KR20230070498A - 행잉 커넥터를 갖는 빠른-축 시준기 - Google Patents

행잉 커넥터를 갖는 빠른-축 시준기 Download PDF

Info

Publication number
KR20230070498A
KR20230070498A KR1020237013526A KR20237013526A KR20230070498A KR 20230070498 A KR20230070498 A KR 20230070498A KR 1020237013526 A KR1020237013526 A KR 1020237013526A KR 20237013526 A KR20237013526 A KR 20237013526A KR 20230070498 A KR20230070498 A KR 20230070498A
Authority
KR
South Korea
Prior art keywords
connector
emitter
optical component
substrate
attached
Prior art date
Application number
KR1020237013526A
Other languages
English (en)
Inventor
알렉산더 골디스
제프리 티. 힐
마이클 제이. 비숍
Original Assignee
애플 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애플 인크. filed Critical 애플 인크.
Publication of KR20230070498A publication Critical patent/KR20230070498A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

포토닉스 패키지는 기판, 행잉 커넥터, 및 빠른-축 시준기("FAC")를 포함할 수 있다. 행잉 커넥터는 전형적으로, 광 출력이 방출되는 측면 이외의 기판의 측면에 부착된다. 행잉 커넥터는 단면이 L-형상일 수 있으며, 베이스 섹션 및 베이스 섹션으로부터 돌출되는 연장된 섹션을 갖는다. 베이스 섹션은 기판에 부착되는 반면, 연장된 섹션은 FAC에 부착되어, FAC가 기판의 방출기 표면을 따라 하향으로 연장되게 하고; FAC의 정점은 광 출력을 출력하는 방출기와 동일 평면 상에 있다.

