KR20230083773A - 전기차용 복합 열교환기 - Google Patents

전기차용 복합 열교환기 Download PDF

Info

Publication number
KR20230083773A
KR20230083773A KR1020210172080A KR20210172080A KR20230083773A KR 20230083773 A KR20230083773 A KR 20230083773A KR 1020210172080 A KR1020210172080 A KR 1020210172080A KR 20210172080 A KR20210172080 A KR 20210172080A KR 20230083773 A KR20230083773 A KR 20230083773A
Authority
KR
South Korea
Prior art keywords
heat exchanger
refrigerant
heat exchange
header tank
composite heat
Prior art date
Application number
KR1020210172080A
Other languages
English (en)
Inventor
이상욱
신현근
임홍영
고광옥
신성홍
이종찬
한지훈
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to KR1020210172080A priority Critical patent/KR20230083773A/ko
Priority to PCT/KR2022/019595 priority patent/WO2023101535A1/ko
Priority to DE112022002950.1T priority patent/DE112022002950T5/de
Publication of KR20230083773A publication Critical patent/KR20230083773A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0452Combination of units extending one behind the other with units extending one beside or one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 전기차용 복합 열교환기에 관한 것이다. 본 발명의 목적은 복수 개의 열교환매체가 영역별로 유통되게 하는 일체형의 복합 열교환기에 있어서, 일체화에 의한 부품개수 및 공정개수 저감, 냉매 흐름특성 향상, 냉방효율 향상 등의 효과를 얻음과 더불어, 일체화에 의해 발생되는 열응력 집중 문제를 영역경계 부분의 형상 개선을 통해 해소하는, 전기차용 복합 열교환기를 제공함에 있다.

