플 마운트의 알려진 접촉점들에 기초하는 탐색표를 사용하여 상기 마운트 오프셋 분포의 적어도 일부를 결정하는 것을 포함하는, 계측 도구.
  7. 제1항에 있어서, 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    상기 샘플의 상부 표면 또는 상기 샘플의 하부 표면 중 적어도 하나의 대략적인(coarse) 표면 프로파일 측정을 수신하는 것 - 상기 대략적인 표면 프로파일 측정은 상기 하나 이상의 측정 채널보다 더 큰 측정 범위를 가짐 -; 및
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것을 포함하는, 계측 도구.
  8. 제7항에 있어서, 상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 교정된 구성들의 세트와 관련된 상기 조명 빔의 교정된 각도 프로파일들의 세트를 수신하는 것;
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 교정된 각도 프로파일들의 세트 중 하나의 각도 프로파일을 선택하는 것; 및
    상기 하나 이상의 조정가능한 광학 요소의 구성을 상기 교정된 구성들의 세트 중의 교정된 구성으로 조정하여 상기 선택된 각도 프로파일을 제공하는 것을 포함하는, 계측 도구.
  9. 제7항에 있어서, 상기 대략적인 표면 프로파일 측정은 상기 샘플의 상부 표면의 표면 프로파일 또는 상기 샘플의 두께 중 적어도 하나의 측정에 기초하는, 계측 도구.
  10. 제7항에 있어서, 상기 대략적인 표면 프로파일 측정은 상기 샘플의 하부 표면의 표면 프로파일 또는 상기 샘플의 두께 중 적어도 하나의 측정에 기초하는, 계측 도구.
  11. 제10항에 있어서, 상기 샘플의 두께는 알려진 것, 측정된 것, 가정된 것, 중 적어도 하나인, 계측 도구.
  12. 제1항에 있어서, 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    상기 하나 이상의 조정가능한 광학 요소의 구성을 후보 구성들의 세트로 순차적으로 조정하는 것;
    상기 하나 이상의 전단 인터페로그램 또는 상기 출력 표면 프로파일 측정 중 적어도 하나를 모니터링하는 것;
    상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기에 적합한 상기 후보 구성들의 세트 중의 구성을 식별하는 것; 및
    상기 하나 이상의 조정가능한 광학 요소의 구성을 상기 식별된 구성으로 조정하는 것을 포함하는, 계측 도구.
  13. 제1항에 있어서, 상기 하나 이상의 조정가능한 광학 요소의 구성은:
    상기 빔 성형기의 광학 축을 따른 상기 하나 이상의 조정가능한 광학 요소의 위치를 포함하는, 계측 도구.
  14. 제1항에 있어서, 상기 하나 이상의 조정가능한 광학 요소 중 적어도 하나는:
    렌즈를 포함하는, 계측 도구.
  15. 제1항에 있어서, 상기 하나 이상의 조정가능한 광학 요소 중 적어도 하나는:
    필드 스톱 또는 퓨필 스톱 중 적어도 하나를 포함하는, 계측 도구.
  16. 제1항에 있어서, 상기 조명 소스는 레이저인, 계측 도구.
  17. 제16항에 있어서, 상기 레이저는 헬륨-네온 레이저인, 계측 도구.
  18. 제1항에 있어서, 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    하나 이상의 제어 신호를 상기 빔 성형기에 제공하는 것을 포함하는, 계측 도구.
  19. 계측 도구로서,
    전단 간섭계 - 상기 전단 간섭계는:
    조명 빔을 생성하도록 구성된 조명 소스;
    상기 조명 빔을 샘플로 지향시키도록 구성된 하나 이상의 조정가능한 광학 요소를 포함하는 빔 성형기; 및
    상기 빔 성형기를 통해 상기 샘플로부터 반사된 광을 수신하고, 상기 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램을 생성하도록 구성된 하나 이상의 측정 채널을 포함하고, 상기 반사된 광은, 상기 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 상기 샘플의 상부 표면이 상기 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있음 -;
    상기 샘플의 상부 표면의 대략적인 표면 프로파일 측정을 생성하도록 구성된 하나 이상의 프로파일링 센서를 포함하는 대략적인 표면 프로파일러 - 상기 대략적인 표면 프로파일 측정은 상기 하나 이상의 측정 채널보다 더 큰 측정 범위를 가짐 -; 및
    상기 빔 성형기 및 상기 하나 이상의 측정 채널에 통신가능하게 결합된 제어기를 포함하고,
    상기 제어기는 프로그램 명령어들을 실행하도록 구성된 하나 이상의 프로세서를 포함하고, 상기 프로그램 명령어들은 상기 하나 이상의 프로세서로 하여금:
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하고;
