KR20220048631A - 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템 - Google Patents

적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템 Download PDF

Info

Publication number
KR20220048631A
KR20220048631A KR1020200131736A KR20200131736A KR20220048631A KR 20220048631 A KR20220048631 A KR 20220048631A KR 1020200131736 A KR1020200131736 A KR 1020200131736A KR 20200131736 A KR20200131736 A KR 20200131736A KR 20220048631 A KR20220048631 A KR 20220048631A
Authority
KR
South Korea
Prior art keywords
pipeline
camera
infrared sensor
pipeline inspection
intelligent
Prior art date
Application number
KR1020200131736A
Other languages
English (en)
Other versions
KR102421133B1 (ko
Inventor
고세진
김영수
김지훈
Original Assignee
탑전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 탑전자산업 주식회사 filed Critical 탑전자산업 주식회사
Priority to KR1020200131736A priority Critical patent/KR102421133B1/ko
Priority to PCT/KR2020/016834 priority patent/WO2022080575A1/ko
Publication of KR20220048631A publication Critical patent/KR20220048631A/ko
Application granted granted Critical
Publication of KR102421133B1 publication Critical patent/KR102421133B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • F16L55/34Constructional aspects of the propulsion means, e.g. towed by cables being self-contained the pig or mole being moved step by step

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

지능형 관로 검사 로봇을 포함하는 관로 검사 시스템이 제공된다. 본 발명의 일 실시예에 따른 관로 검사 시스템은 관로 내부를 주행하도록 구성되는 지능형 관로 검사 로봇 및 지능형 관로 검사 로봇에 전기적으로 연결되어 제어 신호를 제공하는 제어부를 포함하며, 지능형 관로 검사 로봇은 관로 내부의 경사도를 실시간으로 측정하기 위한 자이로스코프 센서를 포함하는 로봇 바디, 로봇 바디에 회전 가능하게 결합된 복수의 구동 휠, 로봇 바디에 제1 연결부를 통해 결합되고 상하 구동 운동을 통해 높이 조절이 가능한 카메라 리프트 및 카메라 리프트에 제2 연결부를 통해 결합되는 카메라 헤드를 포함하고, 카메라 헤드는 서로 마주보는 제1 면과 제2 면을 포함하는 헤드 바디, 제1 면 및 제2 면 사이에 위치한 헤드 바디의 일 단에 결합되어 관로의 내부를 촬영하도록 구성되는 카메라, 헤드 바디의 제1 면에 배치되고, 제1 적외선 송신기와 제1 적외선 수신기를 포함하는 제1 적외선 센서, 및 헤드 바디의 제2 면에 배치되고, 제2 적외선 송신기와 제2 적외선 수신기를 포함하는 제2 적외선 센서를 포함하되, 카메라는 제1 적외선 센서 및 제2 적외선 센서 각각의 센싱 값들에 기초하여 관로의 중심부에 위치하도록 높이가 조절된다.

