KR20210158223A - 반도체 장치 및 이의 동작 방법 - Google Patents

반도체 장치 및 이의 동작 방법 Download PDF

Info

Publication number
KR20210158223A
KR20210158223A KR1020200076706A KR20200076706A KR20210158223A KR 20210158223 A KR20210158223 A KR 20210158223A KR 1020200076706 A KR1020200076706 A KR 1020200076706A KR 20200076706 A KR20200076706 A KR 20200076706A KR 20210158223 A KR20210158223 A KR 20210158223A
Authority
KR
South Korea
Prior art keywords
code
voltage
temperature
semiconductor device
sensing
Prior art date
Application number
KR1020200076706A
Other languages
English (en)
Inventor
김영균
이기웅
이상진
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020200076706A priority Critical patent/KR20210158223A/ko
Priority to US17/083,500 priority patent/US11442655B2/en
Priority to CN202110193376.9A priority patent/CN113838495A/zh
Publication of KR20210158223A publication Critical patent/KR20210158223A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0653Monitoring storage devices or systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • G06F3/0617Improving the reliability of storage systems in relation to availability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)

Abstract

본 기술은 반도체 장치 및 이의 동작 방법에 관한 것으로, 반도체 장치는 온도에 따라 내부 동작을 수행하기 위한 동작 전압을 생성하고, 반도체 장치의 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성하는 센싱 전압 생성부, 온도 전압 및 기준 전압을 기초로 내부 온도에 대응되는 센싱 코드 값 및 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 임시 코드를 생성하는 코드 생성부 및 임시 코드를 보정하여 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성하는 코드 보정부로서, 임시 코드 및 이전에 생성된 보정 코드를 기초로 보정 코드를 생성하는 코드 보정부를 포함한다.