Description

전기차용 복합 열교환기 {Combined heat exchanger for electric vehicle}
본 발명은 복합 열교환기에 관한 것으로, 보다 상세하게는 전기차의 공조시스템에서 응축기, 리시버드라이어 및 라디에이터가 일체화된 복합 열교환기에 관한 것이다.
일반적으로 차량의 엔진 룸 내에는 엔진 등과 같은 구동을 위한 부품뿐만 아니라, 엔진 등과 같은 차량 내 각 부품을 냉각하거나 또는 차량 실내의 공기 온도를 조절하기 위한 라디에이터, 인터쿨러, 증발기, 응축기 등과 같은 다양한 열교환기들이 구비된다. 이와 같은 열교환기들은 일반적으로 내부에 열교환매체가 유통하며, 열교환기 내부의 열교환매체와 열교환기 외부의 공기가 서로 열교환함으로써 냉각 또는 방열이 이루어지게 된다.
응축기는 차량 공조시스템에서의 메인 냉동사이클에서 응축을 담당하는 열교환기로서, 고온 고압의 기체상태의 냉매를 액체상태로 응축시키는 역할을 한다. 한편 라디에이터는 구동장치를 냉각하도록 열을 흡수하여 고온이 된 냉각수를 외기와 열교환시켜 냉각하는 역할을 한다. 이처럼 응축기나 라디에이터 모두 상대적으로 고온환경을 형성하기 때문에, 쿨링모듈 구성 시 응축기와 라디에이터가 전후방향으로 나란하게 병렬 배치되는 경우가 많다. 도 1은 쿨링모듈의 일부를 도시한 것으로, 응축기(1) 및 라디에이터(2)가 전후방향으로 나란하게 밀착 병렬 배치되어 있는 것을 확인할 수 있다. 한편 구동장치가 내연기관인 경우에는 냉각수의 온도가 상당히 높은 반면, 구동장치가 전기모터인 경우에는 내연기관보다 발열량이 훨씬 적기 때문에 냉각수의 온도가 상대적으로 낮다. 따라서 특히 전기차인 경우에는 작동온도범위가 서로 상당히 가까워지기 때문에, 응축기 및 라디에이터를 복수 열의 열교환기로서 일체형으로 구성하기도 한다. 구동장치가 내연기관 및 전기모터를 모두 사용하는 하이브리드인 경우, 내연기관 및 전기모터 둘 다 냉각수로 냉각이 이루어지기는 하지만 내연기관용 냉각수가 전기모터용 냉각수보다 훨씬 고온이다. 따라서 고온 라디에이터 및 저온 라디에이터가 별도 운용되기도 하는데, 이러한 고온 라디에이터 및 저온 라디에이터 역시 복수 열의 열교환기로서 일체형으로 구성하는 경우도 있다.
이러한 열교환기, 즉 복수 열로 된 일체형 열교환기 상에서 서로 나뉘어진 영역들 각각에 작동온도범위가 다른 열교환매체들이 유통되게 하는 열교환기를 복합 열교환기라고 통칭한다. 이러한 복합 열교환기는 기본적으로 쿨링모듈의 부피를 줄여주기 때문에 엔진룸 공간활용성을 향상시켜 준다는 큰 장점이 있다. 뿐만 아니라, 동일한 복합 열교환기를 사용한다 하더라도, 영역별로 유통시키는 열교환매체를 사용자의 필요에 따라 냉매/냉각수, 고온냉각수/저온냉각수 등으로 다양하게 변경 적용이 가능하여, 호환성이 높다는 장점도 있다.
이러한 여러 장점에 의하여 복합 열교환기의 사용이 늘어가고 있으나, 복합 열교환기의 운용특성에 따른 단점도 있다. 상술한 바와 같이 복합 열교환기에서는 영역별로 열교환매체들 간의 작동온도범위가 다르게 형성된다. 이 때 각 열교환매체가 유통되는 영역들의 경계 부근에서 열교환기 소재의 열팽창정도의 차이로 열응력이 집중되는 문제가 발생한다. 이러한 열응력 집중 및 이에 따른 파손은 열교환기의 내구성 및 수명을 단축시키는 큰 원인이 되어, 이에 대한 대책이 필요하다.
한편 응축기에서는 고온 고압의 기체상태의 냉매가 유입되어 외부로 응축열을 발산하고 액체상태로 응축되어 배출된다. 응축기에서 배출된 액체상태의 냉매는 리시버드라이어로 이동하여 일시적으로 저장되었다가 냉방부하에 따라 필요량만큼이 팽창밸브로 전달되게 된다. 이 때 응축기에서 배출되는 냉매의 상태는 완벽한 액체상태라기보다는 기체와 액체가 혼합되어 있는 상태일 수 있으며, 이러한 상태로 팽창밸브로 전달될 경우 시스템효율이 저하될 우려가 있다. 이러한 문제를 해소하도록 리시버드라이어에는 액체상태의 냉매에 섞여있는 기포나 습기 등을 제거하기 위한 필터장치가 구비되는 것이 일반적이다. 한국특허등록 제2121816호("리시버 드라이어 캡필터 및 그 조립 방법", 2020.06.05.) 등에 이러한 리시버드라이어의 역할, 필터장치 구조 등이 잘 개시되어 있다.
도 1에 도시된 바와 같이, 리시버드라이어(3)는 응축기(1)와 독립적인 별물로 이루어지며, 이 경우 응축기(1)와의 연결을 위해 별도의 결합수단(4)이 필요하다. 이러한 결합수단(4) 자체가 전체적인 장치의 부품개수를 늘리는 원인이 되며, 물론 이런 식으로 구성될 경우 당연히 응축기(1) 및 리시버드라이어(3) 간 결합을 위한 조립공정이 필요해지므로 공정개수 또한 늘어나게 된다. 또한 응축기(1)가 복수 열로 구성된 열교환기 형태일 경우 응축기(1)로부터 리시버드라이어(3)로 냉매를 전달하기 위하여 별도의 파이프(5)가 구비되는데, 냉매가 불필요하게 길게 형성된 파이프(5)를 통과하는 과정에서 냉매의 압력강하량이 상승하는 문제도 있다. 더불어 종래에 리시버드라이어(3)는 내부에 구비되는 건조제 등의 교체가 불가능하게 되어 있어, 교체가 필요할 경우 리시버드라이어(3) 전체를 교체해야 하여 수리비용이 상승하는 문제도 있다.
1. 한국특허등록 제2121816호("리시버 드라이어 캡필터 및 그 조립 방법", 2020.06.05.)
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 복수 개의 열교환매체가 영역별로 유통되게 하는 일체형의 복합 열교환기에 있어서, 일체화에 의한 부품개수 및 공정개수 저감, 냉매 흐름특성 향상, 냉방효율 향상 등의 효과를 얻음과 더불어, 일체화에 의해 발생되는 열응력 집중 문제를 영역경계 부분의 형상 개선을 통해 해소하는, 전기차용 복합 열교환기를 제공함에 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 전기차용 복합 열교환기(100)는, 전후 2열로 복수 개 배치되는 튜브; 전체 튜브열의 양단에 연결되며, 내부에 격벽이 형성되어 유체유동공간이 전방공간 및 후방공간으로 구분되는 제1헤더탱크(141) 및 제2헤더탱크(142); 전방의 튜브열로 이루어지며 상기 제1, 2헤더탱크(141)(142)의 전방공간과 연통되는 전방코어(FC); 후방의 튜브열로 이루어지며 상기 제1, 2헤더탱크(141)(142)의 후방공간과 연통되는 후방코어(BC); 를 포함하며, 상기 전방코어(FC) 일부가 냉각수가 유통되는 제1열교환부(110)를 형성하고, 상기 전방코어(FC) 나머지 일부가 냉매가 유통되는 제2열교환부(120)를 형성하고, 상기 후방코어(BC)가 별도의 열교환매체가 유통되는 제3열교환부(130)를 형성할 수 있다.
이 때 상기 복합 열교환기(100)는, 상기 제2열교환부(120)가 냉매의 과냉이 이루어지는 냉매과냉영역(S)을 형성할 수 있다.
또한 상기 복합 열교환기(100)는, 상기 제1열교환부(110)가 상기 전방코어(FC) 상측 일부로 형성되고, 상기 제2열교환부(120)가 상기 전방코어(FC) 하측 일부로 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 상기 제1열교환부(110) 및 상기 제2열교환부(120)의 경계 위치에서 냉각수 및 냉매의 유체유동공간을 격리하도록, 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142) 내부에 배플(160)이 구비될 수 있다.
제1실시예로서, 상기 복합 열교환기(100)는, 상기 제1열교환부(110) 및 상기 제2열교환부(120)의 경계 위치에서 상기 배플(160)이 복수 개 구비되되, 복수 개의 상기 배플(160)은 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142)의 연장방향으로 이격되며, 이격된 복수 개의 상기 배플(160) 사이에 내부가 폐쇄된 더미튜브(DT)가 구비될 수 있다.
또한 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142)는, 범위에 따라 상대적으로 높이가 높은 부분인 고도부 및 상대적으로 높이가 낮은 부분인 저도부가 형성되되, 상기 제1열교환부(110)에 상응하는 범위에 상기 고도부가 포함되며, 상기 제2열교환부(120)에 상응하는 범위에 상기 저도부가 포함될 수 있다.
또한 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142)는, 상기 고도부 및 상기 저도부 사이에 연속적으로 높이가 경사지게 변화되는 경사부(145)가 형성되며, 상기 제1열교환부(110)에 상응하는 범위에 상기 고도부 및 상기 경사부(145)가 포함될 수 있다.
제2실시예로서, 상기 복합 열교환기(100)는, 상기 제3열교환부(130)에 냉매가 유통되며, 상기 제3열교환부(130)가 냉매의 응축이 이루어지는 냉매응축영역(C)을 형성할 수 있다.