Description

적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템{PIPELINE INSPECTION SYSTEM INCLUDING AN INTELLIGENT PIPELINE INSPECTION ROBOT EQUIPPED WITH AN INFRARED SENSOR AND A GYROSCOPE SENSOR}
본 발명은 관로 검사 시스템에 관한 것으로서, 더욱 구체적으로는 적외선 센서(Infrared sensor) 및 자이로스코프 센서(Gyroscope sensor)를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템에 관한 것이다.
상하수관 등 유체가 흐르는 각종 배관은 시간이 지남에 따라 내부 부식 등의 노후화가 진행되어, 배관의 파손 등 관로 사고가 발생할 수 있다. 따라서, 관로 사고를 방지하기 위해 배관 내부를 정기적으로 점검 및 진단하여 배관을 유지, 보수하는 것이 요구된다.
현재 존재하고 있는 관로 검사 시스템은 원격으로 움직일 수 있는 구동체에 카메라와 조명을 탑재하여 유선방식으로 지상에서 원격 조정하는 방식이 일반적이다.
환경부의 생활하수과가 정한 하수관거 시공관리 지침 매뉴얼에 따르면 모든 하수관에 대한 준공 및 노후도 조사에는 그 조사 항목 가운데, 관경과 관거의 기울기(경사도) 값에 대한 측정 결과를 포함하게 되어 있는데, 현재로서는 기술의 부재로 인해 이 두가지 조사항목에 대해 인력에 의존한 객관적이지 않고 부정확한 방식으로 조사 중이다.
예를 들어, 관경의 경우 관거의 초입 부분을 사람이 직접 측정하거나 기존 설치 도면에 명기된 내용을 그대로 인용하고 있으며, 경사도 값의 경우 하수의 자연유하 방식 원칙에 따라 최소 -2도 이상을 하향 매설하도록 되어 있으나 그러한 설치 기준에 부합한 관거 상태인지를 제대로 측정하지 못함으로 인해 하수가 흘러가지 않고 침수 적체되어 하수관 기능에 문제를 많이 유발 시키는 실정이다.
여기에 추가적으로 하수관거 조사 기준 매뉴얼에 의하면, 카메라를 이용해 관로를 조사할 때, 관로의 중앙에 카메라의 높이를 고정하여 영상 촬영을 하도록 되어 있지만 관내 여러 지장물이나 침수구간 통과시 카메라 높이가 변경되고 이후 관로의 중앙으로 카메라를 재조정 하지 못한 채 눈 짐작으로 부정확하게 카메라의 높이를 맞추어 조사하는 것이 일반적인 양상이다.
이 경우 카메라에 의해 촬영된 관로 내의 크랙, 파손, 지장물들의 크기가 카메라의 부정확한 높이 위치에 따라 왜곡되어 개선 보수의 판단조치에 악영향을 주게 되고 이는 곧바로 불필요한 예산 낭비로 이어진다.
한편, 기존에 존재하는 하수관로의 관경을 측정하기 위한 기술로는 방사형 확장 측정 기술을 이용한 기구적인 방법과 레이저를 이용한 레이저 센서 기술이 있다.
방사형 기구물에 의한 관경 측정 기술이란 우산 모양처럼 방사형으로 확장되는 여러개의 프로브(봉)형태의 센서를 가진 장치를 관 내부로 밀어넣어 견인하면서 주행하는 구간에 대해 관경의 변화 (찌그러짐이나 파손에 의한 변형 등)을 실시간으로 측정하여 그래프 형태로 산출할 수 있는 장치를 말한다. 하지만 이러한 유형의 장치를 실제 하수관거에 적용할 경우 하수관 관저부에 체적된 슬러지(하수찌꺼기 흙 더미)나 돌출된 연결관 등의 요인으로 정확한 측정이 어려운 점이 존재한다.
또한, 레이저를 원형으로 관로의 관벽에 투사하여 그 모양을 측정하여 관경을 측정하는 레이저 측정 기술의 경우, 관로에 물과 같은 유체의 이물질이 적체되어 있는 경우 유체의 반사 반응에 의해 레이저 원형 투사가 왜곡되어 실효성이 제한되는 문제가 존재한다.
이에 따라, 본 발명이 해결하려는 과제는 관로 내부의 복잡하고 거친 환경을 감안하여, 기존 방사형 기구물에 의한 관경 측정 기술과 레이저 빛을 이용한 관경 측정 기술의 불완전한 단점을 모두 극복하기위해, 적외선 센서를 이용해 관로 내부에 슬러지와 고인물 등과 같은 이물질이 존재하더라도 관로의 직경을 정밀하게 측정할 수 있는 관로 검사 시스템을 제공하고자 하는 것이다.
또한, 본 발명이 해결하려는 다른 과제는 지능형 관로 검사 로봇이 포함하는 적외선 센서를 이용하여, 카메라가 관로의 중심부에 정확히 위치하고 관로 내부를 정확히 촬영할 수 있는 관로 검사 시스템을 제공하고자 하는 것이다.
또한, 본 발명이 해결하려는 또 다른 과제는 지능형 관로 검사 로봇이 포함하는 자이로스코프 센서를 이용하여 관로의 경사도를 정밀하게 측정할 수 있는 관로 검사 시스템을 제공하고자 하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 관로 검사 시스템은 관로 내부를 주행하도록 구성되는 지능형 관로 검사 로봇 및 상기 지능형 관로 검사 로봇에 전기적으로 연결되어 제어 신호를 제공하는 제어부를 포함하고, 상기 지능형 관로 검사 로봇은, 상기 관로 내부의 경사도를 실시간으로 측정하기 위한 자이로스코프 센서를 포함하는 로봇 바디, 상기 로봇 바디에 회전 가능하게 결합된 복수의 구동 휠, 상기 로봇 바디에 제1 연결부를 통해 결합되고 상하 구동 운동을 통해 높이 조절이 가능한 카메라 리프트, 및 상기 카메라 리프트에 제2 연결부를 통해 결합되는 카메라 헤드를 포함하고, 상기 카메라 헤드는, 서로 마주보는 제1 면과 제2 면을 포함하는 헤드 바디, 상기 제1 면 및 상기 제2 면 사이에 위치한 상기 헤드 바디의 일 단에 결합되어 상기 관로의 내부를 촬영하도록 구성되는 카메라, 상기 헤드 바디의 상기 제1 면에 배치되고, 제1 적외선 송신기와 제1 적외선 수신기를 포함하는 제1 적외선 센서, 및 상기 헤드 바디의 상기 제2 면에 배치되고, 제2 적외선 송신기와 제2 적외선 수신기를 포함하는 제2 적외선 센서를 포함하되, 상기 카메라는 상기 제1 적외선 센서 및 상기 제2 적외선 센서 각각의 센싱 값들에 기초하여 상기 관로의 중심부에 위치하도록 높이가 조절된다.
실시예에 따라, 상기 카메라를 상기 관로의 중심부에 위치시키기 위해, 상기 카메라 헤드는 상기 관로의 바닥면에 수직한 방향으로 상기 카메라 리프트에 의해 높이가 조절되어 상하 왕복 운동을 하고, 상기 제1 적외선 센서는 상기 관로의 바닥면에 수평한 방향으로 상기 제1 적외선 센서와 상기 제1 적외선 센서에 인접하는 상기 관로 내부 벽면 사이의 제1 거리를 측정하며, 상기 제2 적외선 센서는 상기 관로의 바닥면에 수평한 방향으로 상기 제2 적외선 센서와 상기 제2 적외선 센서에 인접하는 상기 관로 내부 벽면 사이의 제2 거리를 측정하되, 상기 카메라는 상기 제1 거리와 상기 제2 거리의 합이 가장 긴 지점에 위치할 수 있다.
실시예에 따라, 상기 지능형 관로 검사 로봇이 상기 관로를 주행하는 중 상기 지능형 관로 검사 로봇의 높이 및 상기 자이로스코프 센서를 통해 측정된 상기 관로의 관경값 중 적어도 하나가 변경되면, 상기 카메라 헤드를 상하 왕복시키며 상기 제1 적외선 센서 및 상기 제2 적외선 센서를 통해 상기 제1 거리 및 상기 제2 거리를 재 측정하고, 상기 제1 거리 및 상기 제2 거리의 합이 가장 긴 지점에 상기 카메라가 위치하도록 상기 카메라의 위치를 재 조정할 수 있다.
실시예에 따라, 상기 제1 거리와 상기 제2 거리의 합이 가장 긴 지점에서, 상기 제1 거리와 상기 제2 거리의 합 및 미리 저장된 상기 제1 적외선 센서 및 상기 제2 적외선 센서 사이의 거리를 합한 값을 상기 관로의 직경으로 측정할 수 있다.
