KR20230004807A - 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법 - Google Patents

서스펜션 제어 장치 및 서스펜션 장치의 제어 방법 Download PDF

Info

Publication number
KR20230004807A
KR20230004807A KR1020227041577A KR20227041577A KR20230004807A KR 20230004807 A KR20230004807 A KR 20230004807A KR 1020227041577 A KR1020227041577 A KR 1020227041577A KR 20227041577 A KR20227041577 A KR 20227041577A KR 20230004807 A KR20230004807 A KR 20230004807A
Authority
KR
South Korea
Prior art keywords
amount
command
control command
control
target amount
Prior art date
Application number
KR1020227041577A
Other languages
English (en)
Inventor
마코토 마츠우라
류스케 히라오
Original Assignee
히다치 아스테모 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 아스테모 가부시키가이샤 filed Critical 히다치 아스테모 가부시키가이샤
Publication of KR20230004807A publication Critical patent/KR20230004807A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0512Pitch angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/821Uneven, rough road sensing affecting vehicle body vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/04Means for informing, instructing or displaying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/08Failure or malfunction detecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1878Neural Networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/86Suspension systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

컨트롤러는, 차량의 차체와 차륜 사이의 힘을 조정하는 가변 댐퍼를 구비하는 서스펜션 장치를 제어한다. 컨트롤러는, 제1 지령 산출부 및 제어 지령 출력부를 갖고 있다. 제1 지령 산출부는, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량이 되는 감쇠력의 제1 지령값을 출력한다. 제어 지령 출력부는, 제1 지령값에 기초하여 가변 댐퍼를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다.

