KR20210141633A - 베어링 장치 - Google Patents

베어링 장치 Download PDF

Info

Publication number
KR20210141633A
KR20210141633A KR1020217033862A KR20217033862A KR20210141633A KR 20210141633 A KR20210141633 A KR 20210141633A KR 1020217033862 A KR1020217033862 A KR 1020217033862A KR 20217033862 A KR20217033862 A KR 20217033862A KR 20210141633 A KR20210141633 A KR 20210141633A
Authority
KR
South Korea
Prior art keywords
nozzle
bearing
heat flow
outer ring
ring spacer
Prior art date
Application number
KR1020217033862A
Other languages
English (en)
Inventor
쇼헤이 하시즈메
케이스케 나스
Original Assignee
에누티에누 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에누티에누 가부시기가이샤 filed Critical 에누티에누 가부시기가이샤
Publication of KR20210141633A publication Critical patent/KR20210141633A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/121Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction
    • B23Q11/123Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction for lubricating spindle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Abstract

베어링 장치(30)는 베어링(5a, 5b)과, 간좌(6)와, 노즐(70)과, 열류 센서(11a, 11b)를 구비한다. 베어링(5a)은 내륜(5ia) 및 외륜(5ga)을 포함한다. 베어링(5b)은 내륜(5ib) 및 외륜(5gb)을 포함한다. 간좌(6)는 내륜(5ia, 5ib)에 인접하는 내륜 간좌(6i)와, 외륜(5ga, 5gb)에 인접하는 외륜 간좌(6g)를 포함한다. 노즐(70)은 외륜 간좌(6g)에 마련되고 각각이 냉각용 에어를 내륜 간좌(6i)를 향하여 토출한다. 열류 센서(11a, 11b)는 외륜 간좌(6g)의 내경면(6gA)에 마련된다. 열류 센서(11a, 11b)의 출력은 노즐(70)로부터 토출되는 냉각용 에어의 유량의 조정에 이용된다.