실시예에 따라, 상기 지능형 관로 검사 로봇은 상기 자이로스코프 센서를 이용하여 검사 로봇이 수평으로 설치된 관로 내부를 주행하면서 측정된 관로 경사도 로우 데이터를 실시간으로 상기 제어부에 제공하며, 상기 제어부는 상기 관로 경사도 로우 데이터를 기초로 상기 지능형 관로 검사 로봇의 주행 거리 및 상기 관로 내부의 경사도를 축으로 하는 제1 그래프를 생성하여 모니터에 표시할 수 있다.
실시예에 따라, 상기 제어부는 검사로봇이 관로 내부를 주행하면서 돌덩이 등과 같은 장애물들을 돌발적으로 만나 일시적으로 튀어 오를 경우 상기 관로 경사도 로우 데이터의 측정 값들 중 기 설정된 기준 범위를 초과하는 측정 값들을 돌발 값으로 판단하고, 상기 제1 그래프를 생성할 때, 상기 돌발 값을 제외할 수 있다.
실시예에 따라, 상기 제어부는 상기 돌발 값의 발생 위치 및 상기 발생 위치에서의 관로 내부 영상을 상기 모니터에 비디오 영상으로 더 표시할 수 있다.
실시예에 따라, 상기 제어부는 상기 관로 경사도 로우 데이터를 기초로 상기 제1 그래프를 변환하여, 상기 지능형 관로 검사 로봇의 주행 거리 및 상기 관로의 높이를 축으로 하는 제2 그래프를 생성하여 상기 모니터에 더 표시할 수 있다.
실시예에 따라, 상기 지능형 관로 검사 로봇은 상기 로봇 바디의 앞 단에 결합되어 전방에 조명을 비추는 바디 조명부를 포함할 수 있다.
실시예에 따라, 상기 카메라 헤드는 상기 헤드 바디에 결합되어 전방에 조명을 비추는 헤드 조명부를 포함할 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예에 따른 관로 검사 시스템에 의하면, 적외선 센서를 이용해 관로의 직경을 정밀하게 측정할 수 있고, 관로 바닥면에 슬러지가 있거나 측면에 연결과 돌출 등 각종 관경측정에 장애가 되는 요소들이 있어도 왜곡없이 정확하게 관경의 측정이 가능하며, 관로 내부에 물이 있어서 검사로봇의 하부가 일부 물에 잠겨 있어도 자동으로 관경의 측정이 가능하다.
또한, 본 발명의 실시예에 따른 관로 검사 시스템에 의하면, 지능형 관로 검사 로봇이 포함하는 적외선 센서를 이용하여, 카메라를 관로의 중심부에 정확히 위치시켜 관로 내부를 왜곡 없이 정확히 촬영할 수 있다.
이처럼 카메라를 관로의 중심부에 위치시키는 것은 국가가 정한 공식적인 조사 규칙에 부합할 수 있으며, 조사의 정확성을 확보할 수 있다.
또한, 본 발명의 실시예에 따른 관로 검사 시스템에 의하면, 지능형 관로 검사 로봇이 포함하는 자이로스코프 센서를 이용하여 관로의 경사도를 돌발적으로 발생하는 장애물들을 관로 내부에 존재해도 이에 상관없이 관로의 경사값을 일관되고 정밀하게 측정할 수 있으며, 제어부를 통해 다양한 형태의 그래프를 실시간으로 제공할 수 있다.
실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 관로 검사 시스템을 나타내는 도면이다.
도 2는 도 1의 관로 검사 시스템에 포함된 지능형 관로 검사 로봇의 카메라 헤드를 구체적으로 나타내는 도면이다.
도 3은 도 1의 A-A' 선을 따라 자른 단면에서 바라본 본 발명의 일 실시예에 따른 관로 검사 시스템의 동작 모습을 나타내는 도면이다.
도 4는 도 1의 관로 검사 시스템에 포함된 지능형 관로 검사 로봇이 관로의 경사도를 측정하기 위해 진행하는 모습을 나타내는 도면이다.
도 5 및 도 6은 도 4의 지능형 관로 검사 로봇이 관로 내부를 진행함에 따라 제어부가 표시하는 제1 그래프 및 제2 그래프를 나타내는 도면들이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 도면에서 본 발명과 관계없는 부분은 본 발명의 설명을 명확하게 하기 위하여 생략되거나 간소하게 표현될 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 관로 검사 시스템을 나타내는 도면이다. 도 2는 도 1의 관로 검사 시스템에 포함된 지능형 관로 검사 로봇의 카메라 헤드를 구체적으로 나타내는 도면이다.
도 1을 참조하면, 관로 검사 시스템(1000)은 지능형 관로 검사 로봇(100), 제어부(200), 연결 케이블(300), 및 케이블 권취부(400)를 포함할 수 있다.
지능형 관로 검사 로봇(100)은 관로(PP)의 검사를 수행하기 위한 로봇으로서, 관로(PP)를 따라 진행하며 검사를 수행할 수 있다.
지능형 관로 검사 로봇(100)은 후술할 카메라를 이용하여 관로(PP) 내부의 영상을 촬영할 수 있다. 관로(PP)의 정확한 검사를 수행하기 위해 카메라는 관로(PP)의 중심부에 위치하도록 조정될 수 있다. 카메라를 관로(PP)의 중심부에 위치시키기 위해 적외선 센서(Infrared Sensor) 등 다양한 센서가 이용될 수 있으며, 도 2 내지 도 3을 참조하여 더욱 자세히 후술하기로 한다.
또한, 지능형 관로 검사 로봇(100)은 후술할 자이로스코프 센서(Gyroscope Sensor)를 포함하여 관로(PP)의 경사도(또는, 기울기)를 정밀하게 측정할 수 있다. 지능형 관로 검사 로봇(100)은 관로(PP)를 따라 이동하며, 관로(PP)의 경사도를 실시간으로 측정할 수 있다.
도 1에 도시된 바와 같이, 지능형 관로 검사 로봇(100)은 관로(PP)의 내부에서 제1 방향(X)을 따라 이동하며 관로 검사를 수행할 수 있다. 지능형 관로 검사 로봇(100)은 관로(PP)를 따라 이동하며, 관로(PP)의 내부 영상 및 관로(PP)의 경사도 데이터(관로 경사도 로우 데이터)를 획득할 수 있다.
한편, 지능형 관로 검사 로봇(100)은 지면에서 관로(PP) 측으로 형성된 맨홀(manhole)(또는, 맨홀 영역(EA))을 통해 관로(PP)의 내부로 진입할 수 있다. 이하, 지능형 관로 검사 로봇(100)의 세부 구성들에 대해 구체적으로 설명한다.
지능형 관로 검사 로봇(100)은 로봇 바디(10), 구동 휠(20), 카메라 리프트(30), 및 카메라 헤드(40)를 포함할 수 있다.
로봇 바디(10)는 지능형 관로 검사 로봇(100)의 외관 골격을 이루는 부분으로서 모든 부품 및 구성들을 지지할 수 있다.
일 실시예로, 로봇 바디(10)의 일 단부에는 연결 케이블(300)에 연결되기 위한 구성이 마련될 수 있다.
또한, 로봇 바디(10)에는 관로(PP)의 내부에 조명을 비추기 위한 바디 조명부(11)가 장착될 수 있다. 바디 조명부(11)는 로봇 바디(10)의 앞 단에 결합되어 전방에 조명을 비출 수 있다.
바디 조명부(11)는 백색광을 방출하는 발광 다이오드(Light Emitting Diode)들을 포함할 수 있으나, 이에 한정되는 것은 아니다.
로봇 바디(10)는 관로(PP)의 경사도를 실시간으로 측정하기 위한 자이로스코프 센서(12)를 포함할 수 있다.
자이로스코프 센서(12)는 x축 가속도, y축 가속도, 및 z축 가속도를 검출하고, 검출 결과에 해당하는 자이로스코프 데이터를 생성할 수 있다. 예컨대, 자이로스코프 센서(12)는 제1 방향(X), 제2 방향(Y), 및 제3 방향(Z)으로 기울어짐을 각각 피치(pitch), 롤(roll), 및 요(yaw)로서 검출하여 자이로스코프 데이터를 생성할 수 있다.
일 실시예로, 자이로스코프 센서(12)는 MEMS(미세전자기계시스템, Microelectromechanical systems) 기술이 적용되어 초소형 전자부품으로 생산될 수 있으며, 검증질량을 이용한 방식의 자이로스코프 센서일 수 있다.