Description

반도체 장치 및 이의 동작 방법{SEMICONDUCTOR DEVICE AND METHOD FOR OPERATING THE THEREOF}
본 발명은 반도체 장치에 관한 것으로, 보다 구체적으로는 온도 센서를 구비한 반도체 장치 및 이의 동작 방법에 관한 것이다.
메모리 장치는 데이터를 저장하는 장치로, 크게 휘발성 메모리 장치(Volatile memory device)와 불휘발성 메모리 장치(Nonvolatile memory device)로 구분된다. 휘발성 메모리 장치는 전원 공급이 차단되면 저장하고 있던 데이터가 소멸되는 메모리 장치이다. 휘발성 메모리 장치에는 SRAM (Static RAM), DRAM (Dynamic RAM), SDRAM (Synchronous DRAM) 등이 있다.
불휘발성 메모리 장치는 전원 공급이 차단되어도 저장하고 있던 데이터를 유지하는 메모리 장치이다. 불휘발성 메모리 장치에는 플래시 메모리, ROM (Read Only Memory), PROM (Programmable ROM), EPROM (Electrically Programmable ROM), EEPROM (Electrically Erasable and Programmable ROM), PRAM (Phase-change RAM), MRAM (Magnetic RAM), RRAM (Resistive RAM), FRAM (Ferroelectric RAM) 등이 있다. 플래시 메모리는 크게 노어 타입과 낸드(NAND) 타입으로 구분된다.
메모리 장치는 다수의 트랜지스터들을 포함할 수 있고, 다수의 트랜지스터들은 온도에 따라 전기적인 특성이 달라질 수 있다. 즉, 메모리 장치는 온도에 따라 성능 및 특성이 달라질 수 있다. 따라서, 메모리 장치는 퍼포먼스의 최적화를 위하여 온도 정보를 제공하는 DTS (Digital Temperature Sensor)를 포함할 수 있다. DTS가 제공하는 온도 정보는 메모리 장치의 최적화를 위하여 제공되는 정보이므로, DTS는 메모리 장치의 내부 동작을 수행하기 전에 온도를 측정하고, 메모리 장치는 측정된 온도에 따라 내부 동작에 대한 보상을 수행하여야 한다.
다만, DTS는 온도를 복수의 구간으로 분할하고, 분할된 복수의 구간에 대응되는 코드를 출력하므로, 측정된 온도가 분할된 구간의 경계에 위치한 경우, 작은 온도 변화에도 출력되는 코드가 달라지는 문제가 발생할 수 있다.
본 발명의 실시 예는 작은 온도 변화에 따라 발생하는 코드 변경을 최소화하여 노이즈를 줄일 수 있는 반도체 장치 및 이의 동작 방법을 제공한다.
본 발명의 실시 예에 따른 반도체 장치는 온도에 따라 내부 동작을 수행하기 위한 동작 전압을 생성하고, 상기 반도체 장치의 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 상기 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성하는 센싱 전압 생성부, 상기 온도 전압 및 상기 기준 전압을 기초로 상기 내부 온도에 대응되는 센싱 코드 값 및 상기 내부 온도가 상기 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 임시 코드를 생성하는 코드 생성부 및 상기 임시 코드를 보정하여 상기 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성하는 코드 보정부로서, 상기 임시 코드 및 이전에 생성된 보정 코드를 기초로 보정 코드를 생성하는 코드 보정부를 포함할 수 있다.
본 발명의 실시 예에 따른 반도체 장치의 동작 방법은 온도에 따라 내부 동작을 수행하기 위한 동작 전압을 생성하고, 상기 반도체 장치의 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 상기 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성하는 단계, 상기 온도 전압 및 상기 기준 전압을 기초로 상기 내부 온도에 대응되는 센싱 코드 값 및 상기 내부 온도가 상기 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 임시 코드를 생성하는 단계 및 상기 임시 코드 및 이전에 생성된 보정 코드를 기초로 상기 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성하는 단계를 포함할 수 있다.
본 기술의 실시 예에 따르면, 작은 온도 변화에 따라 발생하는 코드 변경을 최소화하여 노이즈를 줄일 수 있는 반도체 장치 및 이의 동작 방법이 제공된다.
도 1은 본 발명의 일 실시 예에 따른 메모리 시스템을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시 예에 따른 메모리 장치를 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 온도 센서를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 경계 값을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 반도체 장치의 동작 방법을 설명하기 위한 흐름도이다.
도 6은 본 발명의 일 실시 예에 따른 보정 코드를 생성하는 방법을 설명하기 위한 도면이다.
도 7은 본 발명의 메모리 시스템의 다양한 실시 예를 설명하기 위한 도면이다.
도 8은 본 발명의 메모리 시스템의 다양한 실시 예를 설명하기 위한 도면이다.
도 9은 본 발명의 메모리 시스템의 다양한 실시 예를 설명하기 위한 도면이다.
도 10은 본 발명의 메모리 시스템의 다양한 실시 예를 설명하기 위한 도면이다.
본 명세서 또는 출원에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시 예들은 다양한 형태로 실시될 수 있으며 본 명세서 또는 출원에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다. 구체적으로, 본 명세서 전체에서, 반도체 장치가 메모리 장치로 구현되는 것으로 개시하였지만, 이는 설명의 편의를 위한 일 실시 예에 불과할 뿐, 반도체 장치가 메모리 장치로 구현되는 일 실시 예에 한정되지 않으며, 반도체 장치는 다이오드 또는 트랜지스터를 포함하는 어떠한 전자 장치로도 구현될 수 있다.
명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 일 실시 예에 따른 메모리 시스템을 설명하기 위한 도면이다.
도 1을 참조하면, 메모리 시스템(10000)은 메모리 장치(1000) 및 메모리 컨트롤러(2000)을 포함할 수 있다.
메모리 시스템(10000)은 휴대폰, 스마트폰, MP3 플레이어, 랩탑 컴퓨터, 데스크탑 컴퓨터, 게임기, 테블릿 PC 또는 차량용 인포테인먼트(in-vehicle infotainment) 시스템 등과 같이 호스트(3000)의 제어에 따라 데이터를 저장하는 장치일 수 있다.
메모리 시스템(10000)은 호스트(3000)와의 통신 방식인 호스트 인터페이스에 따라서 다양한 종류의 저장 장치 중 어느 하나로 제조될 수 있다. 예를 들면, 메모리 시스템(10000)은 SSD, MMC, eMMC, RS-MMC, micro-MMC 형태의 멀티 미디어 카드(multimedia card), SD, mini-SD, micro-SD 형태의 시큐어 디지털(secure digital) 카드, USB(universal storage bus) 저장 장치, UFS(universal flash storage) 장치, PCMCIA(personal computer memory card international association) 카드 형태의 저장 장치, PCI(peripheral component interconnection) 카드 형태의 저장 장치, PCI-E(PCI express) 카드 형태의 저장 장치, CF(compact flash) 카드, 스마트 미디어(smart media) 카드, 메모리 스틱(memory stick) 등과 같은 다양한 종류의 저장 장치들 중 어느 하나로 구성될 수 있다.
메모리 시스템(10000)는 다양한 종류의 패키지(package) 형태들 중 어느 하나로 제조될 수 있다. 예를 들면, 메모리 시스템(10000)는 POP(package on package), SIP(system in package), SOC(system on chip), MCP(multi-chip package), COB(chip on board), WFP(wafer-level fabricated package), WSP(waferlevel stack package) 등과 같은 다양한 종류의 패키지 형태들 중 어느 하나로 제조될 수 있다.
메모리 장치(1000)는 데이터를 저장할 수 있다. 메모리 장치(1000)는 메모리 컨트롤러(2000)의 제어에 응답하여 동작할 수 있다. 또한, 메모리 장치(1000)는 데이터를 저장하는 복수의 메모리 셀들을 포함하는 메모리 셀 어레이를 포함할 수 있다. 메모리 셀들은 각각 하나의 데이터 비트를 저장하는 싱글 레벨 셀(Single Level Cell; SLC), 두 개의 데이터 비트들을 저장하는 멀티 레벨 셀(Multi Level Cell; MLC, 이하 MLC), 세 개의 데이터 비트들을 저장하는 트리플 레벨 셀(Triple Level Cell; TLC, 이하 TLC) 또는 네 개의 데이터 비트를 저장할 수 있는 쿼드 레벨 셀(Quad Level Cell; QLC)로 구성될 수 있다.
메모리 셀 어레이는 복수의 메모리 블록들을 포함할 수 있고, 각 메모리 블록은 복수의 메모리 셀들을 포함할 수 있다. 또한, 하나의 메모리 블록은 복수의 페이지들을 포함할 수 있다. 실시 예에서, 페이지는 메모리 장치(1000)에 데이터를 저장하거나, 메모리 장치(1000)에 저장된 데이터를 리드하는 단위일 수 있고, 메모리 블록은 데이터를 지우는 단위일 수 있다.
실시 예에서, 메모리 장치(1000)는 DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory), LPDDR4(Low Power Double Data Rate4) SDRAM, GDDR(Graphics Double Data Rate) SDRAM, LPDDR(Low Power DDR), RDRAM(Rambus Dynamic Random Access Memory), 낸드 플래시 메모리(NAND flash memory), 수직형 낸드 플래시 메모리(Vertical NAND), 노아 플래시 메모리(NOR flash memory), 저항성 램(resistive random access memory: RRAM), 상변화 메모리(phase-change memory: PRAM), 자기저항 메모리(magnetoresistive random access memory: MRAM), 강유전체 메모리(ferroelectric random access memory: FRAM), 스핀주입 자화반전 메모리(spin transfer torque random access memory: STT-RAM) 등으로 구현될 수 있다. 본 명세서에서는 설명의 편의를 위해, 메모리 장치(1000)가 낸드 플래시 메모리인 경우를 가정하여 설명하였으나, 이에 국한되지 않고 다양한 메모리 장치(1000)로 구현될 수 있다.
메모리 장치(1000)는 낸드 플래시 메모리일 수 있다. 메모리 장치(1000)는 메모리 컨트롤러(2000)로부터 커맨드 및 어드레스를 수신할 수 있다. 메모리 장치(1000)는 메모리 셀 어레이 중 수신된 어드레스에 의해 선택된 영역을 액세스하도록 구성될 수 있다. 선택된 영역을 액세스한다는 것은 선택된 영역에 대해서 수신된 커맨드에 해당하는 동작을 수행함을 의미할 수 있다. 예를 들면, 메모리 장치(1000)는 쓰기 동작(프로그램 동작), 리드 동작 및 소거 동작을 포함하는 내부 동작을 수행할 수 있다. 프로그램 동작 시에, 메모리 장치(1000)는 어드레스에 의해 선택된 영역에 데이터를 프로그램할 수 있다. 리드 동작 시에, 메모리 장치(1000)는 어드레스에 의해 선택된 영역으로부터 데이터를 읽을 수 있다. 소거 동작 시에, 메모리 장치(1000)는 어드레스에 의해 선택된 영역에 저장된 데이터를 소거할 수 있다.
