KR20210125482A - 페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물 - Google Patents

페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물 Download PDF

Info

Publication number
KR20210125482A
KR20210125482A KR1020217022730A KR20217022730A KR20210125482A KR 20210125482 A KR20210125482 A KR 20210125482A KR 1020217022730 A KR1020217022730 A KR 1020217022730A KR 20217022730 A KR20217022730 A KR 20217022730A KR 20210125482 A KR20210125482 A KR 20210125482A
Authority
KR
South Korea
Prior art keywords
epoxy resin
parts
formula
resin
phenol
Prior art date
Application number
KR1020217022730A
Other languages
English (en)
Inventor
마사히로 소
카즈오 이시하라
이진수
김재일
지중휘
유기환
Original Assignee
닛테츠 케미컬 앤드 머티리얼 가부시키가이샤
국도화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤, 국도화학 주식회사 filed Critical 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤
Publication of KR20210125482A publication Critical patent/KR20210125482A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/42Non-organometallic coupling reactions, e.g. Gilch-type or Wessling-Zimmermann type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

우수한 저유전 특성을 발현하고, 프린트 배선판 용도에서 동박 박리 강도 및 층간 밀착 강도가 우수한 에폭시 수지 조성물과, 그것을 부여하는 페놀 수지 또는 에폭시 수지를 제공한다. 하기 일반식 (1)로 나타내어지는 페놀 수지.
Figure pct00014

식 중, R1은 탄소수 1~10개의 탄화수소기를 나타내고, R2는 수소 원자, 식 (1a) 또는 식 (1b)를 나타내고, R2의 적어도 1개는 식 (1a) 또는 식 (1b)이다. n은 0~5의 반복수를 나타낸다.

