KR20220128951A - 비수 전해액 이차 전지 및 그 제조 방법 - Google Patents

비수 전해액 이차 전지 및 그 제조 방법 Download PDF

Info

Publication number
KR20220128951A
KR20220128951A KR1020220029913A KR20220029913A KR20220128951A KR 20220128951 A KR20220128951 A KR 20220128951A KR 1020220029913 A KR1020220029913 A KR 1020220029913A KR 20220029913 A KR20220029913 A KR 20220029913A KR 20220128951 A KR20220128951 A KR 20220128951A
Authority
KR
South Korea
Prior art keywords
positive electrode
active material
electrode active
material layer
secondary battery
Prior art date
Application number
KR1020220029913A
Other languages
English (en)
Inventor
마사타카 도미타
히로유키 야마구치
요시나리 마키무라
Original Assignee
프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 filed Critical 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤
Publication of KR20220128951A publication Critical patent/KR20220128951A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

스피넬형 결정 구조를 갖는 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제된 비수 전해액 이차 전지가 제공된다. 여기에 개시되는 비수 전해액 이차 전지는, 정극과, 부극과, 비수 전해액을 구비한다. 상기 정극은, 정극 활물질층을 구비한다. 상기 정극 활물질층은, 정극 활물질로서 스피넬형 결정 구조를 갖는 망간산리튬 입자를 포함한다. 상기 망간산리튬 입자의 적어도 일부는, 균열부를 갖고 있다. 상기 망간산리튬 입자는, 상기 균열부의 표면을 포함하여 입자 표면에 피막을 갖는다. 상기 피막은, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유한다.

Description

비수 전해액 이차 전지 및 그 제조 방법{NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF}
본 발명은, 비수 전해액 이차 전지에 관한 것이다. 본 발명은 또한, 당해 비수 전해액 이차 전지의 제조 방법에 관한 것이다.
근년, 리튬 이온 이차 전지 등의 비수 전해액 이차 전지는, 퍼스널 컴퓨터, 휴대 단말기 등의 포터블 전원이나, 전기 자동차(BEV), 하이브리드 자동차(HEV), 플러그인 하이브리드 자동차(PHEV) 등의 차량 구동용 전원 등에 적절하게 사용되고 있다.
비수 전해액 이차 전지에 있어서는, 일반적으로, 전하 담체가 되는 이온을 흡장 및 방출 가능한 활물질이 사용되고 있다. 정극에 사용되는 활물질로서, 스피넬형 결정 구조를 갖는 망간산리튬(LiMn2O4)이 알려져 있다. 이 결정 구조의 망간산리튬은, 비수전해질 이차 전지에 충방전을 반복했을 때에, 망간(Mn)이 전해액 중에 용출됨으로써 용량이 열화되기 쉽다고 하는 결점을 갖고 있다. 이 Mn의 용출에 기인하는 용량 열화를 억제하기 위해서, 망간산리튬 입자에 인을 포함하는 피막을 마련하는 기술이 알려져 있다(예를 들어, 특허문헌 1 참조).
일본 특허 출원 공개 평9-259863호 공보
비수 전해액 이차 전지는, 그 보급에 수반하여, 더한층의 고성능화가 요구되고 있다. 비수 전해액 이차 전지의 고성능화의 방책의 하나로서, 정극 활물질을 함유하는 정극 활물질층에 프레스 처리를 행함으로써 정극 활물질층을 고밀도화하고, 이에 의해 에너지 밀도를 높이는 방법이 알려져 있다. 그러나, 본 발명자들이 예의 검토한 결과, 에너지 밀도를 보다 높이기 위해서, 프레스 처리에 의해 정극 활물질층의 고밀도화를 더욱 진행시킨 경우에는, 망간산리튬 입자에 균열이 발생하고, 이 균열부로부터 Mn의 용출이 일어나 용량이 열화된다고 하는 문제가 있음을 알아내었다.
그래서 본 발명의 목적은, 스피넬형 결정 구조를 갖는 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제된 비수 전해액 이차 전지를 제공하는 데 있다.
본 발명자들이 예의 검토한 결과, 비수 전해액 이차 전지의 제조에 있어서, 정극 활물질층에 인산리튬을 함유시키고, 이것을 비수 전해액 이차 전지의 작동 전압보다도 훨씬 높은 전압으로 피막 형성을 행한 경우에, 스피넬형 결정 구조를 갖는 망간산리튬 입자의 균열부를 포함한 입자 전체에 Mn의 용출을 억제 가능한 피막이 형성된다는 사실을 알아내었다. 또한, 이 피막에 대하여 분석을 행하여, 이 피막이 특정 성분(즉, LiMnPO4 성분)을 함유한다는 사실을 알아내어, 본 발명을 완성하기에 이르렀다.
즉, 여기에 개시되는 비수 전해액 이차 전지는, 정극과, 부극과, 비수 전해액을 구비한다. 상기 정극은, 정극 활물질층을 구비한다. 상기 정극 활물질층은, 정극 활물질로서 스피넬형 결정 구조를 갖는 망간산리튬 입자를 포함한다. 상기 망간산리튬 입자의 적어도 일부는, 균열부를 갖고 있다. 상기 망간산리튬 입자는, 상기 균열부의 표면을 포함하여 입자 표면에 피막을 갖는다. 상기 피막은, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유한다. 이와 같은 구성에 의하면, 스피넬형 결정 구조를 갖는 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제된 비수 전해액 이차 전지를 제공할 수 있다.
여기에 개시되는 비수 전해액 이차 전지의 바람직한 일 양태에 있어서는, 상기 피막 내의 원자%로 표현되는 F 농도에 대한, 원자%로 표현되는 P 농도의 비 P/F가 0.030 이상이다. 이때, 용량 열화 억제 효과가 보다 높아진다.
여기에 개시되는 비수 전해액 이차 전지의 바람직한 일 양태에 있어서는, 상기 정극 활물질층의 밀도가 2.6g/㎤ 이상이다. 이때, 용량 열화 억제 효과가 특히 높아진다.
여기에 개시되는 비수 전해액 이차 전지의 바람직한 일 양태에 있어서는, 상기 정극 활물질층이 인산리튬을 함유한다. 이때, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막의 형성에 유리하다.
여기에 개시되는 비수 전해액 이차 전지의 바람직한 일 양태에 있어서는, 상기 비수 전해액이 전해질염으로서 LiPF6을 함유한다. 이때, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막의 형성에 유리하다.
다른 측면에서, 여기에 개시되는 비수 전해액 이차 전지의 제조 방법은, 정극 활물질로서의 망간산리튬 입자와, 인산리튬 입자를 함유하는 정극 활물질층을 구비하는 정극 시트를 제작하는 공정과, 상기 제작한 정극 시트를 프레스 처리하는 공정과, 상기 프레스 처리한 정극 시트를 사용하여, 정극 시트와 부극 시트와 비수 전해액을 구비하는 전지 조립체를 제작하는 공정과, 상기 전지 조립체에 초기 충전 처리를 행하여, 피막을 형성하는 공정을 포함한다. 상기 프레스 처리하는 공정에서, 상기 망간산리튬 입자에 균열이 발생한다. 상기 피막을 형성하는 공정에서, 상기 망간산리튬 입자의 균열부의 표면을 포함하여 입자 표면에, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 형성한다. 이와 같은 구성에 의하면, 스피넬형 결정 구조를 갖는 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제된 비수 전해액 이차 전지를 제조할 수 있다.
여기에 개시되는 비수 전해액 이차 전지의 제조 방법의 바람직한 일 양태에 있어서는, 상기 초기 충전 처리를, 4.7V 이상의 전압이 될 때까지 행한다. 이때, LiMnPO4 성분과 F 성분을 함유하는 피막의 형성에 유리하다.
여기에 개시되는 비수 전해액 이차 전지의 제조 방법의 바람직한 일 양태에 있어서는, 상기 프레스 처리를, 상기 정극 활물질층의 밀도가 2.6g/㎤ 이상이 되도록 행한다. 이때, 특히 높은 용량 열화 억제 효과가 얻어진다.
도 1은 본 발명의 일 실시 형태에 관한 리튬 이온 이차 전지의 내부 구조를 모식적으로 나타내는 단면도이다.
도 2는 본 발명의 일 실시 형태에 관한 리튬 이온 이차 전지의 권회 전극체의 구성을 나타내는 모식 분해도이다.
도 3은 실시예 B1 내지 B6, 비교예 B1 내지 B6, 비교예 B7 내지 12, 및 비교예 B13 내지 18에 대하여, 정극 활물질층의 밀도와 용량 유지율의 관계를 나타내는 그래프이다.