Description

베어링 장치
이 발명은 공작 기계의 주축 등을 회전 자유롭게 지지하는 베어링 장치에 관한 것이다.
공작 기계 주축용 베어링은 고속인 동시에 저하중으로 사용되는 일이 많고 그 베어링에는 앵귤러 볼 베어링이 널리 사용된다. 공작 기계 주축용 베어링은 에어 오일(오일 미스트) 윤활 또는 그리스 윤활에 의해 윤활된다. 에어 오일 윤활은 윤활유를 외부로부터 공급하기 때문에 장기에 걸쳐서 안정된 윤활 상태를 유지할 수 있다는 특징이 있다. 한편, 그리스 윤활은 부대 설비 및 배관을 필요로 하지 않기 때문에 경제성에 우수하고 미스트의 발생이 극히 적음으로써 친환경적이라는 특징이 있다.
공작 기계 중에서도 머시닝 센터의 주축 등, 보다 고속의 영역, 예를 들면 내륜 내경에 회전수를 곱한 dn값으로 100만 이상의 영역에서 사용되는 베어링은 보다 안정된 운전이 필요하다. 그러나, 이하에 기재된 다양한 원인으로, 베어링 궤도면의 면 거칠기 또는 필링, 유지기의 이상을 거쳐서 베어링이 과도하게 승온하는 일이 있다.
·에어 오일 윤활에서의 윤활유의 급배유의 부적(유량 과소, 과다, 배기 불량)
·베어링 내부에 봉입된 윤활 그리스의 열화
·베어링 구름부에의 쿨런트 또는 물의 침입, 또는 이물의 침입
·과대한 예압, 즉 구름부의 접촉면압의 증대에 의한 유막의 끊어짐
상기에 의한 베어링의 과도한 승온을 방지하기 위해 베어링에 인접한 간좌(spacer)에 윤활 급유 펌프와 비접촉식의 온도 센서를 내장하고 온도 센서에 의한 베어링 윤활부의 온도 측정치에 응하여 윤활 급유 펌프에서 베어링 내부에 윤활유를 급유하는 기술이 일본 특개2017-26078호 공보(특허 문헌 1)에 개시되어 있다.
특허 문헌 1: 일본 특개2017-26078호 공보
일반적으로, 에어 오일 윤활에서는 상시 공급되는 압축 에어에 대해 오일 밸브로부터 오일을 간헐적으로 첨가하여 오일 미스트를 발생시킨다.
오일의 첨가량이 부족하면 베어링에서 마찰력이 커지고 마찰열에 의해 온도가 상승함에 의해 소착이 발생해 버린다. 한편, 오일의 첨가량이 과다하면 베어링부에서의 오일의 교반 저항이 증가하고 온도가 상승함에 의해 소착이 발생해 버린다. 고속 회전축을 지지하는 베어링에 관해서는 오일의 적량의 범위가 비교적 좁기 때문에 에어 오일 윤활인 경우 오일의 적량을 첨가하는 것이 어렵다는 문제가 있다.
메이커는 오일 첨가량의 추장(recommend) 조건을 나타내고 있지만, 공작 기계 등의 운전 조건에 따라서는 오일의 적량도 변동한다. 예를 들면 회전 속도의 변동, 연속 운전 시간의 변동, 공작물의 가공 시의 부하의 변동, 가공 시의 축의 자세의 변화 등, 운전 조건이 변화하는 경우에는 일률적인 첨가량으로는 대응할 수 없다.
베어링의 온도를 감시하면서 오일 밸브(믹싱 밸브)에서의 첨가량을 조정하는 것도 생각할 수 있지만, 오일 밸브는 오일을 적하하고 나서 세립형상으로 하여 베어링에 공급하기 위해 베어링으로부터 비교적 떨어진 장소에 배치되는 일이 많아, 오일 밸브로 적하하고 나서 오일이 베어링에 골고루 미치기까지는 타임 래그가 발생한다. 따라서, 베어링의 온도가 임계치를 초과한 것을 검출하고 나서 에어 오일을 첨가하는 것으로는 윤활이 늦고 베어링의 이상 발열 또는 과도한 승온이 발생한다는 문제도 있다.
본 발명은 상기 과제를 해결하기 위해 이루어진 것으로서, 그 목적은 적시의 타이밍에서 냉각 가능한 베어링 장치를 제공하는 것이다.
(1) 본 개시에 의한 베어링 장치는 내륜 및 외륜을 포함하는 베어링과, 내륜에 인접하는 내륜 간좌와 외륜에 인접하는 외륜 간좌를 포함하는 간좌와, 외륜 간좌에 마련되고 공기 공급 장치로부터 공급되는 냉각용의 공기를 내륜 간좌를 향하여 토출하는 적어도 1개의 노즐과, 베어링 또는 간좌에 설치된 열류(heat flux) 센서를 구비한다. 열류 센서의 출력 신호는 적어도 1개의 노즐로부터 토출되는 공기 유량의 조정에 이용된다.
(2) 어느 형태에서는 적어도 1개의 노즐은 외륜 간좌의 내경면의 둘레 방향으로 소정 간격을 사이에 두고 배치된 제1 노즐 및 제2 노즐을 포함한다. 열류 센서는 외륜 간좌의 내경면의 둘레 방향에서의 제1 노즐과 제2 노즐의 중간의 위치로부터 제2 노즐의 위치까지 사이의 어느 하나의 개소에 배치된다.
(3) 어느 형태에서는 제1 노즐 및 제2 노즐은 내륜의 회전 방향의 전방으로 경사시켜서 마련된다. 제2 노즐은 제1 노즐보다도 내륜의 회전 방향의 전방측의 위치에 배치된다.
(4) 어느 형태에서는 적어도 1개의 노즐은 외륜 간좌에서의 축방향의 중앙 부분에 배치된다. 열류 센서는 외륜 간좌에서의 축방향의 단부에 배치된다.
(5) 어느 형태에서는 적어도 1개의 노즐로부터 토출되는 공기 유량은 열류 센서에 의해 검출된 열류속의 크기 및 변화율의 적어도 일방이 대응하는 판정 임계치를 초과한 경우에 증가된다.
(6) 어느 형태에서는 공기 공급 장치는 압축 공기를 발생하는 컴프레서와, 컴프레서와 적어도 1개의 노즐 사이에 마련된 밸브를 구비한다. 열류 센서의 출력은 컴프레서의 출력 및 밸브의 개도(opening)의 적어도 일방의 제어에 이용된다.
(7) 어느 형태에서는 열류 센서는 제어 장치에 접속된다. 제어 장치는 열류 센서의 출력에 의거하여 베어링의 이상 또는 이상의 징조의 유무를 판정하고 이상 또는 이상의 징조가 있는 경우에 적어도 1개의 노즐로부터 토출되는 공기 유량을 증가하는 처리를 행한다.
(8) 어느 형태에서는 베어링 장치는 제어 장치에 접속되고 베어링의 예압 및 외부으로부터의 하중을 검출하는 하중 센서를 또한 구비한다. 제어 장치는 하중 센서의 출력에 의거하여 적어도 1개의 노즐로부터 토출되는 공기 유량을 조정하는 처리를 행한다.
(9) 어느 형태에서는 베어링 장치는 공작 기계의 주축을 회전 자유롭게 지지한다.
이 구성에 의하면 베어링의 온도 변화의 유무를 열류 센서를 이용하여 판정할 수 있기 때문에 베어링의 이상을 조기에 검출 가능해진다. 또한, 열류 센서의 출력 신호는 외륜 간좌에 마련된 노즐로부터 토출되는 공기(냉각용 에어)의 유량의 조정에 이용된다. 그 때문에 노즐로부터 토출되는 공기로 베어링 장치를 적시의 타이밍에서 냉각할 수 있다.
도 1은 스핀들 장치의 개략 구성을 도시하는 단면도.
도 2는 베어링 장치의 구성을 도시하는 모식 단면도.
도 3은 도 2의 간좌의 Ⅲ-Ⅲ 단면을 모식적으로 도시한 도.
도 4는 에어 공급 장치의 구성의 한 예를 도시하는 블록도.
도 5는 가감 속도 시험에 의해 얻어진 열류속, 온도, 회전 속도의 관계를 도시하는 도.
도 6은 도 5의 t1∼t2에 도시하는 부분의 횡축을 확대한 도.
도 7은 베어링 이상의 재현 시험에서의 열류속, 온도, 회전 속도의 관계를 도시하는 도.
도 8은 베어링 장치의 동작을 설명하기 위한 파형도.
도 9는 제어 장치가 실행하는 냉각용 에어의 공급 제어를 설명하기 위한 플로우차트.
도 10은 열류 센서의 배치의 변형례를 도시하는 도.
도 11은 열류 센서의 배치의 다른 변형례를 도시하는 도(그 1).
도 12는 열류 센서의 배치의 다른 변형례를 도시하는 도(그 2).
이하, 본 발명의 실시의 형태에 관해 도면을 참조하면서 설명한다. 또한, 이하의 도면에서 동일 또는 상당하는 부분에는 동일한 참조 번호를 붙이고 그 설명은 반복하지 않는다.
도 1은 본 실시의 형태에 의한 베어링 장치(30)가 조립된 스핀들 장치(1)의 개략 구성을 도시하는 단면도이다. 도 2는 본 실시의 형태에 관한 베어링 장치(30)의 구성을 도시하는 모식 단면도이다.
