KR20220160732A - 모스 전계 효과 트랜지스터를 이용한 스위칭 회로 - Google Patents

모스 전계 효과 트랜지스터를 이용한 스위칭 회로 Download PDF

Info

Publication number
KR20220160732A
KR20220160732A KR1020210068736A KR20210068736A KR20220160732A KR 20220160732 A KR20220160732 A KR 20220160732A KR 1020210068736 A KR1020210068736 A KR 1020210068736A KR 20210068736 A KR20210068736 A KR 20210068736A KR 20220160732 A KR20220160732 A KR 20220160732A
Authority
KR
South Korea
Prior art keywords
field effect
effect transistor
channel mos
mos field
switch
Prior art date
Application number
KR1020210068736A
Other languages
English (en)
Other versions
KR102610477B1 (ko
Inventor
장희승
Original Assignee
주식회사 실리콘프리시젼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 실리콘프리시젼 filed Critical 주식회사 실리콘프리시젼
Priority to KR1020210068736A priority Critical patent/KR102610477B1/ko
Publication of KR20220160732A publication Critical patent/KR20220160732A/ko
Application granted granted Critical
Publication of KR102610477B1 publication Critical patent/KR102610477B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08104Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit

Landscapes

  • Electronic Switches (AREA)

Abstract

스위칭 회로는, 소오스 노드와 드레인 노드 사이 또는 드레인 노드와 소오스 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작하는 제 1 전계 효과 트랜지스터; 및 상기 제 1 전계 효과 트랜지스터의 바디와 연결된 바디 전원 공급 회로;를 포함하되, 상기 바디 전원 공급 회로는, 제 2 전계 효과 트랜지스터를 이용한 제 1 소오스 팔로워 회로; 및 상기 제 1 전계 효과 트랜지스터의 바디와 상기 제 2 전계 효과 트랜지스터의 출력 사이를 연결하는 제 1 스위치;를 포함하되, 상기 제 1 전계 효과 트랜지스터는, P 채널 모스 전계 효과 트랜지스터 또는 N 채널 모스 전계 효과 트랜지스터 중 하나의 모스 전계 효과 트랜지스터이고, 상기 제 2 전계 효과 트랜지스터는, 상기 제 1 전계 효과 트랜지스터와 동일한 채널의 모스 전계 효과 트랜지스터이다.