이하, 도면을 참조하면서 본 발명에 관한 실시 형태를 설명한다. 또한, 본 명세서에 있어서 언급하고 있지 않은 사항이며 본 발명의 실시에 필요한 사항은, 당해 분야에 있어서의 종래 기술에 기초하는 당업자의 설계 사항으로서 파악될 수 있다. 본 발명은, 본 명세서에 개시되어 있는 내용과 당해 분야에 있어서의 기술 상식에 기초하여 실시할 수 있다. 또한, 이하의 도면에 있어서는, 동일한 작용을 발휘하는 부재·부위에는 동일한 부호를 붙여 설명하고 있다. 또한, 각 도면에 있어서의 치수 관계(길이, 폭, 두께 등)는 실제의 치수 관계를 반영하는 것은 아니다.
또한, 본 명세서에 있어서 「이차 전지」란, 반복 충방전 가능한 축전 디바이스를 의미하며, 소위 축전지 및 전기 이중층 캐패시터 등의 축전 소자를 포함하는 용어이다. 또한, 본 명세서에 있어서 「리튬 이온 이차 전지」란, 전하 담체로서 리튬 이온을 이용하고, 정부극 간에 있어서의 리튬 이온에 수반되는 전하의 이동에 의해 충방전이 실현되는 이차 전지를 의미한다.
이하, 편평 형상의 권회 전극체와 편평 형상의 전지 케이스를 갖는 편평 각형의 리튬 이온 이차 전지를 예로 하여, 본 발명에 대하여 상세히 설명하지만, 본 발명을 이러한 실시 형태에 기재된 것에 한정하는 것을 의도한 것은 아니다.
도 1에 도시한 리튬 이온 이차 전지(100)는, 편평 형상의 권회 전극체(20)와 비수 전해액(80)이 편평한 각형의 전지 케이스(즉 외장 용기)(30)에 수용됨으로써 구축되는 밀폐형 전지이다. 전지 케이스(30)에는 외부 접속용 정극 단자(42) 및 부극 단자(44)와, 전지 케이스(30)의 내압이 소정 레벨 이상으로 상승한 경우에 해당 내압을 개방하도록 설정된 얇은 안전 밸브(36)가 마련되어 있다. 또한, 전지 케이스(30)에는, 비수 전해액(80)을 주입하기 위한 주입구(도시생략)가 마련되어 있다. 정극 단자(42)는, 정극 집전판(42a)과 전기적으로 접속되어 있다. 부극 단자(44)는, 부극 집전판(44a)과 전기적으로 접속되어 있다. 전지 케이스(30)의 재질로서는, 예를 들어 알루미늄 등의 경량이고 열전도성이 좋은 금속 재료가 사용된다. 또한, 도 1은, 비수 전해액(80)의 양을 정확하게 나타내는 것은 아니다.
권회 전극체(20)는, 도 1 및 도 2에 도시한 바와 같이, 정극 시트(50)와, 부극 시트(60)가, 2매의 긴 세퍼레이터 시트(70)를 개재하여 중첩되어 길이 방향으로 권회된 형태를 갖는다. 정극 시트(50)는, 긴 정극 집전체(52)의 편면 또는 양면(여기서는 양면)에 길이 방향을 따라서 정극 활물질층(54)이 형성된 구성을 갖는다. 부극 시트(60)는, 긴 부극 집전체(62)의 편면 또는 양면(여기서는 양면)에 길이 방향을 따라서 부극 활물질층(64)이 형성되어 있는 구성을 갖는다. 정극 활물질층 비형성 부분(52a)(즉, 정극 활물질층(54)이 형성되지 않고 정극 집전체(52)가 노출된 부분) 및 부극 활물질층 비형성 부분(62a)(즉, 부극 활물질층(64)이 형성되지 않고 부극 집전체(62)가 노출된 부분)은, 권회 전극체(20)의 권회축 방향(즉, 상기 길이 방향에 직교하는 시트 폭 방향)의 양단으로부터 외측으로 비어져 나오도록 형성되어 있다. 정극 활물질층 비형성 부분(52a) 및 부극 활물질층 비형성 부분(62a)에는, 각각 정극 집전판(42a) 및 부극 집전판(44a)이 접합되어 있다.
정극 집전체(52)로서는, 리튬 이온 이차 전지에 사용되는 공지된 정극 집전체를 사용해도 되며, 그 예로서는, 도전성이 양호한 금속(예를 들어, 알루미늄, 니켈, 티타늄, 스테인리스강 등)제의 시트 또는 박을 들 수 있다. 정극 집전체(52)로서는, 알루미늄박이 바람직하다.
정극 집전체(52)의 치수는 특별히 한정되지 않고, 전지 설계에 따라서 적절히 결정하면 된다. 정극 집전체(52)로서 알루미늄박을 사용하는 경우에는, 그 두께는, 특별히 한정되지 않지만, 예를 들어 5㎛ 이상 35㎛ 이하이고, 바람직하게는 7㎛ 이상 20㎛ 이하이다.
정극 활물질층(54)은, 정극 활물질을 함유한다. 본 실시 형태에 있어서는, 정극 활물질에는, 스피넬형 결정 구조의 망간산리튬의 입자가 사용된다. 이 결정 구조의 망간산리튬의 사용에 의하면, 리튬 이온 이차 전지(100)에 높은 열 안정성을 부여할 수 있고, 또한 리튬 이온 이차 전지(100)를 저비용화할 수 있다. 본 실시 형태에 있어서 사용되는 망간산리튬은, 리튬 과잉의 조성이어도 된다. 또한, 망간산리튬에는, 본 발명의 효과를 현저하게 저해하지 않는 범위 내에서, 그 밖의 금속 원소가 첨가되어 있어도 된다.
본 실시 형태에 있어서 사용되는 망간산리튬은, 구체적으로 예를 들어, 일반식 (I): Li1+xMn2-x-yMeyO4-δ로 표현되는 조성을 갖는다. 일반식 (I)에 있어서, Me는, Ni, Co, Mg, Fe, Al, Cr, Ga 및 Ti로 이루어지는 군에서 선택되는 적어도 1종의 금속 원소이며, 바람직하게는 Mg 및 Al로 이루어지는 군에서 선택되는 적어도 1종의 금속 원소이다. x는, 0≤x≤0.20을 충족하고, 바람직하게는 0≤x≤0.15를 충족하며, 보다 바람직하게는 0≤x≤0.10을 충족한다. y는, 0≤y≤0.20을 충족하고, 바람직하게는 0≤y≤0.10을 충족하고, 보다 바람직하게는 0≤y≤0.05를 충족하며, 가장 바람직하게는 y=0이다. δ는, 전기적 중성을 얻기 위한 산소 결손값이며, δ는, 예를 들어 0≤δ≤0.20을 충족하고, 바람직하게는 0≤δ≤0.05를 충족하며, 보다 바람직하게는 0이다.
망간산리튬으로서, 상기 식 (I)의 범위 내의 1종류의 것을 단독으로 사용해도 되고, 상기 식 (I)의 범위 내의 2종 이상의 것을 조합해서 사용해도 된다. 망간산리튬은, 특히 바람직하게는, 일반식 (II): Li1+xMn2-xO4로 표현되는 조성을 갖는다(식 중, x는, 0≤x≤0.15를 충족함).
본 실시 형태에 있어서, 망간산리튬 입자의 적어도 일부는, 균열부를 갖는다. 이 균열은, 전형적으로는, 정극 활물질층(54)을 고밀도화할 때의 프레스 처리에 기인하지만, 균열의 원인은 특별히 한정되지는 않는다.
본 실시 형태에 있어서, 망간산리튬 입자는, 균열부의 표면을 포함하여 입자 표면에 피막을 갖는다. 다시 말해, 망간산리튬 입자는, 외표면(혹은 외주면) 및 균열부의 표면에, 피막을 갖는다. 당해 피막은, P 성분(P 함유 성분) 및 F 성분(F 함유 성분)을 함유한다. 당해 P 성분은, LiMnPO4 성분을 포함한다.
종래 기술에 있어서는, 망간산리튬 입자로부터의 Mn의 용출을 억제하기 위해서, 미리 인을 포함하는 피막을 마련하고 있다. 그러나, 인을 포함하는 피막을 갖는 망간산리튬 입자를 포함하는 정극 활물질층에 대하여 프레스 처리를 실시한 경우에는, 망간산리튬 입자에 균열이 발생할 수 있다. 균열부에 의해 생성된 면에는 피막이 없기 때문에, 이 균열부의 표면으로부터 Mn의 용출이 일어나고, 그 결과, 리튬 이온 이차 전지의 용량이 열화된다고 하는 문제가 발생한다.