    상기 하나 이상의 전단 인터페로그램에 기초하여 상기 샘플의 상부 표면의 출력 표면 프로파일 측정을 생성하게 하는, 계측 도구.
  20. 제19항에 있어서, 상기 하나 이상의 프로파일링 센서는:
    간섭계 두께 센서, 공동 포커스 두께 센서, 또는 샤크-하트만 센서 중 적어도 하나를 포함하는, 계측 도구.
  21. 제19항에 있어서, 상기 샘플은 회전 병진 스테이지에 장착되고, 상기 하나 이상의 프로파일링 센서는 선형 병진 스테이지에 장착된 하나 이상의 프로파일링 센서를 포함하고, 상기 하나 이상의 프로파일링 센서는 상기 샘플이 상기 회전 병진 스테이지 상에서 회전됨에 따라 복수의 측정을 제공하고, 상기 하나 이상의 프로파일링 센서는 상기 선형 병진 스테이지에 의해 병진되는, 계측 도구.
  22. 제19항에 있어서, 상기 대략적인 표면 프로파일러는 샘플 정렬 시스템에 통합되는, 계측 도구.
  23. 제22항에 있어서, 상기 샘플은 제1 테스트 샘플이고, 상기 샘플 정렬 시스템은, 추가의 테스트 샘플이 상기 전단 간섭계 상에 위치할 때 상기 제1 테스트 샘플의 대략적 측정을 생성함으로써 버퍼로서 동작하도록 구성되는, 계측 도구.
  24. 제19항에 있어서, 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    상기 샘플의 상부 표면 또는 상기 샘플의 하부 표면 중 적어도 하나의 대략적인 표면 프로파일 측정을 수신하는 것 - 상기 대략적인 표면 프로파일 측정은 상기 하나 이상의 측정 채널보다 더 큰 측정 범위를 가짐 -; 및
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것을 포함하는, 계측 도구.
  25. 제24항에 있어서, 상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 것은:
    상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 교정된 구성들의 세트와 관련된 상기 조명 빔의 교정된 각도 프로파일들의 세트를 수신하는 것;
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 교정된 각도 프로파일들의 세트 중 하나의 각도 프로파일을 선택하는 것; 및
    상기 하나 이상의 조정가능한 광학 요소의 구성을 상기 교정된 구성들의 세트 중의 교정된 구성으로 조정하여 상기 선택된 각도 프로파일을 제공하는 것을 포함하는, 계측 도구.
  26. 제24항에 있어서, 상기 대략적인 표면 프로파일 측정은 상기 샘플의 상부 표면의 표면 프로파일 또는 상기 샘플의 두께 중 적어도 하나의 측정에 기초하는, 계측 도구.
  27. 제24항에 있어서, 상기 대략적인 표면 프로파일 측정은 상기 샘플의 하부 표면의 표면 프로파일 또는 상기 샘플의 두께 중 적어도 하나의 측정에 기초하는, 계측 도구.
  28. 계측 방법으로서,
    대략적인 표면 프로파일러로 샘플의 상부 표면의 대략적인 표면 프로파일 측정을 수행하는 단계;
    상기 샘플을 전단 간섭계에 배치하는 단계 - 상기 전단 간섭계는:
    조명 빔을 생성하도록 구성된 조명 소스;
    상기 조명 빔을 상기 샘플로 지향시키도록 구성된 하나 이상의 조정가능한 광학 요소를 포함하는 빔 성형기; 및
    상기 빔 성형기를 통해 상기 샘플로부터 반사된 광을 수신하고, 상기 반사된 광에 기초하여 하나 이상의 검출기 상에 하나 이상의 전단 인터페로그램을 생성하도록 구성된 하나 이상의 측정 채널을 포함하고, 상기 반사된 광은, 상기 하나 이상의 조정가능한 광학 요소가 디폴트 구성으로 되어 있고 상기 샘플의 상부 표면이 상기 빔 성형기의 광학 축에 직교할 때, 시준된 상태에 있음 -;
    상기 대략적인 표면 프로파일 측정에 기초하여 상기 시준된 상태로부터의 상기 반사된 광의 편차들을 적어도 부분적으로 보상하기 위해 상기 샘플 상에 상기 조명 빔의 선택된 각도 프로파일을 제공하도록 상기 빔 성형기의 하나 이상의 조정가능한 광학 요소의 구성을 조정하는 단계; 및
    상기 하나 이상의 전단 인터페로그램에 기초하여 상기 샘플의 상부 표면의 표면 프로파일 측정을 생성하는 단계를 포함하는 계측 방법.
KR1020207035150A 2020-10-13 2020-10-23 고도로 왜곡된 샘플의 표면 프로파일 측정 KR20230085956A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063091171P 2020-10-13 2020-10-13
US63/091,171 2020-10-13
US202063094156P 2020-10-20 2020-10-20
US63/094,156 2020-10-20
PCT/US2020/056945 WO2022081178A1 (en) 2020-10-13 2020-10-23 Surface profile measurements of highly warped samples