Description

페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물
본 발명은 저유전 특성 및 고접착성이 우수한 페놀 수지 또는 에폭시 수지, 및 그들을 사용한 에폭시 수지 조성물, 에폭시 수지 경화물, 프리프레그, 적층판, 프린트 배선 기판에 관한 것이다.
에폭시 수지는 접착성, 가요성, 내열성, 내약품성, 절연성, 경화 반응성이 우수한 점에서 도료, 토목 접착, 주형, 전기 전자 재료, 필름 재료 등 다방면에 걸쳐 사용되어 있다. 특히, 전기 전자 재료 중 하나인 프린트 배선 기판 용도에서는 에폭시 수지에 난연성을 부여함으로써 널리 사용되어 있다.
최근 정보 기기의 소형화, 고성능화가 급속하게 진행되어 있으며, 그것에 따라 반도체나 전자 부품의 분야에서 사용되는 재료에 대해서 지금까지보다 높은 성능이 요구되어 있다. 특히, 전기·전자 부품의 재료가 되는 에폭시 수지 조성물에는 기판의 박형화와 고기능화에 따르는 저유전 특성이 요구되어 있다.
하기 특허문헌 1에 나타내는 바와 같이 지금까지 적층판 용도의 저유전율화에는 지방족 골격을 도입한 디시클로펜타디엔페놀 수지 등이 사용되어 왔지만 유전 정접을 개선하기 위해서는 효과가 떨어지고, 또한 접착성에 관해서도 만족스러운 것은 아니었다.
저유전 정접을 얻기 위한 수지로서 하기 특허문헌 2에 나타내는 바와 같이 방향족 골격을 도입한 방향족 변성 에폭시 수지 등이 사용되어 왔지만 우수한 유전 정접을 부여하는 한편, 접착력이 악화되는 과제가 있으며, 저유전 정접이며, 또한 고접착력을 부여하는 수지의 개발이 요구되어 있었다.
상기에 나타낸 바와 같이 어느 문헌에 개시된 에폭시 수지도 최근 고기능화에 의거하는 요구 성능을 충분히 만족하고 있지 않고, 저유전 특성과 접착성을 담보하기에는 불충분했다.
한편, 특허문헌 3은 2,6-디치환 페놀·디시클로펜타디엔형 수지를 개시하지만 페놀환에 복수의 디시클로펜타디엔이 치환한 수지는 개시하지 않는다.
일본 특허공개 2001-240654호 공보 일본 특허공개 2015-187190호 공보 일본 특허공개 평 5-339341호 공보
따라서, 본 발명이 해결하고자 하는 기술적 과제는 경화물에 있어서 우수한 유전 정접을 발현하고, 또한 프린트 배선판 용도에서 동박 박리 강도 및 층간 밀착 강도가 우수한 경화성 수지 조성물을 제공하는 것에 있다.
상기 과제를 해결하기 위해서 본 발명자들은 2,6-디치환 페놀류에 대하여 특정 비율의 디시클로펜타디엔과 반응시켜서 얻어지는 페놀 수지를 에폭시 수지와 경화했을 때 또는 이 페놀 수지를 엑폭시화했을 때에 얻어지는 에폭시 수지를 경화제와 경화했을 때에 얻어진 경화물의 저유전 특성과 접착성이 우수한 것을 발견하여 본 발명을 완성했다.
즉, 본 발명은 하기 일반식 (1)로 나타내어지는 페놀 수지이다.
Figure pct00001
식 중, R1은 각각 독립적으로 탄소수 1~8개의 탄화수소기를 나타내고, R2는 각각 독립적으로 수소 원자, 하기 식 (1a) 또는 식 (1b)를 나타내고, R2의 적어도 1개는 식 (1a) 또는 식 (1b) 중 어느 하나이다. n은 반복수를 나타내고, 그 평균값은 0~5의 수이다.
Figure pct00002
또한, 본 발명은 루이스산의 존재하, 하기 일반식 (3)으로 나타내어지는 2,6-디치환 페놀류에 대하여 디시클로펜타디엔을 0.28~2배몰의 비율로 반응시키는 것을 특징으로 하는 상기 페놀 수지의 제조 방법이다.
Figure pct00003
식 중, R1은 상기 일반식 (1)의 R1과 동의이다.
또한, 본 발명은 상기 페놀 수지를 원료로 해서 얻어지는 하기 일반식 (2)로 나타내어지는 에폭시 수지이다.
Figure pct00004
식 중, R11은 각각 독립적으로 탄소수 1~8개의 탄화수소기를 나타내고, R12는 각각 독립적으로 수소 원자, 상기 식 (1a) 또는 식 (1b)를 나타내고, R12의 적어도 1개는 상기 식 (1a) 또는 식 (1b) 중 어느 하나이다. m은 반복수를 나타내고, 그 평균값은 0~5의 수이다.
또한, 본 발명은 에폭시 수지 및 경화제를 함유해서 이루어지는 에폭시 수지 조성물이며, 상기 페놀 수지 및/또는 상기 에폭시 수지를 필수 성분으로 하는 것을 특징으로 하는 에폭시 수지 조성물이다.
또한, 본 발명은 상기 에폭시 수지 조성물을 경화시켜서 이루어지는 경화물이며, 상기 에폭시 수지 조성물을 사용한 프리프레그, 적층판, 또는 프린트 배선 기판이다.
(발명의 효과)
본 발명의 에폭시 수지 조성물은 그 경화물에 있어서 우수한 유전 정접을 발현하고, 또한 프린트 배선판 용도에서 동박 박리 강도 및 층간 밀착 강도가 우수한 에폭시 수지 조성물을 부여한다. 특히, 저유전 정접이 강하게 요구되는 모바일 용도나 서버 용도 등에 적합하게 사용할 수 있다.
도 1은 실시예 1에서 얻은 페놀 수지의 GPC 차트이다.
도 2는 실시예 1에서 얻은 페놀 수지의 MS 차트이다.
도 3은 실시예 7에서 얻은 페놀 수지의 GPC 차트이다.
도 4는 실시예 7에서 얻은 페놀 수지의 MS 차트이다.
도 5는 비교예 1에서 얻은 페놀 수지의 GPC 차트이다.
도 6은 비교예 1에서 얻은 페놀 수지의 MS 차트이다.
도 7은 실시예 11에서 얻은 에폭시 수지의 GPC 차트이다.
도 8은 실시예 17에서 얻은 에폭시 수지의 GPC 차트이다.
도 9는 비교예 3에서 얻은 에폭시 수지의 GPC 차트이다.
이하, 본 발명의 실시형태에 대해서 상세하게 설명한다.
본 발명의 페놀 수지는 상기 일반식 (1)로 나타내어진다.
일반식 (1)에 있어서 R1은 탄소수 1~8개의 탄화수소기를 나타내고, 탄소수 1~8개의 알킬기, 탄소수 6~8개의 아릴기, 탄소수 7~8개의 아랄킬기, 또는 알릴기가 바람직하다. 탄소수 1~8개의 알킬기로서는 직쇄형상, 분기형상, 환형상 중 어느 것이어도 상관 없이, 예를 들면 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, t-부틸기, 헥실기, 시클로헥실기, 메틸시클로헥실기 등을 들 수 있지만 이들에 한정되지 않는다. 탄소수 6~8개의 아릴기로서는 페닐기, 톨릴기, 크실릴기, 에틸페닐기 등을 들 수 있지만 이들에 한정되지 않는다. 탄소수 7~8개의 아랄킬기로서는 벤질기, α-메틸벤질기 등을 들 수 있지만 이들에 한정되지 않는다. 이들 치환기 중에서는 입수의 용이성 및 경화물로 할 때의 반응성의 관점으로부터 페닐기, 메틸기가 바람직하고, 메틸기가 특히 바람직하다.
R2는 각각 독립적으로 수소 원자, 상기 식 (1a) 또는 식 (1b)를 나타내고, R2의 적어도 1개는 식 (1a) 또는 식 (1b) 중 어느 하나이다. 식 (1a), 식 (1b)는 디시클로펜타디엔으로부터 유래되는 디시클로펜타디에닐기라고 말할 수 있다.
n은 반복수이며, 0 이상의 수를 나타내고, 그 평균값(수 평균)은 0~5이며, 0.5~3이 바람직하고, 0.5~2가 보다 바람직하고, 0.6~1.8이 더 바람직하다.
상기 페놀 수지는, 예를 들면 상기 일반식 (3)으로 나타내어지는 2,6-디치환 페놀류와 디시클로펜타디엔을 3불화붕소·에테르 촉매 등의 루이스산 존재하에서 반응시킴으로써 얻을 수 있다.
상기 2,6-디치환 페놀류로서는 2,6-디메틸페놀, 2,6-디에틸페놀, 2,6-디프로필페놀, 2,6-디이소프로필페놀, 2,6-디(n-부틸)페놀, 2,6-디(t-부틸)페놀, 2,6-디헥실페놀, 2,6-디시클로헥실페놀, 2,6-디페닐페놀, 2,6-디트릴페놀, 2,6-디벤질페놀, 2,6-비스(α-메틸벤질)페놀, 2-에틸-6-메틸페놀, 2-알릴-6-메틸페놀, 2-트릴-6-페닐페놀 등을 들 수 있지만 입수의 용이성 및 경화물로 할 때의 반응성의 관점으로부터 2,6-디페닐페놀, 2,6-디메틸페놀이 바람직하고, 2,6-디메틸페놀이 특히 바람직하다.
상기 반응에 사용하는 촉매는 루이스산이며, 구체적으로는 3불화붕소, 3불화붕소·페놀 착체, 3불화붕소·에테르 착체, 염화알루미늄, 염화주석, 염화아연, 염화철 등이지만 그 중에서도 취급의 용이함으로부터 3불화붕소·에테르 착체가 바람직하다. 촉매의 사용량은 3불화붕소·에테르 착체의 경우 디시클로펜타디엔 100질량부에 대하여 0.001~20질량부이며, 바람직하게는 0.5~10질량부이다.
2,6-디치환 페놀류에 상기 식 (1a) 또는 식 (1b)의 디시클로펜타디엔 구조를 도입하기 위한 반응 방법으로서는 2,6-디치환 페놀에 대하여 디시클로펜타디엔을 소정 비율로 반응시키는 방법이며, 디시클로펜타디엔을 수 단계로 나누어 첨가해서(2회 이상의 분할 축차 첨가) 간헐적으로 반응시켜도 좋다. 일반적인 반응에서는 비율은 2,6-디치환 페놀에 대하여 디시클로펜타디엔을 0.1~0.25배몰이지만 본 발명에서는 0.28~2배몰이다. 디시클로펜타디엔을 연속적으로 첨가해서 반응시킬 경우의 비율은 2,6-디치환 페놀에 대하여 디시클로펜타디엔을 0.25~1배몰이며, 0.28~1배몰이 바람직하고, 0.3~0.5배몰이 보다 바람직하다. 디시클로펜타디엔을 분할 축차 첨가해서 반응시키는 경우에는 전체적으로 0.8~2배몰이 바람직하고, 0.9~1.7배몰이 보다 바람직하다. 또한, 각 단계에서의 디시클로펜타디엔의 사용 비율은 0.28~1배몰이 바람직하다.
상기 일반식 (1)로 나타내어지는 페놀 수지 중에 식 (1a) 또는 식 (1b)로 나타내어지는 치환기가 도입된 것을 확인하는 방법으로서는 질량 분석법과 FT-IR 측정을 사용할 수 있다.
질량 분석 방법을 사용할 경우 일렉트로 스프레이 질량 분석법(ESI-MS)이나 필드 디솝션법(FD-MS) 등을 사용할 수 있다. GPC 등에서 핵체 수가 상이한 성분을 분리한 샘플을 질량 분석법에 가함으로써 식 (1a) 또는 식 (1b)로 나타내어지는 치환기가 도입된 것을 확인할 수 있다.
FT-IR 측정법을 사용할 경우, THF 등의 유기 용매에 용해시킨 샘플을 KRS-5셀 상에 도포하고, 유기 용매를 건조시켜서 얻어진 샘플 박막이 부착된 셀을 FT-IR로 측정하면 페놀 핵에 있어서의 C-O 신축 진동으로부터 유래되는 피크가 1210㎝-1 부근에 나타나고, 식 (1a) 또는 식 (1b)가 도입되어 있을 경우에만 디시클로펜타디엔 골격의 올레핀 부위의 C-H 신축 진동으로부터 유래되는 피크가 3040㎝-1 부근에 나타난다. 목적의 피크의 시작과 끝을 직선적으로 연결한 것을 베이스라인으로 하고, 피크의 정점으로부터 베이스라인까지의 길이를 피크 높이로 했을 때 3040㎝-1 부근의 피크(A3040)와 1210㎝-1 부근의 피크(A1210)의 비율(A3040/A1210)에 의해 식 (1a) 또는 식 (1b)의 도입량을 정량할 수 있다. 그 비율은 클수록 물성값이 좋아지는 것을 확인할 수 있으며, 목적의 물성을 충족하기 위한 바람직한 비율(A3040/A1210)은 0.05 이상이며, 보다 바람직하게는 0.1 이상이다.
본 반응은 2,6-디치환 페놀류와 촉매를 반응기에 주입하고, 디시클로펜타디엔을 1~10시간 걸쳐 적하해 가는 방식이 좋다.
반응 온도는 50~200℃가 바람직하고, 100~180℃가 보다 바람직하고, 120~160℃가 더 바람직하다. 반응 시간은 1~10시간이 바람직하고, 3~10시간이 보다 바람직하고, 4~8시간이 더 바람직하다.