Description

행잉 커넥터를 갖는 빠른-축 시준기
관련 출원에 대한 상호 참조
본 특허 협력 조약 특허 출원은 2021년 10월 22일자로 출원된 미국 정규 특허 출원 제17/508,760호, 및 2020년 10월 23일자로 출원된 미국 가특허 출원 제63/104,687호를 우선권으로 주장하며, 그 정규 특허 출원 및 그 가특허 출원의 내용들은 본 명세서에 전체적으로 개시된 것처럼 참조로서 본 명세서에 포함된다.
기술분야
본 명세서에 설명된 실시예들은 일반적으로 포토닉스 패키지(photonics package)들에 관한 것으로, 더 상세하게는 행잉 커넥터(hanging connector)에 의해 빠른 축 시준기(fast axis collimator)에 연결된 포토닉스 집적 칩들에 관한 것이다.
빠른-축 시준기들은 전형적으로 레이저 다이오드 또는 다른 광원으로부터 수신된 광을 시준하는 데 사용된다. 이러한 시준기들은 종종, 방출기로부터 광을 수신하여 시준하기 위해 포토닉스 집적 칩("PIC")의 방출기에 부착되거나 그에 인접한다.
빠른-축 시준기는 다수의 방식들로 방출기에 부착되거나 그에 인접할 수 있다. 빠른-축 시준기들은 방출기에 직접 부착될 수 있거나, 또는 결국 포토닉스 집적 칩의 기판에 접합되는 탭에 부착될 수 있다. 탭은 광이 방출기에 의해 방출되는 기판의 동일한 측면에 접합된다. 따라서, 탭은 전형적으로, 시준기를 방출기와 정렬시키기 위해 빠른-축 시준기 아래에 위치설정된다. 달리 말하면, 기판에 접합되는 탭의 표면, 및 방출기로부터 광을 수용하는 빠른-축 시준기의 에지는 기판의 동일한 측면(또는 PIC의 다른 부분)을 향한다.
빠른-축 시준기와 방출기를 적절히 정렬시키기 위해, 빠른-축 시준기는 일반적으로, 광원이 활성인 동안 정렬되고 부착된다(또는 지지 탭이 부착됨). 빠른-축 시준기 및 방출기가 활성 정렬을 통해 정밀하게 정렬될 수 있지만, 이러한 정렬 프로세스는 시간 소모적이고, 매우 정밀한 위치설정(및 위치의 변화들)을 요구한다. 이는 결국 빠른-축 시준기를 포함하는 포토닉스 패키지들의 대량 제조를 늦출 수 있다.
본 명세서에 설명된 일 실시예는 포토닉스 패키지의 형태를 취하며, 그 포토닉스 패키지는, 커넥터 표면; 및 에지에서 커넥터 표면과 만나는 방출기 표면을 포함하는 기판; 기판 내에 적어도 부분적으로 있는 도파관; 도파관에 커플링되는 방출기; 커넥터 표면에 부착된 행잉 커넥터; 및 행잉 커넥터에 부착된 광학 컴포넌트를 포함하고; 여기서, 광학 컴포넌트는 방출기 표면의 일부를 따라 연장된다.
본 명세서에 설명된 다른 실시예는 행잉 커넥터의 형태를 취하며, 그 행잉 커넥터는, 베이스(base) 섹션; 및 베이스 섹션에 연결된 연장된 섹션을 포함하고; 여기서, 베이스 섹션은 포토닉스 패키지의 기판의 커넥터 표면에 부착되도록 구성되고; 연장된 섹션은 광학 컴포넌트에 부착되도록 구성되어, 광학 컴포넌트의 정점(vertex)이 포토닉스 패키지의 방출기 표면 상에 위치설정된 포토닉스 패키지의 방출기와 동일 평면 상에 있게 한다.
본 명세서에 설명된 또 다른 실시예는 포토닉스 패키지를 형성하기 위한 방법의 형태를 취하며, 그 방법은, 제1 접합을 이용하여 광학 컴포넌트를 행잉 커넥터에 부착하는 단계; 및 광학 컴포넌트가 기판의 방출기 표면을 따라 연장되도록 제2 접합을 이용하여 행잉 커넥터를 기판의 커넥터 표면에 부착하는 단계를 포함하고; 여기서, 방출기 표면 상의 방출기는 광 출력을 방출하도록 구성되고; 광학 컴포넌트는 광 출력을 수신하도록 구성되고; 광학 컴포넌트의 정점은 방출기와 동일 평면 상에 있고; 광학 컴포넌트는 광 출력을 시준하도록 구성된다.
이들 및 다른 실시예들은 본 문서를 검토할 시에 전체적으로 명백할 것이며, 전술한 실시예들은 임의의 형태의 제한보다는 본 명세서에서 더 완전히 설명된 예들이다.
개시내용은 첨부된 도면들과 함께 다음의 상세한 설명에 의해 용이하게 이해될 것이며, 도면에서, 유사한 참조 부호들은 유사한 구조적 요소들을 가리킨다.
도 1은 빠른-축 시준기 및 행잉 커넥터를 포함하는 샘플 포토닉스 패키지를 예시한다.
도 2는 예시적인 행잉 커넥터를 도시하는, 도 1의 라인(2-2)을 따라 취한 포토닉스 패키지의 일부의 단면도이다.
도 3a 내지 도 3d는 포토닉스 패키지의 기판과 행잉 커넥터 사이의 샘플 접합들을 예시하는, 도 1의 라인(3-3)을 따라 취해진 단면도들이다.
도 4a 내지 도 4c는 예시적인 행잉 커넥터를 형성하는 데 사용되는 샘플 동작들을 예시한다.
도 5는 도 2의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이고, 다층형(multi-tiered) FAC를 예시한다.
도 6a는 다른 예시적인 행잉 커넥터를 도시하는, 도 2의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이다.
도 6b는 도 6a의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이지만, 여기서, 코팅은 광이 통과하는 애퍼처를 한정하기 위해 FAC에 적용되었다.
도 7은 도 2의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이고, 다른 다층형 FAC를 예시한다.
도 8a는 도 2의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이고, 행잉 커넥터에 부착된 프리즘을 예시한다.
도 8b는 도 8a의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이며, 여기서 프리즘 및 행잉 커넥터는 일체형이다.
도 9는 도 2의 포토닉스 패키지와 유사한 포토닉스 패키지의 일부의 단면도이며, 여기서 포토닉스 컴포넌트(여기서는 광검출기)가 FAC를 대체하였다.
음영 및/또는 해칭은 단면들에서 별개의 컴포넌트들을 또는 단면의 공통 컴포넌트들(여기서, 동일한 음영이 사용됨)을 예시하도록 의도된다. 이는 임의의 특정 색상 또는 재료를 전달하거나 표시하지 않는다.
이제, 첨부 도면들에 예시된 대표적인 실시예들에 대한 참조가 상세하게 이루어질 것이다. 하기의 설명이 실시예들을 하나의 바람직한 실시예로 한정하고자 하는 것이 아니라는 것이 이해되어야 한다. 반대로, 첨부된 청구범위에 의해 정의된 바와 같은 설명된 실시예들의 사상 및 범주 내에 포함될 수 있는 대안예들, 수정예들 및 등가물들을 포함하고자 한다.
"포토닉스 패키지"는, 그 용어가 본 명세서에서 사용되는 바와 같이, 광을 방출하기 위해 함께 동작가능하게 커플링된 컴포넌트들의 세트를 지칭한다. 일반적으로, 포토닉스 패키지는 광원, 도파관 또는 다른 전파 재료, 및 방출기를 포함한다. 포토닉스 패키지는 광원으로부터 방출된 광을 수용하여 수정하도록 구성된 하나 이상의 광학 컴포넌트들을 포함할 수 있다. 포토닉스 패키지의 컴포넌트들 중 일부 또는 전부는 포토닉스 집적 칩("PIC")의 일부일 수 있다. 예를 들어, 광원, 도파관, 및 방출기는 PIC의 일부일 수 있지만, 일부 실시예들에서, 이러한 컴포넌트들 중 하나 이상은 오프-칩(off-chip)일 수 있다.
포토닉스 집적 칩의 "방출기"는 렌즈, 아웃커플러, 격자 등과 같은 별개의 광학 컴포넌트일 수 있거나, 또는 단순히 도파관의 말단(terminus)일 수 있다. 방출기는 도파관과 일체로 형성될 수 있거나, 또는 도파관에 부착되거나 그에 인접한 별개의 컴포넌트일 수 있다. 따라서, 방출기에 대한 본 명세서에서의 언급들은 적절한 바와 같이 도파관의 단부 및 전용 광학 컴포넌트 둘 모두를 포함하는 것으로 이해되어야 한다.