또한 상기 복합 열교환기(100)는, 상기 제1헤더탱크(141)의 후방공간과 연통되는 리시버유입로(151) 및 상기 제1헤더탱크(141)의 전방공간과 연통되는 리시버배출로(152)를 포함하는 리시버드라이어(150); 를 포함하며, 상기 제2열교환부(120)가 형성하는 상기 냉매과냉영역(S) 및 상기 제3열교환부가 형성하는 상기 냉매응축영역(C)이 응축기(210)로서 형성되며, 상기 제1열교환부(110)가 냉각수의 냉각이 이루어지는 냉각수영역(W)을 형성하여 상기 냉각수영역(W)이 라디에이터(220)로서 형성되어, 상기 응축기(210), 상기 라디에이터(220), 상기 리시버드라이어(150)가 일체형으로 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 냉매가 상기 제2헤더탱크(142) 후방공간에 연통되는 냉매유입로(211)로 유입되어, 상기 제2헤더탱크(142) 후방공간으로부터 상기 후방코어(BC) 상의 상기 냉매응축영역(C)을 통과하여 상기 제1헤더탱크(141) 후방공간으로 전달되고, 상기 제1헤더탱크(141) 후방공간에서 상기 리시버유입로(151)를 통해 상기 리시버드라이어(150)를 통과하여 상기 리시버배출로(152)를 통해 상기 제1헤더탱크(141) 전방공간으로 전달되고, 상기 제1헤더탱크(141) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉매과냉영역(C)을 통과하여 상기 제2헤더탱크(142) 전방공간으로 전달되고, 상기 제2헤더탱크(142) 후방공간에 연통되는 냉매배출로(212)로 배출되도록 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 냉각수가 상기 제2헤더탱크(142) 전방공간에 연통되는 냉각수유입로(212)로 유입되어, 상기 제2헤더탱크(142) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉각수영역(W) 일부를 통과하여 상기 제1헤더탱크(141) 전방공간으로 전달되고, 상기 제1헤더탱크(141) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉각수영역(W) 나머지 일부를 통과하여 상기 제2헤더탱크(142) 전방공간으로 전달되고, 상기 제2헤더탱크(142) 전방공간에 연통되는 냉각수배출로(222)로 배출되도록 형성될 수 있다.
또한 상기 리시버배출로(152)는, 일측이 상기 리시버드라이어(150)의 전방측에 연결되며, 전방으로 연장된 후 수직으로 벤딩되어, 타측이 상기 제1헤더탱크(141)의 전방공간에 연결되도록 형성될 수 있다.
제3실시예로서, 상기 복합 열교환기(100)는, 상기 제3열교환부(130)에 냉각수가 유통되며, 상기 제1열교환부(110)에 유통되는 냉각수 및 상기 제3열교환부(130)에 유통되는 냉각수의 온도범위가 다르게 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 상기 제3열교환부(130)에 유통되는 냉각수 온도범위가 상기 제1열교환부(110)에 유통되는 냉각수의 온도범위보다 높게 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 상기 제2열교환부(120)에 외부응축기가 연결되어, 상기 외부응축기에서 응축된 냉매가 상기 제2열교환부(120)로 유입되어 냉매의 과냉이 이루어질 수 있다.
또한 상기 외부응축기는, 수냉식 응축기일 수 있다.
또한 상기 외부응축기는, 외부리시버드라이어와 일체형일 수 있다.
더불어 상기 리시버드라이어(150)는, 필터 및 건조제를 구비하는 필터모듈(155)이 착탈가능하게 형성될 수 있다.
또한 상기 리시버드라이어(150)는, 상기 리시버드라이어(150) 상의 냉매 유출입 경로가 상기 필터모듈(155)이 구비된 영역 범위 내에 형성될 수 있다.
또한 상기 복합 열교환기(100)는, 상기 튜브 사이에 개재되되, 상기 전방코어(FC) 상기 후방코어(BC)까지 연장되는 일체형 핀; 을 포함할 수 있다.
본 발명에 의하면, 복합 열교환기에 여러 열교환부를 형성하고 각각에 필요에 따라 적절하게 냉매 및 냉각수를 유통시킴으로써, 하나의 복합 열교환기를 다양하게 활용할 수 있는 큰 효과가 있다. 구체적으로는, 한 예로서 제1/2/3열교환부가 각각 냉각수 냉각/냉매 과냉/냉매 응축으로 활용될 수도 있고, 다른 예로서 제1/2/3열교환부가 각각 저온냉각수 냉각/냉매 과냉/고온냉각수 냉각으로 활용될 수도 있는 등, 사용자 필요에 따라 다양하게 활용 가능하여 엔진룸 내 공간활용성을 향상하면서 필요에 따른 최적의 장치배치 및 유로구성을 실현할 수 있게 하는 효과가 있는 것이다.
또한 본 발명에 의하면, 복합 열교환기 상의 여러 열교환부들 간에 유통되는 열교환매체들의 온도범위가 서로 다른 문제로 인하여 발생되는 열응력 집중 문제를, 배플 위치, 더미튜브 구성, 헤더탱크 높이 변경, 경사부 구성 등을 통해 효과적으로 해소하는 효과가 있다. 물론 이에 따라 열응력 집중으로 인한 내구성 및 수명 저하 문제 역시 원천적으로 해결하는 효과가 있다.
더불어 본 발명에 의하면, 제1/2/3열교환부가 각각 냉각수 냉각/냉매 과냉/냉매 응축으로 활용되는 경우, 리시버드라이어까지 일체화시킬 수 있다. 이처럼 응축기, 라디에이터 및 리시버드라이어가 일체로 형성되게 함으로써, 쿨링모듈의 부피가 비약적으로 저감되며 물론 이에 따라 엔진룸의 공간활용성 역시 크게 향상되는 효과가 있다. 또한 종래에 응축기, 라디에이터, 리시버드라이어가 모두 별물인 경우에 필요했던 이들 간의 조립공정을 삭제할 수 있어, 생산성 역시 크게 향상되는 효과가 있다.
뿐만 아니라 종래에 응축기 및 리시버드라이어 간에 별도로 구성된 파이프를 통해 냉매가 흘러가는 과정에서 냉매의 압력강하량이 상승하는 문제가 있었는데, 본 발명에 의하면 모두가 일체화되는 과정에서 응축기 및 리시버드라이어 간 연결유로의 길이가 극히 짧아지게 되어 이러한 문제가 원천적으로 해소된다. 냉매의 압력강하량 상승은 냉방효율을 저하시키는 악영향을 초래하는데, 본 발명에 의하면 냉매의 압력강하량 상승을 억제함으로써 궁극적으로 냉방효율을 향상시키는 효과를 얻을 수 있는 것이다.
도 1은 종래의 응축기, 라디에이터, 리시버드라이어 배치구성.
도 2는 본 발명의 복합 열교환기의 개략적 구성도.
도 3은 본 발명의 복합 열교환기 제1실시예.
도 4는 본 발명의 복합 열교환기 제1실시예의 경사부 부근 확대도.
도 5는 본 발명의 복합 열교환기 제1실시예의 경사부 부근 세부구성.
도 6은 본 발명의 복합 열교환기 제2실시예의 개략적 구성도.
도 7은 본 발명의 복합 열교환기 제2실시예.
도 8는 본 발명의 복합 열교환기 제2실시예의 전면사시도.
도 9는 본 발명의 복합 열교환기 제2실시예의 후면사시도.
도 10은 본 발명의 복합 열교환기 제2실시예의 상면도.
도 11은 리시버드라이어 일부 전면사시도.
도 12은 리시버드라이어 일부 측면도.
도 13는 리시버드라이어 일부 후면사시단면도.
도 14은 탱크부 상세도.
도 15는 본 발명의 복합 열교환기 제3실시예의 개략적 구성도.
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 복합 열교환기를 첨부된 도면을 참고하여 상세하게 설명한다.
[1] 제1실시예 : 전체적인 구성
도 2는 본 발명의 복합 열교환기의 개략적 구성도로서, 도 2를 참조하여 본 발명의 복합 열교환기(100)의 전체적인 구성을 먼저 설명한다.
본 발명의 복합 열교환기(100)는, 부품구성 측면으로 볼 때, 전후 2열로 복수 개 배치되는 튜브(도 2에서는 도면을 간략화하기 위해 튜브, 튜브열 등의 도시를 생략함), 전체 튜브열의 양단에 연결되는 제1, 2헤더탱크(141)(142)를 포함한다. 보다 구체적으로 설명하자면, 상기 제1, 2헤더탱크(141)(142)는, 상기 튜브열의 양단에 연결되며, 내부에 격벽이 형성되어 유체유동공간이 전방공간 및 후방공간으로 구분된다. 한편 상술한 바와 같이 상기 튜브열은 전방 및 후방의 2열로 형성되는데, 그 중 전방의 튜브열이 도 2에 도시된 바와 같이 전방코어(FC)를 형성하며, 상기 제1, 2헤더탱크(141)(142)의 전방공간과 연통된다. 또한 후방의 튜브열이 역시 도 2에 도시된 바와 같이 후방코어(BC)를 형성하며, 상기 제1, 2헤더탱크(141)(142)의 후방공간과 연통된다. 도 2는 개략도인 바 도면을 간략화하기 위해 도시가 생략되었지만, 상기 복합 열교환기(100)는 일체형 핀을 포함할 수 있다. 상기 일체형 핀은 상기 튜브 사이에 개재되되, 상기 전방코어(FC) 상기 후방코어(BC)까지 연장됨으로써, 상기 제1, 2헤더탱크(141)(142)와 함께 상기 전방코어(FC) 및 상기 후방코어(BC)를 일체화하는 역할을 할 수 있다.
이 때 도 2의 개략도에 잘 도시된 바와 같이, 본 발명의 복합 열교환기(100)는 상기 전방/후방코어(FC)(BC)가 제1, 2, 3열교환부(110)(120)(130) 3개의 영역으로 나뉜다. 보다 구체적으로는, 상기 전방코어(FC) 일부가 냉각수가 유통되는 제1열교환부(110)를 형성하고, 상기 전방코어(FC) 나머지 일부가 냉매가 유통되는 제2열교환부(120)를 형성하고, 상기 후방코어(BC)가 별도의 열교환매체가 유통되는 제3열교환부(130)를 형성한다. 이후 보다 상세히 설명하겠지만, 제2실시예에서는 상기 후방코어(BC)에 냉매가 유통되며, 제3실시예에서는 상기 후방코어(BC)에 냉각수가 유통된다.
본 발명의 복합 열교환기(100)에서는, 상기 제1열교환부(110)에는 냉각수가 유통되고, 상기 제2열교환부(120)에는 냉매가 유통된다. 특히 본 발명에서는, 상기 제2열교환부(120)가 냉매의 과냉이 이루어지는 냉매과냉영역을 형성한다. 역시 이후 보다 상세히 설명하겠지만, 제2실시예의 경우 상기 후방코어(BC)에 냉매가 유통되는 바, 리시버드라이어를 통해 상기 제2열교환부(120) 및 상기 제3열교환부(130)가 연결되게 된다. 한편 제3실시예의 경우 상기 후방코어(BC)에 냉각수가 유통되는 바, 상기 제2열교환부(120)에서 냉매의 과냉이 이루어질 수 있도록 하기 위해 외부응축기가 연결된다.