반응 종료 후 수산화나트륨, 수산화칼륨, 수산화칼슘 등의 알칼리를 첨가하여 촉매를 실활시킨다. 그 후 톨루엔, 크실렌 등의 방향족 탄화수소류나 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류 등의 용매를 첨가해서 용해하고, 수세한 후 감압하에서 용매를 회수함으로써 목적으로 하는 페놀 수지를 얻을 수 있다. 또한, 디시클로펜타디엔을 가급적으로 전량 반응시켜서 2,6-디치환 페놀류의 일부를 미반응, 바람직하게는 10% 이하를 미반응으로 하고, 그것을 감압 회수하는 것이 바람직하다.
반응에 있어서 필요에 따라 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소류나, 클로로벤젠, 디클로로벤젠 등의 할로겐화탄화수소류나, 에틸렌글리콜디메틸에테르, 디에틸렌글리콜디메틸에테르 등의 에테르류 등의 용매를 사용해도 좋다.
본 발명의 에폭시 수지는 일반식 (2)로 나타내어진다. 이 에폭시 수지는 상기 페놀 수지에 에피클로로히드린 등의 에피할로히드린을 반응시킴으로써 얻어진다. 이 반응은 종래 공지의 방법에 따라 행해진다.
일반식 (1)로 나타내어지는 페놀 수지를 엑폭시화함으로써 얻어지는 일반식 (2)로 나타내어지는 에폭시 수지에 있어서 R11은 각각 독립적으로 탄소수 1~8개의 탄화수소기이며, 탄화수소기로서는 상기 일반식 (1)의 R1로서 예시한 것을 들 수 있고, 바람직한 것에 대해서도 마찬가지이다. R12는 각각 독립적으로 수소 원자, 식 (1a) 또는 식 (1b)를 나타내고, R12의 적어도 1개는 식 (1a) 또는 식 (1b) 중 어느 하나이다.
m은 반복수이며, 0 이상의 수를 나타내고, 그 평균값(수 평균)은 0~5이며, 0.5~2가 바람직하고, 0.6~1이 더 바람직하다.
에폭시화하는 방법으로서는, 예를 들면 페놀 수지와, 페놀 수지의 수산기에 대하여 과잉 몰의 에피할로히드린의 혼합물에 수산화나트륨 등의 알칼리 금속 수산화물을 고형 또는 농후 수용액으로서 첨가하고, 30~120℃의 반응 온도에서 0.5~10시간 반응시키거나, 또는 페놀 수지와 과잉 몰량의 에피할로히드린에 테트라에틸암모늄클로라이드 등의 제4급 암모늄염을 촉매로서 첨가하고, 50~150℃의 온도에서 1~5시간 반응해서 얻어지는 폴리할로히드린에테르에 수산화나트륨 등의 알칼리 금속 수산화물을 고형 또는 농후 수용액으로서 첨가하고, 30~120℃의 온도에서 1~10시간 반응시킴으로써 얻을 수 있다.
상기 반응에 있어서 에피할로히드린의 사용량은 페놀 수지의 수산기에 대해서 1~20배몰이며, 4~8배몰이 바람직하다. 또한, 알칼리 금속 수산화물의 사용량은 페놀 수지의 수산기에 대하여 0.85~1.1배몰이다.
이들 반응으로 얻어진 에폭시 수지는 미반응의 에피할로히드린과 알칼리 금속의 할로겐화물을 함유하고 있으므로 반응 혼합물로부터 미반응의 에피할로히드린을 증발 제거하고, 또한 알칼리 금속의 할로겐화물을 물에 의한 추출, 여과 등의 방법에 의해 제거하여 목적으로 하는 에폭시 수지를 얻을 수 있다.
본 발명의 에폭시 수지의 에폭시당량(g/eq.)은 244~3700이 바람직하고, 260~2000이 보다 바람직하고, 270~700이 더 바람직하다. 특히, 디시안디아미드를 경화제로서 사용할 경우 프리프레그 상에 디시안디아미드의 결정이 석출되는 것을 방지하기 위해서 에폭시당량은 300 이상인 것이 바람직하다.
본 발명의 제조 방법으로 얻어지는 에폭시 수지의 분자량 분포는 엑폭시화 반응할 때의 페놀 수지와 에피할로히드린의 주입 비율을 변경함으로써 변경 가능하며, 에피할로히드린의 사용량을 페놀 수지의 수산기에 대하여 등몰에 가까워질수록 고분자량 분포가 되며, 20몰 배에 가까워질수록 저분자량 분포가 된다. 또한, 얻어진 에폭시 수지에 대하여 다시 페놀 수지를 작용시킴으로써 고분자량화시키는 것도 가능하다.
이러한 에폭시 수지를 사용함으로써 본 발명의 에폭시 수지 조성물을 얻을 수 있다.
본 발명의 에폭시 수지 조성물은 에폭시 수지 및 경화제를 필수 성분으로 한다. 이 실시형태로서는 경화제와 에폭시 수지의 양자가 본 발명의 페놀 수지와 본 발명의 에폭시 수지인 실시형태와, 경화제와 에폭시 수지의 일방이 본 발명의 페놀 수지 또는 에폭시 수지인 실시형태가 있다.
바람직하게는 경화제 중 적어도 30질량%가 상기 일반식 (1)로 나타내어지는 페놀 수지이거나, 또는 에폭시 수지 중 적어도 30질량%가 상기 일반식 (2)로 나타내어지는 에폭시 수지인 것이며, 50질량% 이상 함유하는 것이 보다 바람직하다. 이것보다 적을 경우 유전 특성이 악화될 우려가 있다.
본 발명의 에폭시 수지 조성물을 얻기 위해서 사용하는 에폭시 수지로서는 본 발명의 에폭시 수지 단독이어도, 본 발명의 에폭시 수지 외에 필요에 따라 각종 에폭시 수지를 1종류 또는 2종류 이상 병용해도 좋다.
이들 에폭시 수지를 병용할 경우 병용하는 에폭시 수지 중의 70질량% 이하인 것이 바람직하고, 50질량% 이하가 보다 바람직하다. 병용하는 에폭시 수지가 지나치게 많으면 에폭시 수지 조성물로서의 유전 특성이 악화될 우려가 있다.
또한, 본 발명의 페놀 수지를 사용할 경우에는 본 발명의 에폭시 수지 이외의 다른 에폭시 수지만이어도 좋다.
병용하는 에폭시 수지 또는 상기 다른 에폭시 수지로서는 분자 중에 에폭시기를 2개 이상 갖는 통상의 에폭시 수지는 전부 사용할 수 있다. 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀F형 에폭시 수지, 테트라메틸비스페놀F형 에폭시 수지, 히드로퀴논형 에폭시 수지, 비페닐형 에폭시 수지, 비스페놀플루오렌형 에폭시 수지, 비스페놀S형 에폭시 수지, 비스티오에테르형 에폭시 수지, 레조르시놀형 에폭시 수지, 비페닐아랄킬페놀형 에폭시 수지, 나프탈렌디올형 에폭시 수지, 페놀노볼락형 에폭시 수지, 스티렌화페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 알킬노볼락형 에폭시 수지, 비스페놀노볼락형 에폭시 수지, 나프톨노볼락형 에폭시 수지, β-나프톨아랄킬형 에폭시 수지, 디나프톨아랄킬형 에폭시 수지, α-나프톨아랄킬형 에폭시 수지, 트리스페닐메탄형 에폭시 수지, 트리스페닐메탄형 에폭시 수지, 본 발명 이외의 디시클로펜타디엔형 에폭시 수지, 알킬렌글리콜형 에폭시 수지, 지방족 환형상 에폭시 수지, 디아미노디페닐메탄테트라글리시딜아민, 아미노페놀형 에폭시 수지, 인 함유 에폭시 수지, 우레탄 변성 에폭시 수지, 옥사졸리돈환 함유 에폭시 수지를 들 수 있지만 이들에 한정되는 것은 아니다. 또한, 이들 에폭시 수지는 단독으로 사용해도 좋고, 2종류 이상을 병용해도 좋다. 입수 용이함의 관점으로부터 나프탈렌디올형 에폭시 수지, 페놀노볼락형 에폭시 수지, 방향족 변성 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지, α-나프톨아랄킬형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 인 함유 에폭시 수지, 옥사졸리돈환 함유 에폭시 수지를 사용하는 것이 더 바람직하다.
경화제로서는 상기 디시클로펜타디엔형 페놀 수지 외에 필요에 따라 각종 페놀 수지류, 산무수물류, 아민류, 히드라지드류, 산성 폴리에스테르류 등의 통상 사용되는 경화제를 1종류 또는 2종류 이상 병용해도 좋다. 이들 경화제를 병용할 경우 병용하는 경화제는 전체 경화제 중의 70질량% 이하인 것이 바람직하고, 50질량% 이하가 보다 바람직하다. 병용하는 경화제의 비율이 지나치게 많으면 에폭시 수지 조성물로서의 유전 특성과 접착 특성이 악화될 우려가 있다.
또한, 본 발명의 에폭시 수지를 사용할 경우에는 본 발명의 페놀 수지 이외의 다른 페놀 수지만이어도 좋다.
본 발명의 에폭시 수지 조성물에 있어서 전체 에폭시 수지의 에폭시기 1몰에 대하여 경화제의 활성 수소기의 몰비는 0.2~1.5몰이 바람직하고, 0.3~1.4몰이 보다 바람직하고, 0.5~1.3몰이 더 바람직하고, 0.8~1.2몰이 특히 바람직하다. 이 범위를 벗어날 경우에는 경화가 불완전해져 양호한 경화물성이 얻어지지 않을 우려가 있다. 예를 들면, 페놀 수지계 경화제나 아민계 경화제를 사용한 경우에는 에폭시기에 대하여 활성 수소기를 거의 등몰 배합한다. 산무수물계 경화제를 사용한 경우에는 에폭시기 1몰에 대하여 산무수물기를 0.5~1.2몰, 바람직하게는 0.6~1.0몰 배합한다. 본 발명의 페놀 수지를 경화제로서 단독으로 사용할 경우에는 에폭시 수지 1몰에 대하여 0.9~1.1몰의 범위에서 사용하는 것이 바람직하다.
본 발명에서 말하는 활성 수소기란 에폭시기와 반응성의 활성 수소를 갖는 관능기(가수분해 등에 의해 활성 수소를 발생하는 잠재성 활성 수소를 갖는 관능기나 동등한 경화 작용을 나타내는 관능기를 포함한다)인 것이며, 구체적으로는 산무수물기나, 카르복실기나, 아미노기나, 페놀성 수산기 등을 들 수 있다. 또한, 활성 수소기에 관해서 1몰의 카르복실기나 페놀성 수산기는 1몰로, 아미노기(NH2)는 2몰로 계산된다. 또한, 활성 수소기가 명확하지는 않을 경우에는 측정에 의해 활성 수소당량을 구할 수 있다. 예를 들면, 에폭시당량이 기지의 페닐글리시딜에테르 등의 모노에폭시 수지와 활성 수소당량이 미지인 경화제를 반응시켜서 소비한 모노에폭시 수지의 양을 측정함으로써 사용한 경화제의 활성 수소당량을 구할 수 있다.
본 발명의 에폭시 수지 조성물에 사용할 수 있는 페놀 수지계 경화제로서는 구체예로는 비스페놀A, 비스페놀F, 비스페놀C, 비스페놀K, 비스페놀Z, 비스페놀S, 테트라메틸비스페놀A, 테트라메틸비스페놀F, 테트라메틸비스페놀S, 테트라메틸비스페놀Z, 디히드록시디페닐술피드, 4,4'-티오비스(3-메틸-6-t-부틸페놀) 등의 비스페놀류나, 카테콜, 레조르신, 메틸레조르신, 하이드로퀴논, 모노메틸하이드로퀴논, 디메틸하이드로퀴논, 트리메틸하이드로퀴논, 모노-t-부틸하이드로퀴논, 디-t-부틸하이드로퀴논 등 디히드록시벤젠류나, 디히드록시나프탈렌, 디히드록시메틸나프탈렌, 트리히드록시나프탈렌 등의 히드록시나프탈렌류나, LC-950PM60(Shin-AT&C Corporation제) 등의 인 함유 페놀 경화제나, SHONOL BRG-555(Aica Kogyo Company, Limited제) 등의 페놀노볼락 수지, DC-5(NIPPON STEEL Chemical & Material Co., Ltd.제) 등의 크레졸노볼락 수지, 방향족 변성 페놀노볼락 수지, 비스페놀A노볼락 수지, RESITOP TPM-100(Gun Ei Chemical Industry Co., Ltd.제) 등의 트리히드록시페닐메탄형 노볼락 수지, 나프톨노볼락 수지 등의 페놀류, 나프톨류 및/또는 비스페놀류와 알데히드류의 축합물, SN-160, SN-395, SN-485(NIPPON STEEL Chemical & Material Co., Ltd.제) 등의 페놀류, 나프톨류 및/또는 비스페놀류와 크실릴렌글리콜의 축합물, 페놀류 및/또는 나프톨류와 이소프로페닐아세토페논의 축합물, 페놀류, 나프톨류 및/또는 비스페놀류와 디시클로펜타디엔의 반응물, 페놀류, 나프톨류 및/또는 비스페놀류와 비페닐계 가교제의 축합물 등의 소위 노볼락페놀 수지라고 불리는 페놀 화합물 등을 들 수 있다. 입수 용이함의 관점으로부터 페놀노볼락 수지, 디시클로펜타디엔형 페놀 수지, 트리히드록시페닐메탄형 노볼락 수지, 방향족 변성 페놀노볼락 수지 등이 바람직하다.
노볼락페놀 수지의 경우 페놀류로서는 페놀, 크레졸, 크실레놀, 부틸페놀, 아밀페놀, 노닐페놀, 부틸메틸페놀, 트리메틸페놀, 페닐페놀 등을 들 수 있고, 나프톨류로서는 1-나프톨, 2-나프톨 등을 들 수 있고, 그 외 상기 비스페놀류를 들 수 있다. 알데히드류로서는 포름알데히드, 아세트알데히드, 프로필알데히드, 부틸알데히드, 발레르알데히드, 카프론알데히드, 벤즈알데히드, 클로로알데히드, 브롬알데히드, 글리옥살, 말론알데히드, 숙신알데히드, 글루타르알데히드, 아디핀알데히드, 피멜린알데히드, 세바신알데히드, 아크롤레인, 크로톤알데히드, 살리실알데히드, 프탈알데히드, 히드록시벤즈알데히드 등이 예시된다. 비페닐계 가교제로서 비스(메틸올)비페닐, 비스(메톡시메틸)비페닐, 비스(에톡시메틸)비페닐, 비스(클로로메틸)비페닐 등을 들 수 있다.
산무수물계 경화제로서는 구체적으로는 메틸테트라히드로 무수 프탈산, 헥사히드로 무수 프탈산, 무수 피로멜리트산, 무수 프탈산, 무수 트리멜리트산, 메틸나딕산 등을 들 수 있다.
아민계 경화제로서는 구체적으로는 디에틸렌트리아민, 트리에틸렌테트라민, 메타크실렌디아민, 이소포론디아민, 디아미노디페닐메탄, 디아미노디페닐술폰, 디아미노디페닐에테르, 벤질디메틸아민, 2,4,6-트리스(디메틸아미노메틸)페놀, 디시안디아미드, 다이머산 등의 산류와 폴리아민류의 축합물인 폴리아미드아민 등의 아민계 화합물 등을 들 수 있다.
그 외의 경화제로서 구체적으로는 트리페닐포스핀 등의 포스핀 화합물, 테트라페닐포스포늄브로마이드 등의 포스포늄염, 2-메틸이미다졸, 2-페닐이미다졸, 2-에틸-4-메틸이미다졸, 2-운데실이미다졸, 1-시아노에틸-2-메틸이미다졸 등의 이미다졸류, 이미다졸류와 트리멜리트산, 이소시아누르산, 또는 붕소 등의 염인 이미다졸염류, 트리메틸암모늄브로마이드 등의 4급 암모늄염류, 디아자비시클로 화합물, 디아자비시클로 화합물과 페놀류나 페놀노볼락 수지류 등의 염류, 3불화 붕소와 아민류나 에테르 화합물 등의 착화합물, 방향족 포스포늄, 또는 요오도늄염 등을 들 수 있다.
에폭시 수지 조성물에는 필요에 따라 경화 촉진제를 사용할 수 있다. 사용할 수 있는 경화 촉진제의 예로서는 2-메틸이미다졸, 2-에틸이미다졸, 2-에틸-4-메틸이미다졸 등의 이미다졸류, 2-(디메틸아미노메틸)페놀, 1,8-디아자-비시클로(5,4,0)운데센-7 등의 제3급 아민류, 트리페닐포스핀, 트리시클로헥실포스핀, 트리페닐포스핀트리페닐보란 등의 포스핀류, 옥틸산 주석 등의 금속 화합물을 들 수 있다. 경화 촉진제를 사용할 경우 그 사용량은 본 발명의 에폭시 수지 조성물 중의 에폭시 수지 성분 100질량부에 대하여 0.02~5질량부가 바람직하다. 경화 촉진제를 사용함으로써 경화 온도를 내리거나 경화 시간을 단축하거나 할 수 있다.
에폭시 수지 조성물에는 점도 조정용으로서 유기 용매 또는 반응성 희석제를 사용할 수 있다.
유기 용매로서는, 예를 들면 N,N-디메틸포름아미드, N,N-디메틸아세트아미드 등의 아미드류나, 에틸렌글리콜모노메틸에테르, 디메톡시디에틸렌글리콜, 에틸렌글리콜디에틸에테르, 디에틸렌글리콜디에틸에테르, 트리에틸렌글리콜디메틸에테르 등의 에테르류나, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류나, 메탄올, 에탄올, 1-메톡시-2-프로판올, 2-에틸-1-헥산올, 벤질알코올, 에틸렌글리콜, 프로필렌글리콜, 부틸디글리콜, 파인 오일 등의 알코올류나, 아세트산 부틸, 아세트산 메톡시부틸, 메틸셀로솔브아세테이트, 셀로솔브아세테이트, 에틸디글리콜아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 카르비톨아세테이트, 벤질알코올아세테이트 등의 아세트산 에스테르류나, 벤조산 메틸, 벤조산 에틸 등의 벤조산 에스테르류나, 메틸셀로솔브, 셀로솔브, 부틸셀로솔브 등의 셀로솔브류나, 메틸카르비톨, 카르비톨, 부틸카르비톨 등의 카르비톨류나, 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소류나, 디메틸술폭시드, 아세토니트릴, N-메틸피롤리돈 등을 들 수 있지만 이들에 한정되는 것은 아니다.
반응성 희석제로서는, 예를 들면 알릴글리시딜에테르, 부틸글리시딜에테르, 2-에틸헥실글리시딜에테르, 페닐글리시딜에테르, 트릴글리시딜에테르 등의 단관능 글리시딜에테르류나, 레조르시놀디글리시딜에테르, 네오펜틸글리콜디글리시딜에테르, 1,4-부탄디올디글리시딜에테르, 1,6-헥산디올디글리시딜에테르, 시클로헥산디메탄올디글리시딜에테르, 프로필렌글리콜디글리시딜에테르 등의 2관능 글리시딜에테르류나, 글리세롤폴리글리시딜에테르, 트리메틸올프로판폴리글리시딜에테르, 트리메틸올에탄폴리글리시딜에테르, 펜타에리스리톨폴리글리시딜에테르 등의 다관능 글리시딜에테르류나 네오데칸산 글리시딜에스테르 등의 글리시딜에스테르류나, 페닐디글리시딜아민, 트릴디글리시딜아민 등의 글리시딜아민류를 들 수 있지만 이들에 한정되는 것은 아니다.
이들 유기 용매 또는 반응성 희석제는 단독 또는 복수 종류를 혼합한 것을 불휘발분으로서 90질량% 이하로 사용하는 것이 바람직하고, 그 적정한 종류나 사용량은 용도에 의해 적당히 선택된다. 예를 들면, 프린트 배선판 용도에서는 메틸에틸케톤, 아세톤, 1-메톡시-2-프로판올 등의 비점이 160℃ 이하의 극성 용매인 것이 바람직하고, 그 사용량은 불휘발분으로 40~80질량%가 바람직하다. 또한, 접착 필름 용도에서는, 예를 들면 케톤류, 아세트산 에스테르류, 카르비톨류, 방향족 탄화수소류, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등을 사용하는 것이 바람직하고, 그 사용량은 불휘발분으로 30~60질량%가 바람직하다.
에폭시 수지 조성물은 특성을 손상시키지 않는 범위에서 다른 열경화성 수지, 열가소성 수지를 배합해도 좋다. 예를 들면, 페놀 수지, 아크릴 수지, 석유 수지, 인덴 수지, 쿠마론인덴 수지, 페녹시 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리아미드 수지, 폴리이미드 수지, 폴리아미드이미드 수지, 폴리에테르이미드 수지, 폴리페닐렌에테르 수지, 변성 폴리페닐렌에테르 수지, 폴리에테르술폰 수지, 폴리술폰 수지, 폴리에테르에테르케톤 수지, 폴리페닐렌술피드 수지, 폴리비닐포르말 수지 등을 들 수 있지만 이들에 한정되는 것은 아니다.
에폭시 수지 조성물에는 얻어지는 경화물의 난연성의 향상을 목적으로 공지의 각종 난연제를 사용할 수 있다. 사용할 수 있는 난연제로서는, 예를 들면 할로겐계 난연제, 인계 난연제, 질소계 난연제, 실리콘계 난연제, 무기계 난연제, 유기 금속염계 난연제 등을 들 수 있다. 환경에 대한 관점으로부터 할로겐을 포함하지 않는 난연제가 바람직하고, 특히 인계 난연제가 바람직하다. 이들 난연제는 단독으로 사용해도 좋고, 2종류 이상을 병용해도 좋다.
인계 난연제는 무기 인계 화합물, 유기인계 화합물 중 어느 것이나 사용할 수 있다. 무기 인계 화합물로서는, 예를 들면 적인, 인산 1암모늄, 인산 2암모늄, 인산 3암모늄, 폴리인산 암모늄 등의 인산 암모늄류, 인산 아미드 등의 무기계 함질소 인 화합물을 들 수 있다. 유기인계 화합물로서는, 예를 들면 지방족 인산 에스테르, 인산 에스테르 화합물, 예를 들면 PX-200(DAIHACHI CHEMICAL INDUSTRY CO., LTD.제) 등의 축합 인산 에스테르류, 포스폰산 화합물, 포스핀산 화합물, 포스핀옥시드 화합물, 포스포란 화합물, 유기계 함질소 인 화합물 등의 범용 유기인계 화합물이나, 포스핀산의 금속염의 외 9,10-디히드로-9-옥사-10-포스파페난트렌-10-옥시드, 10-(2,5-디히드로옥시페닐)-10H-9-옥사-10-포스파페난트렌-10-옥시드, 10-(2,7-디히드로옥시나프틸)-10H-9-옥사-10-포스파페난트렌-10-옥시드 등의 환형상 유기 인 화합물이나, 그들을 에폭시 수지나 페놀 수지 등의 화합물과 반응시킨 유도체인 인 함유 에폭시 수지나 인 함유 경화제 등을 들 수 있다.
난연제의 배합량으로서는 인계 난연제의 종류, 에폭시 수지 조성물의 성분, 소망의 난연성의 정도에 의해 적당히 선택된다. 예를 들면, 에폭시 수지 조성물 중의 유기 성분(유기 용매를 제외한다) 내의 인 함유량은 바람직하게는 0.2~4질량%이며, 보다 바람직하게는 0.4~3.5질량%이며, 더 바람직하게는 0.6~3질량%이다. 인 함유량이 적으면 난연성의 확보가 어려워질 우려가 있으며, 지나치게 많으면 내열성에 악영향을 부여할 우려가 있다. 또한, 인계 난연제를 사용할 경우에는 수산화마그네슘 등의 난연조제를 병용해도 좋다.
에폭시 수지 조성물에는 필요에 따라 충전재를 사용할 수 있다. 구체적으로는 용융 실리카, 결정 실리카, 알루미나, 질화규소, 수산화알루미늄, 베마이트, 수산화마그네슘, 탤크, 마이카, 탄산 칼슘, 규산 칼슘, 수산화칼슘, 탄산 마그네슘, 탄산 바륨, 황산 바륨, 질화붕소, 탄소, 탄소 섬유, 유리 섬유, 알루미나 섬유, 실리카알루미나 섬유, 탄화규소 섬유, 폴리에스테르 섬유, 셀룰로오스 섬유, 아라미드 섬유, 세라믹 섬유, 미립자 고무, 열가소성 엘라스토머, 안료 등을 들 수 있다. 일반적으로 충전재를 사용하는 이유로서는 내충격성의 향상 효과를 들 수 있다. 또한, 수산화알루미늄, 베마이트, 수산화마그네슘 등의 금속 수산화물을 사용한 경우에는 난연조제로서 작용하여 난연성이 향상되는 효과가 있다. 이들 충전재의 배합량은 에폭시 수지 조성물 전체에 대하여 1~150질량%가 바람직하고, 10~70질량%가 보다 바람직하다. 배합량이 많으면 적층판 용도로서 필요한 접착성이 저하될 우려가 있으며, 또한 경화물이 약해서 충분한 기계 물성이 얻어지지 않게 될 우려가 있다. 또한, 배합량이 적으면 경화물의 내충격성의 향상 등 충전제의 배합 효과가 나오지 않을 우려가 있다.
에폭시 수지 조성물을 판형상 기판 등으로 할 경우 그 치수 안정성, 굽힘 강도 등의 점에서 섬유형상의 것이 바람직한 충전재로서 들 수 있다. 보다 바람직하게는 유리 섬유를 망목형상으로 엮은 유리 섬유 기판을 들 수 있다.
에폭시 수지 조성물은 필요에 따라서 실란커플링제, 산화방지제, 이형제, 소포제, 유화제, 요변성부여제, 평활제, 난연제, 안료 등의 핵종 첨가제를 더 배합할 수 있다. 이들 첨가제의 배합량은 에폭시 수지 조성물에 대하여 0.01~20질량%의 범위가 바람직하다.
에폭시 수지 조성물은 섬유형상 기재에 함침시킴으로써 프린트 배선판 등에서 사용되는 프리프레그를 작성할 수 있다. 섬유형상 기재로서는 유리 등의 무기 섬유나 폴리에스테르 수지 등 폴리아민 수지, 폴리아크릴 수지, 폴리이미드 수지, 방향족 폴리아미드 수지 등의 유기질 섬유의 직포 또는 부직포를 사용할 수 있지만 이것에 한정되는 것은 아니다. 에폭시 수지 조성물로부터 프리프레그를 제조하는 방법으로서는 특별히 한정되는 것은 아니고, 예를 들면 에폭시 수지 조성물을 유기 용매에 의해 점도 조정해서 작성한 수지 바니시에 함침한 후 가열 건조해서 수지 성분을 반경화(B스테이지화)해서 얻어지는 것이며, 예를 들면 100~200℃에서 1~40분간 가열 건조할 수 있다. 여기에서 프리프레그 중의 수지량은 수지분 30~80질량%가 바람직하다.
또한, 프리프레그를 경화하기 위해서는 일반적으로 프린트 배선판을 제조할 때에 사용되는 적층판의 경화 방법을 사용할 수 있지만 이것에 한정되는 것은 아니다. 예를 들면, 프리프레그를 사용하여 적층판을 형성할 경우 프리프레그를 1장 또는 복수 장 적층하고, 편측 또는 양측에 금속박을 배치해서 적층물을 구성하고, 이 적층물을 가열·가압해서 적층 일체화한다. 여기에서 금속박으로서는 구리, 알루미늄, 진유, 니켈 등의 단독, 합금, 복합의 금속박을 사용할 수 있다. 그리고 작성한 적층물을 가압 가열함으로써 프리프레그를 경화시켜 적층판을 얻을 수 있다. 그 때 가열 온도를 160~220℃, 가압 압력을 50~500N/㎠, 가열 가압 시간을 40~240분간으로 하는 것이 바람직하고, 목적으로 하는 경화물을 얻을 수 있다. 가열 온도가 낮으면 경화 반응이 충분히 진행되지 않고, 높으면 에폭시 수지 조성물의 분해가 시작될 우려가 있다. 또한, 가압 압력이 낮으면 얻어지는 적층판의 내부에 기포가 잔류하고, 전기적 특성이 저하될 경우가 있으며, 높으면 경화하기 전에 수지가 흘러버려 희망하는 두께의 경화물이 얻어지지 않을 우려가 있다. 또한, 가열 가압 시간이 짧으면 충분히 경화 반응이 진행되지 않을 우려가 있으며, 길면 프리프레그 중의 에폭시 수지 조성물의 열분해가 일어날 우려가 있어 바람직하지 않다.
에폭시 수지 조성물은 공지의 에폭시 수지 조성물과 마찬가지인 방법으로 경화함으로써 에폭시 수지 경화물을 얻을 수 있다. 경화물을 얻기 위한 방법으로서는 공지의 에폭시 수지 조성물과 마찬가지의 방법을 취할 수 있고, 주형, 주입, 폿팅, 딥핑, 드립 코팅, 트랜스퍼 성형, 압축 성형 등이나, 수지 시트, 수지가 부착된 동박, 프리프레그 등의 형태로 하여 적층해서 가열 가압 경화함으로써 적층판으로 하는 등의 방법이 적합하게 사용된다. 그 때의 경화 온도는 통상 100~300℃이며, 경화 시간은 통상 1시간~5시간 정도이다.
본 발명의 에폭시 수지 경화물은 적층물, 성형물, 접착물, 도막, 필름 등의 형태를 취할 수 있다.
에폭시 수지 조성물을 제작하고, 가열 경화에 의해 적층판 및 경화물을 평가한 결과, 경화물에 있어서 우수한 저유전 특성을 발현하고, 또한 프린트 배선판 용도로 동박 박리 강도 및 층간 밀착 강도가 우수한 에폭시 경화성 수지 조성물을 제공할 수 있었다.
(실시예)
실시예 및 비교예를 들어서 본 발명을 구체적으로 설명하지만 본 발명은 이들에 한정되는 것은 아니다. 특히 언급이 없는 한 「부」는 질량부를 나타내고, 「%」는 질량%를 나타내고, 「ppm」은 질량ppm을 나타낸다. 또한, 측정 방법은 각각 이하의 방법에 의해 측정했다.
·수산기당량: JIS K 0070 규격에 준거해서 측정을 행하고, 단위는 「g/eq.」로 나타냈다. 또한, 특별히 언급이 없는 한 페놀 수지의 수산기당량은 페놀성 수산기당량을 의미한다.
·연화점: JIS K 7234 규격, 환구법에 준거해서 측정했다. 구체적으로는 자동 연화점 장치(MEITEC CORPORATION제, ASP-MG4)를 사용했다.
·에폭시당량: JIS K 7236 규격에 준거해서 측정을 행하고, 단위는 「g/eq.」로 나타냈다. 구체적으로는 자동 전위차 적정 장치(HIRANUMA Co., Ltd.제, COM-1600ST)를 사용하여 용매로서 클로로포름을 사용하고, 브롬화테트라에틸암모늄아세트산 용액을 첨가하여 0.1mol/L 과염소산-아세트산 용액으로 적정했다.
·전체 염소 함유량: JIS K 7243-3 규격에 준거해서 측정을 행하고, 단위는 「ppm」으로 나타냈다. 구체적으로는 용매로서 디에틸렌글리콜모노부틸에테르를 사용하고, 1mol/L 수산화칼륨1,2-프로판디올 용액을 첨가하여 가열 처리한 후 자동 전위차 적정 장치(HIRANUMA Co., Ltd.제, COM-1700)를 사용해서 0.01mol/L의 질산은 용액으로 적정했다.
·동박 박리 강도 및 층간 접착력: JIS C 6481에 준해서 측정하고, 층간 접착력은 7층째와 8층째 사이에서 떼어 측정했다.
·비유전률 및 유전 정접: IPC-TM-650 2.5.5.9에 준해서 머티리얼 애널라이저(AGILENT Technologies사제)를 사용하고, 용량법에 의해 주파수 1㎓에 있어서의 비유전률 및 유전 정접을 구함으로써 평가했다.
·GPC(겔 투과 크로마토그래피) 측정: 본체(TOSOH CORPORATION제, HLC-8220GPC)에 칼럼(TOSOH CORPORATION제, TSKgelG4000HXL, TSKgelG3000HXL, TSKgelG2000HXL)을 직렬로 구비한 것을 사용하고, 칼럼 온도는 40℃로 했다. 또한, 용리액에는 테트라히드로푸란(THF)을 사용하고, 1mL/분의 유속으로 하고, 검출기는 시차 굴절률 검출기를 사용했다. 측정 시료는 샘플 0.1g을 10mL의 THF에 용해하고, 마이크로 필터에서 여과한 것을 50μL 사용했다. 데이터 처리는 TOSOH CORPORATION제 GPC-8020 모델 II 버전 6.00을 사용했다.
·IR: 푸리에 변환형 적외 분광 광도계(PerkinElmer Precisely제, Spectrum One FT-IR Spectrometer 1760X)를 사용하고, 셀에는 KRS-5를 사용하고, THF에 용해시킨 샘플을 셀 상에 도포, 건조시킨 후 파수 650~4000㎝-1의 흡광도를 측정했다.
·ESI-MS: 질량 분석계(Shimadzu Corporation제, LCMS-2020)를 사용하고, 이동상으로서 아세토니트릴과 물을 사용하고, 아세토니트릴에 용해시킨 샘플을 측정함으로써 질량 분석을 행했다.
실시예, 비교예에서 사용하는 약호는 이하와 같다.
[에폭시 수지]
E1: 실시예 11에서 얻은 에폭시 수지
E2: 실시예 12에서 얻은 에폭시 수지
E3: 실시예 13에서 얻은 에폭시 수지
E4: 실시예 14에서 얻은 에폭시 수지
E5: 실시예 15에서 얻은 에폭시 수지
E6: 실시예 16에서 얻은 에폭시 수지
E7: 실시예 17에서 얻은 에폭시 수지
E8: 실시예 18에서 얻은 에폭시 수지
E9: 실시예 19에서 얻은 에폭시 수지
E10: 실시예 20에서 얻은 에폭시 수지
E11: 비교예 3에서 얻은 에폭시 수지
E12: 페놀·디시클로펜타디엔형 에폭시 수지(DIC Corporation제, HP-7200H, 에폭시당량 280, 연화점 83℃)
E13: 방향족 변성 노볼락에폭시 수지(NIPPON STEEL Chemical & Material Co., Ltd.제, YDAN-1000-9HH, 에폭시당량 293, 연화점 97℃)
[경화제]
A1: 실시예 1에서 얻은 페놀 수지
A2: 실시예 2에서 얻은 페놀 수지
A3: 실시예 3에서 얻은 페놀 수지
A4: 실시예 4에서 얻은 페놀 수지
A5: 실시예 5에서 얻은 페놀 수지
A6: 실시예 6에서 얻은 페놀 수지
A7: 실시예 7에서 얻은 페놀 수지
A8: 실시예 8에서 얻은 페놀 수지
A9: 실시예 9에서 얻은 페놀 수지
A10: 실시예 10에서 얻은 페놀 수지
A11: 비교예 1에서 얻은 페놀 수지
A12: 페놀노볼락 수지(Aica Kogyo Company, Limited제, SHONOL BRG-557, 수산기당량 105, 연화점 80℃)
A13: 디시클로펜타디엔형 페놀 수지(Gun Ei Chemical Industry Co., Ltd.제, GDP-6140, 수산기당량 196, 연화점 130℃)
A14: 비교예 2에서 얻어진 방향족 변성 페놀 수지
[경화 촉진제]
C1: 2E4MZ: 2-에틸-4-메틸이미다졸(SHIKOKU CHEMICALS CORPORATION제, CUREZOL 2E4MZ)
(실시예 1)
교반기, 온도계, 질소 블로잉관, 적하 깔대기, 및 냉각관을 구비한 유리제 세퍼러블 플라스크로 이루어지는 반응 장치에 2,6-크실레놀 970부, 47% BF3 에테르 착체 14.5부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 300부(2,6-크실레놀에 대하여 0.29배몰)를 2시간에 적하했다. 또한, 125~135℃의 온도에서 6시간 반응하고, 수산화칼슘 2.3부를 첨가했다. 또한, 10%의 옥살산 수용액 4.6부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 1000부를 첨가해서 생성물을 용해하고, 80℃의 온수 400부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A1)를 540부 얻었다. 수산기당량은 213이며, 연화점은 71℃이며, 흡수비(A3040/A1210)는 0.11이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다. 얻어진 페놀 수지(A1)의 GPC를 도 1에, FT-IR을 도 2에 각각 나타낸다. 도 1의 a는 식 (1)의 n=1체와 식 (1)의 R2 부가체가 없는 n=1체의 혼합체를 나타내고, b는 식 (1)의 n=0체를 나타낸다. 도 2의 c는 디시클로펜타디엔 골격의 올레핀 부위의 C-H 신축 진동으로부터 유래되는 피크를 나타내고, d는 페놀 핵에 있어서의 C-O 신축 진동에 의한 흡수를 나타낸다.
(실시예 2)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 832부, 47% BF3 에테르 착체 12.4부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 300부(2,6-크실레놀에 대하여 0.33배몰)를 2시간에 적하했다. 또한, 125~135℃의 온도에서 6시간 반응하고, 수산화칼슘 2.0부를 첨가했다. 또한, 10%의 옥살산 수용액 4.0부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 1000부를 첨가해서 생성물을 용해하고, 80℃의 온수 400부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A2)를 540부 얻었다. 수산기당량은 217이며, 연화점은 64℃이며, 흡수비(A3040/A1210)는 0.17이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 3)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 693부, 47% BF3 에테르 착체 10.4부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 300부(2,6-크실레놀에 대하여 0.40배몰)를 2시간에 적하했다. 또한, 125~135℃의 온도에서 6시간 반응하고, 수산화칼슘 1.7부를 첨가했다. 또한, 10%의 옥살산 수용액 3.3부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 1800부를 첨가해서 생성물을 용해하고, 80℃의 온수 650부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A3)를 1040부 얻었다. 수산기당량은 222이며, 연화점은 55℃이며, 흡수비(A3040/A1210)는 0.20이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 4)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 832부, 47% BF3 에테르 착체 12.5부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 450부(2,6-크실레놀에 대하여 0.50배몰)를 2시간에 적하했다. 또한, 125~135℃의 온도에서 6시간 반응하고, 수산화칼슘 2.0부를 첨가했다. 또한, 10%의 옥살산 수용액 4.0부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 1800부를 첨가해서 생성물을 용해하고, 80℃의 온수 650부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A4)를 1040부 얻었다. 수산기당량은 226이며, 실온 반고형의 수지이며, 흡수비(A3040/A1210)는 0.32이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 5)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 140부, 47% BF3 에테르 착체 9.3부를 주입하고, 교반하면서 110℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 86.6부(2,6-크실레놀에 대하여 0.56배몰)를 1시간에 적하했다. 또한, 110℃의 온도에서 3시간 반응한 후 동 온도로 유지하면서 디시클로펜타디엔 68부(2,6-크실레놀에 대하여 0.44배몰)를 1시간에 적하했다. 또한, 120℃에서 2시간 반응했다. 수산화칼슘 1.5부를 첨가했다. 또한, 10%의 옥살산 수용액 3부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 700부를 첨가해서 생성물을 용해하고, 80℃의 온수 200부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A5)를 274부 얻었다. 수산기당량은 277이며, 연화점 97℃의 수지이며, 흡수비(A3040/A1210)는 0.14이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 6)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 150부, 47% BF3 에테르 착체 8.7부를 주입하고, 교반하면서 110℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 81.2부(2,6-크실레놀에 대하여 0.50배몰)를 1시간에 적하했다. 또한, 110℃의 온도에서 3시간 반응한 후 동 온도로 유지하면서 디시클로펜타디엔 69.4부(2,6-크실레놀에 대하여 0.43배몰)를 1시간에 적하했다. 또한, 120℃에서 2시간 반응했다. 수산화칼슘 1.4부를 첨가했다. 또한, 10%의 옥살산 수용액 2.8부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 700부를 첨가해서 생성물을 용해하고, 80℃의 온수 200부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A6)를 281부 얻었다. 수산기당량은 261이며, 연화점 95℃의 수지이며, 흡수비(A3040/A1210)는 0.13이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 7)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 95.0부, 47% BF3 에테르 착체 6.3부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 58.8부(2,6-크실레놀에 대하여 0.56배몰)를 1시간에 적하했다. 또한, 115~125℃의 온도에서 3시간 반응한 후, 또한 동 온도에서 디시클로펜타디엔 69.2부(2,6-크실레놀에 대하여 0.67배몰)를 1시간에 적하하고, 115℃~125℃의 온도에서 2시간 반응했다. 수산화칼슘 1.0부를 첨가했다. 또한, 10%의 옥살산 수용액 2.0부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 520부를 첨가해서 생성물을 용해하고, 80℃의 온수 150부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A7)를 221부 얻었다. 수산기당량은 377이며, 연화점은 102℃이며, 흡수비(A3040/A1210)는 0.18이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다. 얻어진 페놀 수지(A7)의 GPC를 도 3에, FT-IR을 도 4에 각각 나타낸다.
(실시예 8)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 90.0부, 47% BF3 에테르 착체 7.0부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 64.9부(2,6-크실레놀에 대하여 0.66배몰)를 1시간에 적하했다. 또한, 115~125℃의 온도에서 3시간 반응한 후, 또한 동 온도에서 디시클로펜타디엔 69.7부(2,6-크실레놀에 대하여 0.72배몰)를 1시간에 적하하고, 115℃~125℃의 온도에서 2시간 반응했다. 수산화칼슘 1.1부를 첨가했다. 또한, 10%의 옥살산 수용액 2.3부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 525부를 첨가해서 생성물을 용해하고, 80℃의 온수 150부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A8)를 222부 얻었다. 수산기당량은 342이며, 연화점은 104℃이며, 흡수비(A3040/A1210)는 0.18이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 9)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 80.0부, 47% BF3 에테르 착체 7.4부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 69.3부(2,6-크실레놀에 대하여 0.80배몰)를 1시간에 적하했다. 또한, 115~125℃의 온도에서 3시간 반응한 후, 또한 동 온도에서 디시클로펜타디엔 67.2부(2,6-크실레놀에 대하여 0.78배몰)를 1시간에 적하하고, 115℃~125℃의 온도에서 2시간 반응했다. 수산화칼슘 1.2부를 첨가했다. 또한, 10%의 옥살산 수용액 2.4부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 505부를 첨가해서 생성물을 용해하고, 80℃의 온수 150부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A9)를 214부 얻었다. 수산기당량은 370이며, 연화점은 108℃이며, 흡수비(A3040/A1210)는 0.19이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(실시예 10)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 90.0부, 47% BF3 에테르 착체 6.0부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 55.7부(2,6-크실레놀에 대하여 0.57배몰)를 1시간에 적하했다. 또한, 115~125℃의 온도에서 3시간 반응한 후, 또한 동 온도에서 디시클로펜타디엔 87.4부(2,6-크실레놀에 대하여 0.89배몰)를 1시간에 적하하고, 115℃~125℃의 온도에서 2시간 반응했다. 수산화칼슘 1.0부를 첨가했다. 또한, 10%의 옥살산 수용액 1.9부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 550부를 첨가해서 생성물을 용해하고, 80℃의 온수 155부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 페놀 수지(A10)를 222부 얻었다. 수산기당량은 384이며, 연화점은 111℃이며, 흡수비(A3040/A1210)는 0.19이었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=253, 375, 507, 629가 확인되었다.
(비교예 1)
실시예 1과 마찬가지의 반응 장치에 2,6-크실레놀 1109부, 47% BF3 에테르 착체 16.6부를 주입하고, 교반하면서 70℃로 가온했다. 동 온도로 유지하면서 디시클로펜타디엔 300부(2,6-크실레놀에 대하여 0.25배몰)를 2시간에 적하했다. 또한, 125~135℃의 온도에서 6시간 반응하고, 수산화칼슘 2.6부를 첨가했다. 또한, 10%의 옥살산 수용액 5.2부를 첨가했다. 그 후 160℃까지 가온해서 탈수한 후 5mmHg의 감압하, 200℃까지 가온해서 미반응의 원료를 증발 제거했다. MIBK 1000부를 첨가해서 생성물을 용해하고, 80℃의 온수 400부를 첨가해서 수세하고, 하층의 수조를 분리 제거했다. 그 후 5mmHg의 감압하, 160℃로 가온해서 MIBK를 증발 제거하고, 적갈색의 디페놀 수지(A5)를 540부 얻었다. 수산기당량은 208이며, 연화점은 89.5℃이며, FT-IR 측정에 있어서 3040㎝-1로 피크를 확인할 수는 없었다. ESI-MS(네거티브)에 의한 매스 스펙트럼을 측정한 결과, M-=375, 629가 확인되었다. 디시클로펜타디엔의 반응률은 100%이었다. 얻어진 페놀 수지(A11)의 GPC를 도 5에, FT-IR을 도 6에 각각 나타낸다.
(비교예 2)
실시예 1과 마찬가지의 세퍼러블 플라스크에 페놀노볼락 수지(페놀성 수산기당량 105, 연화점 130℃)를 105부, p-톨루엔술폰산을 0.1부 주입하고, 150℃까지 승온했다. 동 온도를 유지하면서 스티렌 94부를 3시간 걸쳐 적하하고, 또한 동 온도에서 1시간 교반을 계속했다. 그 후 MIBK 500부에 용해시키고, 80℃에서 5회 수세를 행했다. 계속해서, MIBK를 감압 증류 제거하고, 방향족 변성 페놀노볼락 수지(A14)를 얻었다. 수산기당량은 199, 연화점은 110℃이었다.
(실시예 11)
교반기, 온도계, 질소 블로잉환, 적하 깔대기, 및 냉각관을 구비한 반응 장치에 실시예 1에서 얻은 페놀 수지(A1) 250부, 에피클로로히드린 544부와 디에틸렌글리콜디메틸에테르 163부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 108부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 948부를 첨가해서 생성물을 용해했다. 그 후 263부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E1)를 298부 얻었다. 에폭시당량은 282, 전체 염소 함유량 980ppm, 실온 반고형의 수지이었다. 얻어진 에폭시 수지(E1)의 GPC를 도 7에 나타낸다.
(실시예 12)
실시예 11과 마찬가지의 반응 장치에 실시예 2에서 얻은 페놀 수지(A2) 250부, 에피클로로히드린 533부와, 디에틸렌글리콜디메틸에테르 160부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 106부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 944부를 첨가해서 생성물을 용해했다. 그 후 257부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E2)를 223부 얻었다. 에폭시당량은 289, 전체 염소 함유량 945ppm, 실온 반고형의 수지이었다.
(실시예 13)
실시예 11과 마찬가지의 반응 장치에 실시예 3에서 얻은 페놀 수지(A3) 250부, 에피클로로히드린 522부와, 디에틸렌글리콜디메틸에테르 157부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 104부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 940부를 첨가해서 생성물을 용해했다. 그 후 252부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E3)를 263부 얻었다. 에폭시당량은 296, 전체 염소 함유량 897ppm, 실온 반고형의 수지이었다.
(실시예 14)
실시예 11과 마찬가지의 반응 장치에 실시예 4에서 얻은 페놀 수지(A4) 250부, 에피클로로히드린 512부와, 디에틸렌글리콜디메틸에테르 154부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 102부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 936부를 첨가해서 생성물을 용해했다. 그 후 247부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E4)를 287부 얻었다. 에폭시당량은 303, 전체 염소 함유량 894ppm, 실온 반고형의 수지이었다.
(실시예 15)
실시예 11과 마찬가지의 반응 장치에 실시예 5에서 얻은 페놀 수지(A5) 180부, 에피클로로히드린 301부와, 디에틸렌글리콜디메틸에테르 90부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 58부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 505부를 첨가해서 생성물을 용해했다. 그 후 153부의 물을 첨가해서 부생한 식염을 용해하고, 정지해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E5)를 189부 얻었다. 에폭시당량은 348, 전체 염소 함유량 570ppm, 연화점 82℃의 수지이었다.
(실시예 16)
실시예 11과 마찬가지의 반응 장치에 실시예 6에서 얻은 페놀 수지(A6) 180부, 에피클로로히드린 159부와, 디에틸렌글리콜디메틸에테르 48부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 62부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 510부를 첨가해서 생성물을 용해했다. 그 후 155부의 물을 첨가해서 부생한 식염을 용해하고, 정지해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E6)를 179부 얻었다. 에폭시당량은 372, 전체 염소 함유량 535ppm, 연화점 85℃의 수지이었다.
(실시예 17)
실시예 11과 마찬가지의 반응 장치에 실시예 7에서 얻은 페놀 수지(A7) 180부, 에피클로로히드린 221부와, 디에틸렌글리콜디메틸에테르 33부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 39부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 482부를 첨가해서 생성물을 용해했다. 그 후 146부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E7)를 200부 얻었다. 에폭시당량은 446, 전체 염소 함유량 431ppm, 연화점 91℃의 수지이었다. 얻어진 에폭시 수지(E7)의 GPC를 도 8에 나타낸다.
(실시예 18)
실시예 11과 마찬가지의 반응 장치에 실시예 8에서 얻은 페놀 수지(A8) 180부, 에피클로로히드린 243부와, 디에틸렌글리콜디메틸에테르 37부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 43부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 489부를 첨가해서 생성물을 용해했다. 그 후 148부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E8)를 203부 얻었다. 에폭시당량은 433, 전체 염소 함유량 447ppm, 연화점 93℃의 수지이었다.
(실시예 19)
실시예 11과 마찬가지의 반응 장치에 실시예 9에서 얻은 페놀 수지(A9) 180부, 에피클로로히드린 225부와, 디에틸렌글리콜디메틸에테르 34부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 40부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 483부를 첨가해서 생성물을 용해했다. 그 후 147부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E9)를 137부 얻었다. 에폭시당량은 468, 전체 염소 함유량 382ppm, 연화점 97℃의 수지이었다.
(실시예 20)
실시예 11과 마찬가지의 반응 장치에 실시예 10에서 얻은 페놀 수지(A10) 180부, 에피클로로히드린 217부와, 디에틸렌글리콜디메틸에테르 33부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 38부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 481부를 첨가해서 생성물을 용해했다. 그 후 146부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E10)를 126부 얻었다. 에폭시당량은 475, 전체 염소 함유량 394ppm, 연화점 101℃의 수지이었다.
(비교예 3)
실시예 11과 마찬가지의 반응 장치에 비교예 1에서 얻은 페놀 수지(A11) 281부, 에피클로로히드린 625부와, 디에틸렌글리콜디메틸에테르 187부를 첨가해서 65℃로 가온했다. 125mmHg의 감압하, 63~67℃의 온도로 유지하면서 49% 수산화나트륨 수용액 124부를 4시간에 적하했다. 이 동안 에피클로로히드린은 물과 공비시키고, 유출되어 오는 물은 순차 계외로 제거했다. 반응 종료 후 5mmHg, 180℃가 되는 조건에서 에피클로로히드린을 회수하고, MIBK 1070부를 첨가해서 생성물을 용해했다. 그 후 301부의 물을 첨가해서 부생한 식염을 용해하고, 정치해서 하층의 식염수를 분리 제거했다. 인산 수용액에 의해 중화한 후 수세액이 중성이 될 때까지 수지 용액을 수세하고, 여과했다. 5mmHg의 감압하, 180℃로 가온하고, MIBK를 증류 제거하고, 적갈색 투명의 2,6-크실레놀·디시클로펜타디엔형 에폭시 수지(E11)를 338부 얻었다. 에폭시당량은 275, 전체 염소 함유량 950ppm, 연화점 51℃이었다. 얻어진 에폭시 수지(E11)의 GPC를 도 9에 나타낸다.
(실시예 21)
에폭시 수지로서 에폭시 수지(E1)를 100부, 경화제로서 페놀 수지(A12)를 37부, 경화 촉진제로서 C1을 0.22부로 배합하고, MEK, 프로필렌글리콜모노메틸에테르, N,N-디메틸포름아미드로 조정한 혼합 용매에 용해해서 에폭시 수지 조성물 바니시를 얻었다. 얻어진 에폭시 수지 조성물 바니시를 유리 크로스(Nitto Boseki Co., Ltd.제, WEA 7628 XS13, 0.18mm 두께)에 함침했다. 함침한 유리 크로스를 150℃의 열풍 순환 오븐 내에서 9분간 건조해서 프리프레그를 얻었다. 얻어진 프리프레그 8장과, 상하에 동박(Mitsui Mining & Smelting Co., Ltd.제, 3EC-III, 두께 35㎛)을 겹치고, 130℃×15분+190℃×80분의 온도 조건에서 2MPa의 진공 프레스를 행하여 1.6mm 두께의 적층판을 얻었다. 적층판의 동박 박리 강도 및 층간 접착력의 결과를 표 1에 나타낸다.
또한, 얻어진 프리프레그를 풀어서 체로 100메시 패스의 분말형상의 프리프레그 파우더로 했다. 얻어진 프리프레그 파우더를 불소 수지제의 몰드에 넣고, 130℃×15분+190℃×80분의 온도 조건에서 2MPa의 진공 프레스를 행하여 50mm×50mm×2mm 두께의 시험편을 얻었다. 시험편의 비유전률 및 유전 정접의 결과를 표 1에 나타낸다.
(실시예 22~45)
표 1~3의 배합량(부)으로 배합하고, 실시예 21과 마찬가지의 조작을 행하여 적층판 및 시험편을 얻었다. 경화 촉진제의 사용은 바니시 겔타임을 300초 정도로 조정할 수 있는 양으로 했다. 실시예 21과 마찬가지의 시험을 행하고, 그 결과를 표 1~3에 나타낸다.
(비교예 4~11)
표 4의 배합량(부)으로 배합하고, 실시예 21과 마찬가지의 조작을 행하여 적층판 및 시험편을 얻었다. 경화 촉진제의 사용은 바니시 겔타임을 300초 정도로 조정할 수 있는 양으로 했다. 실시예 21과 마찬가지의 시험을 행하고, 그 결과를 표 4에 나타낸다.
Figure pct00005
Figure pct00006
Figure pct00007
Figure pct00008
이들 결과로부터 명백한 바와 같이 실시예에서 얻어지는 2,6-디치환·디시클로펜타디엔형 에폭시 수지, 2,6-디치환·디시클로펜타디엔형 페놀 수지, 및 그들을 포함하는 수지 조성물은 매우 양호한 저유전 특성을 발현하고, 또한 접착력도 우수한 수지 경화물을 제공하는 것이 가능하다.
(산업상의 이용 가능성)
본 발명의 에폭시 수지 조성물은 도료, 토목 접착, 주형, 전기 전자 재료, 필름 재료 등 다방면의 용도에 이용할 수 있고, 특히 전기 전자 재료 중 하나인 프린트 배선 기판 용도, 특히 저유전 정접이 강하게 요구되는 모바일 용도나 서버 용도 등에 적합하게 사용할 수 있다.