도 1에 도시하는 스핀들 장치(1)는 예를 들면 공작 기계의 빌트인 모터 방식의 스핀들 장치로서 사용된다. 이 경우, 공작 기계 주축용의 스핀들 장치(1)에서 지지되어 있는 주축(4)의 일단측에는 도시하지 않는 모터가 조립되고 타단측에는 도시하지 않는 엔드 밀 등의 절삭 공구가 접속된다.
스핀들 장치(1)는 베어링(5a, 5b)과, 베어링(5a, 5b)에 인접하여 배치되는 간좌(6)와, 열류 센서(11a, 11b)를 구비한다. 주축(4)은 외통(2)의 내경부에 매설된 하우징(3)에 마련한 복수의 베어링(5a, 5b)에 의해 회전 자유롭게 지지된다. 베어링(5a)은 내륜(5ia)과, 외륜(5ga)과, 전동체(Ta)와, 유지기(Rta)를 포함한다. 베어링(5b)은 내륜(5ib)과, 외륜(5gb)과, 전동체(Tb)와, 유지기(Rtb)를 포함한다. 간좌(6)는 내륜 간좌(6i)와, 외륜 간좌(6g)를 포함한다.
주축(4)에는 축방향으로 격리한 베어링(5a)의 내륜(5ia) 및 베어링(5b)의 내륜(5ib)이 수축 끼워맞춤 상태(압입 상태)로 감합되어 있다. 내륜(5ia-5ib) 사이에는 내륜 간좌(6i)가 배치되고 외륜(5ga-5gb) 사이에는 외륜 간좌(6g)가 배치된다.
베어링(5a)은 내륜(5ia)과 외륜(5ga) 사이에 복수의 전동체(Ta)를 배치한 구름 베어링이다. 이들 전동체(Ta)는 유지기(Rta)에 의해 간격이 유지되어 있다. 베어링(5b)은 내륜(5ib)과 외륜(5gb) 사이에 복수의 전동체(Tb)를 배치한 구름 베어링이다. 이들 전동체(Tb)는 유지기(Rtb)에 의해 간격이 유지되어 있다.
베어링(5a, 5b)은 앵귤러 볼 베어링, 깊은 홈 볼 베어링, 또는 테이퍼 롤러 베어링 등을 이용할 수 있다. 도 2에 도시하는 베어링 장치(30)에는 앵귤러 볼 베어링이 이용되고 2개의 베어링(5a, 5b)이 배면 조합(DB 조합)으로 설치되어 있다. 또한, 베어링의 배열은 배면 조합으로 한정되는 것이 아니라 예를 들어 정면 조합이라도 좋다.
여기서는 2개의 베어링(5a, 5b)으로 주축(4)을 지지하는 구조를 예시하여 설명하는데, 2개 이상의 베어링으로 주축(4)을 지지하는 구조라도 좋다.
하우징(3)에는 냉각 매체 유로가 형성된다. 하우징(3)과 외통(2) 사이에 냉각 매체를 흘림에 의해 베어링(5a, 5b)을 냉각할 수 있다.
또한, 본 실시의 형태에 의한 스핀들 장치(1)에는 베어링(5a, 5b)의 냉각 및 윤활을 위해 윤활유를 베어링(5a, 5b)에 분사하기 위한 윤활유 공급로(67a, 67b)가 외륜 간좌(6g)에 마련된다. 윤활유는 윤활유 공급로(67a, 67b)의 선단에 마련된 송출 구멍으로부터 윤활유를 반송하는 에어와 함께, 에어 오일 또는 오일 미스트의 상태로서 분사된다. 또한, 복잡하게 되기 때문에 도 1에서는 윤활유 공급로(67a, 67b)는 도시하지 않는다.
열류속을 측정하는 열류 센서(11a, 11b)는 외륜 간좌(6g)의 내경면(6gA)에 고정되고 내륜 간좌(6i)의 외경면(6iA)에 대향한다. 또한, 열류속은 단위 시간당에 단위 면적을 통과하는 열량이다.
열류 센서(11a, 11b)의 각각은 제벡 효과를 이용하여 열류를 전기 신호로 변환하는 센서이고 센서 표리의 근소한 온도차로부터 출력 전압이 발생한다. 열류 센서(11a, 11b)는 비접촉식 온도 센서 또는 열전대 등의 온도 센서에 비해 베어링 내부의 열의 변화에 대한 감도가 좋고 베어링 내부의 열의 변화에 타임리하게 추종한다.
열류 센서(11a)는 외륜 간좌(6g)의 내경면(6gA)에서의 축방향(회전축(P0)에 따른 방향)의 베어링(5a)측의 단부에 배치된다. 열류 센서(11b)는 외륜 간좌(6g)의 내경면(6gA)에서의 축방향의 베어링(5b)측의 단부에 배치된다. 이와 같이 외륜 간좌(6g)에서의 베어링(5a, 5b) 근방에 열류 센서(11a, 11b)가 각각 설치되기 때문에 열류 센서(11a, 11b)는 베어링(5a, 5b)의 내외륜 사이에 흐르는 열의 열류속을 직접적으로 검출할 수 있다.
또한, 열류 센서(11a, 11b)를 외륜 간좌(6g)의 내경면(6gA)에서의 축방향의 중앙 부분 부근에 설치하는 것도 가능하다. 이와 같은 배치에서도 베어링(5a, 5b)의 내외륜 사이에 흐르는 열의 열류속을 간접적으로 검출할 수 있다.
베어링(5a, 5b)의 소착의 징조를 검출하기 위해 가령 내륜(5ia, 5ib), 외륜(5ga, 5gb), 간좌(6) 등의 온도를 측정하여 검출하려고 하면 급격한 발열이 생겼다 하더라도 온도가 상승하기까지에는 지연이 있기 때문에 징조를 조기에 검출할 수 없는 것도 상정된다.
이에 대해 본 실시의 형태에서는 열류 센서(11a, 11b)의 출력을 이용하여 베어링(5a, 5b)의 소착의 징조를 검출한다. 열류 센서(11a, 11b)의 출력을 이용하면 온도와 비교하여 열류는 조기에 변화하기 시작하기 때문에 급격한 발열을 신속하게 검출하는 것이 가능하다.
또한, 외륜 간좌(6g)의 축방향의 베어링(5a)측의 단면(端面)에는 온도 센서(56a) 및 진동 센서(57a)가 배치된다. 외륜 간좌(6g)의 축방향의 베어링(5b)측의 단면에는 온도 센서(56b) 및 진동 센서(57b)가 배치된다.
또한, 본 실시의 형태에 의한 스핀들 장치(1)에는 압축된 냉각용 에어를 내륜 간좌(6i)의 외경면(6iA)을 향하여 토출하기 위한 노즐(70)이 외륜 간좌(6g)에 마련된다. 노즐(70)은 외륜 간좌(6g)의 내경면(6gA)에서의 축방향의 중앙 부분에 설치된다.
도 3은 도 2의 간좌(6)의 Ⅲ-Ⅲ 단면을 모식적으로 도시한 도면이다. 도 3에서 내륜 간좌(6i)의 회전 방향은 반시계 회전 방향으로 한다. 이하에서는 내륜 간좌(6i)의 회전 방향을 간단히 「회전 방향」이라고도 칭한다.
상술한 바와 같이 간좌(6)는 내륜 간좌(6i)와 외륜 간좌(6g)를 포함한다. 외륜 간좌(6g)에는 상부에 에어 오일 윤활을 위한 윤활유 공급로(67a, 67b)가 마련되고 하부에 배기 홈(72)이 마련된다.
또한, 외륜 간좌(6g)에는 내륜 간좌(6i)의 외경면(6iA)을 향하여 냉각용 에어를 토출하기 위한 3개의 노즐(70)이 외륜 간좌(6g)의 내경면(6gA)상에 소정 간격을 사이에 두고 등간격(120°간격)으로 배치되어 있다. 또한, 노즐(70)의 수는 3개로 한정되는 것이 아니라 4개 이상이라도 좋고 2개 이하라도 좋다.
각 노즐(70)의 토출구(71)는 외륜 간좌(6g)의 내경면(6gA)에 마련된다. 각 노즐(70)의 토출구(71)로부터 내륜 간좌(6i)의 외경면(6iA)을 향하여 냉각용 에어가 토출된다. 냉각용 에어는 외륜 간좌(6g)의 내경면(6gA)과 내륜 간좌(6i)의 외경면(6iA) 사이의 간극(G)을 통과하여 열을 흡입한 후, 배기 홈(72)을 통과하여 외부에 배출된다.
이하에서는 도 3에서 윤활유 공급로(67a, 67b)에 가장 가까운 노즐(70)을 「제1 노즐(70A)」이라고도 칭하고 제1 노즐(70)의 다음에 반 시계방향측(회전 방향의 전방측)에 배치되는 노즐(70)을 「제2 노즐(70B)」이라고도 칭하고 제2 노즐(70)의 다음에 반 시계방향측에 배치되는 노즐(70)을 「제3 노즐(70C)」이라고도 칭한다.
제1 노즐(70A)은 회전축(P0)으로부터 반경 방향 상방으로 신장하는 직선(Lx)으로부터 반 시계방향측(회전 방향의 전방측)으로 오프셋한 위치에 직선(Lx)과 평행으로 연재되도록 형성된다. 이에 의해 제1 노즐(70A)의 에어 토출 방향은 회전 방향에 대해 수직으로는 되지 않고 회전 방향의 전방으로 경사된다. 이와 같이 노즐(70)을 오프셋시킴에 의해 냉각용 에어가 확산하는 일 없이 회전 방향으로 흐르는 선회류로서 내륜 간좌(6i)의 표면 부근에 오래 체류하고 냉각용 에어가 내륜 간좌(6i)의 열을 흡입하는 시간이 길어지기 때문에 내륜 간좌(6i)의 냉각 효과가 향상한다. 제2 노즐(70B) 및 제3 노즐(70C)에 관해서도 제1 노즐(70A)과 마찬가지로 오프셋된다.
외륜 간좌(6g)의 외경면에는 냉각용 에어를 각 노즐(70)에 도입하기 위한 원호형상의 도입 홈(80)이 마련되어 있다. 도입 홈(80)은 각 노즐(70)에 연통하도록 형성된다. 도입 홈(80)에 냉각용 에어를 도입하는 경로는 윤활유 공급로(67a, 67b)에 에어 오일을 도입하는 경로와는 독립하여 마련된다.
열류 센서(11a, 11b)는 미량의 열의 흐름도 검출하기 때문에 열류 센서(11a, 11b)의 출력은 냉각용 에어의 영향을 크게 받는다. 이 점을 감안하여 열류 센서(11a, 11b)는 냉각용 에어의 영향을 받기 어려운 위치에 설치된다. 구체적으로는 열류 센서(11a, 11b)는 외륜 간좌(6g)의 내경면(6gA)의 둘레 방향에서의 제1 노즐(70A)과 제2 노즐(70B)의 중간의 위치로부터 제2 노즐(70B)의 위치까지의 사이에 배치된다. 환언하면 도 3에 도시하는 바와 같이 제1 노즐(70A)의 둘레 방향의 배치를 기준으로 하여 열류 센서(11a, 11b)의 둘레 방향의 배치각(α) 은 제1 노즐(70A)과 제2 노즐(70B)의 중간 위치에 상당하는 각(β/2(=60°))보다도 크고 또한 제2 노즐(70B)의 둘레 방향의 배치각(β(=120°))보다도 작은 범위에 포함되도록 설정된다. 이와 같은 배치에 의해 열류 센서(11a, 11b)의 출력이 제1 노즐(70A)로부터 토출되는 냉각용 에어의 선회류의 영향을 받기 어려워짐과 함께, 제2 노즐(70B)로부터 토출되는 냉각용 에어의 역류(압력류)의 영향을 받기 어려워진다. 이에 의해 열류 센서(11a, 11b)는 외륜 간좌(6g)와 내륜 간좌(6i) 사이에서 생기는 열류속을 보다 정밀도 좋게 검출할 수 있다.
또한, 윤활유 공급로(67a, 67b)는 외륜 간좌(6g)의 상부에 배치됨에 대해 열류 센서(11a, 11b)는 외륜 간좌(6g)의 하부에 배치된다. 그때문에 열류 센서(11a, 11b)의 출력이 윤활유 공급로(67a, 67b)로부터 분사되는 에어 오일의 영향을 받기 어려워진다. 그 결과, 열류 센서(11a, 11b)는 외륜 간좌(6g)와 내륜 간좌(6i) 사이에서 생기는 열류속을 보다 정밀도 좋게 검출할 수 있다.
또한, 상술한 도 2에서의 노즐(70), 윤활유 공급로(67a, 67b) 및 열류 센서(11a, 11b)의 위치는 회전축 방향의 위치 관계 및 회전축(P0)으로부터의 거리를 모식적으로 도시하는 것이다. 노즐(70), 윤활유 공급로(67a, 67b) 및 열류 센서(11a, 11b)의 외륜 간좌(6g)의 내경면(6gA)에서의 둘레 방향의 실제의 배치는 도 3에 도시하는 배치가 된다.
열류 센서(11a)에는 열류 센서(11a)의 검출 신호를 후술하는 제어 장치(55)에 보내기 위한 배선(도시 생략)이 접속된다. 열류 센서(11b)에는 열류 센서(11b)의 검출 신호를 후술하는 제어 장치(55)에 보내기 위한 배선(도시 생략)이 접속된다.
도 4는 도입 홈(80) 및 노즐(70)에 냉각용 에어를 공급하기 위한 에어 공급 장치(50)의 구성의 한 예를 도시하는 블록도이다. 에어 공급 장치(50)는 컴프레서(51)와, 에어 밸브(52)와, 배관(53, 54)과, 제어 장치(마이크로컴퓨터)(55)를 포함한다.
컴프레서(51)는 제어 장치(55)로부터의 제어 신호에 의해 작동하고 공기를 압축한다. 에어 밸브(52)는 배관(53)을 통하여 컴프레서(51)에 연통되고 배관(54)을 통하여 도입 홈(80) 및 각 노즐(70)에 연통된다. 에어 밸브(52)의 개도는 제어 장치(55)로부터의 제어 신호에 의해 제어된다.
제어 장치(55)는 열류 센서(11a, 11b)의 출력을 이용하여 베어링(5a, 5b)의 이상(소착 등)의 징조의 유무를 판정한다. 이상의 징조가 있다고 판정된 경우, 제어 장치(55)는 컴프레서(51)의 출력 및 에어 밸브(52)의 개도의 적어도 일방을 제어함에 의해 각 노즐(70)로부터 토출되는 냉각용 에어의 유량을 증가시킨다. 제어 장치(55)는 또한, 온도 센서(56)와, 진동 센서(57)와, 회전 센서(58)와, 하중 센서(59)의 출력을 받고 이들 출력도 고려하여 냉각용 에어의 유량을 조정하도록 구성되어도 좋다.
하중 센서(59)는 베어링(5)의 예압 및 외부로부터의 하중을 검지하도록 예를 들어 베어링과 간좌 사이의 간극에 설치된다. 예를 들어 공작 기계인 경우에는 가공 대상에 의해 외부로부터 받는 힘의 변동이나 고속 운전에 의한 발열, 원심력에 의해 베어링(5)에 가해지는 예압도 변동한다. 예압이 증가하면 유막의 끊어짐에 의한 마찰력에 의해 발열량이 증가할 수 있다. 따라서, 예압의 증가를 하중 센서(59)에 의해 검출한 경우에 냉각용 에어의 유량을 증가하는 것도 유효하다. 또한, 외부로부터의 하중을 직접 검출한 경우에 냉각용 에어의 유량을 증가하는 것도 유효하다.
<가감 속도 시험에 관해>
본 출원인은 공작 기계 주축 스핀들을 모방한 시험기에 실시 형태에 관한 베어링 장치를 조립하고 주축(4)의 회전 속도를 가속 및 감속했을 때의 열류속, 온도, 회전 속도의 관계를 평가하는 가감 속도 시험을 행하였다.
도 5는 가감 속도 시험에 의해 얻어진 열류속, 온도, 회전 속도의 관계를 도시하는 도면이다. 도 6은 도 5의 t1∼t2에 도시하는 부분의 횡축을 확대한 도면이다.
도 5에 도시하는 바와 같이 열류 센서의 출력(열류)은 온도 센서의 출력(베어링 온도)보다도 회전 속도의 가감 속도에 대한 응답성이 좋고 베어링의 이상의 징조 검출의 정밀도를 높일 수 있다. 열류 센서의 출력의 증감 시작의 타이밍은 회전 속도의 증감 시작의 타이밍에 개략 동기하고 있다.
<베어링 이상 시의 재현 시험>
본 출원인은 구름 베어링에 이상이 생길 때의 징조 검출을 시도해 보기 위해 베어링 이상 시의 재현 시험을 실시하였다. 본 재현 시험에서는 주축 조립 시에만 극히 소량의 윤활유를 구름 베어링에 주입함으로써, 시험 베어링에 윤활유의 끊어짐에 의한 이상이 발생하기 쉬운 상황을 만들어 냈다. 또한, 시험 베어링의 이상에 수반하여 구동용의 모터가 과부하가 되면 리미터가 작동하고 시험기가 자동 정지하도록 설정하였다.
도 7은 윤활유의 끊어짐에 의한 베어링 이상의 재현 시험에서의 열류속, 온도, 회전 속도의 관계를 도시하는 도면이다. 횡축은 운전 시간(초)이다. 상란에는 열류속(Q), 내륜 온도(T(i)), 외륜 온도(T(g)), 하우징 온도(T(h))가 나타나고 하란에는 회전 속도(N(매분의 회전수))가 나타난다.
열용량과 방열의 관계로부터 내륜 온도(T(i))>외륜 온도(T(g))>하우징 온도(T(h))가 성립되어 있다.
구동용의 모터의 과부하가 검출된 시각 525(초) 넘어서부터 회전 속도(N)가 저하를 시작하고 있다. 시각 525(초)보다 전에는 각 온도는 거의 변화하지 않아, 온도로 이상의 징조를 검출하는 것은 곤란한 것을 알 수 있다. 시험 결과로부터 열류속(Q)은 내륜 온도(T(i)) 등보다도 이른 단계로부터 출력치의 상승이 인정되어 있어, 구름 베어링에 이상이 생길 때의 징조를 조기에 검출할 때에 유효하다고 생각된다.
도 8은 본 실시의 형태에 의한 베어링 장치(30)의 동작을 설명하기 위한 파형도이다. 도 8에서는 도 7에 도시한 재현 실험의 파형에 본 실시의 형태에 의한 베어링 장치(30)의 동작에 의해 냉각용 에어가 공급된 경우의 파형을 겹쳐서 나타내고 있다.
도 8의 횡축은 운전 시간(초)이다. 상란에는 열류속(Q) 및 열류속의 변화율(D)이 나타나고 냉각용 에어가 공급된 경우의 열류속(Qx) 및 변화율(Dx)이 겹쳐서 나타나 있다. 하란에는 회전 속도(N)(매분의 회전수)가 나타난다.
냉각용 에어를 공급하지 않는 경우, 시각 525(초)를 지나면 베어링의 손상에 의해 모터가 과부하를 검출하여 회전 속도(N)가 저하되어 간다.
베어링의 손상을 피하기 위해서는 시각 525(초)보다 이전에 냉각용 에어를 공급하기 시작할 필요가 있다. 온도의 상승은 도 7에 도시한 바와 같이 시각 525(초)보다도 후이기 때문에 온도의 상승에 의거하여 냉각용 에어를 공급한 것으로는 늦다. 이에 대해 열류 센서가 검출하는 열류속(Q)은 시각 523(초) 정도부터 상승한다. 따라서, 열류 센서의 출력의 상승을 검출하여 냉각용 에어를 공급하기 시작하는 것이 바람직하다. 열류 센서의 출력의 상승을 판정하는 임계치(Qth)는 정상 상태에서의 노이즈를 고려하여 마진을 마련하여 설정할 필요가 있다. 그러나, 근소한 상승에 대해 임계치(Qth)를 정하는 것은 베어링을 세트하는 기계의 개체차, 유저의 운전 조건 등이 다양해서는 매우 어렵다.
이에 대해 열류속(Q)의 변화율(D)(단위 시간당의 변화량)을 계산하면 보다 조기에 베어링 손상의 징조를 찾을 수 있는 것이 발명자들의 실험에 의해 알 수 있었다. 변화율(D)에 관해서는 베어링을 세트하는 기계의 개체차, 유저의 운전 조건 등이 달라도, 비교적 일률적으로 임계치를 정해도 실용에 제공할 수 있는 것도 알 수 있었다. 따라서, 보다 바람직하게는 열류 센서의 출력의 변화율(D)이 임계치(Dth)를 초과한 경우에 냉각용 에어의 공급을 시작하는 것이 좋다. 또한, 냉각용 에어의 공급 시작은 냉각용 에어의 유량 증가의 한 예이다.
변화율(D)은 열류 센서에서 검출한 열류속(Q)을 시간 미분에 의해 산출한 파라미터이다. 열류속(Q)을 시간 미분한 파라미터를 이용함으로써, 순간이면서 급격한 발열을 정밀도 좋게 검출하는 것이 가능해진다.
열류속(Q)이 임계치(Qth)를 초과한 시점(525초 경), 또는 열류속의 변화율(D)이 임계치(Dth)를 초과한 시점(524초 경)에서 냉각용 에어의 공급을 시작하면 베어링은 손상을 받지 않는다. 그 결과, 도 8의 파형에서는 모터에 제한이 걸리는 일 없이 시각 525(초)를 경과한 후에도 회전 속도(Nx)에 나타내는 바와 같이 정상 운전을 계속할 수 있다.
이상의 결과를 감안하여 본 실시의 형태에 의한 베어링 장치(30)에서는 열류 센서(11a, 11b)의 출력 신호가 노즐(70)로부터 토출되는 냉각용 에어의 유량의 조정에 이용된다. 구체적으로는 열류 센서(11a, 11b)에 의해 검출된 열류속(Q)의 크기 또는 열류속(Q)의 변화율(D)이 대응하는 판정 임계치(임계치(Qth) 또는 임계치(Dth))를 초과한 경우에 제어 장치(55)에 의해 베어링(5a, 5b)의 이상(소착 등)의 징조가 있다고 판정된다. 이에 의해 베어링(5a, 5b)의 이상을 조기에 검출 가능해진다. 그리고 베어링(5a, 5b)의 이상의 징조가 있다고 판정된 경우, 제어 장치(55)에 의해 노즐(70)로부터 토출되는 냉각용 에어의 유량이 증량된다. 그때문에 공작 기계의 생산성의 저하를 수반하는 제어(예를 들어 공작 기계의 가공 정지, 절입량(切入量)의 저감, 회전의 정지, 회전의 감속 등)를 행하는 일 없이 냉각용 에어에 의해 베어링(5a, 5b)을 냉각하여 베어링(5a, 5b)의 소착을 방지할 수 있다. 이에 의해 베어링(5a, 5b)의 손상 방지 및 수명 연장이 실현된다.
또한, 베어링(5a, 5b)의 이상의 징조가 없는 경우에는 냉각용 에어의 증량을 행하지 않고 냉각용 에어의 유량을 삭감할 수 있기 때문에 컴프레서(51)의 소비 전력을 저감할 수 있고 나아가서는 컴프레서(51)의 소형화에도 공헌할 수 있다.
또한, 열류속(Q)이 임계치(Qth)를 초과한 시점, 또는 열류속(Q)의 변화율(D)이 임계치(Dth)를 초과한 시점에서 에어 오일의 첨가량을 증가하는 것도 생각할 수 있다. 그렇지만, 에어 오일의 첨가량을 조정하기 위한 오일 밸브는 일반적으로, 오일을 적하하고 나서 세립형상으로 하여 베어링에 공급하기 위해 베어링으로부터 비교적 떨어진 장소에 배치되는 일이 많고 오일 밸브로 적하하고 나서 오일이 베어링에 골고루 미치기까지는 시간차가 발생한다. 이에 대해 냉각용 에어의 유량은 에어 밸브(52)의 개도를 증가시킴에 의해 즉석에서 증가시킬 수 있기 때문에 에어 오일과 같은 시간차는 없다. 그때문에 적시의 타이밍에서 베어링 장치(30)를 냉각하고 베어링의 소착을 적절하게 방지할 수 있다.
도 9는 제어 장치(55)가 실행하는 냉각용 에어의 공급 제어를 설명하기 위한 플로우차트이다. 이 플로우차트의 처리는 미리 정해진 조건이 성립될 때마다(예를 들어 소정 주기마다) 메인 루틴으로부터 호출되어 실행된다.
우선, 제어 장치(55)는 열류 센서(11a, 11b)로부터 판정치를 얻는다(스텝 S10). 판정치는 열류속(Q)이라도 좋지만, 열류속의 변화율(D) 쪽이 바람직하다. 열류속(Q)인 경우는 예를 들면 열류 센서(11a, 11b)의 검출치를 제어 장치(55)의 내부 메모리에 기억된 미리 정해진 맵 등에 대조하여 얻을 수 있다. 열류속의 변화율(D)인 경우에는 예를 들면 전회의 열류속(Q)과 금회 열류속(Q)의 차를 시간차로 제산하여 얻을 수 있다.
이어서, 제어 장치(55)는 판정치가 판정 임계치보다 큰지의 여부를 판정한다(스텝 S20). 이 판정은 베어링(5a, 5b)의 이상의 징조를 검출하기 위한 처리이다. 판정치가 열류속(Q)인 경우에는 판정 임계치는 도 8에 도시한 임계치(Qth)이다. 판정치가 열류속의 변화율(D)인 경우에는 판정 임계치는 도 8에 도시한 임계치(Dth)이다.
또한, 회전 속도(N)에 응하여 열류속(Q)이 변화하는 것을 감안하여 회전 속도(N)마다 판정 임계치(Qth)를 미리 정해 두고 회전 속도(N)를 회전 센서(58)로부터 판독하여 판독한 회전 속도(N)에 대응하는 판정 임계치(Qth)를 적용해도 좋다.
또한, 예를 들면 도 6에서 시각 t1∼t2 사이에 변화한 열류속(Q1∼Q2)을 기준으로 하여 판정 임계치(Dth)를 이하의 식(1)에 따라 결정해도 좋다.
Dth=M×(Q2-Q1)/(t2-t1) … (1)
식(1)에서 「M」은 안전 계수이다. 상기 식의 안전 계수(M)는 공작 기계의 주축마다 다르기 때문에 M=1, M=100 등 다양한 케이스가 있다.
열류속의 변화율(D)에 관해서는 베어링 이상 발생 시의 값 쪽이 회전 속도(N)의 증가 시의 값보다도 훨씬 큰 값이 되는 것을 알고 있기 때문에 회전 속도(N)의 변화에 관계없이 일률적인 임계치(Dth)를 사용할 수 있다.
판정치가 판정 임계치보다도 크다고 판정되지 않는 경우(스텝 S20에서 NO), 제어 장치(55)는 베어링 이상의 징조는 없다고 판정하고(스텝 S30), 냉각용 에어의 유량이 제1 유량(F1)이 되도록 컴프레서(51)의 출력 및 에어 밸브(52)의 개도를 제어한다(스텝 S32). 또한, 제1 유량(F1)은 제로라도 좋다. 이 경우, 냉각용 에어의 공급은 정지된다. 그 후, 처리는 리턴으로 옮겨진다.
한편, 판정치가 판정 임계치보다도 크다고 판정된 경우(스텝 S20에서 YES), 제어 장치(55)는 베어링 이상의 징조가 있다고 판정하고(스텝 S40), 냉각용 에어의 유량이 제1 유량(F1)보다도 많은 제2 유량(F2)이 되도록 컴프레서의 출력 및 공냉용 밸브의 개도를 제어한다(스텝 S42). 이에 의해 냉각용 에어의 유량이 증량된다. 제어 장치(55)는 냉각용 에어의 증량을 소정 시간 계속한 후, 처리를 리턴으로 옮긴다. 또한, 냉각용 에어의 증량과 함께 에어 오일의 첨가량이 증가되는 경우에는 에어 오일이 베어링에 골고루 미치기까지의 시간이 경과한 시점에서 냉각용 에어의 증량을 정지하도록 해도 좋다.
이상 설명한 바와 같이 본 실시의 형태에 의한 베어링 장치(30)는 내륜(5ia, 5ib) 및 외륜(5ga, 5gb)을 포함하는 베어링(5a, 5b)과, 내륜(5ia, 5ib)에 인접하는 내륜 간좌(6i)와 외륜(5ga, 5gb)에 인접하는 외륜 간좌(6g)를 포함하는 간좌(6)와, 외륜 간좌(6g)에 마련되고 각각이 냉각용 에어를 내륜 간좌(6i)를 향하여 토출하는 3개의 노즐(70)과, 외륜 간좌(6g)의 내경면(6gA)에 설치된 열류 센서(11a, 11b)를 구비한다. 열류 센서(11a, 11b)의 출력은 노즐(70)로부터 토출되는 냉각용 에어의 유량의 조정에 이용된다. 그때문에 냉각용 에어로 베어링(5a, 5b)을 적시의 타이밍에서 베어링 장치(30)를 냉각할 수 있다.
또한, 열류 센서(11a, 11b)는 도 3에 도시하는 바와 같이 외륜 간좌(6g)의 내경면(6gA)의 둘레 방향에서의 제1 노즐(70A)과 제2 노즐(70B)의 중간의 위치로부터 제2 노즐(70B)의 위치까지의 사이에 배치된다. 이와 같은 배치에 의해 열류 센서(11a, 11b)의 출력이 냉각용 에어의 영향을 받기 어려워지기 때문에 열류 센서(11a, 11b)는 외륜 간좌(6g)와 내륜 간좌(6i) 사이에서 생기는 열류속을 보다 정밀도 좋게 검출할 수 있다.
또한, 도 2에 도시하는 바와 같이 노즐(70)은 외륜 간좌(6g)에서의 축방향의 중앙 부분에 배치되고 열류 센서(11a, 11b)는 외륜 간좌(6g)의 내경면(6gA)에서의 축방향의 단부에 배치된다. 이와 같은 배치에 의해서도 열류 센서(11a, 11b)의 출력이 냉각용 에어의 영향을 받기 어려워지기 때문에 열류 센서(11a, 11b)는 외륜 간좌(6g)와 내륜 간좌(6i) 사이에서 생기는 열류속을 보다 정밀도 좋게 검출할 수 있다.
[윤활 타입의 변형례]
상술한 실시의 형태에서는 베어링(5a, 5b)으로서 에어 오일 윤활의 베어링을 이용하는 예를 설명했는데, 베어링(5a, 5b)으로서 그리스 윤활의 베어링을 이용하도록 해도 좋다. 베어링(5a, 5b)으로서 그리스 윤활의 베어링을 이용하는 경우에는 윤활유 공급로(67a, 67b)는 불필요하다.
[열류 센서의 배치의 변형례]
도 10은 열류 센서의 배치의 변형례를 도시하는 도면이다. 본 변형례에서는 도 10에 도시하는 바와 같이 고정측인 외륜 간좌(6g)에 축방향 측면으로부터 내외륜 사이에 돌출하는 돌출부(7a, 7b)가 부가되고 일방의 돌출부(7a)에 열류 센서(11a)가 설치된다. 이 경우, 도시하지 않지만, 또 한쪽의 돌출부(7b)에도, 마찬가지로 열류 센서(11b)를 배치하면 좋다.
발열원은 구름 베어링의 고정측 궤도륜의 전동체 접촉 부분이지만, 고정측 궤도륜에 열류 센서를 설치하는 경우, 고정측 궤도륜의 가공 비용 등이 높아지는 문제가 우려된다. 고정측 간좌의 돌출부(7a, 7b)에 열류 센서를 설치하는 경우, 이 문제가 해소할 수 있고 용이하게 열류 센서를 설치할 수 있다. 또한 내외륜 사이에 돌출하는 돌출부(7a, 7b)에 열류 센서(11a, 11b)를 설치하기 때문에 운전 시에서의 베어링 내부의 온도 변화를 직접적으로 검출할 수 있다.
또한, 돌출부(7a, 7b)는 베어링(5a, 5b)에 에어 오일 윤활의 윤활유를 토출하는 노즐을 겸하는 것이라도 좋다. 이 경우, 윤활유를 토출하는 기존의 노즐을 이용하여 열류 센서를 마련할 수 있기 때문에 예를 들면 열류 센서를 설치하는 전용 부품을 마련하는 것보다도 비용 저감을 도모할 수 있다.
도 11은 열류 센서의 배치의 다른 변형례를 도시하는 도면이다. 도 1, 도 2에서는 열류 센서(11a, 11b)가 외륜 간좌(6g)의 내경면에서의 축방향의 단부(베어링(5) 근방)에 마련된 예를 도시하였다. 그렇지만, 도 11에 도시하는 바와 같이 열류 센서(11)를 외륜 간좌(6g)의 내경면에서의 축방향의 중앙부에 설치해도 좋다.
도 12는 열류 센서의 배치의 다른 변형례를 도시하는 도면이다. 도 12에 도시하는 바와 같이 열류 센서(11a)를 외륜(5ga)의 내경면에 설치해도 좋다. 이 경우, 도시하지 않지만, 마찬가지로 열류 센서(11b)를 외륜(5gb)의 내경면에 설치하면 좋다.
[베어링 이상의 징조 검출의 변형례]
상술한 실시의 형태에서는 열류 센서(11a, 11b)에 의해 검출된 열류속(Q)의 크기 또는 그 변화율(D)(열류속(Q)의 시간 미분치)로부터 베어링 이상의 징조를 검출하는 예에 관해 설명하였다. 그렇지만, 열류 센서(11a, 11b)에 의해 검출된 열류속(Q)과 그 외의 검출치의 조합에 의해 베어링 이상의 징조를 검출하도록 해도 좋다.
예를 들면 열류속(Q)과 그 외의 검출치(회전 속도(N), 진동, 온도, 모터 전류치, 예압 및 외부로부터의 하중 등)의 상관 관계(추종성 등), 열류속(Q)의 시간 적분치 등의 파라미터를 이용하여 베어링 이상의 징조를 검출하도록 해도 좋다. 예를 들면 회전 속도(N)와, 이 회전 속도에 추종하는 열류속(Q)의 관계에 의거하여 베어링 이상의 징조의 유무를 판정해도 좋다. 또한, 회전 속도(N)와 열류속(Q)의 관계를 감시하고 양자의 관계에 어긋남이 생긴 경우, 베어링 이상의 징조가 있다고 판정해도 좋다. 또한, 예를 들면 회전 속도(N)가 일정하고 변화하지 않음에도 불구하고 열류속(Q)이 가파르게 변화하는 경우에 베어링 이상의 징조가 있다고 판정해도 좋다. 또한, 예를 들면 회전 속도(N)가 변동하고 있는 때에 열류속(Q)이 회전 속도(N)에 추종하지 않는 경우에 베어링 이상의 징조가 있다고 판정하도록 해도 좋다.
또한, 상기 파라미터를 이용하여 베어링 이상의 징조를 검출하는 것에 더하여 베어링 이상 그 자체를 검출하는 이상 진단을 행하도록 해도 좋다. 예를 들면 열류속(Q) 또는 열류속의 변화율(D)이 각각 도 8에 도시한 Qth 또는 Dth보다도 더 큰 임계치를 초과한 경우에 베어링에 이상이 생겼다고 판정하도록 해도 좋다. 또한, 예를 들면 베어링 이상의 징조가 검출된 것에 의해 냉각용 에어를 증량한 후도 또한 열류속(Q)이 증가하는 경우에는 베어링이 손상을 입고 있는 것이 상정되기 때문에 베어링이 이상하다고 판정하도록 해도 좋다.
또한, 상기와 같은 이상 진단에 의해 베어링에 이상이 생겼다고 판정된 경우, 베어링 장치의 회전을 정지시키는 등의 제어를 실행할 수 있다. 이 경우, 제어 장치(55)는 경보 램프를 점등시키는 등으로 이상을 알리도록 해도 좋다.
금회 개시된 실시의 형태는 모든 점에서 예시로서 제한적인 것이 아니라고 생각되어야 할 것이다. 본 발명의 범위는 상기한 실시의 형태의 설명이 아니라 청구의 범위에 의해 나타나고 청구의 범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
1: 스핀들 장치 2: 외통
3: 하우징 4: 주축
5, 5a, 5b: 베어링 5ga, 5gb: 외륜
5ia, 5ib: 내륜 6: 간좌
6g: 외륜 간좌 6gA: 내경면
6i: 내륜 간좌 6iA: 외경면
7a, 7b: 돌출부 11, 11a, 11b: 열류 센서
30: 베어링 장치 50: 에어 공급 장치
51: 컴프레서 52: 에어 밸브
53, 54: 배관 55: 제어 장치
56: 온도 센서 57: 진동 센서
58: 회전 센서 67a, 67b: 윤활유 공급로
70: 노즐 70A: 제1 노즐
70B: 제2 노즐 70C: 제3 노즐
71: 토출구 72: 배기 홈
80: 도입 홈 Rta, Rtb: 유지기
Ta, Tb: 전동체

Claims (9)

  1. 내륜 및 외륜을 포함하는 베어링과,
    상기 내륜에 인접하는 내륜 간좌와 상기 외륜에 인접하는 외륜 간좌를 포함하는 간좌와,
    상기 외륜 간좌에 마련되고 공기 공급 장치로부터 공급되는 냉각용의 공기를 상기 내륜 간좌를 향하여 토출하는 적어도 하나의 노즐과,
    상기 베어링 또는 상기 간좌에 설치된 열류 센서를 구비하고,
    상기 열류 센서의 출력 신호는 상기 적어도 하나의 노즐로부터 토출되는 공기 유량의 조정에 이용되는 것을 특징으로 하는 베어링 장치.
  2. 제1항에 있어서,
    상기 적어도 하나의 노즐은 상기 외륜 간좌의 내경면의 둘레 방향으로 소정 간격을 사이에 두고 배치된 제1 노즐 및 제2 노즐을 포함하고,
    상기 열류 센서는 상기 외륜 간좌의 내경면의 둘레 방향에서의 상기 제1 노즐과 상기 제2 노즐의 중간의 위치로부터 상기 제2 노즐의 위치까지 사이의 어느 한 개소에 배치되는 것을 특징으로 하는 베어링 장치.
  3. 제2항에 있어서,
    상기 제1 노즐 및 상기 제2 노즐은 상기 내륜의 회전 방향의 전방으로 경사시켜서 마련되고,
    상기 제2 노즐은 상기 제1 노즐보다도 상기 내륜의 회전 방향의 전방측의 위치에 배치되는 것을 특징으로 하는 베어링 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 적어도 하나의 노즐은 상기 외륜 간좌에서의 축방향의 중앙 부분에 배치되고,
    상기 열류 센서는 상기 외륜 간좌에서의 축방향의 단부에 배치되는 것을 특징으로 하는 베어링 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 적어도 하나의 노즐로부터 토출되는 상기 공기 유량은 상기 열류 센서에 의해 검출된 열류속의 크기 및 변화율의 적어도 일방이 대응하는 판정 임계치를 초과한 경우에 증가되는 것을 특징으로 하는 베어링 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 공기 공급 장치는,
    압축 공기를 발생하는 컴프레서와,
    상기 컴프레서와 상기 적어도 하나의 노즐 사이에 마련된 밸브를 구비하고,
    상기 열류 센서의 출력은 상기 컴프레서의 출력 및 상기 밸브의 개도의 적어도 일방의 제어에 이용되는 것을 특징으로 하는 베어링 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 열류 센서는 제어 장치에 접속되고,
    상기 제어 장치는 상기 열류 센서의 출력에 의거하여 상기 베어링의 이상 또는 상기 이상의 징조의 유무를 판정하고 상기 이상 또는 상기 이상의 징조가 있는 경우에 상기 적어도 하나의 노즐로부터 토출되는 상기 공기 유량을 증가하는 처리를 행하는 것을 특징으로 하는 베어링 장치.
  8. 제1항에 있어서,
    상기 베어링 장치는 제어 장치에 접속되고 상기 베어링의 예압 및 외부로부터의 하중을 검출하는 하중 센서를 더 구비하고,
    상기 제어 장치는 상기 하중 센서의 출력에 의거하여 상기 적어도 하나의 노즐로부터 토출되는 상기 공기 유량을 조정하는 처리를 행하는 것을 특징으로 하는 베어링 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    공작 기계의 주축을 회전 자유롭게 지지하는 것을 특징으로 하는 베어링 장치.
KR1020217033862A 2019-03-25 2020-03-02 베어링 장치 KR20210141633A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019057035A JP7206141B2 (ja) 2019-03-25 2019-03-25 軸受装置
JPJP-P-2019-057035 2019-03-25
PCT/JP2020/008594 WO2020195563A1 (ja) 2019-03-25 2020-03-02 軸受装置

Publications (1)

Publication Number Publication Date
KR20210141633A true KR20210141633A (ko) 2021-11-23

Family

ID=72609938

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217033862A KR20210141633A (ko) 2019-03-25 2020-03-02 베어링 장치

Country Status (5)

Country Link
EP (1) EP3951200A4 (ko)
JP (1) JP7206141B2 (ko)
KR (1) KR20210141633A (ko)
CN (1) CN113631822A (ko)
WO (1) WO2020195563A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231657B (zh) * 2021-04-19 2022-09-06 广州市昊志机电股份有限公司 一种主轴轴承锁紧结构、电主轴和机床
CN114654300B (zh) * 2022-04-27 2023-03-17 湖州学院 一种组合机床生产线

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026078A (ja) 2015-07-24 2017-02-02 株式会社ジェイテクト 軸受装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987811B2 (ja) 2013-06-04 2016-09-07 株式会社デンソー 車両用の異常判定装置
JP6368170B2 (ja) 2014-06-27 2018-08-01 Ntn株式会社 潤滑油供給ユニットおよび軸受装置
JP6358233B2 (ja) 2015-11-12 2018-07-18 株式会社デンソー 組付状態の診断装置
JP6500825B2 (ja) * 2016-04-08 2019-04-17 株式会社デンソー 監視装置
JP2017187450A (ja) 2016-04-08 2017-10-12 株式会社デンソー 熱流束計および異常診断装置
JP6831162B2 (ja) 2016-11-10 2021-02-17 Ntn株式会社 軸受装置の冷却構造
JP2019049318A (ja) 2017-09-11 2019-03-28 日本電気株式会社 計測機能付き軸受

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026078A (ja) 2015-07-24 2017-02-02 株式会社ジェイテクト 軸受装置

Also Published As

Publication number Publication date
EP3951200A4 (en) 2022-11-30
WO2020195563A1 (ja) 2020-10-01
JP2020159393A (ja) 2020-10-01
EP3951200A1 (en) 2022-02-09
CN113631822A (zh) 2021-11-09
JP7206141B2 (ja) 2023-01-17

Similar Documents

Publication Publication Date Title
US7374019B2 (en) Method of and device for lubricating rolling bearings
EP3943221B1 (en) Lubricating oil supply unit and bearing device
US20080110700A1 (en) Main-shaft lubrication device
KR20210136064A (ko) 윤활유 공급 유닛 및 베어링 장치
KR20210141633A (ko) 베어링 장치
US20080093175A1 (en) Spindle device
JP2017180819A (ja) 軸受装置
TW202012801A (zh) 軸承裝置和工具機的主軸裝置
JP5842965B2 (ja) 荷重センサ付き軸受装置を具備した工作機械の主軸装置
CN112639311B (zh) 轴承装置
JP2004076783A (ja) 転がり軸受の潤滑方法および潤滑装置
WO2021009973A1 (ja) データ収集装置
TW202006329A (zh) 軸承裝置和工具機的主軸裝置
WO2022059573A1 (ja) 軸受装置
JP4691803B2 (ja) 主軸装置
JP2021014885A (ja) 軸受装置及びスピンドル装置