포토닉스 패키지의 광학 컴포넌트의 일 예는 빠른-축 시준기("FAC")이다. 빠른-축 시준기는 방출기로부터 광 출력을 수신하고 이를 시준한다. 빠른-축 시준기들은 포토닉스 패키지들에서 사용될 수 있으며, 여기서, 하나의 비제한적인 예로서, 레이저 다이오드들이 전형적으로 발산 광 출력을 방출하므로, 광원은 레이저 다이오드이다. 소정의 실시예들에서, 광원, 도파관(또는 다른 전파 매체), 및 방출기는 FAC가 연결되는 PIC의 일부이다. 따라서, 광이 (방출기를 통해) PIC로부터 아웃커플링됨에 따라, FAC는 광을 시준한다.
행잉 커넥터는 PIC의 방출기에 대해 FAC를 위치설정시킬 수 있다. FAC는 전형적으로, 그의 정점이 방출기와 동일 평면 상에 있도록 정렬된다. FAC의 정점과 방출기가 동일 평면 상에 있지 않으면, 광 출력은 불충분하게 시준될 수 있다. 수백 나노미터 정도의 작은 오정렬들 조차도 FAC로 하여금 광 출력을 시준할 수 없게 하거나, 또는 광 출력을 불량하게 시준하게 할 수 있다. 이는 결국 포토닉스 패키지가 부정확하게 동작하게 할 수 있다.
행잉 커넥터는 전형적으로, 광 출력이 방출되는 측면 이외의 기판의 측면에 부착된다(예를 들어, 방출기가 위치설정되는 기판의 측면, 또는 "방출기 표면"). 즉, 방출기 표면이 기판의 측벽으로 고려되면, 행잉 커넥터는 기판의 최상부 또는 최하부에 부착된다. 전술한 명칭은, 행잉 커넥터가 부착되는 기판 표면("커넥터 표면")이 기판의 "최상부"인 반면, 광 출력이 방출되는 표면(방출기 표면)이 기판의 "측면"이도록 본 문서에서 사용된다. 방출기 표면과 커넥터 표면 사이의 관계를 설명하기 위한 다른 방식은, 기판이 직사각형 직육면체라고 가정하여, 그 2개가 직각으로 만나는 것이다.
행잉 커넥터는 단면이 L-형상일 수 있어서, 단차형 단면 프로파일을 한정한다. 행잉 커넥터는 베이스 섹션으로부터 돌출되는 더 두꺼운 베이스 섹션 및 더 얇은 연장된 섹션을 포함할 수 있다. 베이스 섹션은 기판에 부착되는 반면, 연장된 섹션은 FAC에 부착되어, FAC가 기판의 방출기 표면을 따라 하향으로 연장되게 한다.
일반적으로, FAC는 행잉 커넥터에 부착되며, 이는 결국 기판의 최상부에 부착된다. FAC는 행잉 커넥터로부터 방출기 표면의 일부를 따라 연장되어, FAC가 방출기에 인접하게 하고, FAC의 정점이 방출기와 실질적으로 동일 평면 상에 있게 한다. "실질적으로 동일 평면 상"은, FAC의 정점 및 방출기가 기판의 제조 허용오차, 더하기 행잉 커넥터의 제조 허용오차, 더하기 빠른-축 시준기의 임의의 제조 허용오차 초과만큼 평면외에 있지 않다는 것을 의미한다. 일반적으로, 이러한 제조 허용오차들은 5 마이크로미터 미만이고, 2 마이크로미터만큼 작을 수 있다.
행잉 커넥터를 기판의 최상부에 부착함으로써, 행잉 커넥터 자체의 치수들 및 구조가 방출기에 대해 FAC를 적절하게 정렬시키는 데 사용될 수 있다. 대량-생산된 포토닉스 패키지들의 그룹 중 임의의 포토닉스 패키지에 대해, 방출기 표면과 커넥터 표면이 만나는 에지("방출기 에지")로부터의 방출기의 거리는 기판의 제조 허용오차들 내에서 일정하다. 마찬가지로, 행잉 커넥터의 높이는 다시 커넥터의 제조 허용오차들 내에서 일정하다. 따라서, 방출기에 대한 FAC의 임의의 오정렬은 FAC의 크기의 변동들이 비교적 극히 작은 한 이러한 2개의 제조 허용오차들에 의해 좌우된다. 따라서, FAC의 정점은 기판 및 행잉 커넥터에 대한 최대 제조 허용오차들의 합 초과만큼 방출기로부터 결코 오프셋되지 않을 것이다. 위에서 언급된 바와 같이, 이는 전형적으로 5 마이크로미터 미만이며, 이는 FAC가 방출기로부터의 광 출력의 실질적으로 전부를 시준할 수 있을 만큼 충분히 작다.
추가로, FAC의 정점이 행잉 커넥터에 의해 방출기와 항상 실질적으로 정렬되기 때문에, FAC를 방출기와 능동적으로 정렬시킬 필요성은 존재하지 않는다. 따라서, 행잉 커넥터는 포토닉스 패키지에 전력공급하지 않으면서 기판에 부착될 수 있다. 이는 포토닉스 패키지 제조를 실질적으로 가속하고, 포토닉스 패키지들을 대량 생산할 때 더 적은 결함들을 유발하고, 제조 비용을 감소시킨다.
실시예들은 FAC를 이용하는 것으로 설명되며, 특히 행잉 커넥터에 부착된 FAC에 관해 논의된다. 그러나, 많은 상이한 광학 컴포넌트들이 행잉 커넥터에 부착되거나, 또는 행잉 커넥터에 의해 포토닉스 패키지의 다른 부분들에 대해 위치설정될 수 있다는 것이 이해되어야 한다. 행잉 커넥터는 느린 축(slow axis) 시준기, 비구면 또는 구면 렌즈, 마이크로렌즈 어레이, 터닝 미러(turning mirror), 또는 임의의 다른 적합한 광학 컴포넌트에 부착될 수 있다. 따라서, FAC와 행잉 커넥터의 사용에 관한 본 명세서에서의 논의는 임의의 다른 적합한 광학 컴포넌트와 행잉 커넥터의 사용을 포함하는 것으로 이해되어야 한다.
이들 및 다른 실시예들은 도 1 내지 도 6을 참조하여 아래에서 논의된다. 그러나, 당업자들은 이러한 도면들에 대하여 본 명세서에서 제공되는 발명을 실시하기 위한 구체적인 내용이 단지 설명의 목적들을 위한 것일 뿐이며, 제한적인 것으로 해석되지 않아야 한다는 것을 용이하게 인식할 것이다.
도 1은 포토닉스 집적 칩(110), 빠른-축 시준기(120), 도파관(130), 및 행잉 커넥터(140)를 포함하는 포토닉스 패키지(100)를 예시한다. 포토닉스 패키지는 전형적으로, 광 출력을 방출하도록 동작가능한 하나 이상의 광원들(도시되지 않음)을 포함하고; 각각의 광원은, 광 출력이 도파관(130)을 통해 전파되도록 도파관에 동작가능하게 연결될 수 있다. 각각의 도파관(130)은 PIC(110)로부터의 광 출력을 FAC(120)에 아웃커플링시키는 방출기(도 1에 도시되지 않았지만, 도 2에서 볼 수 있음)에 연결될 수 있으며, 여기서 광 출력이 시준된다. 일부 실시예들에서, 광원들은 레이저 다이오드들이지만, 다른 실시예들은 다른 유형들의 광원들을 사용할 수 있다.
도파관들(130)은 PIC(110) 내에 완전히 또는 부분적으로 있을 수 있다. 일부 실시예들에서, 도파관(130)의 표면은 PIC(110)의 표면(예컨대, 그의 커넥터 표면)과 동일 평면 상에 있고, 그러므로, 도파관은 PIC 내에 부분적으로 있다. 다른 실시예들에서, 도파관(130)은 도시된 바와 같이, 방출기에서 그의 말단을 제외하고는 PIC(110) 내에 완전히 있을 수 있다. 어느 하나의 실시예에서, 그들은 광원(들)을 방출기에 광학적으로 커플링시킨다.
FAC(120)는 방출기로부터 광을 수신하도록 구성되고, 오프셋(260)만큼 방출기로부터 분리될 수 있다. FAC(120)는 광 출력이 FAC를 통과함에 따라 방출기로부터 수신된 광 출력을 시준한다. 광 출력은 FAC(120)로부터 자유 공간을 통해 포토닉스 패키지(100)의 다른 컴포넌트, 예컨대 광학 컴포넌트들 등으로 전파될 수 있다. 방출기에 가장 가까운 빠른-축 시준기의 표면은 방출기 표면에 일반적으로 평행하므로, 오프셋은 실질적으로 일정하다.
행잉 커넥터(140)는, 이러한 실시예에서 행잉 커넥터에 대한 기판인 PIC(110)에 부착된다. 구체적으로, 행잉 커넥터(140)는 PIC(110)의 커넥터 표면에 부착되고, 또한 FAC(120)에 부착된다. 행잉 커넥터(140)는, FAC(120)가 PIC(110)의 방출기 표면의 일부를 따라 연장되도록(그리고 그에 평행하도록) 위치설정된다. 용어 "최상부 측면"은 상대적이고, 도 1에 도시된 PIC(110)의 배향에 대해 주어진다는 것이 인식되어야 한다.