Description

모스 전계 효과 트랜지스터를 이용한 스위칭 회로{SWITCHING CIRCUITS USING MOS FIELD EFFECT TRANSISTOR}
본 발명은 모스 전계 효과 트랜지스터를 이용한 스위칭 회로에 관한 것이다.
도 1은 종래의 P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)를 나타낸다. 아울러, 도 2는 종래 및 본 발명의 스위칭 회로(100, 200, 300, 400)의 등가 회로도를 나타낸다.
도 1로부터 알 수 있는 바와 같이 종래의 P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)는, 소오스 노드(S)가 입력 노드가 되고, 드레인 노드(D)가 출력 노드가 된다. 아울러, 게이트 노드(G)로 제어 전압(V(CON))을 인가하여 소오스 노드(S)와 드레인 노드(D) 사이를 온 또는 오프로 제어한다. 즉, P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)는, 도 2와 같이 하나의 스위칭 소자(SW)를 포함하는 등가 회로에 의해 표현할 수 있다. 예를 들면, 제어 전압(V(CON))으로 그라운드 전위 또는 음의 전원 전압이 인가되면 스위칭 소자(SW)는 온이 되고, 제어 전압(V(CON))으로 양의 전원 전압이 인가되면 스위칭 소자(SW)는 오프가 된다.
아울러, 종래의 P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)에서, P 채널 모스 전계 효과 트랜지스터의 바디(B)에는 양의 전원 전압이 입력되게 된다.
P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)의 오프 시 누설 전류는, 바디(B)와 드레인 노드(D) 사이의 기생 다이오드(Parasitic Diode, D12)에 걸리는 역방향 바이어스(Reverse Bias)에 의해 발생한다.
따라서, P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100)의 오프 시 누설 전류를 감소시킬 필요가 있다.
도 3은 종래의 N 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(200)를 나타낸다.
N 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(200)의 오프 시 누설 전류는, 바디(B)와 소오스 노드(S) 사이의 기생 다이오드(Parasitic Diode, D22)에 걸리는 역방향 바이어스(Reverse Bias)에 의해 발생한다.
아울러, 종래의 P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(100) 및 종래의 N 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(200)에서도, 모스 전계 효과 트랜지스터의 온저항(Ron)을 감소시킬 필요가 있다.
국내공개특허 제10-2015-0092011호 : 전계 효과 트랜지스터 스위칭 회로(2015년 8월 12일 공개).
본 발명은 전술한 바와 같은 기술적 과제를 해결하는 데 목적이 있는 발명으로서, 모스 전계 효과 트랜지스터를 이용한 스위칭 회로의 오프 시 누설 전류를 감소시킬 수 있을 뿐만 아니라, 온저항을 감소시킬 수 있는 모스 전계 효과 트랜지스터를 이용한 스위칭 회로를 제공하는 것에 그 목적이 있다.
스위칭 회로는, 소오스 노드와 드레인 노드 사이 또는 드레인 노드와 소오스 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작하는 제 1 전계 효과 트랜지스터; 및 상기 제 1 전계 효과 트랜지스터의 바디와 연결된 바디 전원 공급 회로;를 포함한다.
구체적으로, 상기 바디 전원 공급 회로는, 제 2 전계 효과 트랜지스터를 이용한 제 1 소오스 팔로워 회로; 상기 제 1 전계 효과 트랜지스터의 바디와 상기 제 2 전계 효과 트랜지스터의 출력 사이를 연결하는 제 1 스위치; 제 3 전계 효과 트랜지스터를 이용한 제 2 소오스 팔로워 회로; 및 상기 제 1 전계 효과 트랜지스터의 바디와 상기 제 3 전계 효과 트랜지스터의 출력 사이를 연결하는 제 2 스위치;를 포함한다.
아울러, 상기 제 1 전계 효과 트랜지스터는, P 채널 모스 전계 효과 트랜지스터 또는 N 채널 모스 전계 효과 트랜지스터 중 하나의 모스 전계 효과 트랜지스터인 것이 바람직하다. 또한, 상기 제 2 전계 효과 트랜지스터는, 상기 제 1 전계 효과 트랜지스터와 동일한 채널의 모스 전계 효과 트랜지스터인 것을 특징으로 한다. 또한, 상기 제 3 전계 효과 트랜지스터는, 상기 제 1 전계 효과 트랜지스터와는 다른 채널의 모스 전계 효과 트랜지스터인 것을 특징으로 한다.
바람직하게는, 상기 제 1 전계 효과 트랜지스터가 온 상태일 경우, 상기 제 1 스위치는 온 상태가 되고, 상기 제 1 전계 효과 트랜지스터가 오프 상태일 경우, 상기 제 1 스위치는 오프 상태가 되는 것을 특징으로 한다.
아울러, 상기 제 2 전계 효과 트랜지스터의 게이트 노드와 상기 제 1 전계 효과 트랜지스터의 소오스 노드는, 서로 연결된 것이 바람직하다.
또한, 상기 제 1 전계 효과 트랜지스터가 온 상태일 경우, 상기 제 2 스위치는 오프 상태가 되고, 상기 제 1 전계 효과 트랜지스터가 오프 상태일 경우, 상기 제 2 스위치는 온 상태가 되는 것을 특징으로 한다.
아울러, 상기 제 3 전계 효과 트랜지스터의 게이트 노드와 상기 제 1 전계 효과 트랜지스터가 오프 시의 상기 제 1 전계 효과 트랜지스터의 게이트 노드에는, 동일한 전압이 인가되는 것이 바람직하다.
본 발명의 모스 전계 효과 트랜지스터를 이용한 스위칭 회로에 따르면, 스위칭 회로의 오프 시 누설 전류를 감소시킬 수 있을 뿐만 아니라, 온저항을 감소시킬 수 있다.
도 1은 종래의 P 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로의 구성도.
도 2는 종래 및 본 발명의 스위칭 회로의 등가 회로도.
도 3은 종래의 N 채널 모스 전계 효과 트랜지스터를 이용한 스위칭 회로의 구성도.
도 4는 제 1 실시예에 따른 스위칭 회로의 구성도.
도 5는 제 1 P 채널 모스 전계 효과 트랜지스터의 온 동작 시의 제 1 실시예에 따른 스위칭 회로의 동작 설명도.
도 6은 제 1 P 채널 모스 전계 효과 트랜지스터의 오프 동작 시의 제 1 실시예에 따른 스위칭 회로의 동작 설명도.