이처럼 상기 제2열교환부(120)에서는 항상 냉매의 과냉이 이루어지도록 형성되므로 상대적으로 저온을 형성하게 되며, 따라서 상기 제2열교환부(120)는 하측에 배치되는 것이 바람직하다. 이에 따라 상기 복합 열교환기(100)는, 도 2에 도시된 바와 같이, 상기 제1열교환부(110)가 상기 전방코어(FC) 상측 일부로 형성되고, 상기 제2열교환부(120)가 상기 전방코어(FC) 하측 일부로 형성될 수 있다.
도 3은 본 발명의 복합 열교환기의 제1실시예를 도시하며, 도 4 및 도 5는 각각 본 발명의 복합 열교환기 제1실시예의 경사부 부근 확대도 및 세부구성을 도시한다. 먼저 부연하자면, 도 3 내지 도 5에 나타난 제1실시예의 구성 중 일부가 제2, 3실시예 설명 도면에서는 생략되었는데, 이는 각 실시예별 특징을 강조하기 위함이다. 도면으로서 본 발명이 한정되는 것이 아니므로, 본 [1] 단락에서 설명될 제1실시예의 구성은 이후 [2], [3] 단락에서 설명될 제2, 3실시예에 모두 적용 가능하다. 더불어 도 3에는 상기 복합 열교환기(100)에 리시버드라이어(150)도 일체형으로 형성되어 있는 구성이 도시되어 있으나, 상기 복합 열교환기(100)가 상기 리시버드라이어(150)를 반드시 포함해야만 하는 것은 아니다. 이에 대해서는 이후 [3] 단락에서 보다 상세히 설명될 것이다.
먼저 배플(160) 구성에 대하여 설명한다. 상기 배플(160)은 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142) 내부에 구비되어 공간을 격리하는 역할을 한다. 이 때 상기 배플(160)은, 도 4 및 도 5에 도시된 바와 같이 상기 제1열교환부(110) 및 상기 제2열교환부(120)의 경계 위치에서 냉각수 및 냉매의 유체유동공간을 격리하기 위해 구비된다.
상기 배플(160)은 단일 개만 구비되어도 되지만, 도 5 및 도 6에 도시된 바와 같이 복수 개 구비되는 것이 더욱 바람직하다. 상기 배플(160)을 복수 개 구비하는 것은 냉각수 또는 냉매의 누출(leak)을 보다 확실히 방지하기 위함이다. 복수 개의 상기 배플(160) 중 어느 하나에서 일부 누출이 이루어진다 하더라도 나머지에 의하여 공간의 격리가 유지될 수 있다. 이처럼 상기 배플(160)이 복수 개 구비되는 경우, 복수 개의 상기 배플(160)은 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142)의 연장방향으로 이격되어 배치되는 것이 바람직하다. 이와 같이 함으로써 누출이 발생하더라도 복수 개의 상기 배플(160) 사이에 형성되는 공간에 누출된 열교환매체가 머물게 되어, 전체적인 열교환매체 흐름에 지장을 주지 않게 된다.
상기 배플(160)에 의해 상기 제1, 2헤더탱크(141)(142) 내부가 분리됨에 따라 상기 제1, 2열교환부(110)(120)의 분리가 이루어지므로, 상기 배플(160)의 위치가 실질적으로 상기 제1, 2열교환부(110)(120)의 경계 위치라고 볼 수 있다. 그런데 이 때, 앞서 설명한 바와 같이 상기 제1열교환부(110)에는 냉각수가 유통되며, 상기 제2열교환부(120)에는 냉매가 유통될 뿐만 아니라 과냉이 이루어지는 바, 상기 제1, 2열교환부(110)(120) 간에 작동온도범위의 차이가 상당히 크다. 이에 따라 상기 제1, 2열교환부(110)(120)의 경계 위치에서 열응력의 집중 및 이에 따른 파손이 발생할 위험성이 있다. 이러한 문제를 해소할 수 있도록, 상기 배플(160)이 복수 개 서로 이격되게 구비되도록 함과 동시에 이격된 복수 개의 상기 배플(160) 사이에 내부가 폐쇄된 더미튜브(DT)가 구비되는 것이 바람직하다. 상기 더미튜브(DT)로는 열교환매체가 흘러가지 않으므로, 상기 더미튜브(DT)가 존재하는 범위만큼 온도차가 나는 영역들이 서로 벌어지게 된다. 이에 따라 열응력을 어느 정도 분산시킬 수 있으며, 파손 위험성을 훨씬 저감시킬 수 있다.
한편 본 발명의 복합 열교환기(100)에서는, 도면 상에 잘 나타나 있는 바와 같이 상기 제1헤더탱크(141) 및 상기 제2헤더탱크(142)의 높이가 전체적으로 모두 동일하지 않고 범위에 따라 범위에 따라 상대적으로 높이가 높은 부분인 고도부 및 상대적으로 높이가 낮은 부분인 저도부가 형성되도록 하고 있다. 특히 본 발명에서는, 상기 제1열교환부(110)에 상응하는 범위에 상기 고도부가 포함되며, 상기 제2열교환부(120)에 상응하는 범위에 상기 저도부가 포함되도록 하고 있다. 즉 직관적으로는, 상기 전방코어(FC) 쪽의 상기 제1, 2헤더탱크(141)(142)에서 냉각수 유통부분의 높이가 냉매 유통부분의 높이보다 크게 형성된다는 것이다. 냉매 및 냉각수는 물성이 서로 다르기 때문에 통수저항 등이 서로 다르다는 점을 고려할 때, 냉각수 유통부분 및 냉매 유통부분이 서로 규격이 똑같이 형성되게 하는 것보다는 필요에 따라 적절하게 규격이 다르게 형성되게 하는 것이 바람직하다. 특히, 일반적으로 냉각수 유통부분에 비해 냉매 유통부분의 압력이 좀더 높으며, 따라서 냉매 유통부분을 설계할 때에는 내압성을 더욱 중요하게 고려해야 한다. 내압성을 높이기 위해서는 형상적으로는 단면이 원형에 가까울수록 좋은데, 즉 단면의 가로/세로 높이의 차이가 적을수록 좋다. 따라서 냉매 유통부분은 단면의 가로/세로 높이가 비슷한 원래 상태로 유지하는 것이 바람직하지만, 냉각수 유통부분은 이러한 제한에서 보다 자유롭다. 이런 여러 가지 사항을 고려하여, 본 발명의 복합 열교환기(100)에서는, 통수저항, 유로구성, 각부에서의 내압성 등을 고려하여 냉각수 유통부분의 높이가 냉매 유통부분의 높이보다 크게 형성되게 한 것이다.
이처럼 냉각수/냉매 유통부분의 높이가 다르게 형성될 때, 높이변화가 수직으로 일어나게 할 수도 있지만, 높이변화가 너무 급격하게 이루어지는 형상인 경우 제작 시 불량이 발생할 위험이 있고, 운용 중에도 응력집중 등으로 인한 파손 위험성이 있다. 이러한 점을 고려하여, 이처럼 냉각수/냉매 유통부분의 높이가 다르게 형성되는 부분에서, 상기 고도부 및 상기 저도부 사이에 연속적으로 높이가 경사지게 변화되는 경사부(145)가 형성되게 하는 것이 바람직하다. 도 3 내지 도 5에는 모두 이러한 상기 경사부(145)가 잘 나타나 있다.
이 때 도 3 내지 도 5에 일관적으로 도시된 바와 같이 상기 제1열교환부(110)에 상응하는 범위에 상기 고도부 및 상기 경사부(145)가 포함되는 것이 바람직하다. 이렇게 형성되게 하는 이유에 대하여 보다 상세히 설명하면 다음과 같다. 앞서 상기 배플(160)이 상기 제1, 2열교환부(110)(120)의 경계 위치에 구비된다고 하였는데, 상기 배플(160)이 상기 경사부(145) 내에 구비될 경우 상기 경사부(145)의 형상이 일관적이지 않으므로 제작 중 조립불량 등으로 인하여 누출 발생 위험성이 커질 수 있다. 이러한 문제를 피하기 위하여, 상기 배플(160)은 상기 경사부(145) 범위 밖에 배치되는 것이 바람직하다. 뒤집어 말하자면, 상기 경사부(145)는 상기 제1열교환부(110) 쪽에 포함되거나 또는 상기 제2열교환부(120) 쪽에 포함되게 형성되게 하는 것이 바람직한 것이다.
한편 상기 제2열교환부(120)는 냉매의 과냉에 사용되기 때문에 상대적으로 용량이 작아도 되는 반면, 상기 제1열교환부(110)는 냉각수가 유통되어 라디에이터로서 동작하기 때문에 상대적으로 용량이 커야 된다. 즉 상기 제1열교환부(110) 부분이 좀더 부피가 크며, 상기 경사부(145)가 충분히 여유있게 형성될 수 있게 하기 위해서는 상기 경사부(145)는 상기 제2열교환부(120) 쪽보다는 상기 제1열교환부(110) 쪽에 포함되게 형성되는 것이 바람직하다.
결론적으로, 상기 경사부(145)는 상기 제1열교환부(110) 쪽에 포함되게 형성되게 하는 것이 바람직하며, 이렇게 할 때 자연스럽게 상기 배플(160)이 상기 경사부(145) 범위 밖에 배치될 수 있다. 이렇게 되면 결과적으로, 상기 제1열교환부(110)에 상응하는 범위에 상기 고도부 및 상기 경사부(145)가 포함되게 되는 것이다. 엄밀히는 상기 제1열교환부(110)는 상기 고도부, 상기 경사부(145) 및 상기 배플(160) 근처의 상기 저도부 약간을 모두 포함하여 이루어지게 되며, 상기 제2열교환부(120)는 상기 저도부만으로 이루어지게 된다.
한편 이 때 상기 배플(160)은 결과적으로 상기 저도부, 즉 상기 제2열교환부(120) 측에 배치되는데, 이처럼 상기 배플(160)이 상기 제2열교환부(120) 측에 배치되게 하는 것에는 다른 측면에서의 고려사항도 있다. 앞서 냉각수 유통부분에 비해 냉매 유통부분에서의 압력이 좀더 높기 때문에 내압성을 더 고려해야 한다고 설명하였는데, 이는 냉매 유통부분에서 냉매의 누출 가능성이 더 높다는 의미도 내포한다. 또한 냉매 유통부분은 냉각수 유통부분에 비해 헤더탱크의 높이가 낮으므로 밀폐가 더욱 용이하다는 장점도 있다. 이러한 점을 고려할 때 냉매 누출을 차단하는 것이 전체적인 장치 안정성에 더욱 유리하며, 따라서 냉매 유통부분 쪽 즉 상기 제2열교환부(120) 측에 복수 개의 상기 배플(160)이 구비되게 하는 것이 바람직하다.