FAC(120)는 도 2에 도시된 바와 같이, FAC(또는 다른 광학 컴포넌트)의 정점(225)이 방출기(250)와 동일 평면 상에 있는 PIC(110)의 방출기 표면을 따라 충분히 멀리 연장된다. 도 2는 도 1의 라인(2-2)을 따라 취해진 PIC(110), 행잉 커넥터(140), 및 FAC(120)의 단면도이다. 일반적으로, 행잉 커넥터(140)는 제1 접합(220)에 의해 FAC(120)에 그리고 제2 접합(230)에 의해 PIC(110)에 부착된다. 제1 및 제2 접합들(220, 230)은 도 3a 내지 도 3c에 관해 아래에서 더 상세히 논의된다.
FAC(120)는 비구면 렌즈로서 작용하며, 방출기(250)를 향하는 측면 상에서는 평평하고, 그의 대향 측면 상에서는 볼록하다. FAC(120)(또는 다른 광학 컴포넌트)는 오프셋(260)만큼 방출기(250)로부터 분리된다. 오프셋의 크기는 실시예들 사이에서 변하지만(그러나, 그것은 일반적으로 일 실시예에서는 일정함), 전형적으로 수십 마이크로미터이다. 픽 앤드 플레이스(pick and place) 동작들은 지정된 지점에서 행잉 커넥터(140)를 PIC(110) 상에 배치할 수 있고; 그러한 픽 앤드 플레이스 동작들에서의 변동들은 오프셋의 크기가 최대 5 마이크로미터 더 크거나 더 작게, 그리고 일부 실시예들에서는 1 마이크로미터 더 크거나 더 작은 만큼 적게 할 수 있다. 일반적으로, 오프셋의 크기가 그의 설계 크기에 더 가까울수록, FAC(120)에 의해 출력되는 시준된 빔이 더 조밀하거나 더 좁아진다.
도 2에 도시된 바와 같이, 행잉 커넥터(140)는 단면이 L-형상이다. 행잉 커넥터는 베이스 섹션(210) 및 연장된 섹션(215)을 포함하며; 연장된 섹션은 베이스 섹션으로부터 단면이 단차화되고, 베이스 섹션으로부터 방출기 표면을 향해 돌출된다. 따라서, 베이스 섹션 및 연장된 섹션의 하나의 표면이 공통적이거나 동일 평면 상에 있지만, 베이스 섹션(210) 및 연장된 섹션(215)의 대향 표면들은 측벽에 의해 분리된다. 이는 도 2에 도시된 계단형 단면을 생성한다.
베이스 섹션(210)은 제2 접합(220)에 의해 PIC(110)에 부착된다. 마찬가지로, 연장된 섹션(215)은 제1 접합(220)에 의해 FAC(120)(또는 다른 광학 컴포넌트)에 부착된다. FAC(120)의 정점(225)이 방출기(250)와 정렬되고, 방출기가 일반적으로 PIC(110)의 커넥터 표면에 또는 그 부근에 있으므로, 연장된 섹션(215)은 이러한 정렬을 용이하게 하기 위해, 그것이 돌출되는 베이스 섹션(210)보다 단면적으로 더 얇다. 추가로, 베이스 섹션(210)이 방출기 에지로 연장되는 것으로 도 2에 도시되어 있지만, 이는 필수적인 것은 아니다. 다양한 실시예들에서, 베이스 섹션(210)은 방출기 에지로부터 리세스될 수 있거나, 또는 방출기 에지를 지나 연장될 수 있다.
도 3a 내지 도 3d는 행잉 커넥터(140)와 기판(110)(여기서는 PIC, 그러나 다른 실시예들은 다른 기판들을 사용할 수 있음) 사이의 접합들(230)의 상이한 예들을 예시하며, 이들 각각은 도 1의 라인(3-3)을 따라 취해진다. 특히, 도 3a 내지 도 3d 각각은 행잉 커넥터(140)의 베이스 섹션(210)과 기판(110) 사이의 예시적인 접합들을 예시하지만, 이러한 예들은 FAC(120)와 연장된 섹션(215) 사이의 접합(220)에 동등하게 적용가능하다. 따라서, 다음의 논의는 FAC(120)에 적용되는 기판(110)에 대한 논의 및 연장된 섹션(215)에 적용되는 베이스 섹션(210)에 대한 논의와 함께 그 접합(220)에 또한 적용되는 것으로 이해되어야 한다. 부가적으로, 도파관들(130)은 단순화를 위해 도 3a 내지 도 3d의 도면들로부터 생략된다.
도 3a에 도시된 바와 같이, 행잉 커넥터(140)의 밑면은 접착제(300)로 충전된 리세스(310)를 한정할 수 있다. 접착제는 도 2에 도시된 접합(230)을 형성할 수 있어서, 행잉 커넥터(140)를 기판(110)에 고정시킨다. 리세스(310)의 크기 및 형상은 실시예들 사이에서 변할 수 있다. 일반적으로, 리세스(310)는 경화 또는 설정 동안을 포함하여, 접착제(300)가 리세스를 빠져나가지 않도록 크기설정된다. 일부 실시예들에서, 접착제는 열 활성화 필름이다.
도 3b는 제1 및 제2 오버플로우 챔버들(310a, 310b) 및 중심 채널(310c)로부터 형성된 다중-부분 리세스를 예시한다. 도 3a에 도시된 실시예과 마찬가지로, 접착제(300)는 중심 채널(310c)을 충전(또는 실질적으로 충전)할 수 있다. 접착제가 설정 또는 경화됨에 따라, 접착제가 중심 채널(310c)을 넘어 누출되는 것을 방지하거나 또는 행잉 커넥터(140)의 베이스 섹션(210)을 축출(dislodge)하는 것을 방지하기 위해, 접착제는 오버플로우 챔버들(310a, 310b) 중 하나 또는 둘 모두로 확장 또는 이동될 수 있다.
소정의 실시예들은 행잉 커넥터(140)를 기판(110)에 접합할 때 접착제를 삼가할 수 있다. 예를 들어 그리고 도 3c에 도시된 바와 같이, 공융 접합(eutectic bond)(320)이 베이스 섹션(210)을 기판(110)에 직접 부착할 수 있다. 다른 옵션으로서 그리고 도 3d에 도시된 바와 같이, 하나 이상의 홀들, 함몰부들, 또는 다른 리세스들(330a, 330b)이 기판(110)에 형성될 수 있다. 베이스 섹션(210)은 기판 리세스들(330a, 330b)에 수용되도록 구성된 돌출부들, 예컨대 레그(leg)들을 포함하거나 형성할 수 있다. 공융 접합들(320a, 320b)은 도 3d에 도시된 바와 같이, 행잉 커넥터(140)의 돌출부들을 리세스들(330a, 330b)에 의해 노출된 기판의 일부에 유지하도록 형성될 수 있다. 부가적으로, 행잉 커넥터(140)가 기판(110) 상에 배치되는 조립 동작 동안, 리세스들(330a, 330b)은 기판에 대해 행잉 커넥터를 정렬시키도록 기점들로서 기능할 수 있다. 일부 실시예들에서, 리세스들(330a, 330b)은 기판(110)의 내측 층을 노출시킬 수 있고; 이러한 내측 층은 행잉 커넥터(140)의 베이스 섹션(210)에 공융 접합하기에 적합한 재료로부터 금속화되거나 달리 형성될 수 있다.
위에서 언급된 바와 같이, 도 3a 내지 도 3d에 관해 논의된 접합들 중 임의의 접합 또는 전부는 공융 접합의 사용을 포함하여, FAC(120)를 행잉 커넥터(140)에 부착하는 데 사용될 수 있다. 공융 접합들은, 그들이 비교적 얇고 고도로 제어가능하고, 따라서 상이한 포토닉스 패키지들 사이에서 비교적 적은 치수 변동을 갖는 한, 소정의 실시예들에 특히 적합할 수 있다. 따라서, 이러한 포토닉스 패키지들이 대량-생산되는 경우, 공융 접합들은 컴포넌트들, 예컨대 FAC(120)와 행잉 커넥터(140), 또는 행잉 커넥터와 기판(110) 사이의 오정렬 또는 치수 오프셋에 대한 더 적은 기회를 도입할 수 있고, 그러므로, 궁극적으로는 FAC와 방출기 사이의 오정렬이 더 적다. 부가적으로, 공융 접합(또는 열 전도성 에폭시의 사용)은 행잉 커넥터(140) 및/또는 FAC(120)(또는 행잉 커넥터에 부착된 다른 광학 요소 또는 컴포넌트)의 온도가 기판(110)과 대략 동일한 온도에 있는 것을 보장할 수 있으며, 그에 의해, 컴포넌트들 사이의 열 차이들로 인한 임의의 이동, 시프트, 균열, 또는 오정렬을 감소시킨다.