도 7은 제 2 실시예에 따른 스위칭 회로의 구성도.
도 8은 제 1 N 채널 모스 전계 효과 트랜지스터의 온 동작 시의 제 2 실시예에 따른 스위칭 회로의 동작 설명도.
도 9는 제 1 N 채널 모스 전계 효과 트랜지스터의 오프 동작 시의 제 2 실시예에 따른 스위칭 회로의 동작 설명도.
이하, 첨부된 도면을 참조하면서 본 발명의 실시예들에 따른 모스 전계 효과 트랜지스터를 이용한 스위칭 회로에 대해 상세히 설명하기로 한다.
본 발명의 하기의 실시예들은 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리 범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예들로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리 범위에 속하는 것으로 해석된다.
먼저, 도 4는 제 1 실시예에 따른 스위칭 회로(300)의 구성도를 나타낸다.
도 4로부터 알 수 있는 바와 같이 제 1 실시예에 따른 스위칭 회로(300)는, 제 1 P 채널 모스 전계 효과 트랜지스터(P1) 및 바디 전원 공급 회로(BS)를 포함하여 구성된다.
참고로, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)는 파워용으로 큰 크기의 트랜지스터이고, 바디 전원 공급 회로(BS)에 포함되는 트랜지스터는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)에 비해 아주 작은 크기의 것을 사용하는 것이 바람직하다. 즉, 바디 전원 공급 회로(BS)의 트랜지스터에 의한 오프 시 누설 전류 및 온저항은, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 오프 시 누설 전류 및 온저항에 비해 무시할 만하다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)는, 소오스 노드와 드레인 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작한다.
도 4로부터 알 수 있는 바와 같이 제 1 실시예에 따른 스위칭 회로(300)는, 소오스 노드가 입력 노드가 되고, 드레인 노드가 출력 노드가 된다. 아울러, 게이트 노드로 제어 전압(V(CON))을 인가하여 소오스 노드와 드레인 노드 사이를 온 또는 오프로 제어한다. 예를 들면, 제어 전압(V(CON))으로 음의 전원 전압(VSS)이 인가되면 제 1 P 채널 모스 전계 효과 트랜지스터(P1)는 온이 되고, 제어 전압(V(CON))으로 양의 전원 전압(VDD)이 인가되면 제 1 P 채널 모스 전계 효과 트랜지스터(P1)는 오프가 된다.
바디 전원 공급 회로(BS)는, 제 1 소오스 팔로워 회로(S1), 제 2 소오스 팔로워 회로(S2), 제 1 스위치(SW1) 및 제 2 스위치(SW2)를 포함하여 구성된다.
제 1 소오스 팔로워 회로(S1)는 제 2 전계 효과 트랜지스터(T2)를 이용하여 구현될 수 있다. 아울러, 제 2 전계 효과 트랜지스터(T2)는, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)와 동일한 채널인 P 채널 모스 전계 효과 트랜지스터인 것을 특징으로 한다. 제 2 소오스 팔로워 회로(S2)는 제 3 전계 효과 트랜지스터(T3)를 이용하여 구현될 수 있다. 아울러, 제 3 전계 효과 트랜지스터(T3)는, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)와는 다른 채널인, N 채널 모스 전계 효과 트랜지스터인 것이 바람직하다.
제 1 소오스 팔로워 회로(S1) 및 제 2 소오스 팔로워 회로(S2)의 출력은 각각, 제 1 스위치(SW1) 및 제 2 스위치(SW2)를 통해 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디와 연결된다.
제 1 스위치(SW1)는, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디와 제 2 전계 효과 트랜지스터(T2)의 출력 사이를 연결한다. 아울러, 제 2 스위치(SW2)는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디와 제 3 전계 효과 트랜지스터(T3)의 출력 사이를 연결한다.
또한, 제 1 스위치(SW1) 및 제 2 스위치(SW2)는 트랜지스터를 이용하여 구현될 수 있다. 제 1 스위치(SW1) 및 제 2 스위치(SW2)의 제어는 제어기(미도시)에 의해 실시될 수 있다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 온 상태일 경우, 제 1 스위치(SW1)는 온 상태가 되고 제 2 스위치(SW2)는 오프 상태가 된다. 제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 오프 상태일 경우, 제 1 스위치(SW1)는 오프 상태가 되고 제 2 스위치(SW2)는 온 상태가 되는 것이 바람직하다.
제 2 전계 효과 트랜지스터(T2)의 게이트 노드와 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 소오스 노드는, 스위칭 회로(300)의 입력 노드와 연결되는 것이 바람직하다. 즉, 제 2 전계 효과 트랜지스터(T2)의 게이트 노드와 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 소오스 노드는 서로 연결된 것을 특징으로 한다. 아울러, 스위칭 회로(300)의 입력 노드의 전압(V(IN))은, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B)) 및 양의 전원 전압(VDD) 보다 작은 값을 나타낸다. 다시 말해, 스위칭 회로(300)의 입력 노드의 전압(V(IN))은 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B)) 보다 작고, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))은 양의 전원 전압(VDD) 보다 작다.