이처럼 상기 제1, 2헤더탱크(141)(142)는 높낮이가 균일하게 형성되지 않기 때문에, 압출로서 일체형으로 제작되기보다는, 상기 튜브열과 직접 연결되는 헤더 및 상기 헤더와 결합되어 유체유동공간을 형성하는 탱크로 이루어지는 것이 바람직하다. 이러한 구조로 됨에 따라 위치에 따라 높낮이가 다르게 형성되는 헤더탱크 형상을 보다 용이하게 제작할 수 있다.
[2] 제2실시예 : 응축기 및 리시버드라이어 일체형
[1] 단락에서 설명한 바와 같이, 본 발명의 복합 열교환기(100)는 전방코어(FC) 및 후방코어(BC)로 이루어지며, 전방코어(FC)는 냉각수가 유통되는 제1열교환부(110) 및 냉매가 유통되며 과냉이 이루어지는 제2열교환부(120)로 이루어진다. 한편 제3열교환부(130)에는 사용자의 필요에 따라 원하는 열교환매체가 유통되게 할 수 있다. 제2실시예에서는 상기 제3열교환부(130)에 냉매가 유통되며, 상기 제3열교환부(130)가 냉매의 응축이 이루어지는 냉매응축영역(C)을 형성하게 된다.
도 6은 본 발명의 복합 열교환기 제2실시예의 개략적 구성도를 도시한 것이다. 제2실시예에서는, 상기 제2열교환부(120)가 형성하는 상기 냉매과냉영역(S) 및 상기 제3열교환부가 형성하는 상기 냉매응축영역(C)이 응축기(210)로서 형성되며, 상기 제1열교환부(110)가 냉각수의 냉각이 이루어지는 냉각수영역(W)을 형성하여 상기 냉각수영역(W)이 라디에이터(220)로서 형성된다. 도 6에서는 이해를 쉽게 하기 위하여 응축기(210) 및 라디에이터(220)의 구분만을 표시하였다.
이처럼 상기 복합 열교환기(100)가 응축기(210) 및 라디에이터(220) 일체형 열교환기로서 형성될 때, 상기 복합 열교환기(100)는 상기 제1헤더탱크(110)에 연결되는 리시버드라이어(150)를 포함할 수 있다. 도 7은 상기 리시버드라이어(150)까지 포함된 상기 복합 열교환기(100)를 도시한 것으로, 상기 리시버드라이어(150)는, 리시버유입로(151)를 통해 상기 제1헤더탱크(141)의 후방공간과 연통되고, 또한 리시버배출로(152)를 통해 상기 제1헤더탱크(141)의 전방공간과 연통된다. 즉 본 발명의 복합 열교환기(100)는, 상기 응축기(210), 상기 라디에이터(220), 상기 리시버드라이어(150)가 일체형으로 형성되는 것이다.
이 때 먼저 응축기, 라디에이터 측면에서만 보아도, 상기 응축기(210) 및 상기 라디에이터(220)가 2열 열교환기의 유동공간을 적절히 구분하는 것만으로 일체형으로 형성됨으로써, 종래에 응축기 및 라디에이터가 별물로 이루어지는 경우 이들 각각을 제작 및 조립하기 위해 필요한 부품 및 공정개수가 원천적으로 생략될 수 있어, 생산성을 향상시킬 수 있다. 뿐만 아니라 2개의 별물 조립체에 비해 일체형의 단일부품인 경우가 부피를 훨씬 용이하게 저감할 수 있으며 물론 이에 따라 엔진룸 공간활용성도 크게 향상된다.
제2실시예에서는 비단 상기 응축기(210) 및 상기 라디에이터(220)만을 일체형으로 형성할 뿐만이 아니라, 상기 리시버드라이어(150)까지도 일체형으로 형성한다. 즉 도 7에 도시된 바와 같이, 상기 제1헤더탱크(141)에 근접하게 상기 리시버드라이어(150)가 배치되며 또한 상기 리시버유입로(151) 및 상기 리시버배출로(152)로 상기 제1헤더탱크(141)와 연통되게 형성됨으로써, 상기 리시버드라이어(150)가 상기 응축기(210) 및 상기 라디에이터(220)에 더하여 일체형으로 형성되는 것이다. 이에 따라 상술한 바와 같은 부품 및 공정개수 저감 및 이에 따른 생산성 향상, 장치 부피 저감 및 이에 따른 엔진룸 공간활용성 향상의 효과가 더욱 증폭된다.
더불어 본 발명에서는, 도 7에 잘 나타나 있는 바와 같이 상기 리시버드라이어(150) 및 상기 제1헤더탱크(141)를 서로 연결하는 유로의 길이가 매우 짧게 형성된다. 이에 따라 종래에 응축기 및 리시버드라이어 간을 연결하는 파이프가 과도하게 길에 형성됨에 따라 냉매의 압력강하량이 상승하여 결과적으로 냉방효율을 저하시키는 문제가, 본 발명의 구성에 의하여 원천적으로 해소된다.
또한 본 발명의 복합 열교환기(100)는 전기차에 구비될 경우 더욱 효과적이다. 이는 구동장치에서의 발열량이 (내연기관 차량에 비해) 상대적으로 적어 응축기 냉매의 작동온도범위 및 라디에이터 냉각수의 작동온도범위가 상대적으로 비슷하게 형성되기 때문이다. 하나의 장치 내에서 온도구배 편차가 지나치게 크게 나타나게 될 경우 다소 장치성능이 떨어질 우려가 있으나, 상술한 바와 같이 전기차의 경우 온도구배 편차가 적당하기 때문에 이러한 우려가 훨씬 줄어들 수 있다.
이하에서는 도 8의 전방사시도, 도 9의 후방사시도, 도 10의 상면도를 통해 본 발명의 복합 열교환기(100)의 구성 및 유체흐름을 보다 상세히 설명한다.
도 8 및 도 9에는 상기 전방코어(FC) 및 상기 후방코어(BC) 각각에 냉매 및 냉각수가 어떻게 영역을 나누어 흘러가는지 표시된다. 먼저 도 9를 참조하면 상기 후방코어(BC) 전체에 냉매가 유통되어 냉매응축영역(C)을 형성하고, 도 8을 참조하면 상기 전방코어(FC) 하측 일부에 냉매가 유통되어 냉매과냉영역(S)을 형성한다. 이와 같이 상기 냉매응축영역(C) 및 상기 냉매과냉영역(S)이 상기 응축기(210)를 형성하게 된다. 또한 도 8을 참조하면 상기 전방코어(FC) 상측 나머지 일부에 냉각수가 유통되어 냉각수영역(W)을 형성한다. 바로 이러한 상기 냉각수영역(W)이 상기 라디에이터(220)를 형성하게 된다. 도 10에 도시된 상기 복합 열교환기(100)의 상면도를 참조하면, 각부의 전방 및 후방 배치를 보다 직관적으로 이해할 수 있다.
더불어, 상술한 바와 같이 상기 제1, 2헤더탱크(141)(142)에 냉매 및 냉각수가 모두 유통되게 되는데, 상기 제1, 2헤더탱크(141)(142) 각각에서 냉매가 유통되는 부분을 냉매탱크부(215), 냉각수가 유통되는 부분을 냉각수탱크부(225)라 칭하기도 한다. 즉 상기 제1, 2헤더탱크(141)(142) 모두가 상기 냉매응축영역(C) 및 상기 냉매과냉영역(S)에 상응하는 범위의 냉매탱크부(215) 및 상기 냉각수영역(W)에 상응하는 범위의 냉각수탱크부(225)로 구분되는 것이다. 혼동을 피하기 위해 부연하자면, 상기 제1헤더탱크(141)에는 상기 냉매탱크부(215) 및 상기 냉각수탱크부(225)가 둘 다 존재하고, 상기 제2헤더탱크(142)에도 역시 상기 냉매탱크부(215) 및 상기 냉각수탱크부(225)가 둘 다 존재하게 된다.
도 8 및 도 9를 참조하여 냉매 흐름을 통해 상기 응축기(210)의 구성 및 동작을 보다 구체적으로 살펴보면 다음과 같다. 먼저 냉매가 상기 제2헤더탱크(142) 후방공간에 연통되는 냉매유입로(211)로 유입된다. 다음으로 냉매는 상기 제2헤더탱크(142) 후방공간으로부터 상기 후방코어(BC) 상의 상기 냉매응축영역(C)을 통과하여 상기 제1헤더탱크(141) 후방공간으로 전달된다. 다음으로 냉매는 상기 제1헤더탱크(141) 후방공간에서 상기 리시버유입로(151)를 통해 상기 리시버드라이어(150)를 통과하여 상기 리시버배출로(152)를 통해 상기 제1헤더탱크(141) 전방공간으로 전달된다. 다음으로 냉매는 상기 제1헤더탱크(141) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉매과냉영역(C)을 통과하여 상기 제2헤더탱크(142) 전방공간으로 전달된다. 마지막으로 냉매는 상기 제2헤더탱크(142) 전방공간에 연통되는 냉매배출로(212)로 배출된다. 즉 냉매는 (후방의) 상기 냉매응축영역(C) - 상기 리시버드라이어(150) - (전방의) 상기 냉매과냉영역(S)를 순차적으로 통과하게 된다.
고온 고압의 기체상태의 냉매가 상기 냉매응축영역(C)을 통과하면, 외부와 열교환을 함으로써 응축(condensing)되어 액체상태가 된다. 이 때 냉매 전량이 응축되지는 못하기 때문에, 상기 냉매응축영역(C)에서 배출되는 냉매는 기상 및 액상이 혼합된 상태가 된다. 이 상태의 냉매가 상기 리시버드라이어(150)를 통과함으로써, 액상냉매에 섞여있던 기포가 걸러져 기액분리가 이루어지게 되며, 이렇게 순수한 액상이 된 냉매가 상기 냉매과냉영역(S)으로 들어가 과냉(supercooling)이 이루어지게 된다.
여기에서 상기 리시버드라이어(150)의 구성 및 동작을 보다 구체적으로 살펴보면 다음과 같다. 도 11은 리시버드라이어 일부 전면사시도를, 도 12은 리시버드라이어 일부 측면도를, 도 13는 리시버드라이어 일부 후면사시단면도를 각각 도시하고 있다. 도 11 및 도 12에 명시적으로 도시된 바와 같이, 냉매는 상기 제1헤더탱크(141) 전방공간에서 상기 리시버유입로(151)를 타고 상기 리시버드라이어(150)로 유입되고, 상기 리시버드라이어(150)에서 상기 리시버배출로(152)를 타고 상기 제1헤더탱크(141) 후방공간으로 배출된다. 상기 리시버배출로(152)의 형상을 보다 구체적으로 설명하자면, 상기 리시버배출로(152)는 도 11에 잘 도시된 바와 같이, 일측이 상기 리시버드라이어(150)의 전방측에 연결되며, 전방으로 연장된 후 수직으로 벤딩되어, 타측이 상기 제1헤더탱크(141)의 전방공간에 연결되도록 형성된다. 이 때 상기 리시버유입로(151) 및 상기 리시버배출로(152)가 매우 짧게 형성되어 냉매의 압력강하량 상승을 최대한 억제하고 있음이 도면 상에 명시적으로 잘 나타나 있다.