이에 반하여 본 실시 형태에 관한 리튬 이온 이차 전지는, 전형적으로는, 후술하는 제조 방법에 의해 얻어지는 것이다. 즉, 인산리튬을 피막 형성 성분으로서 정극 활물질층(54)에 함유시키고, 특정 전압(즉, 4.7V 이상)으로 초기 충전한다. 이 특정 전압은, 리튬 이온 이차 전지(100)의 작동 전압(즉, 4.2V 정도)보다도 훨씬 높은 전압이다. 이와 같은 극단적으로 높은 전압에 의해 초기 충전을 행하는 결과, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막이, 균열부를 포함한 망간산리튬 입자의 표면에 형성된다. 이 피막의 생성 메커니즘은, 다음과 같이 추측된다. 이 전압에서는, 전해질염의 산화 분해가 촉진되어 HF양이 많아진다. 이 생성된 HF에 의해 인산리튬이 비수 전해액(80) 중에 용해된다. 또한, 용해된 인산리튬의 일부는, 높은 전압에 의해 전기 화학적으로 분해되어 망간산리튬 입자의 표면이, 인산리튬의 용해물 또는 분해물의 일부와 반응하여, LiMnPO4 성분을 포함하는 피막이 생성되고, 또한 비수 전해액의 분해물(주로 F 성분) 등도 피막 내에 도입된다.
따라서, 본 실시 형태에 있어서는, 망간산리튬 입자는, 균열부의 표면을 포함하여 입자 표면에 피막을 갖고, 당해 피막은, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유한다. 이 피막에 의해, 망간산리튬 입자의 균열부로부터의 Mn의 용출을 억제할 수 있고, 그 결과, 리튬 이온 이차 전지(100)에 충방전을 반복했을 때의 용량 열화를 억제할 수 있다.
F 성분은, 전형적으로는, 비수 전해액(80)(특히 전해질염)의 분해물에서 유래하는 성분이다. 또한, 피막에는, 인산리튬 및 그 분해물이 도입될 수 있다. 따라서, P 성분은, LiMnPO4 성분 이외의 P 성분(특히 인산리튬 및 그 분해물에서 유래하는 성분)을 더 함유할 수 있다.
인산리튬에 의한 피막 형성이 진행될수록, 피막 내의 원자%로 표현되는 F 농도에 대한, 원자%로 표현되는 P 농도의 비 P/F가 커지게 된다. 그래서, 당해 비 P/F가 0.030 이상인 것이 바람직하다. 이때, 인산리튬에 의한 피막 형성이 효과적으로 진행되어, 용량 열화 억제 효과가 특히 높아진다.
피막이 P 성분 및 F 성분을 함유하는 것은, 예를 들어 투과형 전자 현미경(TEM)을 사용한 에너지 분산형 X선 분광법(TEM-EDX)에 의한 분석에 의해 확인할 수 있다.
피막이 LiMnPO4 성분을 함유하는 것은, 예를 들어 다음과 같이 하여 확인할 수 있다. LiMnPO4는, 올리빈형 결정 구조를 갖는다. 그래서, TEM을 사용하여 고각 환형 암시야 상(HAAD 상)의 격자상을 취득하고, 결정 구조를 분석함으로써, 올리빈형 결정 구조임을 확인한다. 또한, 피막에 대하여 TEM을 사용한 전자 에너지 손실 분광법(TEM-EELS)에 의한 분석을 행하여, Li의 존재, 2가의 Mn의 존재 및 P의 존재를 확인한다.
또한, F 농도(원자%)에 대한 P 농도(원자%)의 비 P/F는, 예를 들어 다음과 같이 하여 구할 수 있다. 피막에 대하여, TEM-EDX에 의한 분석을 행한다. 이때, 망간산리튬 입자의 외표면 위의 10개소 이상 및 망간산리튬 입자의 균열부의 표면의 10개소 이상에 대하여 비 P/F를 구하고, 그 평균값을 망간산리튬 입자의 피막의 비 P/F로 한다.
망간산리튬 입자의 평균 입자경(메디안 직경 D50)은, 특별히 제한은 없지만, 예를 들어 0.05㎛ 이상 25㎛ 이하이고, 바람직하게는 0.5㎛ 이상 23㎛ 이하이며, 보다 바람직하게는 3㎛ 이상 22㎛ 이하이다. 또한, 본 명세서에 있어서, 평균 입자경(메디안 직경 D50)이란, 특별히 언급하지 않는 한, 레이저 회절 산란법에 의해 측정되는 입도 분포에 있어서, 소입경측으로부터의 누적 도수가 체적 백분율로 50%가 되는 입자경임을 의미한다.
정극 활물질층(54)은, 본 발명의 효과를 현저하게 저해하지 않는 범위 내에서, 망간산리튬 입자 이외의 정극 활물질을 함유하고 있어도 된다. 정극 활물질의 함유량은, 특별히 한정되지 않지만, 정극 활물질층(54) 중(즉, 정극 활물질층의 전체 질량에 대하여), 바람직하게는 70질량% 이상이고, 보다 바람직하게는 80질량% 이상이며, 더욱 바람직하게는 85질량% 이상이다.
정극 활물질층(54)은, 정극 활물질 이외의 성분을 포함할 수 있다. 그 예로서는, 인산리튬, 도전재, 바인더 등을 들 수 있다.
인산리튬(Li3PO4)은, 후술하는 바와 같이 상기 피막의 형성에 사용되는 성분이며, 초기 충전에 의해 소비된다. 이때 완전히 소비되는 경우가 있고(따라서, 인산리튬의 함유량이 0질량%), 한편으로 인산리튬이 잔존하는 경우가 있다. 정극 활물질층(54)이 인산리튬을 함유하는 경우, 인산리튬의 함유량은, 정극 활물질에 대하여, 바람직하게는 10질량% 미만이고, 보다 바람직하게는 5질량% 미만이며, 더욱 바람직하게는 3질량% 미만이다.
도전재로서는, 예를 들어 아세틸렌 블랙(AB) 등의 카본 블랙이나 그 밖(예를 들어, 그래파이트 등)의 탄소 재료를 적합하게 사용할 수 있다. 정극 활물질층(54) 중의 도전재의 함유량은, 특별히 한정되지 않지만, 예를 들어 0.1질량% 이상 20질량% 이하이고, 바람직하게는 1질량% 이상 15질량% 이하이며, 보다 바람직하게는 2질량% 이상 10질량% 이하이다.
바인더로서는, 예를 들어 폴리불화비닐리덴(PVdF) 등을 사용할 수 있다. 정극 활물질층(54) 중의 바인더의 함유량은, 특별히 한정되지 않지만, 예를 들어 0.5질량% 이상 15질량% 이하이고, 바람직하게는 1질량% 이상 10질량% 이하이며, 보다 바람직하게는 1.5질량% 이상 8질량% 이하이다.
정극 활물질층(54)의 밀도는 특별히 한정되지는 않는다. 정극 활물질층(54)의 밀도는 2.0g/㎤ 이상이어도 되고, 2.3g/㎤ 이상이어도 된다. 정극 활물질층(54)의 밀도를 2.6g/㎤ 이상으로 할 때에는, 프레스 처리에 의해, 망간산리튬 입자에 균열이 많이 발생하기 쉽다. 그 때문에, 용량 열화가 커지기 쉽다. 따라서, 상기 피막에 의한 용량 열화 억제 효과가 특히 커진다는 점에서, 정극 활물질층(54)의 밀도는, 바람직하게는 2.6g/㎤ 이상이다. 한편, 정극 활물질층(54)의 밀도는 3.3g/㎤ 이하여도 되고, 3.0g/㎤ 이하여도 된다. 또한, 본 명세서에 있어서, 정극 활물질층(54)의 밀도란, 정극 활물질층(54)의 겉보기 밀도를 가리킨다.
정극 활물질층(54)의 두께는, 특별히 한정되지 않지만, 예를 들어 10㎛ 이상 300㎛ 이하이고, 바람직하게는 20㎛ 이상 200㎛ 이하이다.
부극 집전체(62)로서는, 리튬 이온 이차 전지에 사용되는 공지된 부극 집전체를 사용해도 되고, 그 예로서는, 도전성이 양호한 금속(예를 들어, 구리, 니켈, 티타늄, 스테인리스강 등)제의 시트 또는 박을 들 수 있다. 부극 집전체(62)로서는, 구리박이 바람직하다.
부극 집전체(62)의 치수는 특별히 한정되지 않고, 전지 설계에 따라서 적절히 결정하면 된다. 부극 집전체(62)로서 구리박을 사용하는 경우에는, 그 두께는, 특별히 한정되지 않지만, 예를 들어 5㎛ 이상 35㎛ 이하이고, 바람직하게는 7㎛ 이상 20㎛ 이하이다.
부극 활물질층(64)은, 부극 활물질을 함유한다. 부극 활물질로서는, 예를 들어 흑연, 하드 카본, 소프트 카본 등의 탄소 재료를 사용할 수 있다. 흑연은, 천연 흑연이어도 되고 인조 흑연이어도 되며, 흑연이 비정질의 탄소 재료로 피복된 형태의 비정질 탄소 피복 흑연이어도 된다.
부극 활물질의 평균 입자경(메디안 직경 D50)은, 특별히 한정되지 않지만, 예를 들어 0.1㎛ 이상 50㎛ 이하이고, 바람직하게는 1㎛ 이상 25㎛ 이하이며, 보다 바람직하게는 5㎛ 이상 20㎛ 이하이다.
부극 활물질층(64) 중의 부극 활물질의 함유량은, 특별히 한정되지 않지만, 90질량% 이상이 바람직하고, 95질량% 이상이 보다 바람직하다.
부극 활물질층(64)은, 부극 활물질 이외의 성분, 예를 들어 바인더나 증점제 등을 포함할 수 있다.
바인더로서는, 예를 들어 스티렌부타디엔 러버(SBR) 및 그의 변성체, 아크릴로니트릴부타디엔 고무 및 그의 변성체, 아크릴 고무 및 그의 변성체, 불소 고무 등을 사용할 수 있다. 그 중에서도, SBR이 바람직하다. 부극 활물질층(64) 중의 바인더의 함유량은, 특별히 한정되지 않지만, 바람직하게는 0.1질량% 이상 8질량% 이하이고, 보다 바람직하게는 0.2질량% 이상 3질량% 이하이다.
증점제로서는, 예를 들어 카르복시메틸셀룰로오스(CMC), 메틸셀룰로오스(MC), 아세트산프탈산셀룰로오스(CAP), 히드록시프로필메틸셀룰로오스(HPMC) 등의 셀룰로오스계 폴리머; 폴리비닐알코올(PVA) 등을 사용할 수 있다. 그 중에서도, CMC가 바람직하다. 부극 활물질층(64) 중의 증점제의 함유량은, 특별히 한정되지 않지만, 바람직하게는 0.3질량% 이상 3질량% 이하이고, 보다 바람직하게는 0.4질량% 이상 2질량% 이하이다.
부극 활물질층(64)의 두께는, 특별히 한정되지 않지만, 예를 들어 10㎛ 이상 300㎛ 이하이고, 바람직하게는 20㎛ 이상 200㎛ 이하이다.
세퍼레이터(70)로서는, 예를 들어 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리에스테르, 셀룰로오스, 폴리아미드 등의 수지로 구성되는 다공성 시트(필름)를 들 수 있다. 이러한 다공성 시트는, 단층 구조여도 되고, 2층 이상의 적층 구조(예를 들어, PE층의 양면에 PP층이 적층된 3층 구조)여도 된다. 세퍼레이터(70)의 표면에는, 내열층(HRL)이 마련되어 있어도 된다.
세퍼레이터(70)의 두께는 특별히 한정되지 않지만, 예를 들어 5㎛ 이상 50㎛ 이하이고, 바람직하게는 10㎛ 이상 30㎛ 이하이다.
비수 전해액(80)은, 전형적으로는, 비수 용매와 전해질염(다시 말해, 지지염)을 함유한다. 비수 용매로서는, 일반적인 리튬 이온 이차 전지의 전해액에 사용되는 각종 카르보네이트류, 에테르류, 에스테르류, 니트릴류, 술폰류, 락톤류 등의 유기 용매를, 특별히 한정 없이 사용할 수 있다. 그 중에서도, 카르보네이트류가 바람직하고, 그 구체예로서는, 에틸렌카르보네이트(EC), 프로필렌카르보네이트(PC), 디에틸카르보네이트(DEC), 디메틸카르보네이트(DMC), 에틸메틸카르보네이트(EMC), 모노플루오로에틸렌카르보네이트(MFEC), 디플루오로에틸렌카르보네이트(DFEC), 모노플루오로메틸디플루오로메틸카르보네이트(F-DMC), 트리플루오로디메틸카르보네이트(TFDMC) 등을 들 수 있다. 이와 같은 비수 용매는, 1종을 단독으로, 혹은 2종 이상을 적절히 조합해서 사용할 수 있다.
전해질염으로서는, 통상의 리튬 이온 이차 전지와 마찬가지로, LiPF6, LiBF4, 리튬비스(플루오로술포닐)이미드(LiFSI) 등의 불소 함유 리튬염을 사용할 수 있다. 불소 함유 리튬염이, 피막 형성에 필요한 불산 HF를 발생하고, 또한 피막의 F원으로 된다. F 성분을 적량 포함한 피막의 형성이 용이하다는 점에서, 전해질염으로서는, LiPF6이 바람직하다. 전해질염의 농도는, 특별히 한정되지 않지만, 피막 형성에 필요한 HF를 충분한 양 발생시키기 용이하다는 점에서, 바람직하게는 0.8mol/L 이상이고, 보다 바람직하게는 1.0mol/L 이상이다. 한편, 비수 전해액(80)의 점도가 높아짐에 따른 전지 저항의 증가를 억제한다는 관점에서, 전해질염의 농도는, 바람직하게는 1.8mol/L 이하이고, 보다 바람직하게는 1.5mol/L 이하이다.
또한, 상기 비수 전해액(80)은, 본 발명의 효과를 현저하게 손상시키지 않는 한, 상술한 성분 이외의 성분, 예를 들어 옥살라토 착체 등의 피막 형성제; 비페닐(BP), 시클로헥실벤젠(CHB) 등의 가스 발생제; 증점제; 등의 각종 첨가제를 포함하고 있어도 된다.
다음으로, 본 실시 형태에 관한 비수전해질 이차 전지의 제조 방법에 대하여 설명한다. 본 실시 형태에 관한 비수전해질 이차 전지의 제조 방법은, 정극 활물질로서의 망간산리튬 입자와, 인산리튬 입자를 함유하는 정극 활물질층을 구비하는 정극 시트를 제작하는 공정(이하, 「정극 제작 공정」이라고 칭함)과, 당해 정극 시트를 프레스 처리하는 공정(이하, 「프레스 처리 공정」이라고 칭함)과, 당해 프레스 처리한 정극 시트를 사용하여, 정극 시트와 부극 시트와 비수 전해액을 구비하는 전지 조립체를 제작하는 공정(이하, 「전지 조립체 제작 공정」이라고 칭함)과, 당해 전지 조립체에, 초기 충전 처리를 행하여, 피막을 형성하는 공정(이하, 「피막 형성 공정」이라고 칭함)을 포함한다. 당해 프레스 처리 공정에서는, 당해 망간산리튬 입자에 균열이 발생한다. 당해 피막 형성 공정에서는, 당해 망간산리튬 입자의 균열부의 표면을 포함하여 입자 표면에, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 형성한다.
본 실시 형태에 관한 비수전해질 이차 전지의 제조 방법을, 상술한 리튬 이온 이차 전지(100)를 제조하는 경우를 예로 들어 이하 상세히 설명한다.
정극 제작 공정에서는, 정극 활물질로서의 망간산리튬 입자와, 인산리튬 입자를 함유하는 정극 활물질층(54)을 구비하는 정극 시트(50)를 제작한다. 구체적으로 예를 들어, 우선, 정극 활물질로서의 망간산리튬 입자와, 인산리튬 입자와, 용매(분산매)와, 임의 성분(예를 들어, 도전재, 바인더 등)을 함유하는 정극 활물질층 형성용 페이스트를 제작한다. 또한, 본 명세서에 있어서, 「페이스트」란, 고형분의 일부 또는 전부가 용매에 분산된 혼합물을 의미하며, 소위 「슬러리」, 「잉크」 등을 포함한다.
인산리튬 입자의 혼합량은 특별히 한정되지는 않는다. 충분한 양의 피막을 형성한다는 관점에서, 인산리튬 입자의 혼합량은, 망간산리튬 입자에 대하여, 바람직하게는 0.2질량% 이상이고, 보다 바람직하게는 0.3질량% 이상이다. 한편, 인산리튬 입자의 양이 과도하게 많으면, 정극 활물질층(54)의 저항 증가 및 에너지 밀도의 저하를 초래할 수 있다. 그 때문에, 인산리튬 입자의 혼합량은, 망간산리튬 입자에 대하여, 바람직하게는 10질량% 이하이고, 보다 바람직하게는 5질량% 이하이며, 더욱 바람직하게는 3질량% 이하이다.
인산리튬의 입자경은, 특별히 한정되지는 않는다. 인산리튬의 입자경이 작은 쪽이, 인산리튬의 비표면적이 커져 피막 형성에 소비되기 쉬워진다. 즉, 인산리튬 입자의 입자경이 작은 쪽이, 피막 형성에는 유리하다. 따라서, 인산리튬의 평균 입자경(메디안 직경 D50)은, 바람직하게는 10㎛ 이하이고, 보다 바람직하게는 5㎛ 이하이며, 더욱 바람직하게는 3㎛ 이하이다. 한편, 인산리튬의 평균 입자경은 0.05㎛ 이상이어도 되고, 0.1㎛ 이상이어도 된다.
망간산리튬 입자 및 임의 성분의 혼합량은, 정극 활물질층(54) 중의 상술한 함유량과 동일해도 된다.
용매로서는, 예를 들어 N-메틸피롤리돈(NMP) 등을 사용할 수 있다. 정극 활물질층 형성용 페이스트의 고형분 농도는, 건조 효율의 관점에서, 예를 들어 45질량% 이상이고, 바람직하게는 50질량% 이상 80질량% 이하이다. 따라서, 용매는, 정극 활물질층 형성용 페이스트가 이와 같은 고형분 농도가 되는 양으로 사용한다.
망간산리튬 입자, 인산리튬 입자, 용매 및 임의 성분을, 플래니터리 믹서, 호모지나이저, 클리어믹스, 필믹스, 비즈 밀, 볼 밀, 압출 혼련기 등의 공지된 혼합 장치를 사용하여 혼합함으로써, 정극 활물질층 형성용 페이스트를 조제할 수 있다.
다음으로, 당해 정극 활물질층 형성용 페이스트를 정극 집전체(52) 위에 도공한다. 당해 도공은, 공지 방법에 따라 행할 수 있다. 예를 들어, 슬릿 코터, 다이 코터, 콤마 코터, 그라비아 코터, 딥 코터 등의 도공 장치를 사용하여, 정극 집전체 위에 상기 정극 활물질층 형성용 페이스트를 도포함으로써 행할 수 있다.
이 도공된 정극 활물질층 형성용 페이스트를 건조함으로써, 정극 활물질층(54)을 형성할 수 있다. 즉, 당해 건조에 의해 정극 활물질층(54)을 구비하는 정극 시트(50)를 얻을 수 있다.
당해 건조는, 공지 방법에 따라 행할 수 있다. 예를 들어, 정극 활물질층 형성용 페이스트가 도공된 정극 집전체로부터, 공지된 건조 장치(예를 들어, 열풍 건조로, 적외선 건조로 등)를 사용하여 상기 용매를 제거함으로써 행할 수 있다. 건조 온도 및 건조 시간은, 정극 활물질층 형성용 페이스트 중에 포함되는 용매의 양에 따라서 적절히 결정하면 되며, 특별히 한정되지는 않는다. 건조 온도는, 예를 들어 70℃ 이상 200℃ 이하(바람직하게는 110℃ 이상 180℃ 이하)이다. 건조 시간은, 예를 들어 5분 이상 120분 이하이다.
다음으로, 프레스 처리 공정에 대하여 설명한다. 당해 프레스 처리 공정에서는, 정극 시트(50)를 프레스 처리한다. 당해 프레스 처리 공정에서는, 정극 시트(50)의 정극 활물질층(54)이 압축되어, 고밀도화된다. 프레스 처리에는, 공지된 프레스 장치를 사용할 수 있으며, 연속적으로 프레스 처리를 행할 수 있다는 점에서, 롤 프레스 장치를 적합하게 사용할 수 있다.
본 실시 형태에서는, 이 프레스 처리에 의해, 망간산리튬 입자에 균열을 발생시킨다. 프레스 처리의 조건은, 망간산리튬 입자에 균열이 발생하는 한 특별히 한정되지는 않는다. 프레스 조건은, 정극 활물질층(54)의 밀도가, 바람직하게는 2.0g/㎤ 이상, 보다 바람직하게는 2.3g/㎤ 이상, 더욱 바람직하게는 2.6g/㎤ 이상이 되도록 행한다. 정극 활물질층(54)의 밀도가 2.6g/㎤ 이상이 되는 조건에서는, 망간산리튬 입자에 균열이 많이 발생하고, 피막 형성에 의한 용량 열화 억제 효과가 특히 높아진다. 프레스 처리 후의 정극 활물질층(54)의 밀도는 3.3g/㎤ 이하, 혹은 3.0g/㎤ 이하여도 된다.
다음으로, 전지 조립체 제작 공정에 대하여 설명한다. 당해 전지 조립체 제작 공정에서는, 당해 프레스 처리한 정극 시트(50)를 사용하여, 정극 시트(50)와 부극 시트(60)와 비수 전해액(80)을 구비하는 전지 조립체를 제작한다. 당해 전지 조립체 제작 공정은, 공지 방법에 따라서 실시할 수 있다.
구체적으로 예를 들어, 부극 시트(60)는, 공지 방법에 따라서 제작할 수 있다. 예를 들어, 부극 활물질과, 용매와, 임의 성분(예를 들어, 증점제, 바인더 등)을 함유하는 부극 활물질층 형성용 페이스트를 조제하고, 당해 페이스트를, 부극 집전체(62) 위에 도공하고, 건조시키고, 필요에 따라 프레스 처리함으로써, 제작할 수 있다.
부극 활물질 및 임의 성분의 혼합량은, 부극 활물질층(64) 중의 상술한 함유량과 동일해도 된다.
부극 활물질층 형성용 페이스트의 용매에는, 물; 물과 수용성 용매(예를 들어, 탄소수 1 내지 4의 알코올 등)의 혼합 용매 등을 사용할 수 있으며, 바람직하게는 물이다. 부극 활물질층 형성용 페이스트의 고형분 농도는, 건조 효율의 관점에서, 예를 들어 45질량% 이상이고, 바람직하게는 50질량% 이상 80질량% 이하이다. 따라서, 용매는, 부극 활물질층 형성용 페이스트가 이와 같은 고형분 농도가 되는 양으로 사용한다.
부극 활물질층 형성용 페이스트의 조제 조작, 도공 조작, 건조 조작, 프레스 처리 등의 구체적인 내용은, 공지 방법과 마찬가지이며, 구체적으로는, 상술한 정극 시트(50)를 제작하는 경우와 마찬가지이다.
전지 조립체는, 예를 들어 정극 시트(50)와 부극 시트(60)와 세퍼레이터(70)를 사용하여 전극체(20)를 제작하고, 당해 전극체(20)를, 비수 전해액(80)과 함께 전지 케이스(30)에 수용하고, 밀봉함으로써 제작할 수 있다.
구체적으로 예를 들어, 전극체(20)가 도시예와 같이 권회 전극체인 경우에는, 도 2에 도시한 바와 같이, 정극 시트(50) 및 부극 시트(60)를, 2매의 세퍼레이터(70)와 함께 중첩해서 적층체를 제작하고, 당해 적층체를 긴 방향으로 권회한 권회체를 제작한 후, 당해 권회체를 프레스 처리 등에 의해 편평화함으로써 전극체(20)를 제작한다. 전극체(20)가 적층형 전극체인 경우에는, 복수의 정극 시트(50)와 복수의 부극 시트(60)를 교대로, 이들 사이에 세퍼레이터(70)를 개재시키면서 적층함으로써, 전극체(20)를 제작한다.
전지 케이스(30)로서, 예를 들어 개구부를 갖는 케이스 본체와, 당해 개구부를 덮는 덮개체를 구비하는 전지 케이스를 준비한다. 당해 덮개체에는, 비수 전해액(80)을 주입하기 위한 주입구(도시생략)를 마련해 둔다.
전지 케이스(30)의 덮개체에 정극 단자(42) 및 정극 집전판(42a)과, 부극 단자(44) 및 부극 집전판(44a)을 설치한다. 정극 집전판(42a) 및 부극 집전판(44a)을, 전극체(20)의 단부에 노출된, 정극 집전체(52) 및 부극 집전체(62)(즉, 정극 활물질층 비형성 부분(52a) 및 부극 활물질층 비형성 부분(62a))에 각각 용접한다. 그리고, 전극체(20)를, 전지 케이스(30) 본체의 개구부로부터 그 내부에 수용하고, 전지 케이스(30)의 본체와 덮개체를 용접한다.
계속해서, 주입구로부터 비수 전해액(80)을 주입하고, 그 후 주입구를 밀봉한다. 이에 의해, 전지 조립체를 얻을 수 있다.
계속해서, 피막 형성 공정에 대하여 설명한다. 피막 형성 공정에서는, 당해 전지 조립체에 초기 충전 처리를 행하여, 당해 망간산리튬 입자의 균열부의 표면을 포함하여 입자 표면(즉, 외표면(혹은 외주면) 및 균열부의 표면)에, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 형성한다.
초기 충전 처리는, 공지된 충전기 등을 사용하여 행할 수 있다. 충전 조건은, 해당 망간산리튬 입자의 균열부의 표면을 포함하여 입자 표면에, 상기 피막이 형성되는 한 특별히 한정되지는 않는다.
LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 형성하는 데 가장 유효한 초기 충전 방법으로서, 초기 충전 처리를, 4.7V 이상의 전압이 될 때까지 행하는 것을 들 수 있다. 이와 같은 높은 전압이면, 망간산리튬 입자의 표면에 LiMnPO4 성분을 용이하게 생성시킬 수 있고, 따라서 LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 용이하게 형성할 수 있다. 용량 열화 억제 효과가 보다 커진다는 점에서, 초기 충전 처리는 4.8V 이상의 전압이 될 때까지 행하는 것이 바람직하다.
초기 충전 처리의 일례로서, 우선 정전류 충전에 의해, 예를 들어 0.05C 이상 2C 이하(바람직하게는 0.05C 이상 1C 이하)의 전류값으로, 4.7V 이상의 전압이 될 때까지 충전을 행한다. 이때의 전압의 상한은 특별히 한정되지는 않는다. 상한은, 예를 들어 5.1V이고, 바람직하게는 5.0V이다.
4.7V 이상의 전압이 될 때까지 충전을 행하면, 피막을 형성할 수 있지만, 피막량을 증가시키기 위해서, 정전류 충전 후에 정전압 충전을 행해도 된다. 정전압 충전의 시간은, 특별히 한정되지 않지만, 예를 들어 1시간 이상 10시간 이하이고, 바람직하게는 3시간 이상 7시간 이하이다.
이상의 공정의 실시에 의해, 리튬 이온 이차 전지(100)를 얻을 수 있다.
이상 설명한 리튬 이온 이차 전지(100)는, 스피넬형 결정 구조의 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제되어 있다. 따라서, 리튬 이온 이차 전지(100)는, 사이클 특성이 우수하다. 또한, 망간산리튬 입자에 균열이 발생하는 프레스 처리에 의한 정극 활물질층의 고밀도화가 가능하기 때문에, 리튬 이온 이차 전지(100)의 매우 높은 에너지 밀도화가 가능하다. 따라서, 리튬 이온 이차 전지(100)에 의하면, 장수명화와 고에너지 밀도화의 양립이 가능하다.
리튬 이온 이차 전지(100)는, 각종 용도에 이용 가능하다. 적합한 용도로서는, 전기 자동차(BEV), 하이브리드 자동차(HEV), 플러그인 하이브리드 자동차(PHEV) 등의 차량에 탑재되는 구동용 전원을 들 수 있다. 또한, 리튬 이온 이차 전지(100)는, 소형 전력 저장 장치 등의 축전지로서 사용할 수 있다. 리튬 이온 이차 전지(100)는, 전형적으로는 복수개를 직렬 및/또는 병렬로 접속하여 이루어지는 조전지의 형태로도 사용될 수 있다.
또한, 일례로서 편평 형상의 권회 전극체(20)를 구비하는 각형의 리튬 이온 이차 전지(100)에 대하여 설명하였다. 그러나, 여기에 개시되는 비수 전해액 이차 전지는, 적층형 전극체(즉, 복수의 정극과, 복수의 부극이 교대로 적층된 전극체)를 구비하는 리튬 이온 이차 전지로서 구성할 수도 있다. 또한, 여기에 개시되는 비수 전해액 이차 전지는, 원통형 리튬 이온 이차 전지, 라미네이트 케이스형 리튬 이온 이차 전지, 코인형 리튬 이온 이차 전지 등으로서 구성할 수도 있다. 또한, 여기에 개시되는 비수 전해액 이차 전지는, 공지 방법에 준하여, 리튬 이온 이차 전지 이외의 비수 전해액 이차 전지로서 구성할 수도 있다.
이하, 본 발명에 관한 실시예를 설명하지만, 본 발명을 이러한 실시예에 나타내는 것에 한정하는 것을 의도한 것은 아니다.
<정극 활물질의 제작>
Li원으로서의 Li2CO3과, Mn원으로서의 Mn3O4를, 1시간 건식 혼합하였다. 이때, Li와 Mn의 몰비가 Li:Mn=1.1:1.9가 되도록 혼합하였다. 혼합물을 알루미나 도가니에 넣고, 전기로 내에서 1000℃에서 12시간 소성한 후, 600℃에서 18시간 더 소성하였다. 이와 같이 하여, 스피넬형 결정 구조를 갖는 망간산리튬 입자 A를 얻었다. 또한, 망간산리튬 입자 A의 평균 입자경(D50)은 13.4㎛였다.
<피복 정극 활물질의 제작>
스퍼터링 타깃으로서 Li3PO4를 사용하여, 배럴 스퍼터법에 의해, 상기에서 얻은 망간산리튬 입자 A의 표면에 Li3PO4를 스퍼터하였다. 이때, 망간산리튬 입자 A에 대한 Li3PO4의 질량 비율을 0.5질량%로 하였다. 이와 같이 하여, Li3PO4의 피막을 갖는 피복 망간산리튬 입자 B를 얻었다.
<각 실시예 및 각 비교예의 평가용 리튬 이온 이차 전지의 제작>
실시예 A1 내지 A3
망간산리튬 입자 A(LMO-A)와, 도전재로서의 카본 블랙(CB)과, 바인더로서의 폴리불화비닐리덴(PVdF)을 LMO-A:CB:PVdF=94:4:2의 질량비로, N-메틸-2-피롤리돈(NMP) 내에서 혼합하였다. 이때, 망간산리튬 입자에 대하여 0.5질량%의 Li3PO4를 더 혼합하여, 정극 활물질층 형성용 페이스트를 조제하였다. 또한, 사용한 Li3PO4의 평균 입자경(메디안 직경 D50)은 2.1㎛였다.
이 정극 활물질층 형성용 페이스트를 알루미늄박 위에 도포하고, 건조시킨 후, 롤 프레스 처리(즉, 고밀도화 처리)를 행함으로써, 정극 시트를 제작하였다. 롤 프레스 처리는, 정극 활물질층의 밀도가 2.6g/㎤가 되도록 행하였다. 이 프레스 처리에 의해, 망간산리튬 입자 A에 균열이 발생하였다. 이 정극 시트를 120㎜×100㎜의 치수로 재단하였다.
또한, 부극 활물질로서의 구상화 흑연(C)과, 바인더로서의 스티렌부타디엔 고무(SBR)와, 증점제로서의 카르복시메틸셀룰로오스(CMC)를, C:SBR:CMC=98:1:1의 질량비로, 이온 교환수 내에서 혼합하여, 부극 활물질층 형성용 페이스트를 조제하였다. 이 부극 활물질층 형성용 페이스트를, 구리박 위에 도포하고, 건조시킨 후, 롤 프레스에 의한 고밀도화 처리를 행함으로써, 부극 시트를 제작하였다. 이 부극 시트를 122㎜×102㎜의 치수로 재단하였다.
세퍼레이터 시트로서 다공성 폴리올레핀 시트를 준비하였다. 상기 정극 시트 및 부극 시트 사이에 세퍼레이터를 끼워 넣어 적층형 전극체를 제작하고, 당해 적층형 전극체에 전극 단자를 설치하였다. 이것을, 비수 전해액과 함께 라미네이트 케이스에 수용하였다. 비수 전해액에는, 에틸렌카르보네이트(EC)와 디메틸카르보네이트(DMC)와 에틸메틸카르보네이트(EMC)를, 3:3:4의 체적비로 포함하는 혼합 용매에, LiPF6을 1.1mol/L의 농도로 용해시킨 것을 사용하였다. 이어서, 라미네이트 케이스를 밀봉하여, 전지 조립체를 제작하였다.
이 전지 조립체에 대하여, 초기 충전 처리로서 0.1C의 전류값으로 각각, 4.7V(A1), 4.8V(A2) 또는 4.9V(A3)까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 그 후, 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 실시예 A1 내지 A3의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 A1 내지 A8
망간산리튬 입자 A(LMO-A)와, 도전재로서의 카본 블랙(CB)과, 바인더로서의 폴리불화비닐리덴(PVdF)을 LMO-A:CB:PVdF=94:4:2의 질량비로, N-메틸-2-피롤리돈(NMP) 내에서 혼합하여, 정극 활물질층 형성용 페이스트를 조제하였다. 이 정극 활물질층 형성용 페이스트를 사용한 것 이외에는 실시예 A1과 동일한 방법으로, 정극 시트를 제작하고, 추가로 전지 조립체를 제작하였다.
이 전지 조립체에 대하여, 0.1C의 전류값으로, 각각 4.2V(A1), 4.3V(A2), 4.4V(A3), 4.5V(A4), 4.6V(A5), 4.7V(A6), 4.8V(A7), 또는 4.9V(A8)까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 A1 내지 A8의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 A9 내지 A16
피복 망간산리튬 입자 B(LMO-B)와, 도전재로서의 카본 블랙(CB)과, 바인더로서의 폴리불화비닐리덴(PVdF)을 LMO-B:CB:PVdF=94:4:2의 질량비로, N-메틸-2-피롤리돈(NMP) 내에서 혼합하여, 정극 활물질층 형성용 페이스트를 조제하였다. 이 정극 활물질층 형성용 페이스트를 사용한 것 이외에는 실시예 A1과 동일한 방법으로, 정극 시트를 제작하고, 추가로 전지 조립체를 제작하였다.