아울러, 제 3 전계 효과 트랜지스터(T3)의 게이트 노드와 제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 오프 시의 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 게이트 노드에는, 동일한 전압인, 양의 전원 전압(VDD)이 인가되는 것이 바람직하다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 온 상태인 경우를 가정하자. 이때 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 게이트에는 음의 전원 전압(VSS)이 인가되는 것이 바람직하다.
도 5는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 온 동작 시의 제 1 실시예에 따른 스위칭 회로(300)의 동작 설명도를 나타낸다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 온 상태일 경우, 제 1 스위치(SW1)는 온 상태가 되고 제 2 스위치(SW2)는 오프 상태가 된다. 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 온저항은, 문턱 전압 파라미터가 낮을수록 작아진다.
아울러, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 문턱 전압은, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디와 소오스 사이의 전압차가 작아질수록 낮아진다.
이때, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디를 양의 전원 전압(VDD)에 연결하는 것 보다 제 1 소오스 팔로워 회로(S1)의 출력에 연결하면, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디와 소오스 사이의 전압차가 작아지며, 이에 따라 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 온저항이 감소한다.
즉, 제 1 소오스 팔로워 회로(S1)가 없는 경우에는, (VDD-V(IN))에 의해 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 온저항은 결정된다.
그런데, 제 1 소오스 팔로워 회로(S1)가 있는 경우에는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))이 대략 (V(IN)+Vth(T2))가 된다. 여기서, Vth(T2)는 제 2 전계 효과 트랜지스터(T2)의 문턱 전압이다. 즉, 제 1 소오스 팔로워 회로(S1)가 있는 경우에는, {(V(IN)+Vth(T2))-V(IN)}에 의해 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 온저항은 결정된다. 즉, 제 1 소오스 팔로워 회로(S1)가 있는 경우의 온저항은 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))이 낮아짐에 따라, 제 1 소오스 팔로워 회로(S1)가 없는 경우에 비해 작아지는 것을 알 수 있다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 오프 상태인 경우를 가정하자.
도 6은 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 오프 동작 시의 제 1 실시예에 따른 스위칭 회로(300)의 동작 설명도를 나타낸다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 오프 상태일 경우, 제 1 스위치(SW1)는 오프 상태가 되고 제 2 스위치(SW2)는 온 상태가 된다. 아울러, 제 1 P 채널 모스 전계 효과 트랜지스터(P1)가 오프 상태일 경우, 그 게이트에는 양의 전원 전압(VDD)이 인가된다.
제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 오프 시 누설 전류는 바디와 드레인 노드 사이의 기생 다이오드(Parasitic Diode, D12)에 걸리는 역방향 바이어스(Reverse Bias)에 의해 발생한다.
이때 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디를 양의 전원 전압(VDD)에 연결하는 것 보다는, 제 2 소오스 팔로워 회로(S2)의 출력에 연결하면 역방향 바이어스가 줄어들어 누설 전류가 감소한다.
즉, 제 2 소오스 팔로워 회로(S2)가 없는 경우에는, (VDD-V(OUT))에 의해 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 누설 전류가 결정된다.
그런데, 제 2 소오스 팔로워 회로(S2)가 있는 경우에는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))이 대략 (VDD-Vth(T3))가 된다. 여기서 Vth(T3)는, 제 3 전계 효과 트랜지스터(T3)의 문턱 전압을 나타낸다. 즉, 제 2 소오스 팔로워 회로(S2)가 있는 경우에는, {(VDD-Vth(T3))-V(OUT)}에 의해 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 누설 전류는 결정된다. 즉, 제 2 소오스 팔로워 회로(S2)가 있는 경우의 누설 전류가 제 3 전계 효과 트랜지스터(T3)의 문턱 전압(Vth(T3))의 효과에 의해, 제 2 소오스 팔로워 회로(S2)가 없는 경우에 비해 작아지는 것을 알 수 있다.
도 7은 제 2 실시예에 따른 스위칭 회로(400)의 구성도를 나타낸다.
도 7로부터 알 수 있는 바와 같이 제 2 실시예에 따른 스위칭 회로(400)는, 제 1 N 채널 모스 전계 효과 트랜지스터(N1) 및 바디 전원 공급 회로(BS)를 포함하여 구성된다.
참고로, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)는 파워용으로 큰 크기의 트랜지스터이고, 바디 전원 공급 회로(BS)에 포함되는 트랜지스터는 제 1 N 채널 모스 전계 효과 트랜지스터(N1)에 비해 아주 작은 크기의 것을 사용하는 것이 바람직하다. 즉, 바디 전원 공급 회로(BS)의 트랜지스터에 의한 오프 시 누설 전류 및 온저항은, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 오프 시 누설 전류 및 온저항에 비해 무시할 만하다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)는, 소오스 노드와 드레인 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작한다.
도 7로부터 알 수 있는 바와 같이 제 2 실시예에 따른 스위칭 회로(400)는, 드레인 노드가 입력 노드가 되고, 소오스 노드가 출력 노드가 된다. 아울러, 게이트 노드로 제어 전압(V(CON))을 인가하여 드레인 노드와 소오스 노드 사이를 온 또는 오프로 제어한다. 예를 들면, 제어 전압(V(CON))으로 양의 전원 전압(VDD)이 인가되면 제 1 N 채널 모스 전계 효과 트랜지스터(N1)는 온이 되고, 제어 전압(V(CON))으로 음의 전원 전압(VSS)이 인가되면 제 1 N 채널 모스 전계 효과 트랜지스터(N1)는 오프가 된다.
바디 전원 공급 회로(BS)는, 제 1 소오스 팔로워 회로(S1), 제 2 소오스 팔로워 회로(S2), 제 1 스위치(SW1) 및 제 2 스위치(SW2)를 포함하여 구성된다.
제 1 소오스 팔로워 회로(S1)는 제 2 전계 효과 트랜지스터(T2)를 이용하여 구현될 수 있다. 아울러, 제 2 전계 효과 트랜지스터(T2)는, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)와 동일한 채널인 N 채널 모스 전계 효과 트랜지스터인 것을 특징으로 한다. 제 2 소오스 팔로워 회로(S2)는 제 3 전계 효과 트랜지스터(T3)를 이용하여 구현될 수 있다. 아울러, 제 3 전계 효과 트랜지스터(T3)는, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)와는 다른 채널인, P 채널 모스 전계 효과 트랜지스터인 것이 바람직하다.
제 1 소오스 팔로워 회로(S1) 및 제 2 소오스 팔로워 회로(S2)의 출력은 각각, 제 1 스위치(SW1) 및 제 2 스위치(SW2)를 통해 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디와 연결된다.
제 1 스위치(SW1)는, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디와 제 2 전계 효과 트랜지스터(T2)의 출력 사이를 연결한다. 아울러, 제 2 스위치(SW2)는 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디와 제 3 전계 효과 트랜지스터(T3)의 출력 사이를 연결한다.
또한, 제 1 스위치(SW1) 및 제 2 스위치(SW2)는 트랜지스터를 이용하여 구현될 수 있다. 제 1 스위치(SW1) 및 제 2 스위치(SW2)의 제어는 제어기(미도시)에 의해 실시될 수 있다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 온 상태일 경우, 제 1 스위치(SW1)는 온 상태가 되고 제 2 스위치(SW2)는 오프 상태가 된다. 제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 오프 상태일 경우, 제 1 스위치(SW1)는 오프 상태가 되고 제 2 스위치(SW2)는 온 상태가 되는 것이 바람직하다.
제 2 전계 효과 트랜지스터(T2)의 게이트 노드와 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 소오스 노드는, 스위칭 회로(400)의 출력 단자와 연결되는 것이 바람직하다. 즉, 제 2 전계 효과 트랜지스터(T2)의 게이트 노드와 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 소오스 노드는 서로 연결된 것을 특징으로 한다. 아울러, 스위칭 회로(400)의 출력 노드의 전압(V(OUT))은, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디 바이어스 전압(V(B)) 및 음의 전원 전압(VSS) 보다 큰 값을 나타낸다. 다시 말해, 스위칭 회로(400)의 출력 노드의 전압(V(OUT))은 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디 바이어스 전압(V(B)) 보다 크고, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디 바이어스 전압(V(B))은 음의 전원 전압(VSS) 보다 크다.
아울러, 제 3 전계 효과 트랜지스터(T3)의 게이트 노드와 제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 오프 시의 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 게이트 노드에는, 동일한 전압인, 음의 전원 전압(VSS)이 인가되는 것이 바람직하다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 온 상태인 경우를 가정하자. 이때 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 게이트에는 양의 전원 전압(VDD)이 인가되는 것이 바람직하다.
도 8은 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 온 동작 시의 제 2 실시예에 따른 스위칭 회로(400)의 동작 설명도를 나타낸다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 온 상태일 경우, 제 1 스위치(SW1)는 온 상태가 되고 제 2 스위치(SW2)는 오프 상태가 된다. 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 온저항은, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 문턱 전압 파라미터가 낮을수록 작아진다.
아울러, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 문턱 전압은, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 소오스와 바디 사이의 전압차가 작아질수록 낮아진다.
이때, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디를 음의 전원 전압(VSS)에 연결하는 것 보다 제 1 소오스 팔로워 회로(S1)의 출력에 연결하면, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 소오스와 바디 사이의 전압차가 작아지며, 이에 따라 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 온저항이 감소한다.
즉, 제 1 소오스 팔로워 회로(S1)가 없는 경우에는, (V(OUT)-VSS)에 의해 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 온저항은 결정된다.
그런데, 제 1 소오스 팔로워 회로(S1)가 있는 경우에는, 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디 바이어스 전압(V(B))이 대략 (V(OUT)-Vth(T2))가 된다. 여기서, Vth(T2)는 제 2 전계 효과 트랜지스터(T2)의 문턱 전압을 나타낸다. 즉, 제 1 소오스 팔로워 회로(S1)가 있는 경우에는, {V(OUT)-(V(OUT)-Vth(T2))}에 의해 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 온저항은 결정된다. 즉, 제 1 소오스 팔로워 회로(S1)가 있는 경우의 온저항은 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))이 높아짐에 따라, 제 1 소오스 팔로워 회로(S1)가 없는 경우에 비해 작아지는 것을 알 수 있다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 오프 상태인 경우를 가정하자.
도 9는 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 오프 동작 시의 제 2 실시예에 따른 스위칭 회로(400)의 동작 설명도를 나타낸다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 오프 상태일 경우, 제 1 스위치(SW1)는 오프 상태가 되고 제 2 스위치(SW2)는 온 상태가 된다. 아울러,제 1 N 채널 모스 전계 효과 트랜지스터(N1)가 오프 상태일 경우, 그 게이트에는 음의 전원 전압(VSS)이 인가된다.
제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 오프 시 누설 전류는 바디와 드레인 노드 사이의 기생 다이오드(D22)에 걸리는 역방향 바이어스에 의해 발생한다.
이때 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 바디를 음의 전원 전압(VSS)에 연결하는 것 보다는, 제 2 소오스 팔로워 회로(S2)의 출력에 연결하면 역방향 바이어스가 줄어들어 누설 전류가 감소한다.
즉, 제 2 소오스 팔로워 회로(S2)가 없는 경우에는, (V(OUT))-VSS)에 의해 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 누설 전류가 결정된다.
그런데, 제 2 소오스 팔로워 회로(S2)가 있는 경우에는 제 1 P 채널 모스 전계 효과 트랜지스터(P1)의 바디 바이어스 전압(V(B))이 대략 (VSS+Vth(T3))가 된다. 여기서 Vth(T3)는 제 3 전계 효과 트랜지스터(T3)의 문턱 전압을 나타낸다. 즉, 제 2 소오스 팔로워 회로(S2)가 있는 경우에는, {V(OUT)-(VSS+Vth(T3))}에 의해 제 1 N 채널 모스 전계 효과 트랜지스터(N1)의 누설 전류는 결정된다. 즉, 제 2 소오스 팔로워 회로(S2)가 있는 경우의 누설 전류가 제 3 전계 효과 트랜지스터(T3)의 문턱 전압(Vth(T3))의 효과에 의해, 제 2 소오스 팔로워 회로(S2)가 없는 경우에 비해 작아지는 것을 알 수 있다.
상술한 바와 같은 제 1 실시예 및 제 2 실시예에 따른 스위칭 회로(300, 400)의 특징을 정리해 보면 다음과 같다.
스위칭 회로(300, 400)는, 소오스 노드와 드레인 노드 사이 또는 드레인 노드와 소오스 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작하는 제 1 전계 효과 트랜지스터(P1, N1); 및 제 1 전계 효과 트랜지스터(P1, N1)의 바디와 연결된 바디 전원 공급 회로(BS);를 포함한다.
구체적으로, 바디 전원 공급 회로(BS)는, 제 2 전계 효과 트랜지스터(T2)를 이용한 제 1 소오스 팔로워 회로(S1); 제 3 전계 효과 트랜지스터(T3)를 이용한 제 2 소오스 팔로워 회로(S2); 제 1 전계 효과 트랜지스터(P1, N1)의 바디와 제 2 전계 효과 트랜지스터(T2)의 출력 사이를 연결하는 제 1 스위치(SW1); 및 제 1 전계 효과 트랜지스터(P1, N1)의 바디와 제 3 전계 효과 트랜지스터(T3)의 출력 사이를 연결하는 제 2 스위치(SW2);를 포함하여 구성된다.
제 1 전계 효과 트랜지스터(P1, N1)는, P 채널 모스 전계 효과 트랜지스터 또는 N 채널 모스 전계 효과 트랜지스터 중 하나의 모스 전계 효과 트랜지스터인 것을 특징으로 한다. 아울러, 제 2 전계 효과 트랜지스터(T2)는 제 1 전계 효과 트랜지스터(P1, N1)와 동일한 채널의 모스 전계 효과 트랜지스터이고, 제 3 전계 효과 트랜지스터(T3)는 제 1 전계 효과 트랜지스터(P1, N1)와는 다른 채널의 모스 전계 효과 트랜지스터인 것을 특징으로 한다.
또한, 제 1 전계 효과 트랜지스터(P1, N1)가 온 상태일 경우, 제 1 스위치(SW1)는 온 상태가 되고 제 2 스위치(SW2)는 오프 상태가 된다. 아울러, 제 1 전계 효과 트랜지스터(P1, N1)가 오프 상태일 경우, 제 1 스위치(SW1)는 오프 상태가 되고 제 2 스위치(SW2)는 온 상태가 되는 것을 특징으로 한다.
제 2 전계 효과 트랜지스터(T2)의 게이트 노드와 제 1 전계 효과 트랜지스터(P1, N1)의 소오스 노드에는, 동일한 노드로부터 신호가 인가되는 것이 바람직하다. 또한, 제 3 전계 효과 트랜지스터(T3)의 게이트 노드와 제 1 전계 효과 트랜지스터(P1, N1)가 오프 시의 제 1 전계 효과 트랜지스터(P1, N1)의 게이트 노드에는, 동일한 전압이 인가되는 것을 특징으로 한다.
상술한 바와 같이 스위칭 회로(300, 400)에 따르면, 모스 전계 효과 트랜지스터를 이용한 스위칭 회로(300, 400)의 오프 시 누설 전류를 감소시킬 수 있을 뿐만 아니라, 온저항을 감소시킬 수 있음을 알 수 있다.
100, 200, 300, 400 : 스위칭 회로
P1 : 제 1 P 채널 모스 전계 효과 트랜지스터
N1 : 제 1 N 채널 모스 전계 효과 트랜지스터
BS : 바디 전원 공급 회로
S1 : 제 1 소오스 팔로워 회로
S2 : 제 2 소오스 팔로워 회로
SW1 : 제 1 스위치
SW2 : 제 2 스위치
T2 : 제 2 전계 효과 트랜지스터
T3 : 제 3 전계 효과 트랜지스터