한편 도 12에 표시된 바와 같이, 상기 리시버드라이어(150)는 필터 및 건조제를 구비하는 필터모듈(155)이 착탈가능하게 형성되는 것이 바람직하다. 이와 같이 함으로써, 상기 리시버드라이어(150)가 상기 복합 열교환기(100)에 일체형으로 형성되어 있는 상태에서 장시간 운용에 따라 필터링성능이 다소 저하될지라도, 상기 필터모듈(155)만 교체하면 되기 때문에 수리에 드는 시간, 인력, 비용 등의 자원을 크게 절약할 수 있다.
도 13의 후면사시단면도에는 상기 리시버드라이어(150)에 조립된 상태의 상기 필터모듈(155)의 예시가 도시된다. 상기 필터모듈(155)은 상술한 바와 같이 기포를 걸러내는 필터 및 습기를 제거하는 건조제를 포함하고 있으므로, 상기 냉매응축공간(C)으로부터 전달되는 냉매가 상기 필터모듈(155)을 최대한 많이 통과하여 상기 냉매과냉공간(S)으로 전달되는 것이 당연히 바람직하다. 이에 따라 상기 리시버드라이어(150)는, 도 13에 도시된 바와 같이, 상기 리시버드라이어(150) 상의 냉매 유출입 경로, 즉 제2실시예에서는 상기 리시버유입로(151) 및 상기 리시버배출로(152)가 상기 필터모듈(155)이 구비된 영역 범위 내에 형성되게 하는 것이 바람직하다.
다시 도 8을 참조하여 냉각수 흐름을 통해 상기 라디에이터(220)의 구성 및 동작을 보다 구체적으로 살펴보면 다음과 같다. 먼저 냉각수가 상기 제2헤더탱크(142) 전방공간에 연통되는 냉각수유입로(212)로 유입된다. 다음으로 냉각수는 상기 제2헤더탱크(142) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉각수영역(W) 일부를 통과하여 상기 제1헤더탱크(141) 전방공간으로 전달된다. 다음으로 냉각수는 상기 제1헤더탱크(141) 전방공간으로부터 상기 전방코어(FC) 상의 상기 냉각수영역(W) 나머지 일부를 통과하여 상기 제2헤더탱크(142) 전방공간으로 전달된다. 마지막으로 냉각수는 상기 제2헤더탱크(142) 전방공간에 연통되는 냉각수배출로(222)로 배출된다. 즉 냉각수는 상기 냉각수영역(W)을 U플로우를 형성하면서 흘러가게 된다.
이처럼 냉각수가 U플로우를 형성하게 하기 위해서는, 상기 제2헤더탱크(142)의 중간 정도 되는 부분에 유로배플(165)이 구비되도록 하면 된다. 도 14은 탱크부 상세도를 도시한 것으로, 좌측도면은 도 9의 후면사시도 중에서 상기 제2헤더탱크(142) 부분을 보다 확대하여 도시한 것이다. 우상측도면은 좌측도면에서 파선 네모로 표시한 부분을 확대하고, 상기 제2헤더탱크(142) 일부를 삭제하여 내부가 보이게 한 것이다. 도 14의 우상측도면에 명시적으로 도시된 바와 같이, 상기 제2헤더탱크(142)의 중간에 상기 유로배플(165)이 구비됨으로써 도 8에 도시된 바와 같은 냉각수의 U플로우가 원활하게 형성될 수 있다. 도 14의 우하측도면은 상기 유로배플(165) 위치에서의 상기 제2헤더탱크(142) 단면도를 도시하고 있다.
한편 앞서 [1] 단락, 즉 제1실시예에서 냉각수/냉매 유통공간 격리(즉 제1, 2열교환부 분리)를 위한 배플(160)에 대하여 설명한 바 있다. 실질적으로 배플이라 하면 헤더탱크 내에서 공간을 분리한다는 기본적인 역할은 동일하나, 그렇게 공간을 분리함으로써 [열교환부를 분리]하는지 또는 [U플로우를 형성]하는지의 세부적인 역할이 달라질 수 있다. 이에, 앞서 [1] 단락, 즉 제1실시예에서 [열교환부를 분리]하기 위한 배플을 도면부호 160의 배플로 칭한 것과의 구분을 위하여, [U플로우를 형성]하기 위한 배플은 ('유로를 형성하기 위한 배플'이라는 의미로) "유로배플"이라 칭하고 도면부호 165를 부여한 것이다.
좀더 부연하자면, 앞서 상기 제1, 2헤더탱크(141)(142)는 냉각수가 흘러가는 상기 냉각수영역(W)과 냉매가 흘러가는 상기 냉매응축영역(C), 상기 냉매과냉영역(S) 모두와 연통되어 있으며, 이에 따라 상기 제1, 2헤더탱크(141)(142) 각각이 상기 냉매탱크부(215) 및 상기 냉각수탱크부(225)를 가진다고 설명하였다. 여기에서 상기 냉매탱크부(215) 및 상기 냉각수탱크부(225)가 구분될 수 있도록, 상기 냉각수영역(W) 및 상기 냉매과냉영역(S)의 경계 위치에서 냉각수/냉매 유통공간이 격리되어야 함은 자명하다. 앞서 [1] 단락, 즉 제1실시예에서 설명된 상기 배플(160)의 배치위치, 개수 등은 이러한 냉각수/냉매 유통공간 격리와 관련된 것이다. 이 부분에 대해서는 [1] 단락의 제1실시예의 구성을 그대로 따르므로, 여기에서는 더 이상의 설명은 생략한다.
더불어 제2실시예의 도면들, 즉 도 6 내지 도 14에서는, 상기 냉매탱크부(215) 및 상기 냉각수탱크부(225) 사이의 높이변화부분이 수직으로 떨어지는 것으로 도시되어 있다. 그러나 이로써 본 발명이 한정되는 것은 아니며, 제1실시예에서 설명한 상기 경사부(145) 구성이 제2실시예에도 그대로 적용될 수 있다. 더불어 제1실시예의 다른 여러 구성, 즉 상기 배플(160)을 복수 개 배치하는 구성, 상기 경사부(145)가 상기 제1열교환부(110) 측(제2실시예의 용어로 설명하자면, 상기 냉각수탱크부(225) 측)에 형성되게 하는 구성, 복수 개의 상기 배플(160)은 이와 반대로 상기 제2열교환부(120) 측(제2실시예의 용어로 설명하자면, 상기 냉매탱크부(215) 측)에 형성되게 하는 구성, 상기 배플(160) 위치 부근에 상기 더미튜브(DT)가 구비되는 구성 등도 제2실시예에 그대로 적용될 수 있음은 물론이다.
[3] 제3실시예 : 과냉기, 고온 및 저온 라디에이터 일체형
다시 한 번, [1] 단락에서 설명한 바와 같이, 본 발명의 복합 열교환기(100)는 전방코어(FC) 및 후방코어(BC)로 이루어지며, 전방코어(FC)는 냉각수가 유통되는 제1열교환부(110) 및 냉매가 유통되며 과냉이 이루어지는 제2열교환부(120)로 이루어진다. 한편 제3열교환부(130)에는 사용자의 필요에 따라 원하는 열교환매체가 유통되게 할 수 있다. 제3실시예에서는 상기 제3열교환부(130)에 냉각수가 유통되며, 상기 제1열교환부(110)에 유통되는 냉각수 및 상기 제3열교환부(130)에 유통되는 냉각수의 온도범위가 다르게 형성된다.
앞서 설명한 바와 같이, 예를 들어 구동장치가 내연기관 및 전기모터를 모두 사용하는 하이브리드인 경우, 내연기관 및 전기모터 둘 다 냉각수로 냉각이 이루어지기는 하지만 내연기관용 냉각수가 전기모터용 냉각수보다 훨씬 고온이다. 즉 이러한 경우 고온냉각수 및 저온냉각수가 존재하게 되며, 따라서 고온라디에이터 및 저온라디에이터가 별도의 장치로서 구비되기도 한다. 제3실시예에서는 바로 이러한 고온라디에이터 및 저온라디에이터를 일체화할 수 있다.
보다 구체적으로는, 제3실시예에서는 상기 제3열교환부(130)에 유통되는 냉각수 온도범위가 상기 제1열교환부(110)에 유통되는 냉각수의 온도범위보다 높게 형성되도록 한다. 즉 상기 제1열교환부(110)가 저온라디에이터로서 동작하고, 상기 제3열교환부(130)가 고온라디에이터로서 동작하는 것이다. 이와 같이 고온라디에이터 및 저온라디에이터를 일체화함으로써, 앞서 제2실시예에서 설명했던 바와 같은 일체화에 의한 부품 및 조립공정 개수 저감의 효과를 여전히 얻을 수 있음은 물론이다.
한편 이 때 상기 제2열교환부(120)가 냉매과냉영역으로서 동작하도록 하기 위해, 상기 복합 열교환기(100)는, 상기 제2열교환부(120)에 외부응축기가 연결되어, 상기 외부응축기에서 응축된 냉매가 상기 제2열교환부(120)로 유입되어 냉매의 과냉이 이루어지도록 할 수 있다. 이러한 경우 상기 외부응축기는 수냉식 응축기로서, 기본적으로 공랭식 응축기인 본 발명의 복합 열교환기(100)와는 일체화될 수 없는 종류의 열교환기일 수 있다. 이처럼 상기 제2열교환부(120)에 외부응축기가 연결되는 경우, 상기 외부응축기는 (제2실시예에서 설명한 리시버드라이어(150)와는 별도인) 외부리시버드라이어와 일체형으로 이루어질 수 있다.
더불어, 제2실시예에서와 마찬가지로, 제1실시예에서의 상기 제1, 2헤더탱크(141)(142)에서 냉각수/냉매 유통부분의 높낮이가 다르게 형성되는 구성, 상기 경사부(145) 구성, 상기 배플(160)을 복수 개 배치하는 구성, 상기 경사부(145)가 상기 제1열교환부(110) 측에 형성되게 하는 구성, 복수 개의 상기 배플(160)은 이와 반대로 상기 제2열교환부(120) 측에 형성되게 하는 구성, 상기 배플(160) 위치 부근에 상기 더미튜브(DT)가 구비되는 구성 등이 제3실시예에 그대로 적용될 수 있음은 물론이다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
100 : 복합 열교환기 110 : 제1열교환부
120 : 제2열교환부 130 : 제3열교환부
141 : 제1헤더탱크 142 : 제2헤더탱크
FC : 전방코어 BC : 후방코어
DT : 더미튜브 150 : 리시버드라이어
151 : 리시버유입로 152 : 리시버배출로
160 : 배플 165 : 유로배플
210 : 응축기 215 : 냉매탱크부
211 : 냉매유입로 212 : 냉매배출로
220 : 라디에이터 225 : 냉각수탱크부
221 : 냉각수유입로 222 : 냉각수배출로
C : 냉매응축영역 S : 냉매과냉영역
W : 냉각수영역