Description

서스펜션 제어 장치 및 서스펜션 장치의 제어 방법
본 개시는 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법에 관한 것이다.
지금까지의 서스펜션 제어는, 차량 상태를 검출 또는 추정하고, 그에 따른 피드백 제어를 행하고 있다(특허문헌 1 참조). 피드백 제어에는, 예컨대 스카이 훅 제어칙이나 BLQ(Bi-linear Optimal Control)가 이용되고 있다.
특허문헌 1: 일본 특허 공개 제2014-69759호 공보
그런데, 특허문헌 1에 개시된 서스펜션 제어 장치는, 스카이 훅 제어칙, BLQ 등의 제어를 이용하고 있다. 그러나, 이들 제어는, 선형·쌍선형 시스템이 베이스인 제어이기 때문에, 반드시 최적의 제어라고는 할 수 없다.
한편, 제어 정밀도 향상을 위해, 직접 최적 제어의 지령과 차량 상태를 미리 학습시켜, 학습 결과의 무게 계수만을 이용하여 지령을 산출하는 것 같은 기계 학습을 이용한 제어가 고려된다. 그러나, 기계 학습을 이용한 제어에서는, 제어 지령의 도출 과정을 알 수 없기 때문에, 학습 결과가 옳은 것을 검증할 수단이 없을 우려가 있다. 그 때문에, 예컨대 오학습이나 ECU(전자 제어 유닛)의 우발 고장 등이 생겨, 학습 결과를 이용한 지령의 산출 결과가 이상이 된 경우에, 차량 상태가 불안정해질 우려가 있다.
본 발명의 일 실시형태의 목적은, 제어 지령의 산출 결과를 검증할 수 있는 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법을 제공하는 것에 있다.
본 발명의 일 실시형태는, 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치를 제어하는 서스펜션 제어 장치로서, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 지령 산출부와, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어하는 제어 지령을 출력하는 제어 지령 출력부로서 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 제어 지령 출력부를 갖고 있다.
본 발명의 일 실시형태는, 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치의 제어 방법으로서, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 단계와, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 제어 지령으로서 상기 힘 발생 기구에 출력하는 제2 단계를 갖고 있다.
본 발명의 일 실시형태에 따르면, 제어 지령의 산출 결과를 검증할 수 있다.
도 1은 제1, 제2 실시형태에 따른 서스펜션 제어 장치를 모식적으로 나타내는 도면이다.
도 2는 도 1중의 컨트롤러를 나타내는 블록도이다.
도 3은 도 2 중의 제1 지령 산출부의 DNN을 학습하는 순서를 나타내는 설명도이다.
도 4는 제어 지령 출력부에 의한 제어 지령 제한 처리를 나타내는 흐름도이다.
도 5는 변형예의 제어 지령 출력부에 의한 제어 지령 이상 판정 처리를 나타내는 흐름도이다.
이하, 본 발명의 실시형태에 따른 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법을, 4륜 자동차에 적용한 경우를 예로 들어, 첨부 도면에 따라 상세하게 설명한다. 또한, 도 4, 도 5에 나타내는 흐름도의 각 단계는, 각각 「S」라고 하는 표기를 이용한다(예컨대, 단계 1은 「S1」이라고 함).
도 1 내지 도 4는 제1 실시형태를 나타내고 있다. 도 1에 있어서, 차량의 보디를 구성하는 차체(1)의 하측에는, 예컨대 좌, 우의 전륜과 좌, 우의 후륜(이하, 총칭하여 차륜(2)이라고 함)이 마련되어 있다. 이들 차륜(2)은, 타이어(3)를 포함하여 구성되어 있다. 타이어(3)는, 노면의 미세(정밀)한 요철을 흡수하는 용수철로서 작용한다.
서스펜션 장치(4)는, 차체(1)와 차륜(2) 사이에 개재하여 마련되어 있다. 서스펜션 장치(4)는, 현가 용수철(5)(이하, 스프링(5)이라고 함)과, 스프링(5)과 병렬 관계를 이루어 차체(1)와 차륜(2) 사이에 개재하여 마련된 감쇠력 조정식 완충기(이하, 가변 댐퍼(6)라고 함)에 의해 구성된다. 또한, 도 1은 1조의 서스펜션 장치(4)를, 차체(1)와 차륜(2) 사이에 마련한 경우를 모식적으로 나타내고 있다. 4륜 자동차의 경우, 서스펜션 장치(4)는, 4개의 차륜(2)과 차체(1) 사이에 개별로 독립적으로 합계 4조 마련된다.
여기서, 서스펜션 장치(4)의 가변 댐퍼(6)는, 차체(1)측과 차륜(2)측 사이에서 조정 가능한 힘을 발생하는 힘 발생 기구이다. 가변 댐퍼(6)는, 감쇠력 조정식의 유압 완충기를 이용하여 구성되어 있다. 가변 댐퍼(6)에는, 발생 감쇠력의 특성(즉, 감쇠력 특성)을 하드한 특성(경특성(硬特性))으로부터 소프트한 특성(연특성(軟特性))으로 연속적으로 조정하기 위해, 감쇠력 조정 밸브 등을 포함하는 감쇠력 가변 액추에이터(7)가 부설되어 있다. 또한, 감쇠력 가변 액추에이터(7)는, 감쇠력 특성을 반드시 연속적으로 조정하는 구성이 아니어도 좋고, 예컨대 2단계 이상의 복수 단계로 감쇠력을 조정 가능한 것이어도 좋다. 또한, 가변 댐퍼(6)는, 압력 제어 타입이어도 좋고, 유량 제어 타입이어도 좋다.
용수철상 가속도 센서(8)는, 차체(1)(용수철상)의 상하 가속도를 검출한다. 용수철상 가속도 센서(8)는, 차체(1)의 임의의 위치에 마련되어 있다. 용수철상 가속도 센서(8)는, 예컨대 가변 댐퍼(6)의 근방이 되는 위치에서 차체(1)에 부착되어 있다. 용수철상 가속도 센서(8)는, 소위 용수철 상측이 되는 차체(1)측에서 상하 방향의 진동 가속도를 검출하고, 그 검출 신호를 전자 제어 유닛(11)(이하, ECU(11)라고 함)에 출력한다.
차고 센서(9)는, 차체(1)의 높이를 검출한다. 차고 센서(9)는, 예컨대 용수철 상측이 되는 차체(1)측에, 각각의 차륜(2)에 대응하여 복수개(예컨대, 4개) 마련되어 있다. 즉, 각 차고 센서(9)는, 각 차륜(2)에 대한 차체(1)의 상대 위치(높이 위치)를 검출하고, 그 검출 신호를 ECU(11)에 출력한다.
노면 계측 센서(10)는, 노면 정보로서의 노면 프로파일을 검출하는 노면 프로파일 취득부를 구성하고 있다. 노면 계측 센서(10)는, 예컨대 복수의 밀리파 레이더에 의해 구성되어 있다. 노면 계측 센서(10)는, 차량 전방의 노면 상태(구체적으로는, 검출 대상의 노면까지의 거리와 각도, 화면 위치와 거리를 포함함)를 계측하여 검출한다. 노면 계측 센서(10)는, 노면의 검출값에 기초하여, 노면 프로파일을 출력한다.
또한, 노면 계측 센서(10)는, 예컨대 밀리파 레이더와 모노럴 카메라를 조합한 것이어도 좋고, 일본 특허 공개 제2011-138244호 공보 등에 기재된 바와 같이, 좌우 한 쌍의 촬상 소자(디지털 카메라 등)를 포함하는 스테레오 카메라에 의해 구성되어도 좋다. 노면 계측 센서(10)는, 초음파 거리 센서 등에 의해 구성되어도 좋다.
ECU(11)는, 차량의 자세 제어 등을 포함하는 거동 제어를 행하는 제어 장치로서 차량의 차체(1)측에 탑재되어 있다. ECU(11)는, 예컨대 마이크로 컴퓨터를 이용하여 구성되어 있다. ECU(11)는, 데이터의 기억이 가능한 메모리(11A)를 갖고 있다. ECU(11)는, 컨트롤러(12)를 구비하고 있다. 메모리(11A)에는, 후술하는 제어 지령 제한 처리의 프로그램 등이 저장되어 있다.
ECU(11)의 입력측은, 용수철상 가속도 센서(8), 차고 센서(9) 및 노면 계측 센서(10)에 접속되어 있다. ECU(11)의 출력측은, 가변 댐퍼(6)의 감쇠력 가변 액추에이터(7)에 접속되어 있다. ECU(11)는, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값과, 노면 계측 센서(10)에 의한 노면의 검출값에 기초하여, 노면의 프로파일과 차량 상태량을 취득한다. 컨트롤러(12)는, 노면의 프로파일과 차량 상태량에 기초하여, 서스펜션 장치(4)의 가변 댐퍼(6)(힘 발생 기구)에서 발생해야 할 힘을 구한다. 컨트롤러(12)는, 가변 댐퍼(6)에서 발생해야 할 힘에 기초하여 명령 신호(제어 지령)를 구하고, 그 명령 신호를 서스펜션 장치(4)의 감쇠력 가변 액추에이터(7)에 출력한다.
ECU(11)는, 예컨대 차량이 10~20 m 정도를 주행한 수 초간에 걸쳐, 차량 상태량과 노면 입력과 데이터를 메모리(11A)에 보존한다. 이에 의해, ECU(11)는, 차량이 소정의 주행 거리를 주행하였을 때의 노면 입력의 시계열 데이터(노면 프로파일)와, 차량 상태량의 시계열 데이터를 생성한다.
도 2에 나타내는 바와 같이, ECU(11)의 컨트롤러(12)는, 상태량 산출부(13), 제1 지령 산출부(14), 제2 지령 산출부(15) 및 제어 지령 출력부(16)를 구비하고 있다.
상태량 산출부(13)는, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값에 기초하여, 차량 상태량을 구한다. 차량 상태량에는, 예컨대 차체(1)의 상하 방향의 진동 가속도(상하 진동량), 차고, 용수철상 속도, 상대 속도(피스톤 속도), 횡가속도, 롤량, 피치량 등이 포함되어 있다.
제1 지령 산출부(14)는, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량이 되는 감쇠력의 제1 지령값을 출력한다. 학습 결과는, 딥 러닝에 의한 학습이 끝난 딥 뉴럴 네트워크(DNN)이다. 즉, 제1 지령 산출부(14)는, DNN에 의해 구성되어 있다. 제1 지령 산출부(14)는, AI 지령 산출부이며, 예컨대 4층 이상의 다층의 뉴럴 네트워크에 의해 구성되어 있다. 각 층은, 복수의 뉴런을 구비하고 있고, 인접하는 2개의 층의 뉴런은, 무게 계수로 결합되어 있다. 무게 계수는, 사전의 학습에 의해 설정되어 있다. 제1 목표량은, 예컨대 DNN에 의해 구해지는 목표 감쇠력이다. 구체적으로는, 제1 지령 산출부(14)는, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값과, 노면 계측 센서(10)에 의한 노면의 검출값에 기초하여, 노면 입력의 시계열 데이터(노면 프로파일)와, 차량 상태량의 시계열 데이터를 취득한다. 제1 지령 산출부(14)는, 노면 입력의 시계열 데이터와, 차량 상태량의 시계열 데이터에 기초하여, 최적 지령값의 시계열 데이터를 출력한다. 이때, 최신의 최적 지령값이, 현시점의 최적의 감쇠력의 제1 지령값에 대응한다. 이에 의해, 제1 지령 산출부(14)는, 현재의 차량과 노면에 대하여 가장 적절한 감쇠력의 제1 지령값을 출력한다. 감쇠력의 제1 지령값은, 감쇠력 가변 액추에이터(7)를 구동하기 위한 전류값에 대응하고 있다.