도 4a 내지 도 4c는 다양한 프로세싱 스테이지들에서 행잉 커넥터(140)의 일 예를 궁극적으로 형성하는 샘플 스택업(stackup)(400)을 도시한다. 초기에 그리고 도 4a에서 보여지는 바와 같이, 스택업(400)은 다수의 층들을 포함한다. 이러한 실시예에서, 스택업(400)은 3개의 층들, 즉 실리콘 기판 또는 베이스 층(415), 베이스 층(405)에 인접한 매립 산화물(BOX) 층(410), 및 BOX 층(410)에 인접한 실리콘-온-절연체(SOI) 층(405)을 포함한다. 따라서, 도시된 바와 같이, BOX 층(410)은 베이스 층(415)과 SOI 층(405) 사이에 개재되고 이들을 분리시킨다. 층들(405, 410, 415)의 두께들은 상이한 실시예들에서 변할 수 있고; 일부 실시예들에서, 전체 스택업은 725 내지 850 마이크로미터의 정도로 비교적 얇을 수 있다. 다른 실시예들은 더 많거나 더 적은 층들, 또는 상이한 재료들로 제조된 층들을 갖는 스택업(400)을 이용할 수 있고, 그러므로 도 4a 내지 도 4c의 논의는 일 예로서 의도되고 임의의 요건은 아니다.
SOI 층(405)의 일부는, 예를 들어 에칭, 연삭, 연마, 기화 등에 의해 기계적으로 또는 화학적으로 제거될 수 있다. 기판(400)은 이러한 프로세싱을 거친 SOI 층(405)으로 도 4b에 예시되어 있다. SOI 층(405)의 일부를 제거하는 것은 도 1 및 도 2에 예시된 행잉 커넥터(140)의 계단형 프로파일을 형성한다. 어떠한 재료도 제거되지 않았던 스택업의 일부는 사실상 행잉 커넥터(140)의 베이스 섹션(210)이지만, 스택업(400)의 얇아진 부분은 연장된 섹션(215)이며; 따라서, BOX 층(405)은 연장된 섹션의 외부 표면을 형성한다. 베이스 섹션(210) 및 연장된 섹션(215) 둘 모두는 도 2에 관해 위에서 더 상세히 논의된다.
일부 실시예들에서, SOI 층(405)은 두께가 3 내지 5 마이크로미터이고, 그러므로, 기판(110)과 연장된 섹션(215) 사이의 거리는, 이러한 거리가 SOI 층의 두께와 동일한 한, 3 내지 5 마이크로미터이다. 따라서, 연장된 섹션은 베이스 섹션이 접합되는 기판(110)의 표면에 비교적 가까울 수 있다는 것이 인식되어야 한다.
도 4c는 스택업(400)이 반전되고, FAC(120)이 BOX 층(410)에 부착되어, 행잉 커넥터로서 기능하는 것을 도시한다. BOX 층은, 예를 들어 앞서 논의된 바와 같이 공융 접합에 의해 FAC(120)에 접합된다. 일반적으로, 연장된 섹션의 외부 표면을 형성하는 BOX 층(410)에 FAC(120)를 접합하는 것은 고도로 정밀하며, 제거된 재료의 양(일부 경우들에서, BOX 층의 일부를 포함함)은 화학적 또는 기계적 제거를 통해 미세하게 제어될 수 있다. 추가로, BOX 층(410)의 노출된 부분은 제거 프로세스 이후 깨끗하고 결함이 없어서, FAC(120)에 접합하기 위한 탁월한 표면을 제공한다. BOX 층이 FAC(120)에 접합되는 행잉 커넥터의 표면을 형성하는 것처럼, SOI 층(405)은 위에서 설명된 바와 같이, 기판의 커넥터 표면에 접합되는 행잉 커넥터의 표면을 형성한다.
도 1 및 도 2에 관해 위에서 논의된 바와 같이, 일단 FAC(120)가 행잉 커넥터(140)에 부착되고, 행잉 커넥터가 PIC(110)에 부착되면, FAC(120)의 정점은 PIC(110)의 방출기와 실질적으로 동일 평면 상에 있다. 일반적으로, 이러한 정렬은 정렬의 3개의 변수들이 미세하게 제어되기 때문에 미세하게 제어될 수 있다. 먼저, 스택업(400)으로부터 제거된 재료의 양이 정밀하게 제어될 수 있고, FAC(120)가 접합된 스택업(400)의 노출된 표면에는 일반적으로 임의의 표면 결함들이 없다. 둘째로, 스택업(400)(및 그에 따라 행잉 커넥터(140))의 전체 두께는, 예를 들어 다양한 층들(405, 410, 415)을 증착하거나 성장시키는 것을 통해 스택업(400)을 형성할 때 달성가능한 웨이퍼 허용오차들에 의해 좌우된다. 마지막으로, 행잉 커넥터(140)를 FAC(120) 및 PIC(110)에 부착하는 데 사용되는 것들과 같은 공융 접합들은 높은 정도의 정밀도로 치수적으로 제어가능하고 반복가능하다. 잠재적인 오정렬의 이러한 3개의 소스들의 조합된 변동들은 1 내지 2 마이크로미터만큼 적을 수 있고, 전형적으로는 3 내지 5 마이크로미터의 임의의 것이다. 이는 많은 포토닉스 패키지들에 대한 FAC 및 방출기의 정렬 허용오차 내에 잘 있다.
도 5는 다층형 FAC(520)를 포함하는 포토닉스 패키지(500)를 예시한다. 일반적으로 그리고 이전 도면들에 관해 설명된 바와 같이, 다층형 FAC(520)는 제1 접합(220)에 의해 행잉 커넥터(140)에 부착되고, 행잉 커넥터는 결국 제2 접합(230)에 의해 PIC(110)에 부착된다. 제1 및 제2 접합들(220, 230)은 다시 위에서 설명된 바와 같이 공융 접합들일 수 있다.
이전의 실시예들과는 달리, 다수의 도파관들(130a, 130b, 130c)은 PIC(110)를 통해 연장되고; 부가적으로, 도파관(130a)은 PIC(110)의 커넥터 표면에 또는 그 부근에 도시되어 있다. 각각의 도파관(130a, 130b, 130c)은 광원으로부터 다층형 FAC(520)의 별개의 정점으로 광 출력(510a, 510b, 510c)을 전파하며, 다층형 FAC(520)는 개개의 광 출력을 시준한다. 도 5에 도시된 바와 같이, 도파관들(130a, 130b, 130c)은 PIC(110)의 커넥터 표면으로부터 상이한 거리들에 위치설정되며, 여기서 커넥터 표면은 행잉 커넥터(140)가 부착되는 표면이다. 다층형 FAC(520)는 PIC(110)의 방출기 표면의 일부를 따라 연장되어(그리고 그에 평행하여), 그의 정점들 각각이 고유 도파관과 동일 평면 상에 있게 한다. 이러한 방식으로, 단일 행잉 커넥터(140)는 다수의 도파관들로부터의 광 출력들을 시준하도록 구성된 FAC(또는 FAC들의 세트)를 지지할 수 있다.
도 5의 다층형 FAC(520)는 정점들 각각을 한정하는 단일의 일체형 요소로서 형성될 수 있거나, 또는 서로 부착되는 다수의 FAC들로부터 형성될 수 있다. 다층형 FAC(520)가 개별적인 부착된 컴포넌트들로부터 형성되는 실시예들에서, 공융 접합들이 각각의 FAC를 다른 것에 부착하는 데 사용될 수 있다. 부가적으로, 다층형 FAC의 각각의 정점은 PIC(110)의 방출기 표면에 평행한 축을 따라 정렬될 수 있다. 대안적으로, 개별 정점들(또는 FAC들) 중 하나 이상은 그러한 축에 대해 축외(off-axis)일 수 있다. 추가로, 다층형 FAC(520)는 NxM의 FAC들의 2차원 어레이일 수 있으며, 1xM 구성으로 제한되지 않는다. 이는 도파관들(130)이 그리드를 형성하는 경우 구현될 수 있다.
도 5가 다층형 FAC(520)의 각각의 FAC를 동일한 단면 크기로서 도시하지만, 그들이 그러할 필요는 없다. 실시예들은, 더 많거나 덜 오목하거나 또는 PIC(110)의 방출기 표면을 따라 추가로 연장되는 개별 FAC들을 가질 수 있다. 이는 도파관들(130a, 130b, 130c)이 상이한 파장들의 광을 전파하거나 다른 상이한 속성들을 갖는 경우 유용할 수 있다.
도 6a는 도 1에 도시된 포토닉스 패키지(100)와 유사하지만 상이한 행잉 커넥터(610)를 갖는 포토닉스 패키지(600')를 예시한다. 따라서, 도 6a에 도시된 유사하게 번호가 매겨진 요소들은 일반적으로 도 1의 이러한 동일한 요소들에 관해 설명된 바와 같이 동작하고 그리고/또는 구성되며, 추가로 논의되지 않을 것이다.