Claims (20)

  1. 전후 2열로 복수 개 배치되는 튜브;
    전체 튜브열의 양단에 연결되며, 내부에 격벽이 형성되어 유체유동공간이 전방공간 및 후방공간으로 구분되는 제1헤더탱크 및 제2헤더탱크;
    전방의 튜브열로 이루어지며 상기 제1, 2헤더탱크의 전방공간과 연통되는 전방코어;
    후방의 튜브열로 이루어지며 상기 제1, 2헤더탱크의 후방공간과 연통되는 후방코어;
    를 포함하며,
    상기 전방코어 일부가 냉각수가 유통되는 제1열교환부를 형성하고,
    상기 전방코어 나머지 일부가 냉매가 유통되는 제2열교환부를 형성하고,
    상기 후방코어가 별도의 열교환매체가 유통되는 제3열교환부를 형성하는 것을 특징으로 하는 복합 열교환기.
  2. 제 1항에 있어서, 상기 복합 열교환기는,
    상기 제2열교환부가 냉매의 과냉이 이루어지는 냉매과냉영역을 형성하는 것을 특징으로 하는 복합 열교환기.
  3. 제 2항에 있어서, 상기 복합 열교환기는,
    상기 제1열교환부가 상기 전방코어 상측 일부로 형성되고,
    상기 제2열교환부가 상기 전방코어 하측 일부로 형성되는 것을 특징으로 하는 복합 열교환기.
  4. 제 2항에 있어서, 상기 복합 열교환기는,
    상기 제1열교환부 및 상기 제2열교환부의 경계 위치에서 냉각수 및 냉매의 유체유동공간을 격리하도록,
    상기 제1헤더탱크 및 상기 제2헤더탱크 내부에 배플이 구비되는 것을 특징으로 하는 복합 열교환기.
  5. 제 4항에 있어서, 상기 복합 열교환기는,
    상기 제1열교환부 및 상기 제2열교환부의 경계 위치에서 상기 배플이 복수 개 구비되되,
    복수 개의 상기 배플은 상기 제1헤더탱크 및 상기 제2헤더탱크의 연장방향으로 이격되며,
    이격된 복수 개의 상기 배플 사이에 내부가 폐쇄된 더미튜브가 구비되는 것을 특징으로 하는 복합 열교환기.
  6. 제 4항에 있어서, 상기 제1헤더탱크 및 상기 제2헤더탱크는,
    범위에 따라 상대적으로 높이가 높은 부분인 고도부 및 상대적으로 높이가 낮은 부분인 저도부가 형성되되,
    상기 제1열교환부에 상응하는 범위에 상기 고도부가 포함되며,
    상기 제2열교환부에 상응하는 범위에 상기 저도부가 포함되는 것을 특징으로 하는 복합 열교환기.
  7. 제 6항에 있어서, 상기 제1헤더탱크 및 상기 제2헤더탱크는,
    상기 고도부 및 상기 저도부 사이에 연속적으로 높이가 경사지게 변화되는 경사부가 형성되며,
    상기 제1열교환부에 상응하는 범위에 상기 고도부 및 상기 경사부가 포함되는 것을 특징으로 하는 복합 열교환기.
  8. 제 2항에 있어서, 상기 복합 열교환기는,
    상기 제3열교환부에 냉매가 유통되며,
    상기 제3열교환부가 냉매의 응축이 이루어지는 냉매응축영역을 형성하는 것을 특징으로 하는 복합 열교환기.
  9. 제 8항에 있어서, 상기 복합 열교환기는,
    상기 제1헤더탱크의 후방공간과 연통되는 리시버유입로 및 상기 제1헤더탱크의 전방공간과 연통되는 리시버배출로를 포함하는 리시버드라이어;
    를 포함하며,
    상기 제2열교환부가 형성하는 상기 냉매과냉영역 및 상기 제3열교환부가 형성하는 상기 냉매응축영역이 응축기로서 형성되며,
    상기 제1열교환부가 냉각수의 냉각이 이루어지는 냉각수영역을 형성하여 상기 냉각수영역이 라디에이터로서 형성되어,
    상기 응축기, 상기 라디에이터, 상기 리시버드라이어가 일체형으로 형성되는 것을 특징으로 하는 복합 열교환기.
  10. 제 9항에 있어서, 상기 복합 열교환기는,
    냉매가 상기 제2헤더탱크 후방공간에 연통되는 냉매유입로로 유입되어,
    상기 제2헤더탱크 후방공간으로부터 상기 후방코어 상의 상기 냉매응축영역을 통과하여 상기 제1헤더탱크 후방공간으로 전달되고,
    상기 제1헤더탱크 후방공간에서 상기 리시버유입로를 통해 상기 리시버드라이어를 통과하여 상기 리시버배출로를 통해 상기 제1헤더탱크 전방공간으로 전달되고,
    상기 제1헤더탱크 전방공간으로부터 상기 전방코어 상의 상기 냉매과냉영역을 통과하여 상기 제2헤더탱크 전방공간으로 전달되고,
    상기 제2헤더탱크 후방공간에 연통되는 냉매배출로로 배출되도록 형성되는 것을 특징으로 하는 복합 열교환기.
  11. 제 9항에 있어서, 상기 복합 열교환기는,
    냉각수가 상기 제2헤더탱크 전방공간에 연통되는 냉각수유입로로 유입되어,
    상기 제2헤더탱크 전방공간으로부터 상기 전방코어 상의 상기 냉각수영역 일부를 통과하여 상기 제1헤더탱크 전방공간으로 전달되고,
    상기 제1헤더탱크 전방공간으로부터 상기 전방코어 상의 상기 냉각수영역 나머지 일부를 통과하여 상기 제2헤더탱크 전방공간으로 전달되고,
    상기 제2헤더탱크 전방공간에 연통되는 냉각수배출로로 배출되도록 형성되는 것을 특징으로 하는 복합 열교환기.
  12. 제 9항에 있어서, 상기 리시버배출로는,
    일측이 상기 리시버드라이어의 전방측에 연결되며, 전방으로 연장된 후 수직으로 벤딩되어, 타측이 상기 제1헤더탱크의 전방공간에 연결되도록 형성되는 것을 특징으로 하는 복합 열교환기.
  13. 제 2항에 있어서, 상기 복합 열교환기는,
    상기 제3열교환부에 냉각수가 유통되며,
    상기 제1열교환부에 유통되는 냉각수 및 상기 제3열교환부에 유통되는 냉각수의 온도범위가 다르게 형성되는 것을 특징으로 하는 복합 열교환기.
  14. 제 13항에 있어서, 상기 복합 열교환기는,
    상기 제3열교환부에 유통되는 냉각수 온도범위가 상기 제1열교환부에 유통되는 냉각수의 온도범위보다 높게 형성되는 것을 특징으로 하는 복합 열교환기.
  15. 제 13항에 있어서, 상기 복합 열교환기는,
    상기 제2열교환부에 외부응축기가 연결되어,
    상기 외부응축기에서 응축된 냉매가 상기 제2열교환부로 유입되어 냉매의 과냉이 이루어지는 것을 특징으로 하는 복합 열교환기.
  16. 제 15항에 있어서, 상기 외부응축기는,
    수냉식 응축기인 것을 특징으로 하는 복합 열교환기.
  17. 제 15항에 있어서, 상기 외부응축기는,
    외부리시버드라이어와 일체형인 것을 특징으로 하는 복합 열교환기.
  18. 제 1항에 있어서, 상기 리시버드라이어는,
    필터 및 건조제를 구비하는 필터모듈이 착탈가능하게 형성되는 것을 특징으로 하는 복합 열교환기.
  19. 제 18항에 있어서, 상기 리시버드라이어는,
    상기 리시버드라이어 상의 냉매 유출입 경로가 상기 필터모듈이 구비된 영역 범위 내에 형성되는 것을 특징으로 하는 복합 열교환기.
  20. 제 1항에 있어서, 상기 복합 열교환기는,
    상기 튜브 사이에 개재되되, 상기 전방코어 상기 후방코어까지 연장되는 일체형 핀;
    을 포함하는 것을 특징으로 하는 복합 열교환기.
KR1020210172080A 2021-12-03 2021-12-03 전기차용 복합 열교환기 KR20230083773A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210172080A KR20230083773A (ko) 2021-12-03 2021-12-03 전기차용 복합 열교환기
PCT/KR2022/019595 WO2023101535A1 (ko) 2021-12-03 2022-12-05 전기차용 복합 열교환기
DE112022002950.1T DE112022002950T5 (de) 2021-12-03 2022-12-05 Verbundwärmetauscher für elektrofahrzeuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210172080A KR20230083773A (ko) 2021-12-03 2021-12-03 전기차용 복합 열교환기