또한, 차량 상태량의 시계열 데이터는, 차체(1)의 상하 방향의 진동 가속도 및 차고의 시계열 데이터에 한정되지 않고, 용수철상 속도, 상대 속도(피스톤 속도), 전후 가속도, 횡가속도, 롤량, 피치량 등의 시계열 데이터를 포함하여도 좋다.
제2 지령 산출부(15)는, 예컨대 승차감 제어부이며, 차량의 승차감을 향상시키기 위한 승차감 제어 지령을 출력한다. 제2 지령 산출부(15)는, 기계 학습을 이용하지 않은 제어칙을 갖고, 차량 상태량을 입력함으로써 제2 목표량이 되는 감쇠력의 제2 지령값을 출력한다. 제2 목표량은, 예컨대 승차감 제어부에 의해 구해지는 목표 감쇠력이다. 제2 지령 산출부(15)는, 상태량 산출부(13)로부터 용수철상 속도와, 용수철상과 용수철하 사이의 상대 속도(피스톤 속도)를 취득한다. 제2 지령 산출부(15)는, 각 고리의 용수철상 속도와 상대 속도에 기초하여, 승차감 제어 지령을 출력한다. 이때, 승차감 제어 지령은, 예컨대 감쇠력 가변 액추에이터(7)에의 전류의 지령 신호가 되는 제어 지령값으로 되어 있다. 제2 지령 산출부(15)는, 예컨대 스카이 훅 제어칙에 기초하여, 용수철상 속도와 상대 속도로부터 용수철상의 상하 진동을 저감하기 위한 제어 지령값을 출력한다.
또한, 제1 실시형태에서는, 제2 지령 산출부(15)는, 스카이 훅 제어에 기초하여 승차감 제어 지령을 출력하는 것으로 하였다. 본 발명은 이에 한정되지 않고, 승차감 제어부는, 예컨대 쌍선형 최적 제어(BLQ 제어)나 H∞ 제어에 기초하여 승차감 제어 지령을 출력하여도 좋다.
제1 실시형태에서는, 제2 지령 산출부(15)는, 승차감 제어 지령을 출력하였다. 이에 한정되지 않고, 제2 지령 산출부(15)는, 예컨대 차량의 조종 안정성을 향상시키기 위한 조종 안정성 제어 지령을 출력하여도 좋다. 이 경우, 제2 지령 산출부(15)는, 예컨대 차량 상태량에 포함되는 전후 가속도, 횡가속도, 롤량, 피치량, 상하 진동량 등에 기초하여, 차량의 롤, 다이브, 스쿼트 등을 억제하는 조종 안정성 제어 지령을 출력한다. 또한, 제2 지령 산출부(15)는, 예컨대 승차감 제어 지령과 조종 안정성 제어 지령 중 하드측의 제어 지령을 우선시킴으로써, 승차감 제어 지령과 조종 안정성 제어 지령을 통합한 제어 지령을 출력하여도 좋다.
제어 지령 출력부(16)는, 지령 제한부로서, 제1 지령값이 제어의 의도와 반하는 지령으로 되어 있지 않은지의 여부를 판정하고, 필요에 따라 제1 지령값에 제한을 건다. 제어 지령 출력부(16)는, 제1 지령값(제1 목표량)에 기초하여 가변 댐퍼(6)(힘 발생 기구)를 제어하는 제어 지령을 출력한다. 제어 지령 출력부(16)는, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 제어 지령은, 감쇠력 가변 액추에이터(7)를 구동하기 위한 전류값에 대응하고 있다.
제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제2 지령값에 대하여 소정량 이내의 값을 제어 지령으로서 출력한다. 소정량은, 제1 지령값과 제2 지령값의 차의 허용 범위에 대응하고 있고, 실험 결과 등에 의해 적절하게 설정되어 있다. 제어 지령 출력부(16)는, 제1 지령값이 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 작은 경우는, 제1 지령값을 제어 지령으로서 출력한다.
다음에, 컨트롤러(12)의 제1 지령 산출부(14)의 학습 방법에 대해서, 도 3에 나타내는 설명도를 참조하여 설명한다. 제1 지령 산출부(14)는, (1) 직접 최적 제어 지령값 탐색, (2) 지령값 학습, (3) 무게 계수 다운 로드의 처리를 실행함으로써, 구축된다.
먼저, 직접 최적 제어 지령값 탐색을 실행하기 위해, 차량 모델(21)을 포함하는 해석 모델(20)을 구성한다. 도 3에는 차량 모델(21)이 1륜 모델인 경우를 예시하였다. 차량 모델(21)은, 예컨대 좌우 한쌍의 2륜 모델이어도 좋다. 차량 모델(21)에는, 노면 입력과, 직접 최적 제어부(22)로부터 최적 지령값이 입력된다. 직접 최적 제어부(22)는, 이하에 나타내는 직접 최적 제어 지령값 탐색의 순서에 따라, 최적 지령값을 구한다. (1) 직접 최적 제어 지령값 탐색 직접 최적 제어부(22)는, 사전에 차량 모델(21)을 포함하는 해석 모델(20)을 이용하여, 반복 연산에 의해 최적 지령값을 탐색한다. 최적 지령값의 탐색은, 이하에 나타내는 최적 제어 문제로 정식화하고, 최적화 방법을 이용하여 수치 해석적으로 구한다.
대상이 되는 차량의 운동은, 상태 방정식에 의해 수학식 1의 식으로 나타내는 것으로 한다. 또한, 식 중의 도트는, 시간(t)에 의한 1계 미분(d/dt)을 의미한다.
Figure pct00001
여기서, x는 상태량, u는 제어 입력이다. 상태 방정식의 초기 조건은, 수학식 2의 식과 같이 부여된다.
Figure pct00002
초기 시각(t0)으로부터 종단 시각(tf)까지의 사이에 부과되는 등식 구속 조건과 부등식 구속 조건은, 수학식 3의 식 및 수학식 4의 식과 같이 나타낸다.
Figure pct00003
Figure pct00004
최적 제어 문제는, 수학식 1의 식에 나타내는 상태 방정식과, 수학식 2의 식에 나타내는 초기 조건과, 수학식 3 및 수학식 4의 식에 나타내는 구속 조건을 만족시키면서, 수학식 5의 식에 나타내는 평가 함수(J)를 최소로 하는 것 같은 제어 입력(u(t))을 구하는 문제이다.
Figure pct00005
상기와 같은 구속 조건을 갖는 최적 제어 문제를 푸는 것은, 매우 곤란하다. 이 때문에, 최적화 방법으로서 구속 조건을 간단하게 취급할 수 있는 직접법을 이용한다. 이 방법은, 최적 제어 문제를 파라미터 최적화 문제로 변환하고, 최적화 방법을 이용하여 해를 얻는 방법이다.
최적 제어 문제를 파라미터 최적화 문제로 변환하기 위해, 초기 시각(t0)으로부터 종단 시각(tf)까지를 N개의 구간으로 분할한다. 각 구간의 종단 시각을 t1, t2, …, tN으로 나타내면, 이들의 관계는, 수학식 6에 나타내는 바와 같이 된다.
Figure pct00006
연속적인 입력(u(t))은, 수학식 7에 나타내는 바와 같이, 각 구간의 종단 시각에 있어서의 이산적인 값(ui)으로 치환된다.
Figure pct00007
입력(u0, u1, …, uN)에 대하여 상태 방정식을 초기 조건(x0)으로부터 수치 적분하여, 각 구간의 종단 시각에 있어서의 상태량(x1, x2, …, xN)을 구한다. 이때, 각 구간 내의 입력은, 각 구간의 종단 시각에 부여되는 입력을 1차 보간하여 구한다. 이상의 결과, 입력에 대하여 상태량이 결정되고, 이에 의해 평가 함수와 구속 조건이 표현된다. 따라서, 변환한 파라미터 최적화 문제는, 다음과 같이 나타낼 수 있다.
최적화해야 하는 파라미터를 통합하여 X라고 하면, 수학식 8의 식으로 나타나게 된다.
Figure pct00008
따라서, 수학식 5의 식에 나타내는 평가 함수는, 수 9의 식과 같이 나타낸다.
Figure pct00009
또한, 수학식 3 및 수학식 4의 식에 나타내는 구속 조건은, 수학식 10 및 수학식 11의 식과 같이 나타낸다.
Figure pct00010
Figure pct00011
이와 같이 하여, 전술한 바와 같은 최적 제어 문제는, 수학식 8 내지 수학식 11의 식으로 나타내는 파라미터 최적화 문제로 변환할 수 있다.
노면에 따른 최적 제어 지령을 구하는 문제를 최적 제어 문제로서 정식화하기 위한 평가 함수(J)는, 상하 가속도(Az)가 최소가 되어 승차감이 좋고, 또한 제어 지령값(u)을 작게 하도록, 수학식 12의 식과 같이 정의한다. 여기서, q1, q2는 무게 계수이다. q1, q2는, 예컨대 실험 결과 등에 의해 미리 설정되어 있다.
Figure pct00012
직접 최적 제어부(22)는, 이와 같이 정식화한 파라미터 최적 문제를 최적화 방법에 따라 수치 해석적으로 구하고, 여러 가지 노면에서의 최적 지령값을 도출한다. (2) 지령값 학습 직접 최적 제어 지령값 탐색에 의해 도출한 최적 지령값을 출력으로 하고, 그때의 노면 프로파일, 차량 상태량을 입력으로 하여, 여러 가지 노면의 입출력을, 인공 지능이 되는 DNN(23)에 학습시킨다. DNN(23)은, 학습용의 딥 뉴럴 네트워크이며, 차재용의 DNN(제1 지령 산출부(14))과 동일한 구성으로 되어 있다. DNN(23)에는, 노면 프로파일로서 노면 입력의 시계열 데이터와, 차량 상태량의 시계열 데이터가 입력된다. 이때, 노면 입력과 차량 상태량에 대응하여 최적 지령값의 시계열 데이터를 교사 데이터로 하여, DNN(23)에 있어서의 뉴런 사이의 무게 계수가 구해진다. (3) 무게 계수 다운 로드 지령값 학습에 의해 학습한 DNN(23)의 무게 계수를, 실제의 ECU(11)의 제1 지령 산출부(14)가 되는 DNN에 설정한다. 이에 의해, 컨트롤러(12)의 제1 지령 산출부(14)가 구성된다. (4) 최적 지령값 계산 제1 지령 산출부(14)를 포함하는 컨트롤러(12)는, 차량에 탑재된다. 컨트롤러(12)의 입력측에는, 용수철상 가속도 센서(8), 차고 센서(9) 및 노면 계측 센서(10)가 접속되어 있다. 컨트롤러(12)의 출력측에는, 가변 댐퍼(6)의 감쇠력 가변 액추에이터(7)에 접속되어 있다. 컨트롤러(12)는, 용수철상 가속도 센서(8), 차고 센서(9) 및 노면 계측 센서(10)의 검출 신호에 기초하여, 노면 입력과 차량 상태량을 취득한다. 컨트롤러(12)는, 노면 프로파일로서 노면 입력의 시계열 데이터와, 차량 상태량의 시계열 데이터를 제1 지령 산출부(14)에 입력한다. 제1 지령 산출부(14)는, 노면 입력과 차량 상태량의 시계열 데이터가 입력되면, 학습 결과에 따라 최적 지령이 되는 가변 댐퍼(6)에 대한 제1 지령값을 출력한다.
이와 같이, 직접 최적 제어부(22)는, 여러 가지 조건에 있어서, 직접 최적 제어 지령을 오프라인의 수치 최적화에 의해 도출한다. 그때의 노면 프로파일 및 차량 상태량과 최적 지령을 인공 지능(DNN(23))에 학습시킨다. 이 결과, 단계마다의 최적화를 행하는 일없이, DNN(제1 지령 산출부(14))을 탑재한 컨트롤러(12)(ECU(11))에 의해, 직접 최적 제어를 실현할 수 있다.
다음에, 도 4를 참조하여, 제어 지령 출력부(16)에 의한 제어 지령 제한 처리에 대해서 설명한다.
S1에서는, 제어 지령 출력부(16)는, 제1 지령값이 제어의 의도와 반하는 값인지의 여부를 판정하기 위한 판정 임계값으로서, 제1 지령값이 정상이라고 판정되는 소정 범위, 즉 정상 범위를 구한다.
S2에서는, 제1 지령값이 제어의 의도와 반하는 값인지의 여부를 판정한다. 제어의 의도와 반하는지의 여부는, 제1 지령값과 기존 제어칙에 따른 제2 지령값의 차가 정상 범위를 넘은 상태의 시간(정상 범위 밖의 시간)이 계속되는지의 여부로 판정할 수 있다.
정상 범위는, 세미 액티브 서스펜션을 포함하는 서스펜션 장치(4)의 움직임에 반대의 결과를 부여하는 임계값에 의해 설정된다. 서스펜션 장치(4)의 움직임에 반대의 결과를 부여하는 경우에는, 예컨대 기존 제어칙에 따른 제2 지령 산출부(15)가 기준보다 감쇠율을 높게 하고자 하는 경우에, AI에 따른 제1 지령 산출부(14)에서는 기준보다 낮은 지령이 될 때가 포함된다. 또한, 서스펜션 장치(4)의 움직임에 반대의 결과를 부여하는 경우에는, 예컨대 제2 지령 산출부(15)가 기준보다 감쇠율을 낮게 하고자 하는 경우에, 제1 지령 산출부(14)에서는 기준보다 높은 지령이 될 때도 포함된다.
일반적인 세미 액티브 댐퍼의 제어에서는, 평소는 감쇠율을 낮게, 즉 부드럽게 해 두어 승차감을 좋게 하고, 차체의 운동을 억제하고자 하는 장면에서는 감쇠율을 높게, 즉 딱딱하게 한다. 예컨대, 제어칙(제2 지령 산출부(15))이 비교적 딱딱하게 하는 지령(제2 지령값)을 낼 때에, AI(제1 지령 산출부(14))가 비교적 부드럽게 하는 지령(제1 지령값)을 내는 장면이 길게 계속되는 것은 이상이라고 고려된다. 여기서, 비교적 딱딱하다, 부드럽다고 하는 판단을 하는 임계값을 기준으로 한다. 이 기준은, 차속이나 차량의 상태에 따라 다르다.
제어의 의도는, 차속 등의 차량 상태에 따라 변화한다. 이 때문에, 제2 지령값에 대한 제1 지령값의 정상 범위(소정량의 범위 내)의 폭은, 차량 상태에 따라 변화 가능하게 하여도 좋다. 일반적인 세미 액티브 댐퍼의 제어에서는, 평소는 부드러운 상태로 한다. 그러나, 차속에 따라, 평소의 상태에서의 딱딱함이나, 제어가 개입할 때의 양을 바꾸는 튜닝을 한다. 이 때문에, 비교적 딱딱함, 부드러움의 범위가 변화한다. 그 결과, 제어하는 범위가 좁아지면, 정상 범위도 좁아져, 기준이 변화한다. 일례를 들면, 제2 지령값에 대한 제1 지령값의 정상 범위는, 저속 주행 상태에서 넓어지고, 고속 주행 상태에서 좁아진다.
또한, 제1 지령값이 제어의 의도와 반하는 값인지의 여부는, 차량 상태를 명백히 불안정하게 하는 지령인지의 여부라고 하는 점에서도 판정한다. 차량 상태를 명백히 불안정하게 하는 지령으로서, 예컨대 (a) 차체가 롤 상태에 있을 때에 롤을 더욱 조장하는 것 같은 지령, (b) 차체가 피치 상태에 있는 경우에 피치를 더욱 조장하는 것 같은 지령, (c) 차체가 상하 진동 중에, 진동을 더욱 조장하는 것 같은 지령 등이 고려된다.
이 때문에, 제어 지령 출력부(16)는, 롤량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 롤량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 이때, 롤량의 소정량은, 예컨대 차량이 롤하고 있을 때에, 이 이상 롤이 커지면 조종 안정성에 영향을 끼칠 것으로 고려되는 것 같은 롤의 크기라고 판단할 수 있는 양이다.
제어 지령 출력부(16)는, 피치량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 피치량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 제어 지령 출력부(16)는, 상하 진동량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 상하 진동량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 피치량의 소정량 및 상하 진동량의 소정량도, 롤량의 소정량과 동일하게, 조종 안정성에 대한 영향을 고려하여 설정되어 있다. 이 경우, 제어 지령 출력부(16)는, 롤량, 피치량, 상하 진동량에 대해서, 각각 개별의 정상 범위(소정량)를 갖고 있다.
차량의 불안정 상태를 억제하는 것 같은 제어 기능은, 예컨대 ABS(안티 록 브레이크 시스템), TCS(트랙션 컨트롤 시스템) 등에 의해 구성되어 있다. 이러한 제어 기능은, 차량 상태에 따라 유효와 무효가 전환되며, 효과의 크기도 제어된다. 이 때문에, 제1 지령값이 제어의 의도와 반하는 값인지의 여부의 판정 조건에 대해서도, 동일하게 유효와 무효의 전환이나 임계값을 변경하여 판정한다.
S2에서는, 제1 지령값이 정상 범위의 하한값(Imin)과 상한값(Imax) 사이의 값인지의 여부를 판정한다. 제1 지령값이 정상 범위 내의 값인 경우에는, 그대로 제1 지령값을 제어 지령으로서 채용한다(S5). 즉, 제1 지령값이 정상 범위 내의 값이 될 때에는, S5로 이행하여, 제어 지령을 현재의 제1 지령값으로 설정한다.
한편, 정상 범위 밖인 경우에는, 정상 범위의 제한값을 제어 지령으로서 출력한다(S3, S4). 예컨대, 제1 지령값이 하한값(Imin)보다 작을 때에는, S4로 이행하여, 제어 지령을 하한값(Imin)으로 설정한다. 제1 지령값이 상한값(Imax)보다 클 때에는, S3으로 이행하여, 제어 지령을 상한값(Imax)으로 설정한다. 이에 의해, 제어의 의도에 반한 제어 지령에 의해 차량 상태가 불안정해지는 것을 피할 수 있다.
S6에서는, 제1 지령값이 정상 범위 밖이 되는 상태가 미리 결정된 일정 시간 이상에 걸쳐 계속되고 있는지의 여부를 판정한다. 이때, 일정 시간은, 노이즈나 센서 정밀도 등의 영향에 따른 것이 아니라, 제1 지령 산출부(14)가 명백히 이상이라고 판정할 수 있는 시간이며, 실험 결과 등에 기초하여 적절하게 설정되어 있다. 제1 지령값이 정상 범위 밖이 되는 상태가 길게 계속된 경우에는, S6에서 「YES」라고 판정하여, S7로 이행한다. 즉, 제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 큰 상태가 소정 시간보다 길게 계속된 경우에, 이상 상태라고 판단한다. S7에서는, AI를 포함하는 제1 지령 산출부(14)에 이상이 있다고 판정하여, 이상 상태를 차량 시스템에 통지한다. 제어 지령 출력부(16)는, 이상 상태라고 판단한 경우, 이상 상태를 기록하며 차량에 있어서 운전자에게 통지하는 신호를 출력한다. 이에 의해, 예컨대 추가의 학습을 실시하는, AI(제1 지령 산출부(14))를 관리하는 데이터 베이스에의 통신, 또는 딜러에서의 메인터넌스를 재촉하는 등의 필요한 조치를 취할 수 있다.
또한, 이상 판정 시에는, 페일 세이프 모드로서, 기존 제어칙(예컨대, 제2 지령 산출부(15))으로 치환하여 제어를 계속하여도 좋다. 즉, 제어 지령 출력부(16)는, 이상 상태의 경우, 제2 지령값을 제어 지령으로서 출력하여도 좋다. 한편, 제1 지령값이 정상 범위 밖이 되는 상태가 일정 시간보다 짧은 경우에는, S6에서 「NO」라고 판정하여, 처리를 종료한다.
이렇게 하여, 본 실시형태에 따르면, 제어 지령 출력부(16)는, 제1 지령값(제1 목표량)에 기초하여 가변 댐퍼(6)(힘 발생 기구)를 제어하는 제어 지령을 출력한다. 제어 지령 출력부(16)는, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다.
제어 지령 출력부(16)는, AI(DNN)가 산출한 제어 지령(제1 지령값)에 대하여, 차량을 안정적으로 동작시킬 수 있는 정상 범위를 구하여, 정상 범위 내(상한 또는 하한)에서 가변 댐퍼(6)를 제어한다. 이에 의해, 차량 거동의 안정을 담보하며, AI가 산출한 제1 지령값의 옳음을 체크하여, AI의 학습 상태가 정상인지의 여부를 확인할 수 있다.
제1 지령 산출부(14)는, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량이 되는 제1 지령값을 출력한다. 학습 결과는, 딥 러닝에 의한 학습이 끝난 뉴럴 네트워크(DNN)이다. 이때, 제1 지령 산출부(14)의 DNN은, 사전에 평가 함수(J)를 최소가 되도록 최적화 방법에 의해 구한 지령값과 차량 상태량을 학습하고 있다. 이에 의해, 차량 상태량에 따른 실로 최적의 지령에 의해 제어하는 것이 가능해진다.
제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제2 지령값에 대하여 소정량 이내의 값을 제어 지령으로서 출력한다. 이에 의해, 제1 지령 산출부(14)의 산출한 제1 지령값(제어량)이 차량의 불안정 상태를 조장하는지의 여부를 별도의 제어칙과 비교하여 판단할 수 있다.
제2 지령 산출부(15)는, 기계 학습을 이용하지 않은 제어칙을 갖고, 차량 상태량을 입력함으로써 제2 목표량이 되는 감쇠력의 제2 지령값을 출력한다. 구체적으로는, 제2 지령 산출부(15)는, 학습시키지 않은 기존의 제어칙(스카이 훅 제어, BLQ 제어 등)을 이용한다. 이때, 제2 지령 산출부(15)는 종래부터 있는 제어칙을 이용하기 때문에, 제2 지령값의 신뢰성이 높다. 제어 지령 출력부(16)는, 이러한 신뢰성이 높은 제어칙을 이용하여 제1 지령값을 제한한다. 이에 의해, 이상 상태에 빠지는 것을 억제할 수 있다.
제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 작은 경우는, 제1 지령값을 제어 지령으로서 출력한다. 제1 지령값과 제2 지령값을 비교한 결과, 정상 범위 내인 경우는, 제어 지령 출력부(16)는, 제어 지령으로서 그대로 제1 지령값을 출력한다.
한편, 정상 범위 밖인 경우에는, 제어 지령 출력부(16)는, 제어 지령으로서 제1 지령값을 정상 범위의 제한값으로 제한하여 출력한다. 즉, 제어 지령 출력부(16)는, 제1 지령값이 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 이에 의해, 제1 지령값이 제2 지령값으로부터 정상 범위를 넘어 괴리한 경우에, 제1 지령값에 제한을 걸 수 있다. 이 결과, 제어의 의도에 반한 지령에 의해 차량 상태가 불안정해지는 것을 피할 수 있다.
제어의 의도는, 차속 등의 차량 상태에 따라 변화한다. 이 때문에, 제2 지령값에 대한 제1 지령값의 정상 범위(소정량의 범위 내)의 폭은, 차량 상태에 따라 변화시킨다. 이 결과, 제어 지령 출력부(16)는, 보다 제어의 의도에 맞는 제어 지령을 출력할 수 있다.
제어 지령 출력부(16)는, 롤량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 롤량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 이에 의해, 차체가 롤 상태에 있을 때에, 롤을 더욱 조장하는 것 같은 제어 지령을 제한할 수 있다.
제어 지령 출력부(16)는, 피치량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 상기 피치량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 이에 의해, 차체가 피치 상태에 있을 때에, 피치를 더욱 조장하는 것 같은 제어 지령을 제한할 수 있다.
제어 지령 출력부(16)는, 상하 진동량이 소정량보다 큰 상태에 있을 때에, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 상하 진동량이 더욱 커지는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 이에 의해, 차체가 상하 진동 상태에 있을 때에, 진동을 더욱 조장하는 것 같은 제어 지령을 제한할 수 있다.
제어 지령 출력부(16)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 큰 상태가 소정 시간보다 길게 계속된 경우에, 이상 상태라고 판단한다. 이에 의해, 정상 범위 밖의 지령이 길게 계속된 경우, 제어 지령 출력부(16)는, AI에 이상이 있다고 판정하여, 이상 상태를 차량 시스템에 통지할 수 있다. 이 결과, 예컨대 추가의 학습을 실시할 수 있다.
제어 지령 출력부(16)는, 이상 상태라고 판단한 경우, 이상 상태를 기록하며 차량에 있어서 운전자에게 통지하는 신호를 출력한다. 이에 의해, AI를 관리하는 데이터 베이스에의 통신, 또는 딜러에서의 메인터넌스를 재촉하는 등의 필요한 조치를 취할 수 있다.
제어 지령 출력부(16)는, 이상 상태인 경우, 제2 지령값을 제어 지령으로서 출력한다. 이에 의해, 이상 판정 시에는, 페일 세이프 모드로서, 기존의 제어칙으로 치환하여 제어를 계속할 수 있다.
다음에, 도 1 및 도 2는 제2 실시형태를 나타내고 있다. 제2 실시형태의 특징은, 제2 지령 산출부는, 제1 지령 산출부와는 다른 조건에 따라 사전에 기계 학습한 제2 학습 결과를 갖고, 제2 학습 결과와 복수의 다른 정보로부터 제2 목표량을 출력하는 것에 있다. 또한, 제2 실시형태에서는, 전술한 제1 실시형태와 동일한 구성 요소에 동일한 부호를 붙이고, 그 설명을 생략한다.
제2 실시형태에 따른 컨트롤러(30)는, 제1 실시형태에 따른 컨트롤러(12)와 거의 동일하게 구성되어 있다. 컨트롤러(30)는, 상태량 산출부(13), 제1 지령 산출부(14), 제2 지령 산출부(31) 및 제어 지령 출력부(32)를 구비하고 있다.
제2 지령 산출부(31)는, 제1 지령 산출부(14)와는 다른 조건에 따라, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 제2 학습 결과를 사용하여 제2 목표량이 되는 감쇠력의 제2 지령값을 출력한다. 제2 학습 결과는, 딥 러닝에 의한 학습이 끝난 딥 뉴럴 네트워크(DNN)이다. 즉, 제2 지령 산출부(31)는, 제1 지령 산출부(14)와는 다른 조건에 따라 사전에 기계 학습한 딥 뉴럴 네트워크(DNN)에 의해 구성되어 있다. 제2 지령 산출부(31)는, 진단용 AI 지령 산출부이며, 제1 지령 산출부(14)와는 다른 학습 데이터에 따라 학습한 AI(DNN)에 의해 구성되어 있다. 이때, 다른 학습 데이터란, 예컨대 학습원이 되는 데이터에 대해서, 출력이 되는 지령을 산출하는 수단이 다른 데이터, 입력이 되는 노면이 다른 데이터, 혹은 그 모두가 다른 데이터를 가리킨다. 제2 지령 산출부(31)의 학습 방법은, 예컨대 제1 지령 산출부(14)와 동일하다.
제2 지령 산출부(31)는, 예컨대 4층 이상의 다층의 뉴럴 네트워크에 의해 구성되어 있다. 각 층은, 복수의 뉴런을 구비하고 있고, 인접하는 2개의 층의 뉴런은, 무게 계수로 결합되어 있다. 무게 계수는, 사전의 학습에 의해 설정되어 있다. 제2 지령 산출부(31)의 DNN은, 제1 지령 산출부(14)의 DNN과 동일한 층수나 뉴런수를 갖고 있어도 좋고, 다른 층수나 뉴런수를 갖고 있어도 좋다.
제2 목표량은, DNN에 의해 구해지는 목표 감쇠력이다. 구체적으로는, 제2 지령 산출부(31)는, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값과, 노면 계측 센서(10)에 의한 노면의 검출값에 기초하여, 노면 입력의 시계열 데이터(노면 프로파일)와, 차량 상태량의 시계열 데이터를 취득한다. 제2 지령 산출부(31)는, 노면 입력의 시계열 데이터와, 차량 상태량의 시계열 데이터에 기초하여, 최적 지령값의 시계열 데이터를 출력한다. 이때, 최신의 최적 지령값이, 현시점의 최적의 감쇠력의 제2 지령값에 대응한다. 이에 의해, 제2 지령 산출부(31)는, 현재의 차량과 노면에 대하여 가장 적절한 감쇠력의 제2 지령값을 출력한다. 감쇠력의 제2 지령값은, 감쇠력 가변 액추에이터(7)를 구동하기 위한 전류값에 대응하고 있다.
또한, 차량 상태량의 시계열 데이터는, 차체(1)의 상하 방향의 진동 가속도 및 차고의 시계열 데이터에 한정되지 않고, 용수철상 속도, 상대 속도(피스톤 속도), 전후 가속도, 횡가속도, 롤량, 피치량 등의 시계열 데이터를 포함하여도 좋다.
제어 지령 출력부(32)는, 제1 실시형태에 따른 제어 지령 출력부(16)와 동일하게 구성되어 있다. 제어 지령 출력부(32)는, 지령 제한부로서, 제어의 의도와 반하는 지령으로 되어 있지 않은지의 여부를 판정하고, 필요에 따라 제한을 건다.
제어 지령 출력부(32)는, 제1 지령값(제1 목표량)에 기초하여 가변 댐퍼(6)(힘 발생 기구)를 제어하는 제어 지령을 출력한다. 제어 지령 출력부(32)는, 제1 지령값에 기초하여 가변 댐퍼(6)를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다.
이 때문에, 제어 지령 출력부(32)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제2 지령값에 대하여 소정량 이내의 값을 제어 지령으로서 출력한다. 제어 지령 출력부(32)는, 제1 지령값이 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 제어 지령 출력부(32)는, 제1 지령값의 제2 지령값에 대한 괴리가 소정량보다 작은 경우는, 제1 지령값을 제어 지령으로서 출력한다. 제어 지령 출력부(32)는, 제1 실시형태에 따른 제어 지령 출력부(16)와 동일하게, 도 4에 나타내는 제어 지령 제한 처리를 실행한다. 소정량은, 제1 지령값과 제2 지령값의 차의 허용 범위에 대응하고 있고, 실험 결과 등에 의해 적절하게 설정되어 있다.
이렇게 하여, 제2 실시형태에서도, 제1 실시형태와 거의 동일한 작용 효과를 얻을 수 있다. 또한, 제2 실시형태에서는, 제2 지령 산출부(31)도, 제1 지령 산출부(14)와 동일하게, 딥 러닝에 의해 학습한 DNN에 의해 구성되어 있다. 이때, 제2 지령 산출부(31)는, 제1 지령 산출부(14)와는 다른 조건에 따라 사전에 기계 학습한 제2 학습 결과로서, 학습이 끝난 딥 뉴럴 네트워크(DNN)에 의해 구성되어 있다. 이 때문에, 다른 학습이 끝난 AI를 비교 대상으로 함으로써, 차량 거동의 안정을 담보하며, AI가 산출한 제1 지령값이 옳음을 체크하여, AI의 학습 상태가 정상인지의 여부를 확인할 수 있다.
제어 지령 출력부(32)는, 제1 지령값이 제2 지령값에 대한 괴리가 소정량보다 큰 경우에, 제1 지령값을 제한하여 제어 지령으로서 출력한다. 제1 지령값이 제2 지령값으로부터 정상 범위를 넘어 괴리한 경우에, 제1 지령값에 제한을 걸 수 있다.
제2 실시형태에서는, 컨트롤러(30)는, 진단용 AI 지령 산출부가 되는 제2 지령 산출부(31)를 하나 구비하는 것으로 하였다. 이에 한정되지 않고, 컨트롤러는, 진단용 AI 지령 산출부는 복수 구비하여도 좋다. 그 경우, 판독하는 AI는, 각각이 다른 학습 데이터에 따라 학습한 AI로 한다. 복수의 진단용 AI 지령 산출부를 구비한 경우에는, 다수결에 의해 정상인 2개의 AI를 판정할 수 있다. 이 때문에, 이상이 더욱 발생할 때까지는, 정상인 AI를 이용하여 제어를 계속할 수 있다.
그와 같은 변형예의 경우에는, 제어 지령 출력부는, 도 5에 나타내는 제어 지령 이상 판정 처리를 복수회 실시한다. 제어 지령 출력부는, AI 지령 산출부(제1 지령 산출부)에 복수의 진단용 AI 지령 산출부(제2 지령 산출부)를 더한 복수의 AI 지령 산출부에서 임의의 2개의 AI 지령 산출부를 선택한다. 제어 지령 출력부는, 선택된 2개의 AI 지령 산출부 중 한쪽을 판정 대상이 되는 AI 지령 산출부로 하고, 다른쪽을 진단용 AI 지령 산출부로 한다.
S11에서는, 판정 대상이 되는 AI 지령 산출부의 지령과, 진단용 AI 지령 산출부의 지령을 비교한다. S11에서는, 이들 2개의 지령의 차가 소정량(정상 범위)을 넘어 큰지의 여부를 판정한다. 지령의 차가 정상 범위이면, S11에서 「NO」라고 판정하여, S14로 이행한다. S14에서는, 판정 대상이 되는 AI 지령 산출부의 지령을 채용하여, 처리를 종료한다.
지령의 차가 정상 범위를 넘어 큰 경우에는, 이상 상태라고 하여, S11에서 「YES」라고 판정하여, S12로 이행한다. S12에서는, 이상 상태가 일정 시간 이상 계속되고 있는지의 여부를 판정한다. 이상 상태가 일정 시간보다 짧은 경우에는, 이상은 일시적인 것이라고 하여, S12에서 「NO」라고 판정하여, S14로 이행한다. 이상 상태가 일정 시간 이상 계속된 경우에는, S12에서 「YES」라고 판정하여, S13으로 이행한다. S13에서는, 판정 대상이 되는 AI 지령 산출부가 이상이라고 판정하여, 처리를 종료한다.
이상의 이상 판정 처리를, 모든 AI 지령 산출부에 대하여 실시한다. 이에 의해, AI 지령 산출부의 지령에 이상이 발생한 경우에는, 이상인 AI를 포함하는 비교 진단만 이상 판정이 되고, 정상인 AI끼리의 진단은 정상 판정이 된다. 이 때문에, 정상 판정이 된 AI 지령 산출부의 지령을 이용하여 서스펜션 장치의 제어를 계속할 수 있다.
또한, 미학습의 노면을 주행한 경우는, 노면 프로파일을 기억하여도 좋고, 외부 서버에 송신하여도 좋다. 이 경우, 직접 최적 제어부는, 새롭게 취득한 미학습의 노면 프로파일에 기초하여, 최적 지령값을 구한다. 그 후, 노면 프로파일과 최적 지령값을 추가하여 DNN의 뉴런 사이의 무게 계수를 재차 학습한다. 학습이 완료된 후, 차량에 탑재한 무게 계수 산출맵의 무게 계수를 갱신한다. 이에 의해, 다음에 동일한 노면을 주행할 때에는, 무게 계수 산출맵은, 갱신 데이터에 기초한 새로운 무게 계수를 DNN에 설정한다. 이 때문에, DNN을 이용하여 가변 댐퍼(6)의 감쇠력을 최적 제어할 수 있다.
상기 각 실시형태에서는, 상태량 산출부(13)는, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값에 기초하여, 차량 상태량을 구하는 것으로 하였다. 본 발명은 이에 한정되지 않고, 상태량 산출부는, 예컨대 상하 방향의 진동 가속도의 검출값, 차고의 검출값에 더하여, 예컨대 차속 등과 같은 차량 상태에 관계된 정보를 CAN(Controller Area Network)으로부터의 신호에 기초하여 취득하고, 이들 정보를 고려하여 차량 상태량을 산출 또는 추정하여도 좋다.
상기 각 실시형태에서는, 제1 지령 산출부(14), 제2 지령 산출부(31)는, 뉴럴 네트워크를 구비하는 것으로 하였다. 본 발명은 이에 한정되지 않고, 제1 지령 산출부는, 복수의 다른 차량 상태량에 대하여, 복수의 목표량의 조를 입출력 데이터의 조로서 학습 가능하면, 뉴럴 네트워크를 구비하지 않아도 좋다.
상기 각 실시형태에서는, 노면 프로파일은, 노면 계측 센서(10)에 의해 검출되는 것으로 하였다. 본 발명은 이에 한정되지 않고, 노면 프로파일은, 예컨대 GPS 데이터를 기초로 하여 서버로부터 정보를 취득하여도 좋고, 차차간 통신에 의해 다른 차로부터 정보를 취득하여도 좋다. 또한, 노면 프로파일은, 용수철상 가속도 센서(8)에 의한 상하 방향의 진동 가속도의 검출값과, 차고 센서(9)에 의한 차고의 검출값에 기초하여 추정하여도 좋다.
상기 각 실시형태에서는, 제1 지령 산출부(14)는, 차량 상태량과 노면 정보(노면 프로파일)에 기초하여 목표량(목표 감쇠력)을 연산하는 것으로 하였다. 본 발명은 이에 한정되지 않고, 제1 지령 산출부는, 노면 정보를 생략하고, 차량 상태량에만 기초하여 목표량을 연산하여도 좋다. 이 경우, 제1 지령 산출부는, 복수의 다른 차량 상태량에 대하여, 사전에 준비된 소정의 평가 방법을 이용하여 얻어지는 복수의 목표량의 조를 입출력 데이터의 조로서 상기 제1 지령 산출부(DNN)에 학습시킴으로써 얻어지는 학습 결과를 이용하여 상기 연산을 행한다.
상기 각 실시형태에서는, 제1 목표량, 제2 목표량이 목표 감쇠력에 기초한 제1 지령값, 제2 지령값인 경우를 예시하였지만, 목표 감쇠 계수에 기초한 제1 지령값, 제2 지령값이어도 좋다.
상기 각 실시형태에서는, 힘 발생 기구로서 세미 액티브 댐퍼를 포함하는 가변 댐퍼(6)인 경우를 예로 설명하였다. 본 발명은 이에 한정되지 않고, 힘 발생 기구로서 액티브 댐퍼(전기 액추에이터, 유압 액추에이터 중 어느 하나)를 이용하도록 하여도 좋다. 상기 각 실시형태에서는, 차체(1)측과 차륜(2)측 사이에서 조정 가능한 힘을 발생하는 힘 발생 기구를, 감쇠력 조정식의 유압 완충기를 포함하는 가변 댐퍼(6)에 의해 구성하는 경우를 예로 들어 설명하였다. 본 발명은 이에 한정되지 않고, 예컨대 힘 발생 기구를 액압 완충기 외에, 에어 서스펜션, 스태빌라이저(키네틱 서스펜션), 전자 서스펜션 등에 의해 구성하여도 좋다.
상기 각 실시형태에서는, 4륜 자동차에 이용하는 차량 거동 장치를 예로 들어 설명하였다. 그러나, 본 발명은 이에 한정하는 것이 아니며, 예컨대 2륜, 3륜 자동차, 또는 작업 차량, 운반 차양인 트럭, 버스 등에도 적용할 수 있다.
상기 각 실시형태는 예시이며, 다른 실시형태에서 나타낸 구성의 부분적인 치환 또는 조합이 가능하다.
다음에, 상기 실시형태에 포함되는 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법으로서, 예컨대 이하에 서술하는 양태의 것이 고려된다.
제1 양태로서는, 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치를 제어하는 서스펜션 제어 장치로서, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 지령 산출부와, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어하는 제어 지령을 출력하는 제어 지령 출력부로서, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 제어 지령 출력부를 갖고 있다.
제2 양태로서는, 제1 양태에 있어서, 상기 학습 결과는 딥 러닝에 의한 학습이 끝난 뉴럴 네트워크이다.
제3 양태로서는, 제2 양태에 있어서, 상기 제1 지령 산출부와는 다른 제2 지령 산출부를 갖고, 상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 제2 목표량에 대한 괴리가 소정량보다 큰 경우에, 상기 제2 목표량에 대하여 상기 소정량 이내의 값을 상기 제어 지령으로서 출력한다.
제4 양태로서는, 제3 양태에 있어서, 상기 제2 지령 산출부는, 기계 학습을 이용하지 않은 제어칙을 갖고, 상기 차량 상태량을 입력함으로써 상기 제2 목표량을 출력한다.
제5 양태로서는, 제4 양태에 있어서, 상기 제2 목표량에 대한 상기 제1 목표량의 소정 범위의 폭은, 차량 상태에 따라 가변한다.
제6 양태로서는, 제3 양태에 있어서, 상기 제2 지령 산출부는, 상기 제1 지령 산출부와는 다른 조건에 따라 사전에 기계 학습한 제2 학습 결과를 갖고, 상기 제2 학습 결과와 상기 복수의 다른 정보로부터 상기 제2 목표량을 출력한다.
제7 양태로서는, 제6 양태에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량이 상기 제2 목표량에 대한 괴리가 소정량보다 큰 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력한다.
제8 양태로서는, 제3 양태에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 상기 제2 목표량에 대한 괴리가 소정량보다 작은 경우는, 상기 제1 목표량을 상기 제어 지령으로서 출력한다.
제9 양태로서는, 제3 양태에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 상기 제2 목표량에 대한 괴리가 소정량보다 큰 상태가 소정 시간보다 길게 계속된 경우에, 이상 상태라고 판단한다.
제10 양태로서는, 제9 양태에 있어서, 상기 제어 지령 출력부는, 상기 이상 상태라고 판단한 경우, 상기 이상 상태를 기록하며 상기 차량에 있어서 운전자에게 통지하는 신호를 출력한다.
제11 양태로서는, 제9 양태에 있어서, 상기 제어 지령 출력부는, 상기 이상 상태의 경우, 상기 제2 목표량을 상기 제어 지령으로서 출력한다.
제12 양태로서는, 제1 양태에 있어서, 상기 차량 상태량은, 상기 차체의 롤량으로서, 상기 제어 지령 출력부는, 상기 롤량이 소정량보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 롤량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력한다.
제13 양태로서는, 제1 양태에 있어서, 상기 차량 상태량은, 상기 차체의 피치량으로서, 상기 제어 지령 출력부는, 상기 피치량이 소정량보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 피치량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력한다.
제14 양태로서는, 제1 양태에 있어서, 상기 차량 상태량은, 상기 차체의 상하 진동량으로서, 상기 제어 지령 출력부는, 상기 상하 진동량이 소정량보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 상하 진동량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력한다.
제15 양태로서는, 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치의 제어 방법으로서, 복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 단계와, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 제어 지령으로서 상기 힘 발생 기구에 출력하는 제2 단계를 갖고 있다.
제16 양태로서는, 제15 양태에 있어서, 상기 학습 결과는, 딥 러닝에 의한 학습이 끝난 뉴럴 네트워크이다.
또한, 본 발명은 상기한 실시형태에 한정되는 것이 아니며, 여러 가지 변형예가 포함된다. 예컨대, 상기한 실시형태는 본 발명을 알기 쉽게 설명하기 위해 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하는 것에 한정되는 것이 아니다. 또한, 어떤 실시형태의 구성의 일부를 다른 실시형태의 구성으로 치환하는 것이 가능하고, 또한, 어떤 실시형태의 구성에 다른 실시형태의 구성을 더하는 것도 가능하다. 또한, 각 실시형태의 구성의 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것이 가능하다.
본원은 2020년 7월 31일자로 출원된 일본국 특허 출원 제2020-130306호에 기초한 우선권을 주장한다. 2020년 7월 31일자로 출원된 일본국 특허 출원 제2020-130306호의 명세서, 특허청구의 범위, 도면, 및 요약서를 포함하는 전체 개시 내용은, 참조에 의해 본원에 전체로서 포함된다.
1 : 차체 2 : 차륜
3 : 타이어 4 : 서스펜션 장치
5 : 현가 용수철(스프링) 6 : 가변 댐퍼(힘 발생 기구)
7 : 감쇠력 가변 액추에이터 8 : 용수철상 가속도 센서
9 : 차고 센서 10 : 노면 계측 센서
11 : ECU 12, 30 : 컨트롤러
13 : 상태량 산출부 14 : 제1 지령 산출부
15, 31 : 제2 지령 산출부 16, 32 : 제어 지령 출력부

Claims (16)

  1. 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치를 제어하는 서스펜션 제어 장치로서,
    복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 지령 산출부와,
    상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어하는 제어 지령을 출력하는 제어 지령 출력부로서, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 미리 정해놓은 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 제어 지령 출력부
    를 포함하는 서스펜션 제어 장치.
  2. 제1항에 있어서, 상기 학습 결과는 딥 러닝에 의한 학습이 끝난 뉴럴 네트워크인 것인 서스펜션 제어 장치.
  3. 제2항에 있어서, 상기 제1 지령 산출부와는 다른 제2 지령 산출부를 갖고,
    상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 제2 목표량에 대한 괴리가 미리 정해놓은 양보다 큰 경우에, 상기 제2 목표량에 대하여 상기 미리 정해놓은 양 이내의 값을 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  4. 제3항에 있어서, 상기 제2 지령 산출부는, 기계 학습을 이용하지 않은 제어칙을 갖고, 상기 차량 상태량을 입력함으로써 상기 제2 목표량을 출력하는 것인 서스펜션 제어 장치.
  5. 제4항에 있어서, 상기 제2 목표량에 대한 상기 제1 목표량의 미리 정해놓은 범위의 폭은, 차량 상태에 따라 가변하는 것인 서스펜션 제어 장치.
  6. 제3항에 있어서, 상기 제2 지령 산출부는, 상기 제1 지령 산출부와는 다른 조건에 따라 사전에 기계 학습한 제2 학습 결과를 갖고, 상기 제2 학습 결과와 상기 복수의 다른 정보로부터 상기 제2 목표량을 출력하는 것인 서스펜션 제어 장치.
  7. 제6항에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량이 상기 제2 목표량에 대한 괴리가 미리 정해놓은 양보다 큰 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  8. 제3항에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 상기 제2 목표량에 대한 괴리가 미리 정해놓은 양보다 작은 경우는, 상기 제1 목표량을 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  9. 제3항에 있어서, 상기 제어 지령 출력부는, 상기 제1 목표량의 상기 제2 지령 산출부가 출력하는 상기 제2 목표량에 대한 괴리가 미리 정해놓은 양보다 큰 상태가 미리 정해놓은 시간보다 길게 계속된 경우에, 이상(異常) 상태라고 판단하는 것인 서스펜션 제어 장치.
  10. 제9항에 있어서, 상기 제어 지령 출력부는, 상기 이상 상태라고 판단한 경우, 상기 이상 상태를 기록하며 상기 차량에 있어서 운전자에게 통지하는 신호를 출력하는 것인 서스펜션 제어 장치.
  11. 제9항에 있어서, 상기 제어 지령 출력부는, 상기 이상 상태의 경우, 상기 제2 목표량을 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  12. 제1항에 있어서, 상기 차량 상태량은, 상기 차체의 롤량이고,
    상기 제어 지령 출력부는, 상기 롤량이 미리 정해놓은 양보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 롤량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  13. 제1항에 있어서, 상기 차량 상태량은, 상기 차체의 피치량이고,
    상기 제어 지령 출력부는, 상기 피치량이 미리 정해놓은 양보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 피치량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  14. 제1항에 있어서, 상기 차량 상태량은, 상기 차체의 상하 진동량이고,
    상기 제어 지령 출력부는, 상기 상하 진동량이 미리 정해놓은 양보다 큰 상태에 있을 때에, 상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 상기 상하 진동량이 더욱 커지는 경우에, 상기 제1 목표량을 제한하여 상기 제어 지령으로서 출력하는 것인 서스펜션 제어 장치.
  15. 차량의 차체와 차륜 사이의 힘을 조정하는 힘 발생 기구를 구비하는 서스펜션 장치의 제어 방법으로서,
    복수의 다른 정보를 입력함으로써, 사전에 기계 학습한 학습 결과를 사용하여 제1 목표량을 출력하는 제1 단계와,
    상기 제1 목표량에 기초하여 상기 힘 발생 기구를 제어함으로써 차량 상태량이 소정의 것보다 커지는 방향으로 작용하는 경우에, 상기 제1 목표량을 제한하여 제어 지령으로서 상기 힘 발생 기구에 출력하는 제2 단계
    를 포함하는 서스펜션 장치의 제어 방법.
  16. 제15항에 있어서, 상기 학습 결과는, 딥 러닝에 의한 학습이 끝난 뉴럴 네트워크인 것인 서스펜션 장치의 제어 방법.
KR1020227041577A 2020-07-31 2021-07-21 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법 KR20230004807A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-130306 2020-07-31
JP2020130306 2020-07-31
PCT/JP2021/027299 WO2022024919A1 (ja) 2020-07-31 2021-07-21 サスペンション制御装置およびサスペンション装置の制御方法

Publications (1)

Publication Number Publication Date
KR20230004807A true KR20230004807A (ko) 2023-01-06

Family

ID=80036840

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227041577A KR20230004807A (ko) 2020-07-31 2021-07-21 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법

Country Status (6)

Country Link
US (1) US20230294474A1 (ko)
JP (1) JP7446434B2 (ko)
KR (1) KR20230004807A (ko)
CN (1) CN116056921A (ko)
DE (1) DE112021004002T5 (ko)
WO (1) WO2022024919A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042831A1 (ja) * 2022-08-26 2024-02-29 株式会社アイシン 制御装置
JP2024047280A (ja) * 2022-09-26 2024-04-05 日立Astemo株式会社 サスペンションシステム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069759A (ja) 2012-09-28 2014-04-21 Hitachi Automotive Systems Ltd サスペンション制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516634A (ja) * 1991-07-16 1993-01-26 Kayaba Ind Co Ltd 車両のサスペンシヨン制御装置
JPH06135214A (ja) * 1992-10-28 1994-05-17 Mazda Motor Corp 路面状態判定装置
AU2003278815A1 (en) 2002-09-13 2004-04-30 Yamaha Motor Co., Ltd. Fuzzy controller with a reduced number of sensors
JP5325765B2 (ja) 2009-12-28 2013-10-23 日立オートモティブシステムズ株式会社 路肩検出装置及び路肩検出装置を用いた車両
WO2017081984A1 (ja) * 2015-11-11 2017-05-18 株式会社日立製作所 制御装置及び診断システム
JP7302187B2 (ja) 2019-02-14 2023-07-04 株式会社三洋物産 遊技機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069759A (ja) 2012-09-28 2014-04-21 Hitachi Automotive Systems Ltd サスペンション制御装置

Also Published As

Publication number Publication date
DE112021004002T5 (de) 2023-07-20
JPWO2022024919A1 (ko) 2022-02-03
JP7446434B2 (ja) 2024-03-08
CN116056921A (zh) 2023-05-02
US20230294474A1 (en) 2023-09-21
WO2022024919A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
Wang et al. A vehicle rollover evaluation system based on enabling state and parameter estimation
US11884119B2 (en) Vehicle behavior device
KR20230004807A (ko) 서스펜션 제어 장치 및 서스펜션 장치의 제어 방법
KR102356289B1 (ko) 차량 제어 장치
Ahangarnejad et al. A review of vehicle active safety control methods: From antilock brakes to semiautonomy
US20220161624A1 (en) Suspension control apparatus
EP1540198A2 (en) Fuzzy controller with a reduced number of sensors
KR102654627B1 (ko) 차량 제어 장치, 차량 제어 방법 및 차량 제어 시스템
US20220155783A1 (en) Use of neural networks in control systems
CN112277558A (zh) 减振器控制系统、车辆、信息处理装置及它们的控制方法以及记录介质
WO2022168683A1 (ja) 車両状態量推定装置
JP7312707B2 (ja) サスペンション制御装置
CN115023355A (zh) 车辆系统的前瞻控制
US20190161089A1 (en) Control of chassis systems in relation to aerodynamic loads
JP2023135097A (ja) サスペンション制御装置
JP5104594B2 (ja) 車両制御装置
WO2020195295A1 (ja) サスペンション制御装置
CN116834492A (zh) 带有车辆姿态预测的智能车辆横向控制方法
KR20220161462A (ko) 차량 제어 장치 및 서스펜션 시스템
KR20220116307A (ko) 관능 평가 예측 시스템, 서스펜션 장치, 서스펜션 제어 시스템
CN117644751A (zh) 基于车轮动作的主动悬挂阻尼调整装置及调整方法
JP5090977B2 (ja) 減衰力可変ダンパの制御装置
CN117067839A (zh) 磁流变半主动悬架史密斯区间二型模糊时滞补偿控制方法