행잉 커넥터(610)는 백스톱(backstop)(620) 및 경사진 측벽(630)을 포함한다. 백스톱(620)은 PIC(110)의 방출기 표면에 가장 가까운 FAC(120)의 측면에 접한다(예를 들어, 터치한다). 경사진 측벽은 접합(230)에 의해 PIC(110)에 부착된 행잉 커넥터(610)의 표면으로부터 연장된다. 따라서, 백스톱(620)은 방출기 표면에 대해 FAC(120)를 배향시킬 수 있다. 즉, 백스톱은 방출기 표면에 대해 FAC(120)를 정렬시킬 수 있어서, 2개가 평행한 것을 보장한다. 추가로, 연장된 섹션이 FAC(120)를 도파관(130)(또는 연관된 방출기)과 정렬시키는 것처럼, 백스톱과 경사진 측벽의 조합은 오프셋(260)의 크기를 설정한다. 일부 실시예들에서, 경사진 측벽(630)은 계단형 구조로 대체될 수 있다.
백스톱(620) 및 경사진 측벽(630)은 도 4a 내지 도 4c에 관해 일반적으로 상세히 설명된 바와 같이, 행잉 커넥터 내로 스택업을 형성하기 위한 프로세스의 일부로서 형성될 수 있다. 백스톱(620) 및 경사진 측벽(630)은 화학적 에칭, 기계적 연삭 또는 연마, 레이저 기화 등을 포함하는 임의의 적합한 동작을 통해 형성될 수 있다.
도 6b는 도 6a의 포토닉스 패키지(600)를 예시하지만, FAC(120)가 기판(110)에 가장 가까운 FAC의 표면에 적용된 코팅(650)을 갖는 포토닉스 패키지를 예시한다. 코팅(640)은 애퍼처(660)를 한정하고; 애퍼처(660)는 본질적으로, 어떠한 코팅도 적용되지 않는 FAC 표면의 일부이다. 광(640)은 코팅(650)이 아니라 애퍼처(660)를 통과하고; 코팅은 대신에 광을 반사, 산란, 또는 흡수할 수 있다. 애퍼처(660) 및 코팅(650)은 FAC(120)를 빠져나가는 광(640)이 나중의 광학 컴포넌트들 또는 다른 요소들에 의한 수신을 위해 적절히 정렬되는 것을 보장하는 것을 돕는다.
도 7은 도 5의 실시예와 유사하게, 제1 접합(230)에 의해 기판(110)에 그리고 제2 접합(220)에 의해 다층형 FAC(720)에 부착된 행잉 커넥터(140)를 예시한다. 이러한 실시예(700)에서, 기판(110)은, 그 자신의 도파관(130a, 130b, 130c)을 각각 갖는 기판(110)의 다수의 "층들"을 효과적으로 한정하는 단차형 방출기 에지를 갖는다. 이러한 층들 각각은 그것 "위의" 층(예를 들어, 행잉 커넥터(140)에 더 가까운 층)보다 더 멀리 연장될 수 있다. 따라서, 행잉 커넥터(140)에 가까운(그리고 그에 부착된) 층은 그 아래의 층보다 덜 연장되고, 그 층은 그 아래의 층보다 덜 연장되는 등의 식이다. 이는 도 7에 도시된 계단형 방출기 에지를 형성한다.
다층형 FAC(720)는 기판(110)의 방출기 에지에 가장 가까운 에지를 따라 단차형일 수 있다. 일반적으로, 다층형 FAC(720)의 단차 패턴은, 다층형 FAC의 임의의 단일 FAC와 그의 대응하는 방출기(및/또는 방출기 에지의 일부) 사이의 갭이 동일하도록 방출기 에지의 단차 패턴과 매칭된다. 따라서, 다층형 FAC(720)는 다수의 도파관들(130a, 130b, 130c)로부터 광(710a, 710b, 710c)을 수용하여 시준할 수 있다. 도 5의 실시예와 마찬가지로, 다층형 FAC(720)는 단일의 일체형 요소로서 형성될 수 있거나, 또는 서로 부착되는 다수의 FAC들로부터 형성될 수 있다.
도 8a는 행잉 커넥터(140)에 의해 기판(110)에 부착된 다른 예시적인 광학 요소(800)를 예시한다. 그러나, 여기서, 광학 요소(800)는 FAC보다는 프리즘이다. 프리즘(800)은, 광이 수평보다는 수직 방향으로 방출되도록, 기판(110)(또는 기판 상의 도파관(130))을 빠져나가는 광(810)을 방향전환시킬 수 있다. 본질적으로, 프리즘(800)의 경사진 에지(802)는 광을 방향전환시키기 위한 반사기로서 기능한다. 다른 실시예들과 마찬가지로, 행잉 커넥터(140)는 접착제, 솔더 등을 통해 기판(110)에 부착된다.
도 8b는 도 8a에 대한 대안을 도시한다. 여기서, 프리즘(800) 자체는 행잉 커넥터이다. 달리 말하면, 프리즘(800) 바디(body)는 도 8a에 관해 설명된 바와 같이 광(810)을 반사하기 위해, 반사된 경사진 에지 또는 패시트(facet)(802)를 기판(110)의 에지 위에 위치설정시키도록 형상화된다. 따라서, 실시예는 별개의 행잉 커넥터를 완전히 생략하고, 커넥터 및 프리즘 둘 모두로서 일체형 요소를 사용한다.
도 9는 광검출기(910)가 FAC를 대체하는 또 다른 변형(900)을 도시한다. 따라서, 행잉 커넥터(140)가 FAC 또는 프리즘과 같은 광학 요소뿐만 아니라 임의의 적합한 컴포넌트를 기판(110)에 위치설정시키고 그리고/또는 부착할 수 있으며, 그러한 컴포넌트들이 실시예의 도파관(130)으로부터 광을 수신할 수 있다는 것을 알 수 있다. 실시예(900)의 나머지 요소들은 도 2와 같은 이전의 도면들에 예시된 것들과 실질적으로 동일하다.
도 8a 내지 도 9의 실시예들이 기판(110) 내의, 예를 들어 기판의 일부일 수 있는 클래딩 층(cladding layer) 아래의 도파관(130)을 도시하지만, 도파관(들)(130)은 개개의 기판(110)의 최상부 표면을 따라 연장되거나, 또는 그러한 표면에 한정된 채널 내에 위치설정될 수 있다는 것이 이해되어야 한다. 어느 하나의 도파관 옵션(예를 들어, 기판 내에 또는 기판의 클래딩 층 아래에 매립되거나, 또는 기판의 표면을 따라 연장됨)이 임의의 도면에 관해 본 명세서에 설명된 임의의 실시예에서 사용될 수 있다.
본 명세서에 설명된 바와 같이, 행잉 커넥터는 다양한 방법들을 통해 제조될 수 있다. 비제한적인 예들로서, 실리콘 기판은 단일 기판로부터 정확하게 다수의 탭들을 형성하기 위해 블레이드 또는 레이저로 다이싱될 수 있다. 일련의 키스 절삭부(kiss cut)들(예를 들어, 기판의 전체를 통해 연장되지 않는 절삭부)는 행잉 커넥터들의 바디들을 한정할 수 있으며, 이들 각각은 공통 기판에 부착되게 그리고 키스 절삭 프로세스 이후 남겨진 잔류물들에 의해 서로 분리되게 유지된다. 즉, 기판은 제1 절삭 동작 이후 교번하는 일련의 바디들 및 잔류물들 내로 형성되며, 여기서 잔류물은 2개의 바디들을 서로 연결시킨다. 바디들은 (다시, 블레이드, 레이저 등에 의해 제조된) 제2 절삭부로 서로 분리될 수 있고; 일련의 제2 절삭부들은 일반적으로, 잔류물들 각각의 하나의 단부를 통과하여, 단일 잔류물에 부착된 하나의 바디를 남긴다. 따라서, 잔류물은 (도 2에 도시된 바와 같이) FAC, 광학 요소, 또는 다른 컴포넌트가 제1 접합(220)에 의해 부착되는 행잉 커넥터의 일부를 형성하는 반면, 바디는 (다시 도 2에 도시된 바와 같이) 제2 접합(230)에 의해 기판(110)에 부착된 FAC(140)의 일부를 형성한다. 일부 실시예들에서, 잔류물은 기판에 부착되고 바디는 FAC에 부착될 수 있는 등의 식이다.
전술한 설명은, 설명의 목적들을 위해, 설명된 실시예들의 완전한 이해를 제공하기 위해 특정 명명법을 사용하였다. 그러나, 특정 세부사항들은 설명된 실시예들을 실시하기 위해 요구되지는 않는다는 것이 당업자에게는 명백할 것이다. 따라서, 본 명세서에 설명된 특정 실시예들의 전술한 설명들은 예시 및 설명의 목적들을 위해 제시된다. 이들은 실시예들을 개시된 정확한 형태들로 제한하거나 또는 포괄적인 것으로 의도되지 않는다. 많은 수정들 및 변형들이 위의 교시 내용들에 비추어 가능하다는 것이 당업자에게 명백할 것이다.