Publications (1)

Publication Number Publication Date
KR20230083773A true KR20230083773A (ko) 2023-06-12

Family

ID=86612821

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210172080A KR20230083773A (ko) 2021-12-03 2021-12-03 전기차용 복합 열교환기

Country Status (3)

Country Link
KR (1) KR20230083773A (ko)
DE (1) DE112022002950T5 (ko)
WO (1) WO2023101535A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121816B1 (ko) 2014-10-07 2020-06-11 한온시스템 주식회사 리시버 드라이어 캡필터 및 그 조립 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180486A (ja) * 2006-12-27 2008-08-07 Calsonic Kansei Corp 熱交換器
KR101461872B1 (ko) * 2012-10-16 2014-11-13 현대자동차 주식회사 차량용 응축기
KR20150144358A (ko) * 2014-06-16 2015-12-28 한온시스템 주식회사 차량용 에어컨시스템
KR20180035346A (ko) * 2016-09-29 2018-04-06 현대자동차주식회사 차량 공조장치의 다단 코어 컨덴서
KR102430786B1 (ko) * 2017-12-19 2022-08-10 한온시스템 주식회사 일체형 열교환기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121816B1 (ko) 2014-10-07 2020-06-11 한온시스템 주식회사 리시버 드라이어 캡필터 및 그 조립 방법

Also Published As

Publication number Publication date
WO2023101535A1 (ko) 2023-06-08
DE112022002950T5 (de) 2024-04-04

Similar Documents

Publication Publication Date Title
US10005354B2 (en) Cooling module and cooling system for vehicle
JP6041424B2 (ja) 車両用コンデンサ
US20130146265A1 (en) Condenser for vehicle
US10041710B2 (en) Heat exchanger and air conditioner
JP2016001099A (ja) 積層型熱交換器
EP2171387A1 (en) A cooling system for a vehicle
KR101326841B1 (ko) 차량용 컨덴서
US10337808B2 (en) Condenser
KR20170080748A (ko) 응축기 및 이를 구비한 히트펌프 시스템
US9945614B2 (en) Heat exchanger with high pressure phase refrigerant channel, low pressure phase refrigerant channel and coolant channel
KR100644134B1 (ko) 오일쿨러 일체형 응축기
KR102439432B1 (ko) 차량용 쿨링모듈
KR20230083773A (ko) 전기차용 복합 열교환기
KR20070102172A (ko) 응축기와 오일쿨러 일체형 열교환기
CN112629077B (zh) 一种换热器及空调系统
KR20170047050A (ko) 응축기
JP2001215096A (ja) 熱交換器
KR101734281B1 (ko) 차량용 컨덴서
KR20220009046A (ko) 3종유체용 다중 열교환기
KR20110105561A (ko) 리시버 드라이어 일체형 응축기
KR101385230B1 (ko) 열교환기
KR102173383B1 (ko) 차량용 에어컨시스템
KR101336493B1 (ko) 수액기 일체형 응축기
KR20090081673A (ko) 수액기 일체형 응축기
KR101186552B1 (ko) 열교환기