즉, 자이로스코프 센서(12)는 내부에 구비된 검증질량의 움직임에 따라 발생하는 코리올리 힘(Coriolis force)에 의해 x축 가속도, y축 가속도, 및 z축 가속도를 측정할 수 있으며, 이를 통해 로봇 바디(10)의 기울어짐(또는, 회전력)을 검출할 수 있다.
자이로스코프 센서(12)에 의해 생성된 자이로스코프 데이터는 지능형 관로 검사 로봇(100) 및/또는 제어부(200)에 의해 관로 경사도 로우 데이터로서 활용될 수 있으며, 관로 경사도 로우 데이터를 기초로 관로(PP)의 경사도가 실시간으로 측정될 수 있다.
또한, 로봇 바디(10)는 지능형 관로 검사 로봇(100)을 구동하기 위한 구동 모터(미도시)를 더 포함할 수 있다. 구동 모터는 지능형 관로 검사 로봇(100)을 기동하기 위한 동력 및 지능형 관로 검사 로봇(100)의 내부 구성들을 동작시키기 위한 동력을 제공할 수 있다.
실시예에 따라, 로봇 바디(10)는 지능형 관로 검사 로봇(100)의 동력원으로서 배터리(미도시)를 더 포함할 수 있다. 이 경우, 지능형 관로 검사 로봇(100)은 제어부(200)와 무선으로 연결되어 동작 신호를 수신할 수도 있다.
구동 휠(20)은 로봇 바디(10)에 회전 가능하게 결합될 수 있다. 이를 위해, 로봇 바디(10)는 구동 휠(20)이 장착되기 위한 복수의 구동 휠 결합부들(미도시)을 포함할 수 있다.
도 1에 도시된 바와 같이, 구동 휠(20)은 복수 개로 마련될 수 있으며, 일 실시예로, 구동 휠(20)은 로봇 바디(10)의 양 측에 3개씩 총 6개가 구비될 수 있으나, 이에 한정되는 것은 아니다. 관로(PP)의 크기, 형태, 직경 등에 따라 구동 휠(20)의 개수 및 구동 휠(20) 각각의 크기는 상이하게 조절될 수 있다.
카메라 리프트(30)는 로봇 바디(10)와 후술할 카메라 헤드(40)를 서로 연결하는 구성일 수 있다.
일 실시예로 카메라 리프트(30)의 일 단은 제1 연결부(31)를 통해 로봇 바디(10)에 연결되고, 카메라 리프트(30)의 타 단은 제2 연결부(32)를 통해 카메라 헤드(40)에 연결될 수 있다.
제1 연결부(31)를 통해 로봇 바디(10)에 결합된 카메라 리프트(30)는 제1 연결부(31)를 축으로 하여 회전 운동을 할 수 있다. 이에 따라, 카메라 리프트(30)의 높이는 조절이 될 수 있으며, 카메라 리프트(30)의 타 단에 연결된 카메라 헤드(40)의 높이가 조절될 수 있다.
카메라 헤드(40)는 관로(PP) 검사를 위한 카메라 및 각종 센서를 구비할 수 있다.
상술한 바와 같이, 카메라 헤드(40)는 제2 연결부(32)를 통해 카메라 리프트(30)에 연결될 수 있다. 카메라 헤드(40)는 제2 연결부(32)를 축으로 하여 회전 운동을 할 수 있으며, 카메라 리프트(30)가 회전 운동을 하더라도 수평을 유지하도록 회전할 수 있다. 이를 위해, 카메라 헤드(40)에는 수평 유지 센서가 더 장착될 수도 있다.
이하, 도 2를 더 참조하여 카메라 헤드(40)를 더욱 구체적으로 설명한다.
카메라 헤드(40)는 헤드 바디(41), 카메라(42), 헤드 조명부(43), 및 적외선 센서(44)를 포함할 수 있다.
본 실시예에서는 카메라 헤드(40)가 카메라(42) 및 적외선 센서(44)만을 포함하는 것으로 설명하고 있으나, 이는 본 발명의 특징을 명확히 설명하기 위해 간략히 구성한 것에 해당한다.
즉, 카메라 헤드(40)에는 더욱 다양한 센서들이 마련될 수 있다. 예를 들어, 카메라 헤드(40)에는 초음파 센서, 레이저 센서, 음파 탐지 센서, 온도 센서, 압력 센서, 가스 센서, 온도 센서, 습도 센서, 마이크 등 각종 센서들이 더 구비될 수 있다.
헤드 바디(41)는 카메라 헤드(40)의 구성들이 배치될 공간을 마련하고 지지할 수 있다.
헤드 바디(41)는 카메라 헤드(40)의 구성들을 지지하기 위해 다양한 형상으로 형성될 수 있으며, 구성들을 견고하게 지지할 수 있는 형상이라면 특별히 제한되지 않는다. 도면상 도시되지 않았으나, 헤드 바디(41)에는 카메라가 장착되는 카메라 결합부, 조명 램프가 장착되는 조명 결합부, 및 적외선 센서가 결합되는 적외선 센서 결합부 등 다양한 결합부들이 더 형성될 수 있다.
일 실시예로, 헤드 바디(41)는 서로 마주보는 제1 면(S1) 및 제2 면(S2)을 포함할 수 있다. 제1 면(S1) 및 제2 면(S2)은 적외선 센서(44)가 장착될 공간을 마련할 수 있다.
카메라(42)는 관로(PP) 내부에 대해 실시간으로 영상 정보를 획득할 수 있으며, 관로 내부의 불순물(예컨대, 녹 및 스케일(scale))의 체적 상태와 이 외의 다양한 이상 상태를 육안으로 검사할 수 있도록 한다.
카메라(42)는 헤드 바디(41)에 결합될 수 있으며, 상술한 바와 같이, 헤드 바디(41)에 별도로 형성된 카메라 결합부에 의해 결합 및 고정될 수 있다.
일 실시예로, 카메라(42)는 헤드 바디(41)의 제1 면(S1) 및 제2 면(S2) 사이의 공간에서 헤드 바디(41)에 결합될 수 있다.
카메라(42)는 고해상도의 이미지 센서를 포함할 수 있다. 예컨대, 관로(PP) 내부의 정확한 육안 검사를 위해, 카메라(42)는 HD(High Definition)급 이상 또는 Full-HD급 이상의 고해상도 이미지 센서로 구현될 수 있다.
카메라(42)의 렌즈(LENS)는 관로(PP) 내부에서 넓은 영역을 포착하기 위해 광각 렌즈로 구성될 수 있으나, 이에 한정되는 것은 아니다. 평면 렌즈 또는 오목 렌즈 등 필요에 따라 다양한 렌즈로 교체될 수 있다.
몇몇 실시예에서, 카메라(42)는 보조 장착부(42sl)를 더 포함할 수 있다. 보조 장착부(42sl)에는 검사자의 필요에 따른 다양한 구성을 결합할 수 있다. 예를 들어, 보조 장착부(42sl)에 보조 조명이 구비되거나, 보조 카메라 및/또는 각종 센서들이 더 장착될 수 있다.
헤드 조명부(43)는 빛이 없는 관로(PP) 내부를 밝히기 위한 복수의 조명들을 포함할 수 있다.
헤드 조명부(43)는 헤드 바디(41)에 결합되어 전방에 조명을 비출 수 있으며, 조명에 의한 관로(PP) 내부 영상의 왜곡을 방지하기 위해 대칭적으로 장착될 수 있다. 예컨대, 헤드 조명부(43)는 한 쌍 또는 두 쌍으로 구성되어 장착될 수 있다.
헤드 조명부(43)는 백색광을 방출하는 발광 다이오드(LED)(Light Emitting Diode)들을 포함할 수 있으나, 이에 한정되는 것은 아니다.
적외선 센서(44)는 적외선 센서(44)로부터 관로(PP) 내부 벽면 까지의 거리를 측정하기 위한 센서일 수 있다.
도 2에 도시된 바와 같이, 적외선 센서(44)는 한 쌍으로 구성되어 헤드 바디(41)의 양 측에 대칭적으로 장착될 수 있다. 또한, 적외선 센서(44)는 카메라(42)와 동일 평면 상에 배치될 수 있으나, 이에 한정되지 않는다.
일 실시예로, 적외선 센서(44)는 제1 적외선 센서(44a) 및 제2 적외선 센서(44b)를 포함할 수 있으며, 제1 적외선 센서(44a)는 헤드 바디(41)의 제1 면(S1)에 장착되고, 제2 적외선 센서(44b)는 헤드 바디(41)의 제2 면(S2)에 장착될 수 있다.
한 쌍의 적외선 센서(44) 각각은 적외선 송신기 및 적외선 수신기를 포함할 수 있다. 예컨대, 제1 적외선 센서(44a)는 제1 적외선 송신기(TXa) 및 제1 적외선 수신기(RXa)를 포함하고, 제2 적외선 센서(44b)는 제2 적외선 송신기(TXb) 및 제2 적외선 수신기(RXb)를 포함할 수 있다.