다른 실시 예에서, 메모리 장치(1000)는 다이나믹 랜덤 액세스 메모리(Dynamic RAM)일 수 있다. 메모리 장치(1000)는 메모리 컨트롤러(2000)로부터 커맨드 및 어드레스를 수신할 수 있다. 메모리 장치(1000)는 메모리 셀 어레이 중 수신된 어드레스에 의해 선택된 영역을 액세스하도록 구성될 수 있다. 선택된 영역을 액세스한다는 것은 선택된 영역에 대해서 수신된 커맨드에 해당하는 동작을 수행함을 의미할 수 있다. 예를 들면, 메모리 장치(1000)는 데이터 입출력 동작 또는 리프레시(refresh) 동작을 수행할 수 있다. 데이터 입출력 동작은 메모리 장치(1000)는 어드레스에 의해 선택된 영역에 데이터를 저장하기 위해 데이터를 입력받거나, 저장된 데이터를 출력하여 읽는 동작일 수 있다. 리프레시(refresh) 동작은 메모리 장치(1000)는 저장된 데이터를 보존하기 위한 동작일 수 있다.
메모리 장치(1000)는 메모리 셀을 포함할 수 있다. 메모리 컨트롤러(2000)의 제어에 응답하여 메모리 장치(1000)는 메모리 셀에 대한 내부 동작을 수행할 수 있다. 메모리 셀에 대한 내부 동작은 프로그램 동작, 리드 동작 또는 소거 동작 중에 적어도 하나를 포함할 수 있다. 다른 실시 예에서, 메모리 셀에 대한 내부 동작은 데이터 입출력 동작 또는 리프레시(refresh) 동작 중에 적어도 하나를 포함할 수 있다.
메모리 컨트롤러(2000)는 메모리 시스템(10000)의 전반적인 동작을 제어할 수 있다. 메모리 시스템(10000)에 전원이 인가되면, 메모리 컨트롤러(2000)는 펌웨어(firmware, FW)를 실행할 수 있다. 펌웨어(FW)는 호스트(3000)로부터 입력된 요청을 수신하거나 호스트(3000)로 응답을 출력하는 호스트 인터페이스 레이어(Host Interface Layer, HIL), 호스트(3000)의 인터페이스와 메모리 장치(1000)의 인터페이스 사이의 동작의 관리하는 플래시 변환 레이어(Flash Translation Layer, FTL) 및 메모리 장치(1000)에 커맨드를 제공하거나, 메모리 장치(1000)로부터 응답을 수신하는 플래시 인터페이스 레이어(Flash Interface Layer, FIL)를 포함할 수 있다.
메모리 컨트롤러(2000)는 호스트(3000)로부터 데이터와 논리 어드레스(Logical Address, LA)를 입력 받고, 논리 블록 어드레스를 메모리 장치(1000)에 포함된 데이터가 저장될 메모리 셀들의 주소를 나타내는 물리 어드레스(Physical Address, PA)로 변환할 수 있다. 논리 어드레스는 논리 블록 어드레스(Logical Block Address, LBA)일 수 있고, 물리 어드레스는 물리 블록 어드레스(Physical Block Address, PBA)일 수 있다.
메모리 컨트롤러(2000)는 호스트(3000)의 요청에 따라 프로그램 동작, 리드 동작 또는 소거 동작 등을 포함하는 내부 동작을 수행하도록 메모리 장치(1000)를 제어할 수 있다. 프로그램 동작 시, 메모리 컨트롤러(2000)는 프로그램 커맨드, 물리 블록 어드레스 및 데이터를 메모리 장치(1000)에 제공할 수 있다. 리드 동작 시, 메모리 컨트롤러(2000)는 리드 커맨드 및 물리 블록 어드레스를 메모리 장치(1000)에 제공할 수 있다. 소거 동작 시, 메모리 컨트롤러(2000)는 소거 커맨드 및 물리 블록 어드레스를 메모리 장치(1000)에 제공할 수 있다.
또는, 메모리 컨트롤러(2000)는 호스트(3000)로부터의 요청과 무관하게 자체적으로 프로그램 동작, 리드 동작 또는 소거 동작을 포함하는 내부 동작을 수행하도록 메모리 장치(1000)를 제어할 수 있다. 예를 들면, 메모리 컨트롤러(2000)는 웨어 레벨링(wear leveling), 가비지 컬렉션(garbage collection), 리드 리클레임(read reclaim) 등의 배경 동작(background operation)을 수행하기 위해 사용되는 프로그램 동작, 리드 동작 또는 소거 동작을 수행하도록 메모리 장치(1000)를 제어할 수 있다.
실시 예에서, 메모리 컨트롤러(2000)는 메모리 장치(1000)에 포함된 온도 센서(100)를 제어할 수 있다. 구체적으로, 메모리 컨트롤러(2000)는 온도 측정 커맨드를 생성할 수 있고, 생성된 온도 측정 커맨드를 이용하여 메모리 장치(1000)에 포함된 온도 센서(100)가 메모리 장치(1000)의 온도를 감지하도록 온도 센서(100)를 제어할 수 있다. 또는, 메모리 컨트롤러(2000)는 메모리 장치(1000)가 온도 측정 커맨드를 생성하도록 메모리 장치(1000)를 제어하여 온도 센서(100)를 간접적으로 제어할 수 있다.
실시 예에서, 메모리 장치(1000)가 내부 동작을 수행함에 따라, 메모리 장치(1000)의 내부 온도가 변할 수 있다. 내부 온도는 메모리 장치(1000)의 온도에 대응되거나, 또는 메모리 셀 어레이의 온도에 대응될 수 있다. 메모리 장치(1000)가 내부 동작을 많이 수행할 수록 메모리 장치(1000)의 내부 온도가 증가할 수 있다. 메모리 장치(1000)의 내부 온도가 지나치게 높아지면 메모리 장치(1000)가 열화될 가능성이 높아질 수 있다. 즉, 메모리 장치(1000)의 내부 동작이 페일(fail)될 확률이 증가하므로, 메모리 장치(1000)의 성능이 열화될 수 있다. 따라서, 메모리 컨트롤러(2000)는 메모리 장치(1000)의 내부 동작이 수행될 때마다 온도를 측정하도록 온도 센서(100) 또는 메모리 장치(1000)를 제어할 수 있다. 그리고, 내부 온도가 지나치게 높아지는 경우, 메모리 컨트롤러(2000)는 메모리 장치(1000)의 내부 온도가 감소되도록 메모리 장치(1000)의 내부 동작을 제한할 수 있다. 메모리 컨트롤러(2000)는 메모리 장치(1000)의 내부 동작을 제한함으로써, 메모리 장치(1000)의 내부 온도가 낮아지도록 메모리 장치(1000)를 제어할 수 있다. 여기서, 내부 동작은 프로그램 동작, 리드 동작 또는 소거 동작을 포함할 수 있고, 웨어 레벨링(wear leveling), 가비지 컬렉션(garbage collection), 리드 리클레임(read reclaim) 등을 포함하는 배경 동작(background operation)을 포함할 수 있다.
온도 센서(100)는 디지털 온도 센싱 회로(Digital Temperature Sensing Circuit)로 구현되어 온도를 디지털 신호인 코드(CODE)로 변환하여 출력할 수 있다. 즉, 온도 센서(100)는 아날로그를 디지털로 변환하여 출력할 수 있다. 구체적으로, 온도 센서(100)는 측정된 내부 온도에 대응되는 코드를 출력할 수 있고, 출력된 코드를 메모리 장치(1000) 또는 메모리 컨트롤러(2000)로 전송할 수 있다.
여기서, 코드(CODE)는 높은 비트 수가 할당될수록 고해상도(high resolution)를 구현될 수 있다. 해상도는 코드에 대응되는 온도 구간을 의미할 수 있고, 해상도가 높을수록 하나의 코드에 대응되는 온도 구간 또는 온도 범위가 작을 수 있다. 예를 들어, 해상도가 낮은 경우, 적은 비트 수가 할당되어 하나의 코드당 대응되는 온도 구간이 20℃일 수 있고, 온도가 0℃, 10℃ 및 20℃인 경우 모두 출력되는 코드가 1일 수 있다. 반면에, 해상도가 높은 경우, 높은 비트 수가 할당되어 하나의 코드당 대응되는 온도 구간이 1℃일 수 있고, 온도가 0℃, 10℃ 및 20℃는 출력되는 코드가 각각 0, 10, 20일 수 있다. 즉, 해상도가 높을수록 동일한 온도 차이에서의 출력되는 코드의 차이가 크므로, 실제적인 온도와 생성된 코드가 나타내는 온도의 차이는 작아지고, 코드에 대응되는 실제적인 내부 온도가 정확하게 표현될 수 있다.
그리고, 온도 센서(100)는 메모리 장치(1000) 또는 메모리 컨트롤러(2000)로부터 송신되는 명령어(예컨대, 온도 측정 커맨드)에 응답하여 메모리 장치(1000) 또는 메모리 시스템(10000)의 내부 온도를 감지하고 감지된 내부 온도에 대응되는 코드를 출력할 수 있다. 또는, 온도 센서(100)는 메모리 장치(1000) 또는 메모리 컨트롤러(2000)로부터 송신되는 명령어와 상관없이 일정한 시간에 따라 메모리 장치(1000) 또는 메모리 시스템(10000)의 내부 온도를 감지하고 코드를 출력하는 동작을 수행할 수 있다. 구체적으로, 온도 센서(100)는 일정한 주기에 따라 온도를 감지하고 코드를 출력하는 동작을 수행할 수 있다. 메모리 장치(1000) 또는 메모리 컨트롤러(2000)는 온도 센서(100)로부터 출력된 코드에 기초하여 메모리 장치(1000) 또는 메모리 컨트롤러(2000) 온도를 식별할 수 있다. 구체적인 온도 센서(100)의 동작 방법은 도 3을 참조하여 후술하기로 한다.
호스트(3000)는 USB(Universal Serial Bus), SATA(Serial AT Attachment), SAS(Serial Attached SCSI), HSIC(High Speed Interchip), SCSI(Small Computer System Interface), PCI(Peripheral Component Interconnection), PCIe(PCI express), NVMe(NonVolatile Memory express), UFS(Universal Flash Storage), SD(Secure Digital), MMC(MultiMedia Card), eMMC(embedded MMC), DIMM(Dual In-line Memory Module), RDIMM(Registered DIMM), LRDIMM(Load Reduced DIMM) 등과 같은 다양한 통신 방식들 중 적어도 하나를 이용하여 메모리 시스템(10000)와 통신할 수 있다.
한편, 도 1에서는 하나의 온도 센서(100)가 하나의 메모리 장치(1000)에 포함되는 형태로 도시하였으나, 이는 일 실시 예에 불과하고, 구현시에는 온도 센서(100)가 메모리 장치(1000)에 부착되거나 하나의 온도 센서(100)에 복수의 메모리 장치(1000)가 연결되는 형태로 구현될 수 있으며, 온도 센서(100)는 별개의 전자 장치로 구현될 수도 있다.
도 2는 본 발명의 일 실시 예에 따른 메모리 장치를 설명하기 위한 도면이다.
도 2를 참조하면, 메모리 장치(1000)는 메모리 셀 어레이(1100), 주변 회로(1200), 제어 로직(1300) 및 온도 센서(100)를 포함할 수 있다. 도 2는 설명의 편의를 위하여 메모리 장치(1000)가 낸드 플래시 메모리인 경우를 가정하여 설명하였으나, 이에 국한되지 않고 다양한 메모리 장치(1000) 또는 반도체 장치로 구현될 수 있다.
메모리 셀 어레이(1100)는 복수의 메모리 블록들(BLK1~BLKz)을 포함할 수 있다. 복수의 메모리 블록들(BLK1~BLKz)은 행 라인들(RL)을 통해 로우 디코더(1210)에 연결될 수 있다. 그리고, 복수의 메모리 블록들(BLK1~BLKz)은 비트 라인들(BL1 내지 BLn)을 통해 페이지 버퍼 그룹(1230)에 연결될 수 있다. 복수의 메모리 블록들(BLK1~BLKz) 각각은 복수의 메모리 셀들을 포함할 수 있다. 실시 예로서, 복수의 메모리 셀들은 비휘발성 메모리 셀들일 수 있다. 같은 워드라인에 연결된 메모리 셀들은 하나의 페이지로 정의될 수 있다. 즉, 메모리 셀 어레이(1100)는 다수의 물리 페이지들로 구성될 수 있다. 따라서, 하나의 메모리 블록은 복수의 페이지들을 포함할 수 있다.
메모리 셀 어레이(1100)에 포함된 메모리 셀들은 각각 하나의 데이터 비트를 저장하는 싱글 레벨 셀(Single Level Cell; SLC), 두 개의 데이터 비트들을 저장하는 멀티 레벨 셀(Multi Level Cell; MLC), 세 개의 데이터 비트들을 저장하는 트리플 레벨 셀(Triple Level Cell; TLC) 또는 네 개의 데이터 비트를 저장할 수 있는 쿼드 레벨 셀(Quad Level Cell; QLC)로 구성될 수 있다.
주변 회로(1200)는 제어 로직(1300)의 제어에 따라 메모리 셀 어레이(1100)의 선택된 영역에 프로그램 동작, 리드 동작 또는 소거 동작을 수행하도록 구성될 수 있다. 주변 회로(1200)는 메모리 셀 어레이(1100)를 구동할 수 있다. 예를 들어, 주변 회로(1200)는 제어 로직(1300)의 제어에 따라 행 라인들(RL) 및 비트 라인들(BL1~BLn)에 다양한 동작 전압들을 인가하거나, 인가된 전압들을 디스차지 할 수 있다.
주변 회로(1200)는 로우 디코더(1210), 구동 전압 생성부(1220), 페이지 버퍼 그룹(1230), 컬럼 디코더(1240), 입출력 회로(1250) 및 센싱 회로(1260)를 포함할 수 있다.
주변 회로(1200)는 메모리 셀 어레이(1100)를 구동할 수 있다. 예를 들어, 주변 회로(1200)는 프로그램 동작, 리드 동작 및 소거 동작을 수행하도록 메모리 셀 어레이(1100)를 구동할 수 있다.
로우 디코더(1210)는 행 라인들(RL)을 통해 메모리 셀 어레이(1100)에 연결될 수 있다. 행 라인들(RL)은 적어도 하나 이상의 소스 선택 라인, 복수의 워드라인들 및 적어도 하나 이상의 드레인 선택 라인을 포함할 수 있다. 실시 예에서, 워드라인들은 노멀 워드라인들과 더미 워드라인들을 포함할 수 있다. 행 라인 들(RL)은 파이프 선택 라인을 더 포함할 수 있다.
로우 디코더(1210)는 제어 로직(1300)의 제어에 응답하여 동작하도록 구성될 수 있다. 로우 디코더(1210)는 제어 로직(1300)으로부터 로우 어드레스(RADD)를 수신할 수 있다. 그리고, 로우 디코더(1210)는 로우 어드레스(RADD)를 디코딩하도록 구성될 수 있다. 로우 디코더(1210)는 디코딩된 어드레스에 따라 메모리 블록들(BLK1~BLKz) 중 적어도 하나의 메모리 블록을 선택할 수 있다. 또한, 로우 디코더(1210)는 디코딩된 어드레스에 따라 구동 전압 생성부(1220)가 생성한 전압들을 적어도 하나의 워드라인(WL)에 인가하도록 선택된 메모리 블록의 적어도 하나의 워드라인을 선택할 수 있다.
예를 들어, 프로그램 동작 시에, 로우 디코더(1210)는 선택된 워드라인에 프로그램 전압을 인가하고 비선택된 워드라인들에 프로그램 전압보다 낮은 레벨의 프로그램 패스 전압을 인가할 수 있다. 프로그램 검증 동작 시에, 로우 디코더(1210)는 선택된 워드라인에 검증 전압을 인가하고 비선택된 워드라인들에 검증 전압보다 높은 검증 패스 전압을 인가할 수 있다. 리드 동작 시에, 로우 디코더(1210)는 선택된 워드라인에 리드 전압을 인가하고, 비선택된 워드라인들에 리드 전압보다 높은 리드 패스 전압을 인가할 수 있다.
실시 예에서, 메모리 장치(1000)의 소거 동작은 메모리 블록 단위로 수행될 수 있다. 소거 동작 시에 로우 디코더(1210)는 디코딩된 어드레스에 따라 하나의 메모리 블록을 선택할 수 있다. 소거 동작 시, 로우 디코더(1210)는 선택된 메모리 블록에 연결되는 워드라인들에 접지 전압을 인가할 수 있다.
구동 전압 생성부(1220)는 제어 로직(1300)의 제어에 응답하여 동작할 수 있다. 구동 전압 생성부(1220)는 메모리 장치(1000)에 공급되는 외부 전원 전압을 이용하여 복수의 전압들을 발생하도록 구성될 수 있다. 구체적으로, 구동 전압 생성부(1220)는 동작 신호(OPSIG)에 응답하여 프로그램, 리드 및 소거 동작들에 사용되는 다양한 동작 전압들(Vop)을 생성할 수 있다. 예를 들어, 구동 전압 생성부(1220)는 제어 로직(1300)의 제어에 응답하여 프로그램 전압, 검증 전압, 패스 전압, 리드 전압 및 소거 전압 등을 생성할 수 있다.
실시 예로서, 구동 전압 생성부(1220)는 외부 전원 전압을 레귤레이팅하여 내부 전원 전압을 생성할 수 있다. 구동 전압 생성부(1220)에서 생성된 내부 전원 전압은 메모리 장치(1000)의 동작 전압으로서 사용될 수 있다. 즉, 구동 전압 생성부(1220)는 외부 전원 전압 또는 내부 전원 전압을 이용하여 복수의 전압들을 생성할 수 있다.
예를 들면, 구동 전압 생성부(1220)는 내부 전원 전압을 수신하는 복수의 펌핑 커패시터들을 포함하고, 제어 로직(1300)의 제어에 응답하여 복수의 펌핑 커패시터들을 선택적으로 활성화하여 복수의 전압들을 생성할 수 있다. 생성된 복수의 전압들은 로우 디코더(1210)에 의해 메모리 셀 어레이(1100)에 공급될 수 있다.
또한, 구동 전압 생성부(1220)는 밴드갭 레퍼런스(Bandgap Reference)를 포함할 수 있고, 구동 전압 생성부(1220)는 온도에 독립적이고 회로 부하에 관계 없이 일정한 고정 전압을 온도 센서(100)에 제공할 수 있다. 즉, 구동 전압 생성부(1220)는 온도 센서(100)가 온도에 따른 코드를 생성할 수 있도록 고정 전압을 온도 센서(100)에 제공할 수 있다.
실시 예로서, 구동 전압 생성부(1220)는 온도 센서(100)로부터 출력된 코드를 수신하고, 수신된 코드에 따라 동작 전압을 보상할 수 있다. 예를 들어, 구동 전압 생성부(1220)는 수신된 코드에 따라 프로그램 전압, 검증 전압, 패스 전압, 리드 전압 및 소거 전압 등을 생성할 수 있다.
프로그램 동작 시, 구동 전압 생성부(1220)는 선택된 워드라인에 인가되는 프로그램 전압(Vpgm), 비선택된 워드라인에 인가되는 패스 전압(VpassP) 또는 드레인 선택 라인에 인가되는 전압(VPDSL)을 수신된 코드에 따라 변경할 수 있다.
리드 동작 시, 구동 전압 생성부(1220)는 워드 라인의 비트 별 evaluation을 확인하기 위해 PB Sense Transistor에 인가되는 전압(Vpbsense) 또는 패스 리드 전압(VpassR)을 수신된 코드에 따라 변경할 수 있다.
소거 동작 시, 구동 전압 생성부(1220)는 드레인 선택 라인 및 소스 선택 라인에 인가되는 전압들(VGIDL_DSL, VGIDL_SSL)과 블록에 GIDL을 발생시키기 위해 인가되는 소거 전압(Verase)을 수신된 코드에 따라 변경할 수 있다.
여기서, 코드의 변경에 따른 프로그램 전압의 변화 값(△Vpgm), 리드 전압의 변화 값(△Vpbsense) 또는 소거 전압의 변화 값(△Verase)은 상호 간 서로 다른 값일 수 있다. 그리고, 프로그램 전압의 변화 값(△Vpgm) 및 프로그램 패스 전압의 변화 값(△VpassP)은 서로 같은 값일 수 있고, 리드 전압의 변화 값(△Vpbsense)보다 클 수 있다. 그리고, 소거 전압의 변화 값(△Verase)은 리드 전압의 변화 값(△Vpbsense)보다 클 수 있다.
한편, 도 2 및 도 3에는 구동 전압 생성부(1220)와 센싱 전압 생성부(110)를 별개의 형태로 도시하였으나, 이는 일 실시 예에 불과하며 구현시에는 구동 전압 생성부(1220)가 후술하는 도 3의 센싱 전압 생성부(110)를 포함하는 형태로도 구현될 수 있다.
페이지 버퍼 그룹(1230)은 제1 내지 제n 페이지 버퍼들(PB1~PBn)을 포함할 수 있다. 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 각각 제1 내지 제n 비트 라인들(BL1~BLn)을 통해 메모리 셀 어레이(1100)에 연결될 수 있다. 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 제어 로직(1300)의 제어에 응답하여 동작할 수 있다. 구체적으로, 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 페이지 버퍼 제어 신호들(PBSIGNALS)에 응답하여 동작할 수 있다. 예를 들면, 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 제1 내지 제n 비트 라인들(BL1~BLn)을 통해 수신된 데이터를 임시로 저장하거나, 리드 또는 검증 동작 시, 비트 라인들(BL1~BLn)의 전압 또는 전류를 센싱(sensing)할 수 있다.
구체적으로, 프로그램 동작 시, 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 선택된 워드라인에 프로그램 펄스가 인가될 때, 데이터 입출력 회로(1250)를 통해 수신한 데이터(DATA)를 제1 내지 제n 비트 라인들(BL1~BLn)을 통해 선택된 메모리 셀들에 전달할 수 있다. 전달된 데이터(DATA)에 따라 선택된 페이지의 메모리 셀들은 프로그램 될 수 있다. 프로그램 허용 전압(예를 들면, 접지 전압)이 인가되는 비트 라인과 연결된 메모리 셀은 상승된 문턱전압을 가질 수 있다. 프로그램 금지 전압(예를 들면, 전원 전압)이 인가되는 비트 라인과 연결된 메모리 셀의 문턱전압은 유지될 수 있다. 프로그램 검증 동작 시에, 제 1 내지 제 n 페이지 버퍼들(PB1~PBn)은 선택된 메모리 셀들로부터 제1 내지 제n 비트 라인들(BL1~BLn)을 통해 페이지 데이터를 읽을 수 있다.
리드 동작 시, 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 선택된 페이지의 메모리 셀들로부터 제1 내지 제n 비트 라인들(BL1~BLn)을 통해 데이터(DATA)를 읽고, 읽어진 데이터(DATA)를 컬럼 디코더(1240)의 제어에 따라 데이터 입출력 회로(1250)로 출력할 수 있다.
소거 동작 시에, 제1 내지 제n 페이지 버퍼들(PB1~PBn)은 제1 내지 제n 비트 라인들(BL1~BLn)을 플로팅(floating) 시킬 수 있다.
컬럼 디코더(1240)는 컬럼 어드레스(CADD)에 응답하여 입출력 회로(1250)와 페이지 버퍼 그룹(1230) 사이에서 데이터를 전달할 수 있다. 예를 들면, 컬럼 디코더(1240)는 데이터 라인들(DL)을 통해 제1 내지 제n 페이지 버퍼들(PB1~PBn)과 데이터를 주고받거나, 컬럼 라인들(CL)을 통해 입출력 회로(1250)와 데이터를 주고받을 수 있다.
입출력 회로(1250)는 메모리 컨트롤러(2000)로부터 전달받은 커맨드(CMD) 및 어드레스(ADDR)를 제어 로직(1300)에 전달하거나, 데이터(DATA)를 컬럼 디코더(1240)와 주고받을 수 있다. 실시 예에서, 입출력 회로(1250)를 통해 온도에 대한 코드가 메모리 컨트롤러(2000)에 전달될 수 있다. 코드는 온도 센서(100)가 측정한 메모리 장치(1000)의 내부 온도를 측정한 값을 의미할 수 있다.
센싱 회로(1260)는 리드 동작(read operation) 또는 검증 동작(verify operation)시, 허용 비트 신호(VRYBIT)에 응답하여 기준 전류를 생성하고, 페이지 버퍼 그룹(1230)으로부터 수신된 센싱 전압(VPB)과 기준 전류에 의해 생성된 기준 전압을 비교하여 패스 신호(PASS) 또는 페일 신호(FAIL)를 출력할 수 있다.
제어 로직(1300)은 커맨드(CMD) 및 어드레스(ADDR)에 응답하여 동작 신호(OPSIG), 로우 어드레스(RADD), 페이지 버퍼 제어 신호들(PBSIGNALS), 허용 비트(VRYBIT) 및 온도 센서 제어 신호(DTS_CMD)를 출력하여 주변 회로(1200) 및 온도 센서(100)를 제어할 수 있다. 또한, 제어 로직(1300)은 패스 또는 페일 신호(PASS 또는 FAIL)에 응답하여 검증 동작이 패스 또는 페일 되었는지를 판단할 수 있고, 온도 센서(100)로부터 출력되는 코드에 기초하여 메모리 장치(1000)의 온도 정보를 식별할 수 있다.
제어 로직(1300)는 온도 센서(100)로 온도 센서 제어 신호(DTS_CMD)를 전송할 수 있고, 온도 센서(100)는 온도 센서 제어 신호(DTS_CMD)에 응답하여 온도에 대응되는 코드를 생성할 수 있다. 제어 로직(1300)는 온도 센서 제어 신호(DTS_CMD)를 기설정된 주기로 일정하게 전송할 수 있고, 메모리 장치(1000)의 내부 동작이 수행됨에 따라 온도 센서 제어 신호(DTS_CMD)를 온도 센서(100)로 전송할 수 있다.
한편, 도 2에서는 온도 센서(100)가 메모리 장치(1000)의 내부에 위치하는 것으로 도시되었으나, 온도 센서(100)는 메모리 장치(1000)의 외부에 위치하는 형태로 구현될 수 있다. 온도 센서(100)의 구체적인 구성 및 동작은 도 3을 참조하여 자세하게 설명하도록 한다.
도 3은 본 발명의 일 실시 예에 따른 온도 센서를 설명하기 위한 도면이다.
도 3을 참조하면, 온도 센서(100)는 센싱 전압 생성부(110), 코드 생성부(120), 코드 보정부(130) 및 코드 레지스터(140)를 포함할 수 있다.
온도 센서(100)는 온도 센서 제어 신호(DTS_CMD)에 응답하여 측정된 온도에 대응되는 코드를 생성할 수 있다. 여기서, 온도 센서 제어 신호(DTS_CMD)는 기설정된 주기로 생성될 수 있고, 온도 센서(100)는 일정한 주기로 온도 센서 제어 신호(DTS_CMD)를 수신할 수 있다. 또는, 온도 센서 제어 신호(DTS_CMD)는 메모리 장치(1000)의 내부 동작이 수행됨에 따라 메모리 장치(1000)의 내부 동작의 수행 전에 온도 센서(100)로 입력될 수 있다.
센싱 전압 생성부(110)는 수신한 온도 센서 제어 신호(DTS_CMD)에 응답하여 온도 전압 및 기준 전압을 생성할 수 있다. 구체적으로, 센싱 전압 생성부(110)는 구동 전압 생성부(122)로부터 수신한 전압을 이용하여, 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압(VCTAT) 및 온도 변화에도 일정한 전압 레벨을 갖는 기준 전압(VREF)을 생성할 수 있다.
센싱 전압 생성부(110)에서 생성되는 온도 전압(VCTAT)은 온도에 대응되는 전압으로, 온도 변화에 따라 전압 레벨이 상승하거나 감소하는 전압으로 설정될 수 있다. 센싱 전압 생성부(110)는 온도 변화에 따라 threshold 전압이 변하는 transistor 또는 온도 변화에 따라 저항 값이 변하는 저항을 포함할 수 있고, 센싱 전압 생성부(110)는 온도 변화에 따라 threshold 전압이 변하는 transistor 또는 온도 변화에 따라 저항 값이 변하는 저항을 이용하여 온도 전압(VCTAT)을 생성할 수 있다.
한편, 센싱 전압 생성부(110)에서 생성되는 기준 전압(VREF)는 온도 변화에 무관하게 일정한 전압 레벨을 갖는 전압으로 설정될 수 있다. 구체적으로, 기준 전압(VREF)는 상대적으로 고전압인 VREF+와 상대적으로 저전압인 VREF-를 포함할 수 있다. 그리고, 센싱 전압 생성부(110)는 온도 변화에 무관하게 일정한 전위를 갖도록 하는 밴드갭(Band gap) 전압 생성 회로 또는 위들러(widlar) 전압 생성 회로를 포함하는 형태로 구현될 수 있다.
코드 생성부(120)는 센싱 전압 생성부(110)로부터 수신한 온도 전압(VCTAT) 및 기준 전압(VREF)를 기초로 임시 코드를 생성할 수 있다. 여기서, 온도 전압(VCTAT) 및 기준 전압(VREF)은 메모리 장치(1000)의 내부 온도 정보를 포함하는 아날로그 값일 수 있고, 임시 코드는 온도에 대응되는 센싱 코드 값 및 측정된 온도가 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 디지털 값일 수 있다. 따라서, 코드 생성부(120)는 아날로그 신호인 온도 전압(VCTAT) 및 기준 전압(VREF)을 디지털 신호인 코드로 변경하는 ADC(Analog to Digital Converter)로 구현될 수 있다.
한편, 코드 생성부(120)에서 생성된 임시 코드는 센싱 코드 값 및 경계 값을 포함할 수 있다. 도 4는 본 발명의 일 실시 예에 따른 경계 값을 설명하기 위한 도면으로, 도 4를 참조하여 경계 값에 대하여 설명하도록 한다.
도 4를 참조하면, 제1 온도 구간(T1~T2) 및 제2 온도 구간(T2~T3)에 따라 코드 값이 N 및 N+1이 출력되는 도면이 도시되어 있다. 즉, 코드 생성부(120)는 측정된 온도가 제1 온도 구간(T1~T2)에 포함되면 코드 값 N을 출력하고, 측정된 온도가 제2 온도 구간(T2~T3)에 포함되면 코드 값 N+1을 출력할 수 있다.
그리고, 제1 온도 구간(T1~T2)에 포함된 A는 T2보다 극히 작은 값(dT)이 작은 온도일 수 있고, 제2 온도 구간(T2~T3)에 포함된 B는 T2보다 극히 작은 값(dT)이 큰 온도일 수 있다. 예를 들어, A의 온도는 T2-dT이고, B의 온도는 T2+dT인 경우, A에 대응되는 코드는 N으로 출력되고, B에 대응되는 코드는 N+1로 출력될 수 있다. 즉, 코드가 변경되는 특정 온도에 근접한 온도일 경우, 극히 작은 값(dT)의 변화에 따라 출력되는 코드가 변경될 수 있고, 해상도가 낮은 DTS를 포함하는 반도체 장치 또는 메모리 장치(1000)의 경우, 출력되는 코드에 따라 보상 값이 크게 달라질 수 있다. 본 발명의 일 실시 예에 따르면, 측정된 온도가 센싱 코드 값의 기설정된 구간에 포함되는 지 여부를 나타내는 경계 값을 이용하여, 극히 작은 온도 변화에 따라 출력되는 코드가 변경되는 것을 방지할 수 있다.
구체적으로, 온도 센서(100)는 측정 가능한 온도 범위(temperature range)를 해상도 또는 코드의 비트 수에 따라 복수의 구간으로 분할하고, 분할된 구간에 대응되는 센싱 코드를 출력할 수 있다.
온도 범위 센싱 코드 센싱 코드(역순)
-40℃~-30℃ 0 15
-30℃~-20℃ 1 14
-20℃~-10℃ 2 13
90℃~100℃ 13 2
100℃~110℃ 14 1
110℃~120℃ 15 0
[표 1]을 참조하면, 본 발명에 따른 온도 범위 및 센싱 코드가 도시되어 있다. 온도 센서(100)가 -40℃에서 120℃의 온도 범위(temperature range)에 대하여 4 bit에 대응되는 해상도로 구현하는 경우를 가정하면, 10℃마다 코드가 1씩 할당될 수 있다. 예를 들어, -40℃에서 -30℃에 포함되는 온도는 코드 0에 대응되고, 110℃~120℃에 포함되는 온도는 코드 15에 대응될 수 있다. 또는, 온도에 대응되는 코드는 역순으로 매핑될 수도 있다. 예를 들어, -40℃에서 -30℃에 포함되는 온도는 코드 15에 대응되고, 110℃~120℃에 포함되는 온도는 코드 0에 대응될 수 있다.
온도 센서(100)를 포함하는 반도체 장치(예컨대, 메모리 장치(1000))는 -40℃ 내지 120℃의 온도 범위(temperature range)에서 동작할 수 있고, 온도 센서(100)는 -40℃ 내지 120℃의 온도 범위에서 온도를 감지할 수 있다. 또는, 온도 센서(100)의 사양(specification) 또는 반도체 장치(예컨대, 메모리 장치(1000))의 쓰로틀링 온도(throttling temperature)에 따라 온도 범위가 결정될 수도 있다. 그리고, 센싱 코드는 4 bit(16 코드)에 대응되는 해상도(resolution)로 설정될 수 있다. 동일한 온도 레인지에 높은 비트 수의 코드를 매핑(mapping)할 경우, 코드 차이에 따른 온도 차가 작아질 수 있다. 그리고, 동일한 온도 레인지에 높은 비트 수를 매핑하여 고해상도로 구현될 수 있다.
그리고, 온도 센서(100)는 분할된 각 온도 구간 중 기설정된 구간을 경계 구간으로 설정할 수 있다. 온도 센서(100)는 측정된 온도가 특정 코드에 대응되는 온도 구간의 경계 구간에 포함되는 지 여부를 경계 값을 이용하여 나타낼 수 있다. 즉, 온도 센서(100)는 경계 값을 이용하여 측정된 온도가 코드가 변경되는 경계와 인접한지를 나타낼 수 있다.
구체적으로, 온도 센서(100)는 측정된 온도가 기설정된 경계 구간에 포함되는 경우에 1를 나타내고, 측정된 온도가 기설정된 경계 구간에 포함되지 않는 경우 0을 나타낼 수 있다. 예를 들어, A의 온도 또는 B의 온도는 T2와 극히 작은 값(dT)만큼 작거나 큰 온도일 수 있고, A 또는 B에 대응되는 경계 값은 1일 수 있다. 그리고, A 또는 B가 경계에 근접한 온도임을 파악할 수 있다.
즉, 경계 값은 측정된 내부 온도가 센싱 코드 값이 변경되는 경계에 인접한 구간에 포함되는 지를 나타내는 값으로, 온도 센서(100)는 최하위 비트(예컨대, 1 bit)를 할당될 수 있다. 그리고, 기설정된 경계 구간은 각 코드 값마다 2개씩 포함될 수 있으며, 하나의 코드 값에 포함되는 경계 구간은 해당 코드의 1/2이하일 수 있다. 예를 들어, 센싱 코드 2에 대응되는 온도 범위가 -20℃~-10℃이고, 센싱 코드 3에 대응되는 온도 범위가 -10℃~0℃인 경우, -10℃의 경계인 -7.5℃~-10℃ 및 -10℃~-12.5℃가 경계 구간일 수 있다.
다시, 도 3을 참조하여 코드 보정부(130) 및 코드 레지스터(140)에 대하여 설명한다.
온도 센서(100)는 코드 보정부(130) 및 코드 레지스터(140)를 포함할 수 있다. 코드 보정부(130)는 코드 생성부(120)로부터 생성된 임시 코드를 보정하여 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성할 수 있다. 여기서, 임시 코드는 내부 온도에 대응되는 센싱 코드 값 및 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 코드일 수 있다.
코드 보정부(130)는 경계 값에 따라 임시 코드의 센싱 코드 값을 보정하거나, 임시 코드의 센싱 코드 값을 그대로 출력할 수 있다. 구체적으로, 코드 보정부(130)는 측정된 내부 온도가 경계 구간에 포함되지 않는 경우, 코드 보정부(130)는 임시 코드의 센싱 코드 값을 그대로 보정 코드로 출력할 수 있다. 즉, 경계 값이 0인 경우, 코드 보정부(130)는 임시 코드의 센싱 코드 값을 보정 코드로 출력할 수 있다.
반면에, 코드 보정부(130)가 경계 값을 참조 결과, 측정된 내부 온도가 센싱 코드의 경계 구간에 포함되는 경우에는 코드 생성부(120)로부터 생성된 “센싱 코드 값”과 “이전에 생성된 보정 코드”를 비교하여 보정 코드를 생성할 수 있다. 즉, 경계 값이 1인 경우, 코드 보정부(130)는 센싱 코드 값과 이전에 생성된 보정 코드를 비교하여 보정 코드를 생성할 수 있다.
코드 레지스터(140)는 이전에 생성된 보정 코드를 저장할 수 있고, 코드 보정부(130)는 측정된 내부 온도가 기설정된 경계 구간에 포함되는 경우, 새로이 생성되는 보정 코드와 이전에 생성된 보정 코드와의 차이를 최소화하기 위하여, 센싱 코드 값을 보정할 수 있다. 구체적으로, 코드 보정부(130)는 임시 코드의 센싱 코드 값이 이전에 생성된 보정 코드보다 작은 경우, 임시 코드의 센싱 코드 값에 1을 가산하여 보정 코드를 생성할 수 있다. 반면에, 코드 보정부(130)는 임시 코드의 센싱 코드 값이 이전에 생성된 보정 코드보다 크거나 같은 경우, 임시 코드의 센싱 코드 값을 보정 코드로 출력할 수 있다.
그리고, 코드 보정부(130)에서 새로이 생성되는 보정 코드는 이후 측정되는 내부 온도 및 임시 코드의 보정을 위하여 코드 레지스터(140)에 저장될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 반도체 장치의 동작 방법을 설명하기 위한 흐름도이다.
반도체 장치는 온도 제어 신호(DTS_CMD)에 응답하여 측정된 온도에 따른 코드를 생성할 수 있다.
S510 단계에서, 반도체 장치는 온도 전압 및 기준 전압을 생성할 수 있다. 구체적으로, 반도체 장치는 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 상기 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성할 수 있다. 여기서, 온도 전압은 온도에 대응되는 전압으로, 온도 변화에 따라 전압 레벨이 상승하거나 감소하는 전압으로 설정될 수 있다. 기준 전압은 온도 변화에 무관하게 일정한 전압 레벨을 갖는 전압으로 상대적으로 고전압인 VREF+와 상대적으로 저전압인 VREF-를 포함할 수 있다.
S520 단계에서, 반도체 장치는 온도 전압 및 기준 전압을 기초로 임시 코드를 생성할 수 있다. 구체적으로, 온도 전압 및 기준 전압은 반도체 장치의 내부 온도 정보를 포함하는 아날로그 값일 수 있고, 임시 코드는 내부 온도에 대응되는 센싱 코드 값 및 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 디지털 값일 수 있다. 즉, 반도체 장치는 아날로그 신호인 온도 전압 및 기준 전압을 디지털 신호인 임시 코드로 변경할 수 있다.
여기서, 경계 값은 측정된 내부 온도가 센싱 코드 값이 변경되는 경계에 인접한 구간에 포함되는 지를 나타내는 값으로, 최하위 비트(예컨대, 1 bit)가 할당될 수 있다. 예를 들어, 측정된 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는 경우에 1로 나타내고, 측정된 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되지 않은 경우 0으로 나타낼 수 있다.
S530 단계에서, 반도체 장치는 임시 코드를 기초로 보정 코드를 생성할 수 있다. 구체적으로, 반도체 장치는 임시 코드 및 이전에 생성된 보정 코드를 기초로 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성할 수 있다. 반도체 장치가 보정 코드를 생성하는 방법은 도 6을 참조하여 자세하게 설명하도록 한다.
도 6은 본 발명의 일 실시 예에 따른 보정 코드를 생성하는 방법을 설명하기 위한 도면이다.
S531 단계에서, 반도체 장치는 측정된 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는지 식별할 수 있다. 구체적으로, 반도체 장치는 임시 코드에 포함된 경계 값을 참조할 수 있고, 반도체 장치는 경계 값이 1인 경우, 반도체 장치의 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되는 경우(S531-YES)로, 경계 값이 0인 경우, 반도체 장치의 내부 온도가 센싱 코드 값의 기설정된 구간에 포함되지 않는 경우(S531-NO)로 식별할 수 있다. 경계 값의 참조 결과, 반도체 장치의 내부 온도가 센싱 코드의 기설정된 구간에 포함되는 경우(S531-YES), 반도체 장치는 S533 단계를 수행하고, 경계 값의 참조 결과, 반도체 장치의 내부 온도가 센싱 코드의 기설정된 구간에 포함되지 않는 경우(S531-NO), 반도체 장치는 S537 단계를 수행할 수 있다.
S533 단계에서, 반도체 장치는 이전에 생성된 보정 코드와 임시 코드의 센싱 코드 값을 비교할 수 있다. 구체적으로, 반도체 장치는 이전에 생성된 보정 코드를 저장할 수 있고, 기저장된 이전에 생성된 보정 코드와 임시 코드의 센싱 코드 값을 비교할 수 있다. 이전에 생성된 보정 코드가 임시 코드의 센싱 코드 값보다 큰 경우(S533-YES), 반도체 장치는 S535 단계를 수행하고, 이전에 생성된 보정 코드가 임시 코드의 센싱 코드 값와 같거나 작은 경우(S533-NO), 반도체 장치는 S537 단계를 수행할 수 있다.
S535 단계에서, 반도체 장치는 임시 코드의 센싱 코드 값에 1을 가산하여 보정 코드를 생성할 수 있다. 측정된 내부 온도는 센싱 코드 값이 변경되는 경계에 인접한 구간에 포함되고, 임시 코드의 센싱 코드 값이 이전에 생성된 보정 코드보다 작은 경우이므로, 반도체 장치는 임시 코드의 센싱 코드 값에 1을 가산하여 보정 코드를 생성함으로써, 새로이 생성되는 보정 코드와 이전에 생성된 보정 코드와의 차이를 최소화할 수 있다.
한편, S537 단계에서, 반도체 장치는 임시 코드의 센싱 코드 값을 보정 코드로 출력할 수 있다. 반도체 장치가 S537 단계를 수행하는 경우는 내부 온도가 센싱 코드의 기설정된 구간에 포함되지 않는 경우(S531-NO)이거나, 이전에 생성된 보정 코드가 임시 코드의 센싱 코드 값와 같거나 작은 경우(S533-NO)일 수 있다.
내부 온도가 센싱 코드의 기설정된 구간에 포함되지 않는 경우(S531-NO)는 측정된 내부 온도가 센싱 코드 값이 변경되는 경계에 인접하지 않은 구간에 포함되는 것을 의미하므로, 임시 코드의 센싱 코드 값이 실제 온도에 부합되는 코드 값일 수 있다.
한편, 이전에 생성된 보정 코드가 임시 코드의 센싱 코드 값와 같거나 작은 경우(S533-NO)는 측정된 내부 온도가 센싱 코드 값이 변경되는 경계에 인접한 구간에 포함되고, 이전에 생성된 보정 코드보다 임시 코드의 센싱 코드 값이 크거나 같은 경우이므로, 반도체 장치는 임시 코드의 센싱 코드 값을 그대로 보정 코드로 출력함으로써 새로이 생성되는 보정 코드와 이전에 생성된 보정 코드와의 차이를 최소화할 수 있다.
도 7 내지 도 10은 메모리 시스템의 다양한 실시 예를 설명하기 위한 도면들이다.
도 7을 참조하면, 메모리 시스템(Memory System; 30000)은 이동 전화기(cellular phone), 스마트폰(smart phone), 태블릿(tablet) PC, PDA(personal digital assistant) 또는 무선 통신 장치로 구현될 수 있다. 메모리 시스템(30000)은 메모리 장치(3600)와 상기 메모리 장치(3600)의 동작을 제어할 수 있는 메모리 컨트롤러(3500)를 포함할 수 있다. 여기서, 메모리 컨트롤러(3500) 및 메모리 장치(3600)는 도 1에서 설명된 메모리 컨트롤러(2000) 또는 메모리 장치(1000)로 구현될 수 있다.
메모리 컨트롤러(3500)는 프로세서(Processor; 3100)의 제어에 따라 메모리 장치(3600)의 데이터 액세스 동작, 예컨대 프로그램(program) 동작, 소거(erase) 동작 또는 리드(read) 동작 등을 제어할 수 있다.
메모리 장치(3600)에 프로그램된 데이터는 메모리 컨트롤러(3500)의 제어에 따라 디스플레이(Display; 3200)를 통하여 출력될 수 있다.
무선 송수신기(RADIO TRANSCEIVER; 3300)는 안테나(ANT)를 통하여 무선 신호를 주고받을 수 있다. 예컨대, 무선 송수신기(3300)는 안테나(ANT)를 통하여 수신된 무선 신호를 프로세서(3100)에서 처리(process)될 수 있는 신호로 변경할 수 있다. 따라서, 프로세서(3100)는 무선 송수신기(3300)로부터 출력된 신호를 처리(process)하고 처리(process)된 신호를 메모리 컨트롤러(3500) 또는 디스플레이(3200)로 전송할 수 있다. 메모리 컨트롤러(3500)는 프로세서(3100)에 의하여 처리(process)된 신호를 메모리 장치(3600)에 전송할 수 있다. 또한, 무선 송수신기(3300)는 프로세서(3100)로부터 출력된 신호를 무선 신호로 변경하고 변경된 무선 신호를 안테나(ANT)를 통하여 외부 장치로 출력할 수 있다. 입력 장치(Input Device; 3400)는 프로세서(3100)의 동작을 제어하기 위한 제어 신호 또는 프로세서(3100)에 의하여 처리(process)될 데이터를 입력할 수 있는 장치로서, 터치 패드(touch pad)와 컴퓨터 마우스(computer mouse)와 같은 포인팅 장치(pointing device), 키패드(keypad) 또는 키보드로 구현될 수 있다. 프로세서(3100)는 메모리 컨트롤러(3500)로부터 출력된 데이터, 무선 송수신기(3300)로부터 출력된 데이터, 또는 입력 장치(3400)로부터 출력된 데이터가 디스플레이(3200)를 통하여 출력될 수 있도록 디스플레이(3200)의 동작을 제어할 수 있다.
실시 예에 따라, 메모리 장치(3600)의 동작을 제어할 수 있는 메모리 컨트롤러(3500)는 프로세서(3100)의 일부로서 구현될 수 있고, 또한 프로세서(3100)와 별도의 칩으로 구현될 수 있다.
도 8을 참조하면, 메모리 시스템(Memory System; 40000)은 PC(personal computer), 태블릿(tablet) PC, 넷-북(net-book), e-리더(e-reader), PDA(personal digital assistant), PMP(portable multimedia player), MP3 플레이어, 또는 MP4 플레이어로 구현될 수 있다.
메모리 시스템(40000)은 메모리 장치(4500)와 메모리 장치(4500)의 데이터 처리 동작을 제어할 수 있는 메모리 컨트롤러(4400)를 포함할 수 있다. 여기서, 메모리 컨트롤러(4400) 및 메모리 장치(4500)는 도 1에서 설명된 메모리 컨트롤러(2000) 또는 메모리 장치(1000)로 구현될 수 있다.
프로세서(Processor; 4100)는 입력 장치(Input Device; 4200)를 통하여 입력된 데이터에 따라 메모리 장치(4500)에 저장된 데이터를 디스플레이(Display; 4300)를 통하여 출력할 수 있다. 예컨대, 입력 장치(4200)는 터치 패드 또는 컴퓨터 마우스와 같은 포인팅 장치, 키패드, 또는 키보드로 구현될 수 있다.
프로세서(4100)는 메모리 시스템(40000)의 전반적인 동작을 제어할 수 있고 메모리 컨트롤러(4400)의 동작을 제어할 수 있다. 실시 예에 따라 메모리 장치(4500)의 동작을 제어할 수 있는 메모리 컨트롤러(4400)는 프로세서(4100)의 일부로서 구현되거나, 프로세서(4100)와 별도의 칩으로 구현될 수 있다.
도 9를 참조하면, 메모리 시스템(50000)은 이미지 처리 장치, 예컨대 디지털 카메라, 디지털 카메라가 부착된 이동 전화기, 디지털 카메라가 부착된 스마트 폰, 또는 디지털 카메라가 부착된 태블릿 PC로 구현될 수 있다.
메모리 시스템(50000)은 메모리 장치(5500)와 상기 메모리 장치(5500)의 데이터 처리 동작, 예컨대 프로그램 동작, 소거 동작 또는 리드 동작을 제어할 수 있는 메모리 컨트롤러(5400)를 포함한다. 또한, 메모리 컨트롤러(5400) 및 메모리 장치(5500)는 도 1에서 설명된 메모리 컨트롤러(2000) 또는 메모리 장치(1000)로 구현될 수 있다.
메모리 시스템(50000)의 이미지 센서(Image Sensor; 5200)는 광학 이미지를 디지털 신호들로 변환할 수 있고, 변환된 디지털 신호들은 프로세서(Processor; 5100) 또는 메모리 컨트롤러(5400)로 전송될 수 있다. 프로세서(5100)의 제어에 따라, 상기 변환된 디지털 신호들은 디스플레이(Display; 5300)를 통하여 출력되거나 메모리 컨트롤러(5400)를 통하여 메모리 장치(5500)에 저장될 수 있다. 또한, 메모리 장치(5500)에 저장된 데이터는 프로세서(5100) 또는 메모리 컨트롤러(5400)의 제어에 따라 디스플레이(5300)를 통하여 출력될 수 있다.
실시 예에 따라 메모리 장치(5500)의 동작을 제어할 수 있는 메모리 컨트롤러(5400)는 프로세서(5100)의 일부로서 구현되거나 프로세서(5100)와 별개의 칩으로 구현될 수 있다.
도 10을 참조하면, 메모리 시스템(Memory System; 70000)은 메모리 카드(memory card) 또는 스마트 카드(smart card)로 구현될 수 있다. 메모리 시스템(70000)은 메모리 장치(7300), 메모리 컨트롤러(7200) 및 카드 인터페이스(Card Interface; 7100)를 포함할 수 있다. 메모리 컨트롤러(7200) 및 메모리 장치(7300)는 도 1에서 설명된 메모리 컨트롤러(2000) 또는 메모리 장치(1000)로 구현될 수 있다.
메모리 컨트롤러(7200)는 메모리 장치(7300)와 카드 인터페이스(7100) 사이에서 데이터의 교환을 제어할 수 있다. 실시 예에 따라, 카드 인터페이스(7100)는 SD(secure digital) 카드 인터페이스 또는 MMC(multi-media card) 인터페이스일 수 있으나 이에 한정되는 것은 아니다.
카드 인터페이스(7100)는 호스트(HOST; 60000)의 프로토콜에 따라 호스트(60000)와 메모리 컨트롤러(7200) 사이에서 데이터 교환을 인터페이스할 수 있다. 실시 예에 따라 카드 인터페이스(7100)는 USB(Universal Serial Bus) 프로토콜, IC(InterChip)-USB 프로토콜을 지원할 수 있다. 여기서, 카드 인터페이스(7100)는 호스트(60000)가 사용하는 프로토콜을 지원할 수 있는 하드웨어, 상기 하드웨어에 탑재된 소프트웨어 또는 신호 전송 방식을 의미할 수 있다.
메모리 시스템(70000)이 PC, 태블릿 PC, 디지털 카메라, 디지털 오디오 플레이어, 이동 전화기, 콘솔 비디오 게임 하드웨어, 또는 디지털 셋-탑 박스와 같은 호스트(60000)의 호스트 인터페이스(6200)와 접속될 때, 호스트 인터페이스(6200)는 마이크로프로세서(Microprocessor; μP; 6100)의 제어에 따라 카드 인터페이스(7100)와 메모리 컨트롤러(7200)를 통하여 메모리 장치(7300)와 데이터 통신을 수행할 수 있다.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나, 본 발명의 범위와 기술적 사상에서 벗어나지 않는 한도 내에서 다양한 변경이 가능하다. 그러므로 본 발명의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허 청구 범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 온도 센서 110: 센싱 전압 생성부
120: 코드 생성부 130: 코드 보정부

Claims (18)

  1. 온도에 따라 내부 동작을 수행하기 위한 동작 전압을 생성하는 반도체 장치에 있어서,
    상기 반도체 장치의 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 상기 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성하는 센싱 전압 생성부;
    상기 온도 전압 및 상기 기준 전압을 기초로 상기 내부 온도에 대응되는 센싱 코드 값 및 상기 내부 온도가 상기 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 임시 코드를 생성하는 코드 생성부; 및
    상기 임시 코드를 보정하여 상기 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성하는 코드 보정부로서, 상기 임시 코드 및 이전에 생성된 보정 코드를 기초로 보정 코드를 생성하는 코드 보정부;를 포함하는 반도체 장치.
  2. 제1항에 있어서,
    상기 이전에 생성된 보정 코드를 저장하는 코드 레지스터;를 더 포함하고,
    상기 코드 보정부는,
    상기 경계 값의 참조 결과, 상기 내부 온도가 상기 기설정된 구간에 포함되는 경우, 상기 코드 레지스터에 저장된, 상기 이전에 생성된 보정 코드와 상기 임시 코드의 센싱 코드 값을 비교하여 상기 보정 코드를 생성하는 반도체 장치.
  3. 제2항에 있어서,
    상기 코드 보정부는,
    상기 임시 코드의 센싱 코드 값이 상기 이전에 생성된 보정 코드보다 작은 경우, 상기 임시 코드의 센싱 코드 값에 1을 가산하여 상기 보정 코드를 생성하는 반도체 장치.
  4. 제2항에 있어서,
    상기 코드 보정부는,
    상기 임시 코드의 센싱 코드 값이 상기 이전에 생성된 보정 코드보다 크거나 같은 경우, 상기 임시 코드의 센싱 코드 값을 상기 보정 코드로 출력하는 반도체 장치.
  5. 제1항에 있어서,
    상기 기설정된 구간은,
    상기 임시 코드의 센싱 코드 값에 대응되는 온도 구간 중 상기 센싱 코드 값이 변경되는 경계에 인접한 구간이고, 상기 온도 구간의 1/2 이하인 반도체 장치.
  6. 제1항에 있어서,
    상기 내부 동작은,
    프로그램 동작, 리드 동작 또는 이레이즈 동작 중 적어도 하나를 포함하고,
    외부 장치로부터 상기 내부 동작을 수행하도록 상기 반도체 장치를 제어하는 커맨드에 응답하여, 상기 반도체 장치의 내부 온도를 측정하도록 제어하는 상기 온도 측정 커맨드를 상기 전압 생성부로 전송하는 제어 로직;을 더 포함하는 반도체 장치.
  7. 제6항에 있어서,
    상기 제어 로직은,
    상기 내부 동작의 수행 중에 상기 내부 동작이 중단된 경우, 상기 내부 동작을 재개하도록 상기 반도체 장치를 제어하는 리줌 커맨드에 응답하여, 상기 온도 측정 커맨드를 상기 전압 생성부로 전송하는 반도체 장치.
  8. 제1항에 있어서,
    상기 보정 코드에 따라 상기 내부 동작의 동작 전압을 생성하는 구동 전압 생성부;를 더 포함하고,
    상기 동작 전압은,
    프로그램 동작 전압, 리드 동작 전압 또는 이레이즈 동작 전압 중 적어도 하나를 포함하는 반도체 장치.
  9. 제8항에 있어서,
    상기 구동 전압 생성부는,
    상기 보정 코드가 변경되면 상기 동작 전압을 변경하고, 상기 보정 코드의 변경에 따른 상기 프로그램 동작 전압의 변화 값은 상기 리드 동작 전압의 변화 값 또는 상기 이레이즈 동작 전압의 변화 값보다 큰 반도체 장치.
  10. 온도에 따라 내부 동작을 수행하기 위한 동작 전압을 생성하는 반도체 장치의 동작 방법에 있어서,
    상기 반도체 장치의 내부 온도에 따라 결정되는 전압 레벨을 갖는 온도 전압 및 상기 내부 온도의 변화에도 일정한 전압 레벨을 갖는 기준 전압을 생성하는 단계;
    상기 온도 전압 및 상기 기준 전압을 기초로 상기 내부 온도에 대응되는 센싱 코드 값 및 상기 내부 온도가 상기 센싱 코드 값의 기설정된 구간에 포함되는지 여부를 나타내는 경계 값을 포함하는 임시 코드를 생성하는 단계; 및
    상기 임시 코드 및 이전에 생성된 보정 코드를 기초로 상기 반도체 장치의 동작 전압을 생성하기 위한 보정 코드를 생성하는 단계;를 포함하는 동작 방법.
  11. 제10항에 있어서,
    상기 이전에 생성된 보정 코드를 저장하는 단계;를 더 포함하고,
    상기 보정 코드를 생성하는 단계는,
    상기 경계 값의 참조 결과, 상기 내부 온도가 상기 기설정된 구간에 포함되는 경우, 상기 이전에 생성된 보정 코드와 상기 임시 코드의 센싱 코드 값을 비교하여 상기 보정 코드를 생성하는 동작 방법.
  12. 제11항에 있어서,
    상기 보정 코드를 생성하는 단계는,
    상기 임시 코드의 센싱 코드 값이 상기 이전에 생성된 보정 코드보다 작은 경우, 상기 임시 코드의 센싱 코드 값에 1을 가산하여 상기 보정 코드를 생성하는 동작 방법.
  13. 제11항에 있어서,
    상기 보정 코드를 생성하는 단계는,
    상기 임시 코드의 센싱 코드 값이 상기 이전에 생성된 보정 코드보다 크거나 같은 경우, 상기 임시 코드의 센싱 코드 값을 상기 보정 코드로 출력하는 동작 방법.
  14. 제10항에 있어서,
    상기 기설정된 구간은,
    상기 임시 코드의 센싱 코드 값에 대응되는 온도 구간 중 상기 센싱 코드 값이 변경되는 경계에 인접한 구간이고, 상기 온도 구간의 1/2 이하인 동작 방법.
  15. 제10항에 있어서,
    상기 내부 동작은,
    프로그램 동작, 리드 동작 또는 이레이즈 동작 중 적어도 하나를 포함하고,
    외부 장치로부터 상기 내부 동작을 수행하도록 상기 반도체 장치를 제어하는 커맨드에 응답하여, 상기 반도체 장치의 내부 온도를 측정하도록 제어하는 온도 측정 커맨드를 전송하는 단계;를 더 포함하는 동작 방법.
  16. 제15항에 있어서,
    상기 내부 동작의 수행 중에 상기 내부 동작이 중단된 경우, 상기 내부 동작을 재개하도록 상기 반도체 장치를 제어하는 리줌 커맨드에 응답하여, 상기 온도 측정 커맨드를 전송하는 단계;를 더 포함하는 동작 방법.
  17. 제10항에 있어서,
    상기 보정 코드에 따라 상기 내부 동작의 동작 전압을 생성하는 단계;를 더 포함하고,
    상기 동작 전압은,
    프로그램 동작 전압, 리드 동작 전압 또는 이레이즈 동작 전압 중 적어도 하나를 포함하는 동작 방법.
  18. 제17항에 있어서,
    상기 동작 전압을 생성하는 단계는,
    상기 보정 코드가 변경되면 상기 동작 전압을 변경하고, 상기 보정 코드의 변경에 따른 상기 프로그램 동작 전압의 변화 값은 상기 리드 동작 전압의 변화 값 또는 상기 이레이즈 동작 전압의 변화 값보다 큰 동작 방법.
KR1020200076706A 2020-06-23 2020-06-23 반도체 장치 및 이의 동작 방법 KR20210158223A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200076706A KR20210158223A (ko) 2020-06-23 2020-06-23 반도체 장치 및 이의 동작 방법
US17/083,500 US11442655B2 (en) 2020-06-23 2020-10-29 Semiconductor device and method of operating the same
CN202110193376.9A CN113838495A (zh) 2020-06-23 2021-02-20 半导体装置及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200076706A KR20210158223A (ko) 2020-06-23 2020-06-23 반도체 장치 및 이의 동작 방법

Publications (1)

Publication Number Publication Date
KR20210158223A true KR20210158223A (ko) 2021-12-30

Family

ID=78962619

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200076706A KR20210158223A (ko) 2020-06-23 2020-06-23 반도체 장치 및 이의 동작 방법

Country Status (3)

Country Link
US (1) US11442655B2 (ko)
KR (1) KR20210158223A (ko)
CN (1) CN113838495A (ko)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201128B2 (ja) * 2003-07-15 2008-12-24 株式会社ルネサステクノロジ 半導体集積回路装置
US7543253B2 (en) * 2003-10-07 2009-06-02 Analog Devices, Inc. Method and apparatus for compensating for temperature drift in semiconductor processes and circuitry
US8045384B2 (en) 2009-06-22 2011-10-25 Sandisk Technologies Inc. Reduced programming pulse width for enhanced channel boosting in non-volatile storage
CN104135236B (zh) * 2009-07-28 2017-08-08 天工方案公司 半导体加工工艺传感器及表征半导体加工工艺的方法
DE102011056141A1 (de) * 2010-12-20 2012-06-21 Samsung Electronics Co., Ltd. Negativspannungsgenerator, Dekoder, nicht-flüchtige Speichervorrichtung und Speichersystem, das eine negative Spannung verwendet
KR102324267B1 (ko) * 2015-09-10 2021-11-12 에스케이하이닉스 주식회사 반도체장치 및 반도체시스템
US9825620B2 (en) * 2016-01-21 2017-11-21 Apple Inc. Method and apparatus for digital undervoltage detection and control
KR102634791B1 (ko) * 2016-11-24 2024-02-08 에스케이하이닉스 주식회사 파워 온 리셋 회로 및 이를 포함하는 반도체 메모리 장치
JP6832777B2 (ja) * 2017-03-31 2021-02-24 ルネサスエレクトロニクス株式会社 半導体装置
KR102540772B1 (ko) * 2018-04-30 2023-06-08 에스케이하이닉스 주식회사 에러 정정 회로 및 이의 동작 방법
KR101984899B1 (ko) 2018-05-17 2019-05-31 삼성전자 주식회사 플래시 메모리 장치 및 이를 포함하는 메모리 시스템
KR102524923B1 (ko) * 2018-06-20 2023-04-26 에스케이하이닉스 주식회사 저장 장치 및 그 동작 방법
CN109186790B (zh) * 2018-10-18 2020-11-10 卓捷创芯科技(深圳)有限公司 一种提高半导体温度传感器测量精度的方法

Also Published As

Publication number Publication date
US20210397362A1 (en) 2021-12-23
US11442655B2 (en) 2022-09-13
CN113838495A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US11068408B2 (en) Memory system and operating method thereof
US11194520B2 (en) Memory system and operating method thereof
US20210173785A1 (en) Storage device and method of operating the same
KR20190074895A (ko) 메모리 시스템 및 그것의 동작 방법
US11449417B2 (en) Memory controller performing host-aware performance booster mode and method of operating the same
US11360886B2 (en) Storage device and operating method thereof
US11756607B2 (en) Memory controller and method of operating the same
US11978519B2 (en) Storage device and operating method thereof
US11410733B2 (en) Memory device and operating method thereof
CN114373498A (zh) 页缓冲器、包括该页缓冲器的存储器装置及其操作方法
US20230244607A1 (en) Memory controller and method of operating the same
US11934702B2 (en) Computing system for optimal write and method of operating the same
US20210232343A1 (en) Memory controller, memory system, and operating method thereof
US11449277B2 (en) Memory controller and method of operating the same
US11442655B2 (en) Semiconductor device and method of operating the same
US20210004330A1 (en) Memory system, memory controller and method for operating memory system
US11815409B2 (en) Temperature sensor, memory device and method for controlling the temperature sensor
US20230386594A1 (en) Memory controller and operating method thereof
US11694728B2 (en) Storage device and operating method thereof
US11854626B2 (en) Storage device related to performing a read operation and method of operating the storage device
US20230402096A1 (en) Memory device and method of operating the same
US11482291B2 (en) Memory device and method of operating the same
US20230384970A1 (en) Storage device and operating method thereof
US20240118813A1 (en) Semiconductor memory device and operating method of the semiconductor memory device
KR20220059272A (ko) 저장 장치 및 그 동작 방법