Publications (1)

Publication Number Publication Date
KR20230085956A true KR20230085956A (ko) 2023-06-15

Family

ID=81209271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207035150A KR20230085956A (ko) 2020-10-13 2020-10-23 고도로 왜곡된 샘플의 표면 프로파일 측정

Country Status (6)

Country Link
JP (1) JP2023547353A (ko)
KR (1) KR20230085956A (ko)
CN (1) CN114631001A (ko)
DE (1) DE112020007442T5 (ko)
TW (1) TW202227807A (ko)
WO (1) WO2022081178A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117739837B (zh) * 2024-02-19 2024-05-07 法博思(宁波)半导体设备有限公司 一种基于衍射元件的对射光谱共焦测厚系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7966135B2 (en) * 2004-06-01 2011-06-21 California Institute Of Technology Characterizing curvatures and stresses in thin-film structures on substrates having spatially non-uniform variations
US8913236B2 (en) * 2011-08-30 2014-12-16 Corning Incorporated Method and device for measuring freeform surfaces
EP2977720B1 (en) * 2014-07-25 2019-06-05 Mitutoyo Corporation A method for measuring a high accuracy height map of a test surface
US9784570B2 (en) 2015-06-15 2017-10-10 Ultratech, Inc. Polarization-based coherent gradient sensing systems and methods
NL2017881B1 (en) * 2015-12-18 2017-10-17 Ultratech Inc Full-wafer inspection methods having selectable pixel density
EP3382331A1 (en) * 2017-03-30 2018-10-03 Technische Universität München A method and device for obtaining a phase shifted shearogram for shearography

Also Published As

Publication number Publication date
WO2022081178A1 (en) 2022-04-21
DE112020007442T5 (de) 2023-05-11
TW202227807A (zh) 2022-07-16
JP2023547353A (ja) 2023-11-10
CN114631001A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
JP6542356B2 (ja) レンズ及びレンズ金型の光学評価
US9103649B2 (en) In situ calibration of interferometers
WO2006091415A2 (en) Scanning interferometer for aspheric surfaces and wavefronts
JP5971965B2 (ja) 面形状計測方法、面形状計測装置、プログラム、および、光学素子の製造方法
CN107850555B (zh) 使用静态条纹图案的干涉法滚降测量
US20100309458A1 (en) Asphere measurement method and apparatus
US7388675B2 (en) Interferometers for the measurement of large diameter thin wafers
TW201825864A (zh) 用於圖案化半導體特徵之特徵化的掃描白光干涉測量系統
US6552806B1 (en) Automated minimization of optical path difference and reference mirror focus in white-light interference microscope objective
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
US20220170735A1 (en) Diffractive optical element for a test interferometer
US6674521B1 (en) Optical method and system for rapidly measuring relative angular alignment of flat surfaces
TWI570397B (zh) 透鏡和透鏡模具的光學評估技術
KR20230085956A (ko) 고도로 왜곡된 샘플의 표면 프로파일 측정
US7042578B2 (en) Method and apparatus for absolute figure metrology
US7340962B2 (en) Method and device for holding subject and measuring instrument equipped with the device
EP3586189B1 (en) Measurement of a change in a geometrical characteristic and/or position of a workpiece
TWI596325B (zh) 決定物體或透明光學元件的資訊的方法與系統以及形成光學組件方法
Rose et al. Specific design requirements for a reliable slope and curvature measurement standard
JP2001227929A (ja) 角度測定方法及び角度測定装置
JP2003035526A (ja) 透過型ゾーンプレート、反射型ゾーンプレート、形状測定方法、干渉測定装置、及び投影光学系の製造方法
JP2010054348A (ja) 収差測定誤差補正方法
JP2011247736A (ja) 被検曲面形状測定装置
Knight Jr Measurement of cylindrical parts
Bazan da Silva et al. A Fizeau Interferometry Stitching System to Characterize X-Ray Mirrors with Sub-Nanometre Errors