적외선 센서(44)의 센싱 값에 따라 카메라(42)는 관로(PP)의 중심부(CT)에 위치하도록 정렬될 수 있으며, 이와 관련하여 도 3을 참조하여 구체적으로 설명하기로 한다.
제어부(200)는 연결 케이블(300)을 통해 지능형 관로 검사 로봇(100)에 전기적으로 연결될 수 있다.
제어부(200)는 지능형 관로 검사 로봇(100)에 제어 신호를 제공할 수 있으며, 지능형 관로 검사 로봇(100)을 구동하기 위한 구동 전원을 공급할 수 있다. 이에 따라, 연결 케이블(300)은 제어 신호를 송수신하기 위한 제어 케이블 및 전원 공급을 위한 전원 케이블을 별도로 포함할 수 있으나, 이에 한정되지 않는다.
제어부(200)는 지능형 관로 검사 로봇(100)의 동작을 제어할 수 있다. 예컨대, 제어부(200)는 지능형 관로 검사 로봇(100)의 구동 휠(20)을 제어하여 이동 방향 및 이동 속도 등을 제어할 수 있으며, 카메라 리프트(30)의 회전 운동을 제어하여 카메라 헤드(40)의 높이를 조절할 수 있다.
또한, 제어부(200)는 카메라 헤드(40)의 카메라(42), 헤드 조명부(43), 및 적외선 센서(44) 등 카메라 헤드(40) 전반에 대한 제어를 수행할 수 있다.
본 발명에서 제어부(200)는 지능형 관로 검사 로봇(100)에 대한 정보를 표시하는 모니터를 포함할 수 있다. 제어부(200)의 모니터에는 지능형 관로 검사 로봇(100)의 이동 방향, 이동 속도, 기울기 등 다양한 상태를 표시할 수 있으며, 지능형 관로 검사 로봇(100)의 카메라(42)가 촬영하는 관로(PP) 내부 영상을 실시간으로 표시할 수 있다.
또한, 모니터는 지능형 관로 검사 로봇(100)의 카메라(42)의 정렬 여부를 더 표시할 수 있다. 예컨대, 카메라(42)가 관로(PP)의 중심부(CT)에 위치하지 않는 경우, 제어부(200)는 모니터를 통해 사용자에게 표시할 수 있으며, 검사자의 수동 조작 또는 미리 설정된 프로세스에 따른 자동 조작에 의해 카메라(42)가 관로(PP)의 중심부(CT)에 위치하도록 조정할 수 있다.
한편, 제어부(200)는 지능형 관로 검사 로봇(100)으로부터 제공받은 데이터를 저장하기 위한 메모리 및 데이터 분석을 위한 소프트웨어가 설치된 연산 장치를 포함할 수 있다. 즉, 제어부(200)는 데이터 해석/정렬 프로그램 및 데이터 시각화 프로그램 등 다양한 소프트웨어를 포함할 수 있으며, 지능형 관로 검사 로봇(100)으로부터 제공받은 데이터를 가공하여 모니터를 통해 검사자에게 표시할 수 있다.
제어부(200)의 동작은 컴퓨터 시스템 상에서 수행되는 소프트웨어 또는 집적 회로와 같은 하드웨어로 구현되거나 소프트웨어와 하드웨어의 조합에 의해서 구현될 수 있다.
한편, 케이블 권취부(400)에는 장거리의 연결 케이블(300)이 권취될 수 있다. 일 실시예로, 연결 케이블(300)은 100m 내지 10km의 길이로 형성될 수 있으나, 이에 한정되는 것은 아니다. 케이블 권취부(400)는 제어부(200)의 동작에 연동하여 연결 케이블(300)을 풀거나 감을 수 있으며, 또는 검사자에 의해 수동으로 풀리거나 감길 수 있다.
몇몇 실시예에서, 케이블 권취부(400)는 연결 케이블(300)이 원활하게 풀리거나 감기기 위해 케이블 가이드 롤러(미도시) 및 구동 모터(미도시)를 더 포함할 수 있다. 예를 들어, 케이블 가이드 롤러는 연결 케이블에 밀착될 수 있으며, 케이블 가이드 롤러의 회전 방향에 따라 연결 케이블(300)이 풀리거나 감길 수 있다. 구동 모터는 케이블 가이드 롤러에 결합되어 케이블 가이드 롤러를 동작 시킬 수 있다.
도 3은 도 1의 A-A' 선을 따라 자른 단면에서 바라본 본 발명의 일 실시예에 따른 관로 검사 시스템의 동작 모습을 나타내는 도면이다.
도 1 내지 도 3을 참조하면, 지능형 관로 검사 로봇(100)은 카메라(42)를 관로(PP)의 중심부(CT)에 위치시키기 위해, 카메라 헤드(40)를 관로(PP)의 바닥면에 수직한 방향으로 상하 왕복 운동을 시킬 수 있다. 카메라 헤드(40)는 카메라 리프트(30)에 의해 높이가 조절되어 상하 왕복 운동을 할 수 있다.
관로(PP)의 바닥면과 중심부(CT) 사이의 거리(d)와 관로(PP)의 상부면과 중심부(CT) 사이의 거리(d)가 서로 동일할 수 있다.
카메라 헤드(40)의 적외선 센서(44)는 상하 운동을 하며 각각 적외선 센서(44)로부터 관로(PP)의 내부 벽면까지의 수평 거리를 측정할 수 있다.
즉, 제1 적외선 센서(44a)는 관로(PP)의 바닥면에 수평한 방향으로 제1 적외선 센서(44a)에 인접하는 관로(PP) 내부 벽면 사이의 제1 거리(D1, D3)를 측정하며, 제2 적외선 센서(44b)는 관로(PP)의 바닥면에 수평한 방향으로 제2 적외선 센서(44b)에 인접하는 관로(PP) 내부 벽면 사이의 제2 거리(D2, D4)를 측정할 수 있다.
구체적으로, 제1 적외선 센서(44a)의 제1 적외선 송신기(TXa)는 제1 적외선 센서(44a)에 인접한 관로(PP)의 내부 벽면(도 3의 관로(PP)의 좌측 벽면)을 향해 적외선을 송출할 수 있고, 송출된 적외선은 관로(PP)의 내부 벽면에 반사되어 제1 적외선 센서(44a)의 제1 적외선 수신기(RXa)에 입사될 수 있다.
제1 적외선 송신기(TXa)로부터 송출된 적외선은 반사된 물체와의 거리에 따라 반사 각도가 달라질 수 있으며, 제1 적외선 수신기(RXa)로 반사되어 입사되는 적외선의 입사 각도에 따라 제1 적외선 센서(44a)로부터 관로(PP)의 내부 벽면 까지의 거리가 측정될 수 있다.
이와 유사하게, 제2 적외선 센서(44b)의 제2 적외선 송신기(TXb)는 제2 적외선 센서(44b)에 인접한 관로(PP)의 내부 벽면(도 3의 관로(PP)의 우측 벽면)을 향해 적외선을 송출할 수 있고, 송출된 적외선은 관로(PP)의 내부 벽면에 반사되어 제2 적외선 센서(44b)의 제2 적외선 수신기(RXb)에 입사될 수 있다.
지능형 관로 검사 로봇(100)은 제1 적외선 센서(44a)에 의해 측정된 제1 거리와 제2 적외선 센서(44b)에 의해 측정된 제2 거리를 이용하여 카메라 헤드(40)(또는, 카메라(42))를 관로(PP)의 중심부(CT)에 위치시킬 수 있다.
예를 들어, 카메라 헤드(40')가 관로(PP)의 중심부(CT)보다 상부에 위치하는 경우, 카메라(42')는 관로(PP)의 중심부(CT)에 정렬되지 않는다.
이 때, 제1 적외선 센서(44a')에 의해 측정되는 제1 거리(D3) 및 제2 적외선 센서(44b')에 의해 측정되는 제2 거리(D4)의 합은 카메라 헤드(40)가 관로(PP)의 중심부(CT)에 위치할 때 제1 적외선 센서(44a)에 의해 측정되는 제1 거리(D1) 및 제2 적외선 센서(44b)에 의해 측정되는 제2 거리(D2)의 합 보다 짧게 측정된다.
제1 거리(D1)와 제2 거리(D2)의 합이 가장 긴 지점이 관로(PP)의 중심부(CT)에 해당할 수 있으며, 제1 적외선 센서(44a) 및 제2 적외선 센서(44b)의 측정 값에 따라 카메라 헤드(40)의 위치가 조정되어 카메라(42)가 관로(PP)의 중심부(CT)에 위치될 수 있다.
몇몇 실시예에서, 지능형 관로 검사 로봇(100)이 관로(PP)를 주행하는 중 관로(PP)의 내부 바닥에 쌓인 슬러지(sludge) 등으로 인해 높이가 변경되거나, 관로(PP)의 경사도가 급격히 변경되는 경우, 적외선 센서(44)에 의한 카메라(42) 위치 재 조정이 진행될 수 있다.