Claims (8)

  1. 스위칭 회로에 있어서,
    소오스 노드와 드레인 노드 사이 또는 드레인 노드와 소오스 노드 사이를 온 또는 오프하는 스위칭 소자로서 동작하는 제 1 전계 효과 트랜지스터; 및
    상기 제 1 전계 효과 트랜지스터의 바디와 연결된 바디 전원 공급 회로;를 포함하되,
    상기 바디 전원 공급 회로는,
    제 2 전계 효과 트랜지스터를 이용한 제 1 소오스 팔로워 회로;를 포함하되,
    상기 제 1 전계 효과 트랜지스터는,
    P 채널 모스 전계 효과 트랜지스터 또는 N 채널 모스 전계 효과 트랜지스터 중 하나의 모스 전계 효과 트랜지스터이고,
    상기 제 2 전계 효과 트랜지스터는,
    상기 제 1 전계 효과 트랜지스터와 동일한 채널의 모스 전계 효과 트랜지스터인, 스위칭 회로.
  2. 제1항에 있어서,
    상기 바디 전원 공급 회로는,
    상기 제 1 전계 효과 트랜지스터의 바디와 상기 제 2 전계 효과 트랜지스터의 출력 사이를 연결하는 제 1 스위치;를 더 포함하는, 스위칭 회로.
  3. 제2항에 있어서,
    상기 제 1 전계 효과 트랜지스터가 온 상태일 경우, 상기 제 1 스위치는 온 상태가 되고,
    상기 제 1 전계 효과 트랜지스터가 오프 상태일 경우, 상기 제 1 스위치는 오프 상태가 되는, 스위칭 회로.
  4. 제3항에 있어서,
    상기 제 2 전계 효과 트랜지스터의 게이트 노드와 상기 제 1 전계 효과 트랜지스터의 소오스 노드는,
    서로 연결된, 스위칭 회로.
  5. 제1항에 있어서,
    상기 바디 전원 공급 회로는,
    제 3 전계 효과 트랜지스터를 이용한 제 2 소오스 팔로워 회로;를 더 포함하되,
    상기 제 3 전계 효과 트랜지스터는,
    상기 제 1 전계 효과 트랜지스터와는 다른 채널의 모스 전계 효과 트랜지스터인, 스위칭 회로.
  6. 제5항에 있어서,
    상기 바디 전원 공급 회로는,
    상기 제 1 전계 효과 트랜지스터의 바디와 상기 제 3 전계 효과 트랜지스터의 출력 사이를 연결하는 제 2 스위치;를 더 포함하는, 스위칭 회로.
  7. 제6항에 있어서,
    상기 제 1 전계 효과 트랜지스터가 온 상태일 경우, 상기 제 2 스위치는 오프 상태가 되고,
    상기 제 1 전계 효과 트랜지스터가 오프 상태일 경우, 상기 제 2 스위치는 온 상태가 되는, 스위칭 회로.
  8. 제7항에 있어서,
    상기 제 3 전계 효과 트랜지스터의 게이트 노드와 상기 제 1 전계 효과 트랜지스터가 오프 시의 상기 제 1 전계 효과 트랜지스터의 게이트 노드에는,
    동일한 전압이 인가되는, 스위칭 회로.
KR1020210068736A 2021-05-28 2021-05-28 모스 전계 효과 트랜지스터를 이용한 스위칭 회로 KR102610477B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210068736A KR102610477B1 (ko) 2021-05-28 2021-05-28 모스 전계 효과 트랜지스터를 이용한 스위칭 회로

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210068736A KR102610477B1 (ko) 2021-05-28 2021-05-28 모스 전계 효과 트랜지스터를 이용한 스위칭 회로

Publications (2)

Publication Number Publication Date
KR20220160732A true KR20220160732A (ko) 2022-12-06
KR102610477B1 KR102610477B1 (ko) 2023-12-06

Family

ID=84407122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210068736A KR102610477B1 (ko) 2021-05-28 2021-05-28 모스 전계 효과 트랜지스터를 이용한 스위칭 회로

Country Status (1)

Country Link
KR (1) KR102610477B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813027A (ja) * 1981-07-17 1983-01-25 Toshiba Corp アナログスイッチ装置
KR20150092011A (ko) 2014-02-04 2015-08-12 트리퀸트 세미컨덕터 인코퍼레이티드 전계 효과 트랜지스터 스위칭 회로
KR102112794B1 (ko) * 2019-03-25 2020-05-19 주식회사 레오엘에스아이 스위칭 회로

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813027A (ja) * 1981-07-17 1983-01-25 Toshiba Corp アナログスイッチ装置
KR20150092011A (ko) 2014-02-04 2015-08-12 트리퀸트 세미컨덕터 인코퍼레이티드 전계 효과 트랜지스터 스위칭 회로
KR102112794B1 (ko) * 2019-03-25 2020-05-19 주식회사 레오엘에스아이 스위칭 회로

Also Published As

Publication number Publication date
KR102610477B1 (ko) 2023-12-06

Similar Documents

Publication Publication Date Title
US8344789B2 (en) Analog switch with internal device body control
US8629706B2 (en) Power switch and operation method thereof
US8860472B2 (en) Power switch driving circuits and switching mode power supply circuits thereof
US8710541B2 (en) Bi-directional switch using series connected N-type MOS devices in parallel with series connected P-type MOS devices
JP2012110205A (ja) ドライバ回路
US20160065086A1 (en) System and Method for Driving a Transistor
TWI410048B (zh) 轉壓器
US10666137B2 (en) Method and circuitry for sensing and controlling a current
JP2012049861A (ja) 出力回路
JP4958434B2 (ja) 電圧選択回路
CN209748522U (zh) 电压电平移位器
US8581656B2 (en) Transmission gate and control circuit for transmission gate inputs
JPH07142990A (ja) レベル変換回路
KR102610477B1 (ko) 모스 전계 효과 트랜지스터를 이용한 스위칭 회로
US20060232297A1 (en) Driver circuit
US10601405B2 (en) Buffer circuit
KR102112794B1 (ko) 스위칭 회로
US9356584B2 (en) Level shifter
US7782124B2 (en) Voltage supply circuit of semiconductor device
US20190326900A1 (en) Driver circuit for a device circuit
US9374047B2 (en) Buffer circuit
US11025247B1 (en) Gate driver circuit providing an output voltage that is clamped
US10965283B2 (en) Floating switch and drive circuit thereof
US7199621B1 (en) Low AC impedance input stage for fast startup applications
CN110034754B (zh) 一种集成电路及其传输电路

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right