이 전지 조립체에 대하여, 0.1C의 전류값으로, 각각 4.2V(A9), 4.3V(A10), 4.4V(A11), 4.5V(A12), 4.6V(A13), 4.7V(A14), 4.8V(A15), 또는 4.9V(A16)까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 A9 내지 A16의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 A17 내지 A21
실시예 A1과 동일한 방법으로 전지 조립체를 제작하였다. 이 전지 조립체에 대하여, 0.1C의 전류값으로, 각각 4.2V(A17), 4.3V(A18), 4.4V(A19), 4.5V(A20), 또는 4.6V(A21)까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 A17 내지 A21의 평가용 리튬 이온 이차 전지를 얻었다.
<사이클 특성 평가>
상기 제작한 각 평가 리튬 이온 이차 전지를 25℃의 환경하에 두었다. 각 평가용 리튬 이온 이차 전지를 0.1C의 전류값으로 4.2V까지 정전류 충전을 행한 후, 전류값이 1/50C가 될 때까지 정전압 충전을 행하여, 만충전 상태로 하였다. 그 후, 각 평가용 리튬 이온 이차 전지를 0.1C의 전류값으로 3.0V까지 정전류 방전하였다. 그리고, 이때의 방전 용량을 측정하여 초기 용량을 구하였다.
이어서, 각 평가용 리튬 이온 이차 전지를 60℃의 환경하에 두고, 0.5C에서 4.2V까지 정전류 충전 및 0.5C에서 3.0V까지 정전류 방전을 1사이클로 하는 충방전을 100사이클 반복하였다. 100사이클 후의 방전 용량을, 초기 용량과 동일한 방법에 의해 구하였다. 사이클 특성(용량 열화 내성)의 지표로서, (충방전 100사이클 후의 방전 용량/초기 용량)×100으로부터, 용량 유지율(%)을 구하였다. 결과를 표 1에 나타낸다.
<피막의 분석>
실시예 및 일부의 비교예의 각 평가 리튬 이온 이차 전지를 해체하고, 정극 활물질층을 취출하였다. 히타치하이테크놀로지즈사 제조의 집속 이온 빔 가공 관찰 장치 「FB2100」을 사용하여, 집속 이온 빔에 의해 정극 활물질층을 절단하였다. 그 단면을, 니혼덴시사 제조의 투과형 전자 현미경 「JFM-ARM300F」를 사용하여, 가속 전압 200㎸에서 관찰하였다. 단면 내에 존재하는 망간산리튬 입자의 외표면 및 입자의 균열부를 각각 10개소 선택하고, 니혼덴시사 제조의 에너지 분산형 X선 분석 장치 「JED-2300T」를 사용하여, TEM-EDX법에 의해 분석하였다. 이 분석은 배율 200 내지 1000k로 행하고, 이것에 의해, P 성분 및 F 성분의 존재를 확인하였다. 그래서, P의 농도(원자%)/F의 농도(원자%)의 비의 평균값을 산출하였다. 결과를 표 2에 나타낸다.
또한, 배율 2M 내지 10M으로, 입자 표면의 격자상을 확인하고, LiMn2O4 이외의 격자상이 존재하는지를 확인하였다. 실시예에 있어서는, LiMn2O4 이외의 격자상이 확인되어, HAADTEM 상에 기초하는 분석과, 전자 에너지 손실 분광법 EELS에 의한 분석을 더 행하였다. 그 결과, 올리빈형 결정 구조의 LiMnPO4 성분의 존재를 확인하였다. 결과를 표 2에 나타낸다.
Figure pat00001
Figure pat00002
비교예 A1 내지 A8에서는, 피막을 갖고 있지 않은 망간산리튬 입자 A1을 사용하고, 정극 활물질층에 Li3PO4를 첨가하지 않았다. 비교예 A1 내지 A8에서는, 초기 충전의 전압이 높을수록, 용량 유지율이 저하되는 경향이 보였다.
비교예 A9 내지 A16에서는, 미리 Li3PO4의 피막을 형성한 망간산리튬 입자 B1을 사용하고, 정극 활물질층에 Li3PO4를 첨가하지 않았다. 비교예 A1 내지 A8과의 비교로부터, Li3PO4의 피막에 의해, 용량 열화가 개선되어 있음을 알 수 있다. 그러나, 초기 충전의 전압이 4.7V 이상이 되면 용량 열화가 급격하게 커지는 경향이 보였다.
비교예 A17 내지 A21에서는, 피막을 갖고 있지 않은 망간산리튬 입자 A1을 사용하고, 정극 활물질층에 Li3PO4를 첨가하였다. 초기 충전의 전압이 4.2V 내지 4.6V의 범위에서는, 미리 Li3PO4의 피막을 형성한 망간산리튬 입자 B1을 사용한 경우와, 동일 정도의 용량 열화 내성이 발휘되었다.
실시예 A1 내지 A3에서는, 피막을 갖고 있지 않은 망간산리튬 입자 A1을 사용하고, 정극 활물질층에 Li3PO4를 첨가하였다. 초기 충전의 전압이 4.7V 내지 4.9V의 범위임에도 불구하고, 용량 유지율이 매우 높아졌다.
비교예 A1 내지 A8 및 비교예 A9 내지 A16의 결과가 나타내는 바와 같이, 통상은, 초회 충전의 전압이 높은 경우에는, 용량 열화가 크다고 하는 현상을 볼 수 있다. 그러나, 비교예 A17 내지 A21 및 실시예 A1 내지 A3의 결과로부터, 피막을 갖고 있지 않은 망간산리튬 입자 A1을 사용하고, 정극 활물질층에 Li3PO4를 첨가한 경우에는, 통상과는 다른 현상이 일어남을 알 수 있다.
이것에 관하여, 표 2에 나타내어진 피막의 분석 결과로부터, 초기 충전의 전압을 4.7V 이상으로 한 경우에는, 피막 내에 LiMnPO4 성분이 신규로 생성되었음을 알 수 있다. 따라서, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 신규의 피막에 의해, 현저하게 높은 용량 열화 내성이 발휘되었음을 알 수 있다.
이상의 결과로부터, 여기에 개시되는 비수 전해액 이차 전지에 의하면, 스피넬형 결정 구조를 갖는 망간산리튬 입자에 균열이 발생하였음에도 불구하고, 충방전을 반복했을 때의 용량 열화가 억제되어 있음을 알 수 있다.
실시예 B1 내지 B6
실시예 A1과 동일한 방법으로 정극 시트를 제작하였다. 이 정극 시트에 대하여, 롤 프레스 처리를, 정극 활물질층의 밀도가 각각, 2.0g/㎤(B1), 2.2g/㎤(B2), 2.4g/㎤(B3), 2.6g/㎤(B4), 2.8g/㎤(B5), 또는 3.0g/㎤(B6)이 되도록 행하였다. 이 정극 시트를 120㎜×100㎜의 치수로 재단하였다.
이 재단한 정극 시트를 사용하여 실시예 A1과 동일한 방법으로, 전지 조립체를 제작하였다. 이 전지 조립체에 대하여, 초기 충전 처리로서 0.1C의 전류값으로 4.7V까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 그 후, 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 실시예 B1 내지 B6의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 B1 내지 B6
비교예 A1과 동일한 방법으로 정극 시트를 제작하였다. 이 정극 시트에 대하여, 롤 프레스 처리를, 정극 활물질층의 밀도가 각각, 2.0g/㎤(B1), 2.2g/㎤(B2), 2.4g/㎤(B3), 2.6g/㎤(B4), 2.8g/㎤(B5), 또는 3.0g/㎤(B6)이 되도록 행하였다. 이 정극 시트를 120㎜×100㎜의 치수로 재단하였다.
이 재단한 정극 시트를 사용하여 실시예 A1과 동일한 방법으로, 전지 조립체를 제작하였다. 이 전지 조립체에 대하여, 초기 충전 처리로서 0.1C의 전류값으로 4.7V까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 그 후, 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 B1 내지 B6의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 B7 내지 B12
비교예 A9와 동일한 방법으로 정극 시트를 제작하였다. 이 정극 시트에 대하여, 롤 프레스 처리를, 정극 활물질층의 밀도가 각각, 2.0g/㎤(B7), 2.2g/㎤(B8), 2.4g/㎤(B9), 2.6g/㎤(B10), 2.8g/㎤(B11), 또는 3.0g/㎤(B12)가 되도록 행하였다. 이 정극 시트를 120㎜×100㎜의 치수로 재단하였다.
이 재단한 정극 시트를 사용하여 실시예 A1과 동일한 방법으로, 전지 조립체를 제작하였다. 이 전지 조립체에 대하여, 초기 충전 처리로서 0.1C의 전류값으로 4.7V까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 그 후, 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 B7 내지 B12의 평가용 리튬 이온 이차 전지를 얻었다.
비교예 B13 내지 B18
실시예 A1과 동일한 방법으로 정극 시트를 제작하였다. 이 정극 시트에 대하여, 롤 프레스 처리를, 정극 활물질층의 밀도가 각각, 2.0g/㎤(B13), 2.2g/㎤(B14), 2.4g/㎤(B15), 2.6g/㎤(B16), 2.8g/㎤(B17), 또는 3.0g/㎤(B18)가 되도록 행하였다. 이 정극 시트를 120㎜×100㎜의 치수로 재단하였다.
이 재단한 정극 시트를 사용하여 실시예 A1과 동일한 방법으로, 전지 조립체를 제작하였다. 이 전지 조립체에 대하여, 초기 충전 처리로서 0.1C의 전류값으로 4.2V까지 정전류 충전을 행한 후, 3시간의 정전압 충전을 행함으로써, 초기 충전을 실시하였다. 그 후, 0.1C의 전류값으로 3.0V까지 정전류 방전하여, 비교예 B13 내지 B18의 평가용 리튬 이온 이차 전지를 얻었다.
<사이클 특성 평가>
상기 제작한 각 평가 리튬 이온 이차 전지에 대하여, 상기와 동일한 방법으로 용량 유지율(%)을 구하였다. 결과를 표 3 및 도 3에 나타낸다.
Figure pat00003
표 3 및 도 3의 결과가 나타내는 바와 같이, 비교예에 있어서는, 정극 활물질층의 밀도가 2.6g/㎤ 이상이 되면, 용량 열화의 정도가 커졌다. 그러나, 실시예에 있어서는, 정극 활물질층의 밀도가 2.6g/㎤ 이상이 되어도, 용량 열화의 정도가 작았다. 이러한 점에서, 여기에 개시되는 비수 전해액 이차 전지에 있어서는, 정극 활물질층의 밀도가 2.6g/㎤ 이상인 경우에, 용량 열화의 억제 효과가 특히 높다는 사실을 알 수 있다.
이상, 본 발명의 구체예를 상세히 설명하였지만, 이것은 예시에 불과하며, 청구범위를 한정하는 것은 아니다. 청구범위에 기재된 기술에는, 이상에 예시한 구체예를 다양하게 변형, 변경한 것이 포함된다.
20: 권회 전극체
30: 전지 케이스
36: 안전 밸브
42: 정극 단자
42a: 정극 집전판
44: 부극 단자
44a: 부극 집전판
50: 정극 시트(정극)
52: 정극 집전체
52a: 정극 활물질층 비형성 부분
54: 정극 활물질층
60: 부극 시트(부극)
62: 부극 집전체
62a: 부극 활물질층 비형성 부분
64: 부극 활물질층
70: 세퍼레이터 시트(세퍼레이터)
80: 비수 전해액
100: 리튬 이온 이차 전지

Claims (8)

  1. 정극과, 부극과, 비수 전해액을 구비하는 비수 전해액 이차 전지이며,
    상기 정극은, 정극 활물질층을 구비하고,
    상기 정극 활물질층은, 정극 활물질로서 스피넬형 결정 구조를 갖는 망간산리튬 입자를 포함하고,
    상기 망간산리튬 입자의 적어도 일부는, 균열부를 갖고 있으며,
    상기 망간산리튬 입자는, 상기 균열부의 표면을 포함하여 입자 표면에 피막을 갖고,
    상기 피막은, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는, 비수 전해액 이차 전지.
  2. 제1항에 있어서,
    상기 피막 내의 원자%로 표현되는 F 농도에 대한, 원자%로 표현되는 P 농도의 비 P/F가 0.030 이상인, 비수 전해액 이차 전지.
  3. 제1항 또는 제2항에 있어서,
    상기 정극 활물질층의 밀도가 2.6g/㎤ 이상인, 비수 전해액 이차 전지.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 정극 활물질층이 인산리튬을 함유하는, 비수 전해액 이차 전지.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 비수 전해액이 전해질염으로서 LiPF6을 함유하는, 비수 전해액 이차 전지.
  6. 정극 활물질로서의 망간산리튬 입자와, 인산리튬 입자를 함유하는 정극 활물질층을 구비하는 정극 시트를 제작하는 공정과,
    상기 제작한 정극 시트를 프레스 처리하는 공정과,
    상기 프레스 처리한 정극 시트를 사용하여, 정극 시트와 부극 시트와 비수 전해액을 구비하는 전지 조립체를 제작하는 공정과,
    상기 전지 조립체에 초기 충전 처리를 행하여, 피막을 형성하는 공정
    을 포함하고,
    상기 프레스 처리하는 공정에서, 상기 망간산리튬 입자에 균열이 발생하고,
    상기 피막을 형성하는 공정에서, 상기 망간산리튬 입자의 균열부의 표면을 포함하여 입자 표면에, LiMnPO4 성분을 포함하는 P 성분과, F 성분을 함유하는 피막을 형성하는, 비수전해질 이차 전지의 제조 방법.
  7. 제6항에 있어서,
    상기 초기 충전 처리를, 4.7V 이상의 전압이 될 때까지 행하는, 제조 방법.
  8. 제6항 또는 제7항에 있어서,
    상기 프레스 처리를, 상기 정극 활물질층의 밀도가 2.6g/㎤ 이상이 되도록 행하는, 제조 방법.
KR1020220029913A 2021-03-15 2022-03-10 비수 전해액 이차 전지 및 그 제조 방법 KR20220128951A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2021-041391 2021-03-15
JP2021041391A JP7329008B2 (ja) 2021-03-15 2021-03-15 非水電解液二次電池およびその製造方法

Publications (1)

Publication Number Publication Date
KR20220128951A true KR20220128951A (ko) 2022-09-22

Family

ID=80446858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220029913A KR20220128951A (ko) 2021-03-15 2022-03-10 비수 전해액 이차 전지 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20220293928A1 (ko)
EP (1) EP4075546A3 (ko)
JP (1) JP7329008B2 (ko)
KR (1) KR20220128951A (ko)
CN (1) CN115084632A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259863A (ja) 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその製造法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920629B2 (ja) 2012-12-28 2016-05-18 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
CN103035906B (zh) * 2013-01-08 2015-04-15 南开大学 磷酸锰锂包覆的富锂层状氧化物正极材料及其制备和应用
JP6020490B2 (ja) * 2014-03-03 2016-11-02 トヨタ自動車株式会社 リチウムイオン二次電池の正極、及びリチウムイオン二次電池の製造方法
JP6627708B2 (ja) 2016-10-07 2020-01-08 トヨタ自動車株式会社 リチウムイオン二次電池、及び、リチウムイオン二次電池の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259863A (ja) 1996-03-19 1997-10-03 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその製造法

Also Published As

Publication number Publication date
JP2022141187A (ja) 2022-09-29
EP4075546A3 (en) 2022-11-16
CN115084632A (zh) 2022-09-20
JP7329008B2 (ja) 2023-08-17
EP4075546A2 (en) 2022-10-19
US20220293928A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US10199678B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and method of producing the same, and non-aqueous electrolyte secondary battery
EP3096379B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
EP3104440B1 (en) Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20200388840A1 (en) Positive electrode material of secondary battery, and secondary battery using same
CN112563497B (zh) 非水电解液二次电池
JP2013114848A (ja) リチウムイオン二次電池とその製造方法
US11626586B2 (en) Positive electrode material of lithium secondary battery, and lithium secondary battery using same
CN112054163B (zh) 二次电池的正极和使用该正极的二次电池
JP6338116B2 (ja) 非水電解液二次電池
KR20190029456A (ko) 비수전해액 이차 전지
CN112447941A (zh) 非水电解质二次电池
CN115084432B (zh) 正极和具备该正极的非水电解质二次电池
US20220328818A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
CN111725555B (zh) 锂离子二次电池
JP7074697B2 (ja) リチウム二次電池の正極材料
JP7329008B2 (ja) 非水電解液二次電池およびその製造方法
JP2014116326A (ja) 非水電解質電池
JP7320019B2 (ja) 非水電解液二次電池およびその製造方法
EP4030498B1 (en) Graphite-based negative electrode active material
CN114583244B (zh) 锂离子二次电池
JP2024109342A (ja) 非水電解液二次電池
CN115207301A (zh) 正极和具备其的二次电池
JP2022087413A (ja) 非水電解液二次電池
JP2023091566A (ja) 正極およびこれを用いた非水電解質二次電池
JP2023091567A (ja) 正極活物質、およびこれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
E902 Notification of reason for refusal