이에 따라, 카메라 헤드(40)는 상하 왕복 운동을 하며, 적외선 센서(44)의 측정 값들에 의해, 카메라(42)는 관로(PP)의 중심부(CT)에 위치하도록 재 조정될 수 있다.
한편, 관로(PP)의 직경(또는, 관경)은 제1 거리(D1) 및 제2 거리(D2)의 합과 제1 적외선 센서(44a)와 제2 적외선 센서(44b) 사이의 거리를 합한 값일 수 있다.
제1 적외선 센서(44a)와 제2 적외선 센서(44b) 사이의 거리는 지능형 관로 검사 로봇(100)을 설계하는 과정에서 미리 결정된 값일 수 있으며, 지능형 관로 검사 로봇(100) 내에 미리 저장될 수 있다.
이처럼, 본 발명에 따른 관로 검사 시스템(1000)에 의하면, 지능형 관로 검사 로봇(100)이 포함하는 한 쌍의 적외선 센서(44a, 44b)를 이용하여, 카메라(42)를 관로(PP)의 중심부(CT)에 정확히 위치시켜 관로(PP) 내부를 왜곡 없이 정확히 촬영할 수 있다.
또한, 도면에 도시된 바와 같이, 적외선 센서(44)는 12시 방향과 6시 방향, 즉 수직 방향을 향하지 않고 9시와 3시 방향 즉, 수평방향을 향하고 있음으로 관저부에 집척된 슬러지나 고인물에 영향을 받지 않고 오로지 관거의 가장 넓은 관경을 측정함으로써 바닥 상태와 무관하게 관로(PP)의 직경을 신속하고 정밀하게 측정할 수 있다.
도 4는 도 1의 관로 검사 시스템에 포함된 지능형 관로 검사 로봇이 관로의 경사도를 측정하기 위해 진행하는 모습을 나타내는 도면이다.
도 4를 참조하면, 지능형 관로 검사 로봇(100)은 진행 방향을 따라 관로(PP)를 주행할 수 있다. 카메라 헤드(40)는 카메라(42)가 관로(PP)의 중심부(CT)에 위치하도록 조정될 수 있다.
관로(PP)는 일반적으로 균일한 경사도를 갖도록 설계 및 설치될 수 있으나, 설치 과정에서의 오차 또는 불량에 의해 관로(PP)의 일부 구간에 경사도가 달라질 수 있다. 또한, 관로(PP)는 관로(PP)를 통해 운송되는 물질에 의한 내부 압력 또는 관로(PP)를 덮는 외부 물질에 의한 외부 압력 등으로 인해 일부 구간에 대한 경사도가 달라질 수 있다.
상술한 바와 같이, 지능형 관로 검사 로봇(100)의 로봇 바디(10)에는 자이로스코프 센서(12)가 장착될 수 있으며, 지능형 관로 검사 로봇(100)은 자이로스코프 센서(12)를 통해 관로(PP)의 경사도를 실시간으로 측정할 수 있다.
도 4에서는 지능형 관로 검사 로봇(100)이 관로(PP)의 제1 구간(P1), 제2 구간(P2), 제3 구간(P3) 및 제4 구간(P4)을 주행하는 모습을 나타내고 있으며, 설명의 편의상 제1 구간(P1)의 경사도는 0°이고, 제2 구간(P2)의 경사도는 제1 구간(P1)을 기준으로 -2°이며, 제3 구간(P3)의 경사도는 제1 구간(P1)을 기준으로 3°이고, 제4 구간(P4)의 경사도는 제1 구간(P1)을 기준으로 -5°인 것으로 나타냈다.
도 5 및 도 6은 도 4의 지능형 관로 검사 로봇이 관로 내부를 진행함에 따라 제어부가 표시하는 제1 그래프 및 제2 그래프를 나타내는 도면들이다.
도 1 내지 도 5를 참조하면, 지능형 관로 검사 로봇(100)은 자이로스코프 센서(12)를 이용하여 측정된 관로 경사도 로우 데이터를 실시간으로 제어부(200)에 제공하며, 제어부(200)는 관로 경사도 로우 데이터를 기초로 지능형 관로 검사 로봇(100)의 주행 거리(Distance) 및 관로(PP) 내부의 경사도(Inclination)를 축으로 하는 제1 그래프(G1)를 생성하여 제어부(200)의 모니터에 표시할 수 있다.
즉, 관로(PP)의 경사도를 나타내는 제1 그래프(G1)는 지능형 관로 검사 로봇(100)이 관로(PP)를 따라 진행함에 따라 제어부(200)에 의해 실시간으로 생성되어 모니터에 표시 될 수 있다. 이에 따라, 지능형 관로 검사 로봇(100)의 주행 거리가 점차 증가할 경우, X축(주행 거리)의 스케일이 자동으로 변경될 수 있다.
한편, 관로(PP)에는 도 4에 도시된 바와 같이, 지능형 관로 검사 로봇(100)의 주행을 방해하는 장애물(OB)이 존재할 수 있다. 도 4는 관로(PP)의 제3 구간(P3)에 장애물(OB)이 형성되어 있는 점을 예시하고 있다.
지능형 관로 검사 로봇(100)이 제3 구간(P3)에서 장애물(OB)을 지나가게 될 경우, 장애물(OB)로 인해 경사도 측정 값이 크게 변동될 수 있다. 예를 들어, 지능형 관로 검사 로봇(100)이 장애물(OB)을 지나가기 시작한 지점부터 자이로스코프 센서(12)에 의해 측정된 경사도 값이 급격히 증가하고, 지능형 관로 검사 로봇(100)이 장애물(OB)을 지나가는 과정에서 측정된 경사도 값이 급격히 감소할 수 있다.
지능형 관로 검사 로봇(100)이 장애물(OB)을 지나가는 시간은 대략 1초 내지 2초 정도로 작으나, 경사도의 급격한 변동으로 인해 전체적인 경사도 측정 데이터의 신뢰도가 낮아지고, 관로(PP)의 정확한 경사도 값을 측정하기 어려워 질 수 있다.
이에 따라, 제어부(200)는 지능형 관로 검사 로봇(100)에 의해 측정된 관로 경사도 로우 데이터의 측정 값들 중 기준 범위를 초과하는 측정 값들을 돌발 값(OBV)으로 판단하고, 제1 그래프(G1)를 생성할 때, 돌발 값(OBV)을 제외할 수 있다. 여기서 기준 범위는 미리 설정되는 값이거나 관로(PP)에 따라 자동으로 설정되는 값일 수 있다.
실시예에 따라, 제어부(200)는 도 5에 도시된 바와 같이, 제1 그래프(G1)에 돌발 값(OBV)의 발생 위치를 표시하거나, 발생 위치에서의 관로(PP) 내부 영상을 모니터에 더 표시하여 검사자에게 돌발 값(OBV) 관련 정보를 제공할 수도 있다.
본 발명의 따른 관로 검사 시스템(1000)에 의하면, 지능형 관로 검사 로봇(100)이 포함하는 자이로스코프 센서(12)를 이용하여 관로(PP)의 경사도를 정밀하게 측정할 수 있으며, 제어부(200)를 통해 다양한 형태의 그래프를 실시간으로 제공할 수 있다.
또한, 관로(PP) 내에 장애물(OB)이 존재하더라도 장애물(OB)에 의한 돌발 값(OBV)을 그래프 생성 과정에서 배제하므로 데이터의 신뢰성을 향상시킬 수 있다.
한편, 제어부(200)는 도 6에 도시된 바와 같이, 자이로스코프 센서(12)에 의해 측정된 관로 경사도 로우 데이터를 기초로 도 5와 같은 제1 그래프(G1)를 변환하여, 지능형 관로 검사 로봇(100)의 주행 거리(Distance) 및 관로(PP)의 높이(Height)를 축으로 하는 제2 그래프(G2)를 생성하여 모니터에 표시할 수 있다.
제어부(200)는 지능형 관로 검사 로봇(100)의 주행 거리 및 경사도를 기초로 관로(PP)의 높이(또는, 매설 깊이)를 계산하기 위한 프로그램을 포함할 수 있으며, 검사자의 요청에 따라 관로(PP)의 높이를 계산하여 제2 그래프(G2)로서 검사자에게 제공할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
1000: 관로 검사 시스템 100: 지능형 관로 검사 로봇
200: 제어부 300: 연결 케이블
400: 케이블 권취부 10: 로봇 바디
11: 바디 조명부 12: 자이로스코프 센서
20: 구동 휠 30: 카메라 리프트
31: 제1 연결부 32: 제2 연결부
40: 카메라 헤드 41: 헤드 바디
S1: 제1 면 S2: 제2 면
42: 카메라 43: 헤드 조명부
44: 적외선 센서 G1: 제1 그래프
G2: 제2 그래프 OBV: 돌발 값
PP: 관로