Claims (10)

  1. 하기 일반식 (1)로 나타내어지는 페놀 수지.
    Figure pct00009

    식 중, R1은 각각 독립적으로 탄소수 1~8개의 탄화수소기를 나타내고, R2는 각각 독립적으로 수소 원자, 하기 식 (1a) 또는 식 (1b)를 나타내고, R2의 적어도 1개는 식 (1a) 또는 식 (1b) 중 어느 하나이다. n은 반복수를 나타내고, 그 평균값은 0~5의 수이다.
    Figure pct00010
  2. 제 1 항에 있어서,
    루이스산의 존재하, 하기 일반식 (3)으로 나타내어지는 2,6-디치환 페놀류에 대하여 디시클로펜타디엔을 0.28~2배몰의 비율로 반응시키는 것을 특징으로 하는 페놀 수지의 제조 방법.
    Figure pct00011

    식 중, R1은 각각 독립적으로 탄소수 1~8개의 탄화수소기를 나타낸다.
  3. 하기 일반식 (2)로 나타내어지는 에폭시 수지.
    Figure pct00012

    식 중, R11은 각각 독립적으로 탄소수 1~8개의 탄화수소기를 나타내고, R12는 각각 독립적으로 수소 원자, 하기 식 (1a) 또는 식 (1b)를 나타내고, R12의 적어도 1개는 식 (1a) 또는 식 (1b) 중 어느 하나이다. m은 반복수를 나타내고, 그 평균값은 0~5의 수이다.
    Figure pct00013
  4. 에폭시 수지 및 제 1 항에 기재된 페놀 수지를 함유해서 이루어지는 에폭시 수지 조성물.
  5. 제 3 항에 기재된 에폭시 수지 및 경화제를 함유해서 이루어지는 에폭시 수지 조성물.
  6. 제 1 항에 기재된 페놀 수지 및 제 3 항에 기재된 에폭시 수지를 함유해서 이루어지는 에폭시 수지 조성물.
  7. 제 4 항 내지 제 6 항 중 어느 한 항에 기재된 에폭시 수지 조성물을 사용한 것을 특징으로 하는 프리프레그.
  8. 제 4 항 내지 제 6 항 중 어느 한 항에 기재된 에폭시 수지 조성물을 사용한 것을 특징으로 하는 적층판.
  9. 제 4 항 내지 제 6 항 중 어느 한 항에 기재된 에폭시 수지 조성물을 사용한 것을 특징으로 하는 프린트 배선 기판.
  10. 제 4 항 내지 제 6 항 중 어느 한 항에 기재된 에폭시 수지 조성물을 경화해서 이루어지는 것을 특징으로 하는 경화물.
KR1020217022730A 2018-12-19 2019-12-09 페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물 KR20210125482A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-236982 2018-12-19
JP2018236982 2018-12-19
PCT/JP2019/048051 WO2020129724A1 (ja) 2018-12-19 2019-12-09 フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物

Publications (1)

Publication Number Publication Date
KR20210125482A true KR20210125482A (ko) 2021-10-18

Family

ID=71100772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217022730A KR20210125482A (ko) 2018-12-19 2019-12-09 페놀 수지, 에폭시 수지, 에폭시 수지 조성물, 및 그 경화물

Country Status (5)

Country Link
US (1) US11884773B2 (ko)
JP (2) JP7493456B2 (ko)
KR (1) KR20210125482A (ko)
CN (2) CN118684863A (ko)
WO (1) WO2020129724A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240077404A (ko) 2022-11-24 2024-05-31 주식회사 나노코 에폭시계 경화성 수지용 저유전성 난연 경화제 및 이의 제조방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479130B2 (ja) * 2019-09-20 2024-05-08 日鉄ケミカル&マテリアル株式会社 エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物
JPWO2021230104A1 (ko) * 2020-05-11 2021-11-18
KR20230008105A (ko) * 2020-05-12 2023-01-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 에폭시아크릴레이트 수지, 알칼리 가용성 수지, 그것을 포함하는 수지 조성물 및 그 경화물
CN115551915A (zh) * 2020-05-19 2022-12-30 日铁化学材料株式会社 含有聚合性不饱和基的碱可溶性树脂及其制造方法、以及感光性树脂组合物及其硬化物
CN115667352A (zh) * 2020-06-04 2023-01-31 日铁化学材料株式会社 环氧树脂组合物及其固化物
KR20230008106A (ko) * 2020-06-04 2023-01-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 에폭시 수지 조성물 및 그 경화물
WO2021251289A1 (ja) * 2020-06-11 2021-12-16 日鉄ケミカル&マテリアル株式会社 フェノール樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JPWO2022124252A1 (ko) * 2020-12-07 2022-06-16
JP7560398B2 (ja) * 2021-03-26 2024-10-02 味の素株式会社 樹脂組成物
CN117120503B (zh) * 2021-07-30 2024-10-11 日本化药株式会社 环氧树脂、硬化性树脂组合物、及硬化性树脂组合物的硬化物
WO2024018918A1 (ja) * 2022-07-22 2024-01-25 日鉄ケミカル&マテリアル株式会社 多官能ビニル樹脂、その製造方法、多官能ビニル樹脂組成物及びその硬化物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339341A (ja) 1992-06-11 1993-12-21 Toto Kasei Kk エポキシ樹脂組成物
JP2001240654A (ja) 2000-02-28 2001-09-04 Dainippon Ink & Chem Inc 格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物、格子状通電端子配設半導体装置用回路基板及び格子状通電端子配設半導体装置
JP2015187190A (ja) 2014-03-26 2015-10-29 新日鉄住金化学株式会社 変性多価ヒドロキシ樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4114099B1 (ko) 1964-06-16 1966-08-06
JPS4822538B1 (ko) * 1969-06-13 1973-07-06
JPS5327745B1 (ko) * 1971-07-28 1978-08-10
JPS5443259A (en) * 1977-09-13 1979-04-05 Mitsui Petrochem Ind Ltd Epoxy resin composition
JPH06157680A (ja) * 1992-11-19 1994-06-07 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物およびその用途
JPH08179502A (ja) * 1994-12-27 1996-07-12 Mitsui Toatsu Chem Inc 感光性樹脂組成物
JPH08301973A (ja) * 1995-04-28 1996-11-19 Nippon Kayaku Co Ltd エポキシ樹脂の製造法、エポキシ樹脂組成物及びその硬化物
JP2004277708A (ja) 2003-02-28 2004-10-07 Nitto Denko Corp 樹脂シート、それを用いた液晶セル基板
US8003737B2 (en) 2006-06-16 2011-08-23 Huntsman International Llc Coating system
JP5255810B2 (ja) * 2007-10-12 2013-08-07 Jfeケミカル株式会社 ジシクロペンタジエン類変性フェノール樹脂の製造方法
JP5255813B2 (ja) * 2007-10-19 2013-08-07 Jfeケミカル株式会社 ジシクロペンタジエン類変性フェノール樹脂の製造方法および未反応フェノール類の再利用方法
JP7560279B2 (ja) * 2020-06-26 2024-10-02 旭化成株式会社 ヒドロキシ酸の製造方法。
JP2023022538A (ja) * 2021-08-03 2023-02-15 株式会社Fuji 工作機械システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339341A (ja) 1992-06-11 1993-12-21 Toto Kasei Kk エポキシ樹脂組成物
JP2001240654A (ja) 2000-02-28 2001-09-04 Dainippon Ink & Chem Inc 格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物、格子状通電端子配設半導体装置用回路基板及び格子状通電端子配設半導体装置
JP2015187190A (ja) 2014-03-26 2015-10-29 新日鉄住金化学株式会社 変性多価ヒドロキシ樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240077404A (ko) 2022-11-24 2024-05-31 주식회사 나노코 에폭시계 경화성 수지용 저유전성 난연 경화제 및 이의 제조방법

Also Published As

Publication number Publication date
TW202033602A (zh) 2020-09-16
US11884773B2 (en) 2024-01-30
US20220056199A1 (en) 2022-02-24
CN113227190A (zh) 2021-08-06
WO2020129724A1 (ja) 2020-06-25
JPWO2020129724A1 (ko) 2020-06-25
CN118684863A (zh) 2024-09-24
JP7493456B2 (ja) 2024-05-31
JP2024063017A (ja) 2024-05-10
CN113227190B (zh) 2024-08-20

Similar Documents

Publication Publication Date Title
JP7493456B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
WO2022124252A1 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP7368551B2 (ja) エポキシ樹脂組成物の製造方法、及びビフェニルアラルキル型フェノール樹脂の使用方法
WO2023100572A1 (ja) 多価ヒドロキシ樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
JP7132784B2 (ja) エポキシ樹脂組成物、プリプレグ、積層板およびプリント配線板
JP6799376B2 (ja) オキサジン樹脂組成物及びその硬化物
CN115135692A (zh) 活性酯树脂、环氧树脂组合物、其固化物、预浸料、层叠板和堆积膜
JP7211744B2 (ja) エポキシ樹脂組成物およびその硬化物
TWI856992B (zh) 酚樹脂及其製造方法、環氧樹脂、環氧樹脂組成物、預浸體、積層板、印刷配線基板及硬化物
WO2021246339A1 (ja) エポキシ樹脂組成物及びその硬化物
WO2021251289A1 (ja) フェノール樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及びその硬化物
WO2021246341A1 (ja) エポキシ樹脂組成物及びその硬化物
WO2024024525A1 (ja) エポキシ樹脂、その樹脂組成物、及びその硬化物、並びにエポキシ樹脂の製造方法
JP2024087617A (ja) エポキシ樹脂、その樹脂組成物、及びその硬化物、並びにエポキシ樹脂の製造方法
JP2015124251A (ja) リン含有エポキシ樹脂、その製造方法、それを含むエポキシ樹脂組成物、硬化物及び銅張り積層板

Legal Events

Date Code Title Description
E902 Notification of reason for refusal