Claims (20)

  1. 포토닉스 패키지(photonics package)로서,
    기판 - 상기 기판은,
    커넥터 표면; 및
    에지에서 상기 커넥터 표면과 만나는 방출기 표면을 포함함 -;
    상기 기판 내에 적어도 부분적으로 있는 도파관;
    상기 도파관에 커플링되는 방출기;
    상기 커넥터 표면에 부착된 행잉 커넥터(hanging connector); 및
    상기 행잉 커넥터에 부착된 광학 컴포넌트를 포함하며,
    상기 광학 컴포넌트는 상기 방출기 표면의 일부를 따라 연장되는, 포토닉스 패키지.
  2. 제1항에 있어서,
    상기 행잉 커넥터는,
    베이스(base) 섹션; 및
    상기 베이스 섹션으로부터 돌출되는 연장된 섹션을 포함하고;
    상기 광학 컴포넌트는 빠른-축(fast-axis) 시준기이고;
    상기 광학 컴포넌트의 정점(vertex)은 상기 도파관과 동일 평면 상에 있고;
    상기 베이스 섹션은 상기 커넥터 표면에 부착되고;
    상기 연장된 섹션은 상기 빠른-축 시준기에 부착되는, 포토닉스 패키지.
  3. 제2항에 있어서,
    상기 연장된 섹션은 상기 베이스 섹션보다 얇고;
    상기 베이스 섹션 및 상기 연장된 섹션은 단차형 단면을 한정하는, 포토닉스 패키지.
  4. 제2항에 있어서,
    상기 연장된 섹션은 제1 공융 접합(eutectic bond)에 의해 상기 빠른-축 시준기에 부착되고;
    상기 베이스 섹션은 제2 공융 접합에 의해 상기 커넥터 표면에 부착되는, 포토닉스 패키지.
  5. 제1항에 있어서,
    상기 광학 컴포넌트의 표면은 상기 방출기 표면에 평행하고;
    상기 광학 컴포넌트 및 방출기 표면은 오프셋만큼 분리되고;
    상기 오프셋은 일정한, 포토닉스 패키지.
  6. 제1항에 있어서,
    상기 행잉 커넥터는 백스톱(backstop)을 포함하고;
    상기 백스톱은 상기 광학 컴포넌트에 인접하고;
    상기 백스톱은 상기 방출기에 대해 상기 광학 컴포넌트를 배향시키는, 포토닉스 패키지.
  7. 제6항에 있어서,
    상기 행잉 커넥터는 경사진 측벽을 더 포함하고;
    상기 경사진 측벽 및 상기 백스톱은 상기 광학 컴포넌트와 상기 방출기 표면 사이의 오프셋 크기를 설정하도록 협력하는, 포토닉스 패키지.
  8. 제6항에 있어서,
    상기 도파관은 도파관들의 세트 중 하나의 도파관이고;
    상기 광학 컴포넌트는 정점들의 세트를 한정하는 다층형(multi-tiered) 빠른-축 시준기이고;
    상기 정점들의 세트의 각각의 정점은 상기 도파관들의 세트 중 하나의 도파관과 동일 평면 상에 있는, 포토닉스 패키지.
  9. 제8항에 있어서,
    상기 다층형 빠른-축 시준기는 상기 정점들의 세트의 각각의 정점을 한정하는 일체형 요소를 포함하는, 포토닉스 패키지.
  10. 행잉 커넥터로서,
    베이스 섹션; 및
    상기 베이스 섹션에 연결된 연장된 섹션을 포함하며;
    상기 베이스 섹션은 포토닉스 패키지의 기판의 커넥터 표면에 부착되도록 구성되고;
    상기 연장된 섹션은 광학 컴포넌트에 부착되도록 구성되어, 상기 광학 컴포넌트의 정점이 상기 포토닉스 패키지의 방출기 표면 상에 위치설정된 상기 포토닉스 패키지의 방출기와 동일 평면 상에 있게 하는, 행잉 커넥터.
  11. 제10항에 있어서,
    상기 베이스 섹션은,
    베이스 층;
    상기 베이스 층에 인접한 매립 산화물 층; 및
    상기 매립 산화물 층에 인접한 실리콘-온-절연체(silicon-on-insulator) 층을 포함하고;
    상기 연장된 섹션은,
    상기 매립 산화물 층; 및
    상기 매립 산화물 층에 인접한 상기 실리콘-온-절연체 층을 포함하고;
    상기 매립 산화물 층의 일부는 상기 연장된 섹션의 외부 표면을 형성하는, 행잉 커넥터.
  12. 제11항에 있어서,
    상기 연장된 섹션의 외부 표면을 형성하는 상기 매립 산화물 층의 상기 일부는 상기 광학 컴포넌트에 부착되도록 구성되는, 행잉 커넥터.
  13. 제11항에 있어서,
    상기 베이스 층은 실리콘이고;
    상기 베이스 층은 상기 커넥터 표면에 부착되도록 구성되는, 행잉 커넥터.
  14. 포토닉스 패키지를 형성하기 위한 방법으로서,
    제1 접합을 이용하여 광학 컴포넌트를 행잉 커넥터에 부착하는 단계; 및
    상기 광학 컴포넌트가 기판의 방출기 표면을 따라 연장되도록 제2 접합을 이용하여 상기 행잉 커넥터를 상기 기판의 커넥터 표면에 부착하는 단계를 포함하며;
    상기 방출기 표면 상의 방출기는 광 출력을 방출하도록 구성되고;
    상기 광학 컴포넌트는 상기 광 출력을 수신하도록 구성되고;
    상기 광학 컴포넌트의 정점은 상기 방출기와 동일 평면 상에 있고;
    상기 광학 컴포넌트는 상기 광 출력을 시준하도록 구성되는, 포토닉스 패키지를 형성하기 위한 방법.
  15. 제14항에 있어서,
    상기 행잉 커넥터는 스택업(stackup)으로 형성되고, 상기 스택업은,
    베이스 층;
    상기 베이스 층에 인접한 매립 산화물 층; 및
    상기 매립 산화물 층에 인접한 실리콘-온-절연체 층을 포함하고;
    상기 광학 컴포넌트를 상기 행잉 커넥터에 부착하는 동작은 상기 광학 컴포넌트를 상기 매립 산화물 층에 부착하는 것을 포함하고;
    상기 행잉 커넥터를 상기 커넥터 표면에 부착하는 동작은 상기 실리콘-온-절연체 층을 상기 커넥터 표면에 부착하는 것을 포함하는, 포토닉스 패키지를 형성하기 위한 방법.
  16. 제15항에 있어서,
    상기 기판은 포토닉스 집적 칩인, 포토닉스 패키지를 형성하기 위한 방법.
  17. 제14항에 있어서,
    상기 커넥터 표면 및 상기 방출기 표면은 상기 기판의 상이한 표면들인, 포토닉스 패키지를 형성하기 위한 방법.
  18. 제17항에 있어서,
    상기 커넥터 표면 및 상기 방출기 표면은 에지에서 만나는, 포토닉스 패키지를 형성하기 위한 방법.
  19. 제14항에 있어서,
    상기 행잉 커넥터의 일부는 상기 커넥터 표면에 한정된 리세스 내로 연장되는, 포토닉스 패키지를 형성하기 위한 방법.
  20. 제19항에 있어서,
    상기 리세스 내로 연장되는 상기 행잉 커넥터의 상기 일부는 공융 접합을 이용하여 상기 기판에 접합되는, 포토닉스 패키지를 형성하기 위한 방법.
KR1020237013526A 2020-10-23 2021-10-22 행잉 커넥터를 갖는 빠른-축 시준기 KR20230070498A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063104687P 2020-10-23 2020-10-23
US63/104,687 2020-10-23
US17/508,760 2021-10-22
PCT/US2021/056342 WO2022087479A1 (en) 2020-10-23 2021-10-22 Fast-axis collimator with hanging connector
US17/508,760 US11960128B2 (en) 2020-10-23 2021-10-22 Fast-axis collimator with hanging connector

Publications (1)

Publication Number Publication Date
KR20230070498A true KR20230070498A (ko) 2023-05-23

Family

ID=81258243

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013526A KR20230070498A (ko) 2020-10-23 2021-10-22 행잉 커넥터를 갖는 빠른-축 시준기

Country Status (5)

Country Link
US (1) US11960128B2 (ko)
KR (1) KR20230070498A (ko)
CN (1) CN117015731A (ko)
DE (1) DE112021004425T5 (ko)
WO (1) WO2022087479A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644618B2 (en) 2018-06-22 2023-05-09 Apple Inc. Discrete optical unit on a substrate of an integrated photonics chip
US11525958B1 (en) 2019-09-09 2022-12-13 Apple Inc. Off-cut wafer with a supported outcoupler
US20240077688A1 (en) * 2021-01-07 2024-03-07 Rockley Photonics Limited Optical assemblies comprising a prism

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135605A (en) 1991-04-29 1992-08-04 At&T Bell Laboratories Methods for making mirrors
US5182787A (en) 1991-04-29 1993-01-26 At&T Bell Laboratories Optical waveguide structure including reflective asymmetric cavity
US5420722A (en) * 1993-10-25 1995-05-30 Creo Products Inc. Self-registering microlens for laser diodes
US6112005A (en) 1997-11-12 2000-08-29 Alliance Fiber Optics Products, Inc. Filter device for use with light and method making the same
US6393185B1 (en) 1999-11-03 2002-05-21 Sparkolor Corporation Differential waveguide pair
JP2002258081A (ja) 2001-02-28 2002-09-11 Fujitsu Ltd 光配線基板、光配線基板の製造方法及び多層光配線
JP2002328245A (ja) 2001-05-01 2002-11-15 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
NL1019637C2 (nl) 2001-12-21 2003-07-09 Lionix B V Inrichting en werkwijze voor het inkoppelen van licht in een vlakke golfgeleider, inrichting en werkwijze voor het uitkoppelen van licht uit een vlakke golfgeleider, en werkwijzen voor het vervaardigen van dergelijke inrichtingen.
JP4012785B2 (ja) 2002-08-27 2007-11-21 日本板硝子株式会社 光接続装置
DE10258745A1 (de) * 2002-12-13 2004-07-08 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg Halbleiterlaservorrichtung, Halbleiterlaserbaustein für eine derartige Halbleiterlaservorrichtung sowie ein Verfahren zur Herstellung einer derartigen Halbleiterlaservorrichtung
KR100745285B1 (ko) 2003-04-23 2007-08-01 시옵티컬 인코포레이티드 Soi 광학 플랫폼상에 형성된 서브-마이크론 평면 광파디바이스
JP2007256298A (ja) 2004-03-19 2007-10-04 Nec Corp 光モジュールおよびその製造方法
EP1866688B1 (en) 2005-03-31 2009-03-25 PGT Photonics S.p.A. Method to fabricate a redirecting mirror in optical waveguide devices
JP4730274B2 (ja) * 2006-09-29 2011-07-20 ソニー株式会社 光結合器、光コネクタ及びレセプタクル型光伝送モジュール
JP4926797B2 (ja) 2007-04-13 2012-05-09 株式会社第一興商 選曲履歴を表示するカラオケ選曲装置
JP5018254B2 (ja) 2007-06-06 2012-09-05 日立電線株式会社 ミラー付き光導波路及びその製造方法
JP2009175418A (ja) 2008-01-24 2009-08-06 Shinko Electric Ind Co Ltd 光電気混載基板及びその製造方法
EP2357502A1 (en) 2008-12-04 2011-08-17 Sumitomo Bakelite Company Limited Optical waveguide and member for forming optical waveguide
DE102010012604A1 (de) * 2010-03-24 2011-09-29 Osram Opto Semiconductors Gmbh Halbleiterlaserlichtquelle
US9285555B2 (en) * 2010-11-25 2016-03-15 Gnitabouré YABRE Optical circuit board
US9229169B2 (en) 2011-08-16 2016-01-05 International Business Machines Corporation Lens array optical coupling to photonic chip
WO2013043183A1 (en) 2011-09-22 2013-03-28 Intel Corporation Slotted y-coupling waveguide for slotted waveguide modulator device
WO2013095426A1 (en) 2011-12-21 2013-06-27 Intel Corporation Fabrication of planar light-wave circuits (plcs) for optical i/o
WO2013101112A1 (en) 2011-12-29 2013-07-04 Intel Corporation Two-dimensional, high-density optical connector
US9507086B2 (en) 2011-12-30 2016-11-29 Intel Corporation Optical I/O system using planar light-wave integrated circuit
JP5892875B2 (ja) 2012-06-22 2016-03-23 Nttエレクトロニクス株式会社 光電子集積モジュール
US20140086527A1 (en) 2012-09-27 2014-03-27 Ibrahim Ban Vertical light coupler
US9696486B2 (en) 2013-07-31 2017-07-04 Oracle International Corporation Surface-normal coupler for silicon-on-insulator platforms
WO2015092064A1 (en) 2013-12-20 2015-06-25 Universiteit Gent Adiabatic coupler
US9705289B2 (en) 2014-03-06 2017-07-11 Nlight, Inc. High brightness multijunction diode stacking
JP6384152B2 (ja) * 2014-07-02 2018-09-05 富士通株式会社 光デバイス及びその製造方法
US9411105B2 (en) 2014-07-14 2016-08-09 Cisco Technology, Inc. Multi-axis graded-index photonic coupling
WO2016122490A1 (en) 2015-01-28 2016-08-04 Hewlett Packard Enterprise Development Lp Laser-written optical routing systems and method
EP3286587A4 (en) 2015-04-20 2018-12-26 Skorpios Technologies, Inc. Vertical output couplers for photonic devices
WO2017007470A1 (en) 2015-07-08 2017-01-12 Hewlett Packard Enterprise Development Lp Photonic circuit design systems
US9470864B1 (en) 2015-09-01 2016-10-18 Aquaoptics Corp. Photoelectric conversion module
JP6644080B2 (ja) * 2015-10-28 2020-02-12 京セラ株式会社 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル
JP2017138356A (ja) 2016-02-01 2017-08-10 ソニー株式会社 光導波シート、光伝送モジュール及び光導波シートの製造方法
CN109073842B (zh) 2016-03-02 2020-09-04 康宁光电通信有限责任公司 用于将至少一个光纤耦合到至少一个光电子器件的插入器组合件和布置
US10261389B2 (en) 2016-06-22 2019-04-16 Massachusetts Institute Of Technology Methods and systems for optical beam steering
US9715064B1 (en) 2016-09-13 2017-07-25 Globalfoundries Inc. Multi-chip modules with vertically aligned grating couplers for transmission of light signals between optical waveguides
US10018781B1 (en) 2017-01-06 2018-07-10 International Business Machines Corporation Fluid control structure
US10025044B1 (en) 2017-01-17 2018-07-17 International Business Machines Corporation Optical structure
US9989713B1 (en) 2017-03-07 2018-06-05 International Business Machines Corporation Fluid control structure
KR102316398B1 (ko) * 2017-06-16 2021-10-22 교세라 가부시키가이샤 광 커넥터 모듈
CN111902755B (zh) 2018-02-05 2023-05-09 申泰公司 光转接板
US10209452B1 (en) * 2018-03-12 2019-02-19 Cloud Light Technology Limited Method for fabricating silicon photonics package, active alignment method for light coupling, and silicon photonics package
US10634843B2 (en) 2018-04-24 2020-04-28 Apple Inc. Photonic integrated circuit with laser and isolator
US10429582B1 (en) 2018-05-02 2019-10-01 Globalfoundries Inc. Waveguide-to-waveguide couplers with multiple tapers
US11644618B2 (en) 2018-06-22 2023-05-09 Apple Inc. Discrete optical unit on a substrate of an integrated photonics chip
US10985524B1 (en) 2018-08-29 2021-04-20 Apple Inc. High-power hybrid silicon-photonics laser
US11722315B2 (en) 2018-09-11 2023-08-08 Apple Inc. Factory data storage and recovery
US10931080B2 (en) * 2018-09-17 2021-02-23 Waymo Llc Laser package with high precision lens
US10823912B1 (en) 2018-09-27 2020-11-03 Apple Inc. Silicon photonics using off-cut wafer having top-side vertical outcoupler from etched cavity
US10788632B2 (en) * 2019-01-29 2020-09-29 Google Llc Device and method for coupling laser to a photonic integrated circuit
US11480728B2 (en) 2019-06-12 2022-10-25 Apple Inc. Pixel array implemented on photonic integrated circuit (PIC)
US11525958B1 (en) 2019-09-09 2022-12-13 Apple Inc. Off-cut wafer with a supported outcoupler

Also Published As

Publication number Publication date
WO2022087479A1 (en) 2022-04-28
DE112021004425T5 (de) 2023-06-29
US11960128B2 (en) 2024-04-16
CN117015731A (zh) 2023-11-07
US20220128782A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
KR20230070498A (ko) 행잉 커넥터를 갖는 빠른-축 시준기
CN108027480B (zh) 纤维到芯片的光耦合器
JP3995026B2 (ja) マイクロシステムモジュール
US9664858B2 (en) Optical photonic circuit coupling
US10627588B2 (en) Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US10948658B2 (en) Optical interconnection assemblies, glass interconnection substrates, and methods of making an optical connection
US6866426B1 (en) Open face optical fiber array for coupling to integrated optic waveguides and optoelectronic submounts
US9658398B2 (en) Optical component with angled-facet waveguide
CN107003475B (zh) 光学导光元件的制造
US7263249B2 (en) Optical element assembly and method of making the same
US6679635B2 (en) Optical device permitting passive alignment of lens element
CN108020924B (zh) 使用共用的光学器件的多激光器封装体
EP0869379A1 (en) Subassembly and method for coupling optical devices
US7218804B2 (en) Method and device for establishing an optical connection between an optoelectronic component and an optical waveguide
US10989885B2 (en) Semiconductor package structure and method for manufacturing the same
US5771323A (en) Micro-photonics module
US20180335575A1 (en) Microfabricated fiber optic platform
EP2762936A1 (en) Method for forming optoelectronic modules connectable to optical fibers and optoelectronic module connectable to at least one optical fiber
JP2016018147A (ja) ミラー付き光回路及びミラー付き光回路の製造方法
US20240038922A1 (en) Optical module
JP2015530739A (ja) 光電子コンポーネント、光学コンポーネント又はフォトニック・コンポーネント用のサブマウント
JP2005136385A (ja) 半導体光学装置およびその製造方法
US7639436B2 (en) Optical module having the light incident surface of a lens inclined on a substrate and a method of manufacturing the same
CN113534369A (zh) 亚微米级波导耦合结构
JPH0628809U (ja) アレイ型光結合回路