Claims (10)

  1. 관로 내부를 주행하도록 구성되는 지능형 관로 검사 로봇 및 상기 지능형 관로 검사 로봇에 전기적으로 연결되어 제어 신호를 제공하는 제어부를 포함하는 관로 검사 시스템에 있어서,
    상기 지능형 관로 검사 로봇은,
    상기 관로 내부의 경사도를 실시간으로 측정하기 위한 자이로스코프 센서를 포함하는 로봇 바디;
    상기 로봇 바디에 회전 가능하게 결합된 복수의 구동 휠;
    상기 로봇 바디에 제1 연결부를 통해 결합되고 상하 구동 운동을 통해 높이 조절이 가능한 카메라 리프트; 및
    상기 카메라 리프트에 제2 연결부를 통해 결합되는 카메라 헤드를 포함하고,
    상기 카메라 헤드는,
    서로 마주보는 제1 면과 제2 면을 포함하는 헤드 바디;
    상기 제1 면 및 상기 제2 면 사이에 위치한 상기 헤드 바디의 일 단에 결합되어 상기 관로의 내부를 촬영하도록 구성되는 카메라;
    상기 헤드 바디의 상기 제1 면에 배치되고, 제1 적외선 송신기와 제1 적외선 수신기를 포함하는 제1 적외선 센서; 및
    상기 헤드 바디의 상기 제2 면에 배치되고, 제2 적외선 송신기와 제2 적외선 수신기를 포함하는 제2 적외선 센서를 포함하되,
    상기 카메라는 상기 제1 적외선 센서 및 상기 제2 적외선 센서 각각의 센싱 값들에 기초하여 상기 관로의 중심부에 위치하도록 높이가 조절되는,
    관로 검사 시스템.
  2. 제1 항에 있어서,
    상기 카메라를 상기 관로의 중심부에 위치시키기 위해, 상기 카메라 헤드는 상기 관로의 바닥면에 수직한 방향으로 상기 카메라 리프트에 의해 높이가 조절되어 상하 왕복 운동을 하고,
    상기 제1 적외선 센서는 상기 관로의 바닥면에 수평한 방향으로 상기 제1 적외선 센서와 상기 제1 적외선 센서에 인접하는 상기 관로 내부 벽면 사이의 제1 거리를 측정하며,
    상기 제2 적외선 센서는 상기 관로의 바닥면에 수평한 방향으로 상기 제2 적외선 센서와 상기 제2 적외선 센서에 인접하는 상기 관로 내부 벽면 사이의 제2 거리를 측정하되,
    상기 카메라는 상기 제1 거리와 상기 제2 거리의 합이 가장 긴 지점에 위치하는,
    관로 검사 시스템.
  3. 제2 항에 있어서,
    상기 지능형 관로 검사 로봇이 상기 지능형 관로 검사 로봇의 높이 및 상기 자이로스코프 센서를 통해 측정된 상기 관로의 관경값 중 적어도 하나가 변경되면,
    상기 카메라 헤드를 상하 왕복시키며 상기 제1 적외선 센서 및 상기 제2 적외선 센서를 통해 상기 제1 거리 및 상기 제2 거리를 재 측정하고,
    상기 제1 거리 및 상기 제2 거리의 합이 가장 긴 지점에 상기 카메라가 위치하도록 상기 카메라의 위치를 재 조정하는,
    관로 검사 시스템.
  4. 제2 항에 있어서,
    상기 제1 거리와 상기 제2 거리의 합이 가장 긴 지점에서,
    상기 제1 거리와 상기 제2 거리의 합 및 미리 저장된 상기 제1 적외선 센서 및 상기 제2 적외선 센서 사이의 거리를 합한 값을 상기 관로의 직경으로 측정하는,
    관로 검사 시스템.
  5. 제1 항에 있어서,
    상기 지능형 관로 검사 로봇은 상기 자이로스코프 센서를 이용하여 상기 지능형 관로 검사 로봇이 수평으로 설치된 상기 관로의 내부를 주행하면서 측정된 관로 경사도 로우 데이터를 실시간으로 상기 제어부에 제공하며,
    상기 제어부는 상기 관로 경사도 로우 데이터를 기초로 상기 지능형 관로 검사 로봇의 주행 거리 및 상기 관로 내부의 경사도를 축으로 하는 제1 그래프를 생성하여 모니터에 표시하는,
    관로 검사 시스템.
  6. 제5 항에 있어서,
    상기 제어부는 상기 관로 경사도 로우 데이터의 측정 값들 중 기 설정된 기준 범위를 초과하는 측정 값들을 돌발 값으로 판단하고, 상기 제1 그래프를 생성할 때, 상기 돌발 값을 제외하는,
    관로 검사 시스템.
  7. 제6 항에 있어서,
    상기 제어부는 상기 돌발 값의 발생 위치 및 상기 발생 위치에서의 관로 내부 영상을 상기 모니터에 비디오 영상으로 더 표시하는,
    관로 검사 시스템.
  8. 제5 항에 있어서,
    상기 제어부는 상기 관로 경사도 로우 데이터를 기초로 상기 제1 그래프를 변환하여, 상기 지능형 관로 검사 로봇의 주행 거리 및 상기 관로의 높이를 축으로 하는 제2 그래프를 생성하여 상기 모니터에 더 표시하는,
    관로 검사 시스템.
  9. 제1 항에 있어서,
    상기 지능형 관로 검사 로봇은 상기 로봇 바디의 앞 단에 결합되어 전방에 조명을 비추는 바디 조명부를 포함하는,
    관로 검사 시스템.
  10. 제1 항에 있어서,
    상기 카메라 헤드는 상기 헤드 바디에 결합되어 전방에 조명을 비추는 헤드 조명부를 포함하는,
    관로 검사 시스템.
KR1020200131736A 2020-10-13 2020-10-13 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템 KR102421133B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200131736A KR102421133B1 (ko) 2020-10-13 2020-10-13 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템
PCT/KR2020/016834 WO2022080575A1 (ko) 2020-10-13 2020-11-25 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200131736A KR102421133B1 (ko) 2020-10-13 2020-10-13 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템

Publications (2)

Publication Number Publication Date
KR20220048631A true KR20220048631A (ko) 2022-04-20
KR102421133B1 KR102421133B1 (ko) 2022-07-15

Family

ID=81208202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200131736A KR102421133B1 (ko) 2020-10-13 2020-10-13 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템

Country Status (2)

Country Link
KR (1) KR102421133B1 (ko)
WO (1) WO2022080575A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423420B1 (ko) * 2021-04-13 2022-07-21 권우성 밸브실용 맨홀 구조물의 높이 및 경사 조절장치
WO2024014570A1 (ko) * 2022-07-11 2024-01-18 탑전자산업 주식회사 관로에 대응하여 크기 및 모양 변경이 용이한 관로 검사 로봇을 포함하는 관로 검사 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126118A (ko) * 2009-05-22 2010-12-01 주식회사 구마건설 관로 조사용 자주차
KR101741664B1 (ko) * 2015-07-31 2017-05-31 한국산업기술대학교산학협력단 파이프 지형 탐사 탐색용 가변형 로봇
KR102040818B1 (ko) * 2019-02-26 2019-11-06 평원개발(주) 관로 경사 측정 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002320798A1 (en) * 2002-03-13 2003-09-22 Burn-Am Co., Ltd. Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
JP5575178B2 (ja) * 2011-07-25 2014-08-20 株式会社石川鉄工所 管路内検査装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126118A (ko) * 2009-05-22 2010-12-01 주식회사 구마건설 관로 조사용 자주차
KR101741664B1 (ko) * 2015-07-31 2017-05-31 한국산업기술대학교산학협력단 파이프 지형 탐사 탐색용 가변형 로봇
KR102040818B1 (ko) * 2019-02-26 2019-11-06 평원개발(주) 관로 경사 측정 시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423420B1 (ko) * 2021-04-13 2022-07-21 권우성 밸브실용 맨홀 구조물의 높이 및 경사 조절장치
WO2024014570A1 (ko) * 2022-07-11 2024-01-18 탑전자산업 주식회사 관로에 대응하여 크기 및 모양 변경이 용이한 관로 검사 로봇을 포함하는 관로 검사 시스템

Also Published As

Publication number Publication date
WO2022080575A1 (ko) 2022-04-21
KR102421133B1 (ko) 2022-07-15

Similar Documents

Publication Publication Date Title
US11519724B2 (en) Method for monitoring ground settlement based on computer vision
US8310653B2 (en) Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
KR102421133B1 (ko) 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템
EP2163847B1 (en) Instrument for examining/measuring an object to be measured
JPWO2003076916A1 (ja) 埋設管路内検査装置とその方法及び埋設管路内コンクリート劣化検査方法
US8345094B2 (en) System and method for inspecting the interior surface of a pipeline
WO2017215359A1 (zh) 实桥焊缝扫描仪及其扫描方法
KR101311357B1 (ko) 레이저 프로파일러를 이용한 하수관의 내부 탐사장치
EP0831299A1 (en) Device for observing inner wall surface of conduit
CN109268015B (zh) 基于非连续通视下顶管法联络通道施工的导向系统及方法
JP2917751B2 (ja) 柱体の建込み精度計測装置
CN112945974B (zh) 一种基于内窥镜的产品缺陷检测装置及检测方法
CN114279404A (zh) 一种基于相机串联网络的隧道沉降无线监测方法
CN202057310U (zh) 用于深腔盲孔测量的双远心内窥成像装置
US9127928B2 (en) Object location accounting for pitch, yaw and roll of device
CN210719050U (zh) 一种管道变形检测装置及管道爬行器
CN220870384U (zh) 一种激光剖面法测量管道变形和腐蚀程度的装置
KR20240008102A (ko) 관로에 대응하여 크기 및 모양 변경이 용이한 관로 검사 로봇을 포함하는 관로 검사 시스템
AU2016102406A4 (en) An unmanned ground vehicle for inspecting confined infrastructures
Marchisotti et al. Uncertainty mitigation in drone-based 3D scanning of defects in concrete structures
KR20240051086A (ko) 공동구 벽면 검사를 위한 다자유도 구동 장치 및 이를 이용한 공동구 벽면 검사 방법
JPH052246B2 (ko)
CN117267518A (zh) 一种激光剖面法测量管道变形和腐蚀程度的装置及方法
JPH08304051A (ja) 管内検査装置
JP2002181239A (ja) 小口径管布設精度計測サービス事業の方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant