KR20210109226A - Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same - Google Patents

Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same Download PDF

Info

Publication number
KR20210109226A
KR20210109226A KR1020200024205A KR20200024205A KR20210109226A KR 20210109226 A KR20210109226 A KR 20210109226A KR 1020200024205 A KR1020200024205 A KR 1020200024205A KR 20200024205 A KR20200024205 A KR 20200024205A KR 20210109226 A KR20210109226 A KR 20210109226A
Authority
KR
South Korea
Prior art keywords
gas diffusion
electrode assembly
catalyst
membrane electrode
manufacturing
Prior art date
Application number
KR1020200024205A
Other languages
Korean (ko)
Inventor
문상봉
문창환
김현희
최현지
표세연
곽민선
Original Assignee
(주)엘켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘켐텍 filed Critical (주)엘켐텍
Priority to KR1020200024205A priority Critical patent/KR20210109226A/en
Publication of KR20210109226A publication Critical patent/KR20210109226A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

According to a method for manufacturing a membrane electrode assembly for water electrolysis of the present invention, gas diffusion layers are integrated with each other by being pressed under a constant pressure at a constant temperature in a state that the gas diffusion layers combined with both positive electrode and negative electrode catalyst layers are placed on both sides of a polymer electrolyte membrane, and the gas diffusion layers combined with the positive electrode catalyst layer are manufactured by a dip coating method in which the gas diffusion layers are immersed in catalyst ink. The present invention reduces the amount of catalysts used through the effective use of both catalysts by coating the positive electrode catalysts on the gas diffusion layers in a dip coating method and bonding the same to the electrolyte polymer membrane, and can reduce manufacturing costs and manufacturing time through the simplification of processes.

Description

수전해용 막전극접합체 및 그 제조방법과 이를 구비한 전기화학 셀{Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same}Membrane electrode assembly for water electrolysis, manufacturing method thereof, and electrochemical cell having the same

이 발명은 수전해용 막전극접합체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 촉매를 딥 코팅 방식으로 기체 확산층에 코팅한 후 이를 전해질 고분자 막에 접합함으로써, 효과적인 촉매의 활용을 통해 촉매 사용량을 저감시키고, 공정의 단순화를 통해 제작비용 및 제작소요 시간을 줄일 수 있는 수전해용 막전극접합체 및 그 제조방법과 이를 구비한 전기화학 셀에 관한 것이다.The present invention relates to a membrane electrode assembly for water electrolysis and a method for producing the same, and more particularly, by coating a catalyst on a gas diffusion layer in a dip coating method and bonding it to an electrolyte polymer membrane, thereby reducing the amount of catalyst used through effective use of the catalyst and to a membrane electrode assembly for water electrolysis capable of reducing manufacturing cost and manufacturing time through simplification of the process, a manufacturing method thereof, and an electrochemical cell having the same.

수전해 기술은 물을 전기분해하여 산소와 수소로 분리하여 수소를 연료로 활용할 수 있는 기술로, 최근 탄소 배출 극심화에 따른 지구 온난화 문제로 탄소 배출 규제가 강화되면서 신재생에너지의 한 방식으로 각광받고 있다. Water electrolysis technology is a technology that can use hydrogen as fuel by electrolyzing water to separate it into oxygen and hydrogen. are receiving

수전해 셀의 구성 요소는 크게, 전기화학 반응이 일어나는 전극(수소극, 산소극)과 반응에 의해 발생된 수소 이온을 전달하는 고분자 전해질막인 멤브레인 등을 포함하는 방식으로 구성되어 있다. The components of the water electrolysis cell are largely composed of an electrode (hydrogen electrode, oxygen electrode) where an electrochemical reaction occurs, and a membrane, which is a polymer electrolyte membrane, which transfers hydrogen ions generated by the reaction.

수전해의 원리는 물(H2O)이 양극으로 공급되어 산소가스와 전자 그리고 수소 이온으로 분해된다. The principle of water electrolysis is that water (H 2 O) is supplied to the anode and decomposed into oxygen gas, electrons, and hydrogen ions.

전기화학 셀은 일반적으로 물을 전해질이자 원료로 이용하여 가스를 만드는 전기분해 셀과, 연료를 이용하여 전기를 생산하는 연료전지 등에 이용한다. The electrochemical cell is generally used in an electrolysis cell that uses water as an electrolyte and a raw material to produce gas, and a fuel cell that uses fuel to produce electricity.

도 1에 나타낸 바와 같이, 물은 양극으로 공급되어 산소가스와 전자 그리고 수소이온으로 분해된다. 이때, 물의 일부분은 산소 가스와 함께 음극으로 이동하여 양극과 음극을 연결하는 외부회로를 따라 이동한 전자와 반응하여 수소 가스가 된다. 그리고, 수소 가스 및 수소 이온과 동반하여 수소이온 교환막을 통과한 물은 전기분해 셀의 외부로 유출된다. 이때, 양극과 음극에서 각각 일어나는 전기화학적 반응을 표현하면 반응식 1, 2와 같다.As shown in FIG. 1 , water is supplied to the anode and decomposed into oxygen gas, electrons, and hydrogen ions. At this time, a part of the water moves to the cathode together with the oxygen gas and reacts with the electrons moving along the external circuit connecting the anode and the cathode to become hydrogen gas. Then, water passing through the hydrogen ion exchange membrane along with hydrogen gas and hydrogen ions flows out of the electrolysis cell. At this time, the electrochemical reactions occurring at the anode and the cathode, respectively, are expressed as Schemes 1 and 2.

[반응식 1][Scheme 1]

2H2O → 4H+ + 4e- + O2 2H 2 O → 4H + + 4e - + O 2

[반응식 2][Scheme 2]

4H+ + 4e- → 2H2 4H + + 4e - → 2H 2

전기화학 셀은 양극과 음극을 갖는 막전극접합체(Membrane electrode assembly, 이하 "MEA"라 칭함), 전자와 반응물 및 생성물의 공급과 배출이 가능한 형태로 배열된 프레임, 분리판, MEA 지지체 및 가스켓(패킹) 등으로 구성된다. 이러한 전기화학 셀은 전해성능이 우수하고, 내구성이 우수하며, 가격이 저렴하다는 조건을 갖추어야 한다. The electrochemical cell is a membrane electrode assembly (hereinafter referred to as "MEA") having an anode and a cathode, a frame arranged in a form capable of supplying and discharging electrons, reactants and products, a separator, a MEA support and a gasket ( packing), etc. Such an electrochemical cell must have excellent electrolytic performance, excellent durability, and low price.

그런데, 종래의 막전극접합체는 양극 촉매 잉크 제작 → 잉크 스프레이 → 전해질 고분자 막 전사 → 기체 확산층 접합의 순으로 막전극접합체를 제작하였다. 즉, 종래의 막전극접합체는 스프레이 방식을 이용하였다. 그로 인해, 종래의 방법은 그 제조공정이 복잡하고 제작기간이 많이 소요되는 문제점을 비롯하여, 양극 촉매 잉크 스프레이 과정 중 발생되는 불필요한 촉매의 사용이 증가하는 문제점이 있었다. However, in the conventional membrane electrode assembly, anode catalyst ink production → ink spray → electrolyte polymer membrane transfer → gas diffusion layer bonding was prepared in the order of the membrane electrode assembly. That is, the conventional membrane electrode assembly used a spray method. Therefore, the conventional method has problems in that the manufacturing process is complicated and the manufacturing period is long, and the use of unnecessary catalysts generated during the anode catalyst ink spraying process increases.

따라서, 이 발명은 앞서 설명한 바와 같은 종래기술의 문제점을 해결하기 위하여 개발된 것으로서, 촉매를 딥 코팅 방식으로 기체 확산층에 코팅한 후 이를 전해질 고분자 막에 접합함으로써, 효과적인 촉매의 활용을 통해 촉매 사용량을 저감시키고, 공정의 단순화를 통해 제작비용 및 제작소요 시간을 줄일 수 있는 수전해용 막전극접합체 및 그 제조방법과 이를 구비한 전기화학 셀을 제공하는 데 그 목적이 있다. Therefore, this invention was developed to solve the problems of the prior art as described above, and by coating the catalyst on the gas diffusion layer in a dip coating method and bonding it to the electrolyte polymer membrane, the amount of catalyst used through effective use of the catalyst is reduced. An object of the present invention is to provide a membrane electrode assembly for water electrolysis, a method for manufacturing the same, and an electrochemical cell having the same, which can reduce manufacturing cost and manufacturing time through simplification of the process.

상기와 같은 목적을 달성하기 위한 이 발명의 수전해용 막전극접합체의 제조방법은, 고분자 전해질 막의 양 쪽에 양극 및 음극의 촉매층 겸용 기체 확산층을 위치시킨 상태에서 일정 온도에서 일정 압력으로 압착하여 서로 간에 일체화하되, 상기 양극의 촉매층 겸용 기체 확산층은 기체 확산층을 촉매 잉크에 침지시키는 딥 코팅 방식으로 제조하는 것을 특징으로 한다. The method for manufacturing a membrane electrode assembly for water electrolysis of the present invention for achieving the above object is integrated with each other by pressing under a constant pressure at a constant temperature in a state in which gas diffusion layers for both anode and cathode are placed on both sides of a polymer electrolyte membrane. However, the gas diffusion layer combined with the catalyst layer of the anode is characterized in that it is manufactured by a dip coating method in which the gas diffusion layer is immersed in the catalyst ink.

또한, 이 발명에 따르면, 상기 양극의 촉매층은 양극 촉매 잉크로 형성하며, 상기 양극 촉매 잉크는 Ir, Ru, Pt, Co, Ce, Sn, Sb, 또는 Ti의 산화물 성분이 함유된 수전해 나노 촉매 입자를 촉매 담지량이 4mg/cm2 이면서 촉매 대비 10 ~ 50wt%의 나피온 이오노머(Nafion ionomer)(20wt% solution)의 함량이 되도록 정량하여, IPA와 순수의 용제에 Titanium(Ⅳ) isopropoxide(TPT) 및 HCl와 같이 첨가하여 1시간 이상 초음파 분산하여 제조하는 것을 특징으로 한다. In addition, according to the present invention, the catalyst layer of the anode is formed of anode catalyst ink, and the cathode catalyst ink is a water electrolysis nanocatalyst containing an oxide component of Ir, Ru, Pt, Co, Ce, Sn, Sb, or Ti. The particles were quantified so that the catalyst loading amount was 4 mg/cm 2 and the content of Nafion ionomer (20 wt% solution) was 10 to 50 wt% compared to the catalyst, and Titanium (IV) isopropoxide (TPT) And it is characterized in that it is added with HCl and ultrasonically dispersed for at least 1 hour.

또한, 이 발명에 따르면, 상기 양극의 촉매층 겸용 기체 확산층은 상기 딥 코팅 방식으로 기체 확산층을 코팅하고 400℃에서 10분 동안 소결시키는 공정을 반복 수행하여 4mg의 촉매 로딩량을 갖는 것을 특징으로 한다. In addition, according to this invention, the gas diffusion layer combined with the catalyst layer of the positive electrode has a catalyst loading of 4 mg by repeatedly performing the process of coating the gas diffusion layer by the dip coating method and sintering at 400° C. for 10 minutes.

또한, 이 발명에 따르면, 상기 일정 온도는 110 ~ 140℃이고, 상기 일정 압력은 1 ~ 4Mpa인 것을 특징으로 한다. In addition, according to this invention, the constant temperature is 110 ~ 140 ℃, the constant pressure is characterized in that 1 ~ 4Mpa.

또한, 상기와 같은 목적을 달성하기 위한 이 발명의 수전해용 막전극접합체는 상기와 같은 수전해용 막전극접합체의 제조방법에 의해 제조된 것을 특징으로 한다. In addition, the membrane electrode assembly for water electrolysis of the present invention for achieving the above object is characterized in that it was manufactured by the manufacturing method of the membrane electrode assembly for water electrolysis as described above.

또한, 상기와 같은 목적을 달성하기 위한 이 발명의 전기화학 셀은 상기와 같은 막전극접합체를 포함하는 것을 특징으로 한다. In addition, the electrochemical cell of the present invention for achieving the above object is characterized in that it includes the membrane electrode assembly as described above.

이 발명은 촉매를 딥 코팅 방식으로 기체 확산층에 코팅하고 이를 전해질 고분자 막에 접합함으로써, 효과적인 촉매의 활용을 통해 촉매 사용량을 저감시키고, 공정의 단순화를 통해 제작비용 및 제작소요 시간을 줄일 수 있는 장점이 있다. In this invention, the catalyst is coated on the gas diffusion layer in a dip coating method and bonded to the electrolyte polymer membrane. There is this.

도 1은 수소 및 산소 발생 MEA의 기본 구조에 대한 단면도이고,
도 2는 이 발명의 한 실시예에 따른 MEA 제조방법에 대한 순서 블록도이고,
도 3은 이 발명에 따른 양극 촉매 잉크 비율에 따른 성능을 비교하는 그래프이고,
도 4는 이 발명에 따른 기체 확산층의 전처리 용액 비율에 따른 성능을 비교하는 그래프이며,
도 5는 이 발명에 따른 MEA의 수전해 전압 성능에 대한 그래프이다.
1 is a cross-sectional view of the basic structure of a hydrogen and oxygen generating MEA,
2 is a flowchart of a method for manufacturing an MEA according to an embodiment of the present invention;
3 is a graph comparing the performance according to the ratio of the anode catalyst ink according to the present invention,
4 is a graph comparing the performance according to the ratio of the pretreatment solution of the gas diffusion layer according to the present invention,
5 is a graph of the electrolytic voltage performance of the MEA according to the present invention.

이하, 이 발명에 따른 수전해용 막전극접합체 및 그 제조방법과 이를 구비한 전기화학 셀의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다. 이 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 이 실시예는 이 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.Hereinafter, a preferred embodiment of a membrane electrode assembly for water electrolysis, a method for manufacturing the same, and an electrochemical cell having the same according to the present invention will be described in detail with reference to the accompanying drawings. This invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete and to completely convey the scope of the invention to those of ordinary skill in the art. It is provided to inform you.

도 2는 이 발명의 한 실시예에 따른 MEA 제조방법에 대한 순서 블록도이다. 도 2에 도시된 바와 같이, 이 실시예에 따른 MEA 제조방법은 촉매 잉크 제작 → 기체 확산층 코팅 → 전해질 고분자 막 접합 방식으로 구성함으로써, 그 공정을 단순화하여 제작비용 및 제작소요 시간을 단축한 것이다. 또한, 기체 확산층에 촉매층을 코팅함에 있어서, 기체 확산층을 촉매 잉크에 침지시키는 딥 코팅 방식을 채택함으로써, 효과적인 촉매의 활용을 통해 촉매 사용량을 저감시키는 것이다. 또한, 딥 코팅 방식을 채택함에 따른 대면적의 기체 확산 전극의 제작이 가능하여 대용량의 MEA 및 전기화학 셀의 제작이 가능하다.2 is a flowchart illustrating a method for manufacturing an MEA according to an embodiment of the present invention. As shown in FIG. 2, the MEA manufacturing method according to this embodiment consists of catalyst ink preparation → gas diffusion layer coating → electrolyte polymer membrane bonding method, thereby simplifying the process and reducing manufacturing cost and manufacturing time. In addition, in coating the catalyst layer on the gas diffusion layer, by adopting a dip coating method in which the gas diffusion layer is immersed in the catalyst ink, the amount of catalyst used is reduced through effective use of the catalyst. In addition, it is possible to manufacture a large-area gas diffusion electrode by adopting the dip coating method, thereby making it possible to manufacture large-capacity MEA and electrochemical cells.

[실시예] 기체 확산층에 촉매층의 형성 및 막전극접합체의 제조[Example] Formation of catalyst layer on gas diffusion layer and preparation of membrane electrode assembly

1. 양극 촉매 잉크 제작1. Anode Catalyst Ink Fabrication

Ir, Ru, Pt, Co, Ce, Sn, Sb, Ti 등의 산화물 성분이 함유된 수전해 나노 촉매 입자, 즉 입경이 약 3 ~ 10nm 수준인 촉매입자를 촉매 담지량이 4mg/cm2 이면서 촉매 대비 10 ~ 50wt%의 나피온 이오노머(Nafion ionomer)(20wt% solution)의 함량이 되도록 정량하여, IPA와 순수의 용제에 Titanium(Ⅳ) isopropoxide(TPT) 및 HCl와 같이 첨가하여 1시간 이상 초음파 분산하여 촉매 잉크를 제조하였다. 여기서, TPT와 HCl은 촉매 입자의 분산과 기체 확산층에 코팅이 원활히 이루어지게 도와주는 역할을 하는 것으로서, 아래 표 1의 조건으로 실험한 바 도 3과 같은 성능을 보였다. 도 3은 이 발명에 따른 양극 촉매 잉크 비율에 따른 성능을 비교하는 그래프이다. Water electrolysis nanocatalyst particles containing oxide components such as Ir, Ru, Pt, Co, Ce, Sn, Sb, and Ti, that is, catalyst particles with a particle diameter of about 3 to 10 nm, have a catalyst loading of 4 mg/cm 2 compared to the catalyst. Quantify so that the content of Nafion ionomer (20wt% solution) of 10 to 50wt% is added to IPA and pure solvent along with Titanium(IV) isopropoxide(TPT) and HCl and ultrasonically dispersed for over 1 hour. A catalyst ink was prepared. Here, TPT and HCl play a role in helping the dispersion of the catalyst particles and the smooth coating of the gas diffusion layer. 3 is a graph comparing the performance according to the ratio of the anode catalyst ink according to the present invention.

IPA : DI WaterIPA : DI Water TPT [wt%]TPT [wt%] HCl [wt%]HCl [wt%] 실시예 1Example 1 1:11:1 0.50.5 0.10.1 실시예 2Example 2 3:13:1 0.70.7 0.50.5 실시예 3Example 3 1:31:3 1.31.3 1.71.7 실시예 4Example 4 2:32:3 55 22 실시예 5Example 5 3:23:2 77 55

2. Ti 기체 확산층의 전처리 및 기체 확산 전극의 제조2. Pretreatment of Ti gas diffusion layer and preparation of gas diffusion electrode

촉매 입자를 기체 확산층에 적절하게 코팅하기 위해, H2O2, H2SO4 등의 용매를 일정한 비율로 용액을 제조한 후, 이 용액에 Ti 기체 확산층을 침지시켜 에칭(etching)하여 전처리하되, 아래 표 2의 조건으로 전처리하여 실험한 바 도 4와 같은 성능을 나타냈다. 도 4는 이 발명에 따른 기체 확산층의 전처리 용액 비율에 따른 성능을 비교하는 그래프이다. In order to properly coat the catalyst particles on the gas diffusion layer, a solution such as H 2 O 2 , H 2 SO 4 is prepared in a predetermined ratio, and then the Ti gas diffusion layer is immersed in the solution to be etched and pretreated. , showed the same performance as in FIG. 4 when pre-treated under the conditions of Table 2 below. 4 is a graph comparing the performance according to the ratio of the pretreatment solution of the gas diffusion layer according to the present invention.

H2O2 : H2SO4 H 2 O 2 : H 2 SO 4 TimeTime 실시예 1Example 1 1:11:1 30 min30 min 실시예 2Example 2 1:31:3 60 min60 min 실시예 3Example 3 3:13:1 30 min30 min 실시예 4Example 4 2:32:3 120 min120 min 실시예 5Example 5 3:23:2 180 min180 min

그리고, 상기에 제작한 양극 촉매 잉크에 기체 확산층을 침지시키는 딥 코팅법을 이용하여 기체 확산층을 코팅시킨 후, 400℃에서 10분 동안 소결시킨다. 이와 같은 방법을 3회 반복하여 촉매 로딩량을 4mg으로 하는 기체 확산 전극을 제조하였다. Then, the gas diffusion layer is coated using a dip coating method in which the gas diffusion layer is immersed in the anode catalyst ink prepared above, and then sintered at 400° C. for 10 minutes. This method was repeated three times to prepare a gas diffusion electrode having a catalyst loading of 4 mg.

3. 음극 전극의 제작3. Fabrication of the cathode electrode

음극 촉매로는 상용의 Pt이 담지된 카본(carbon) 촉매를 적용하여 촉매 로딩량 2mg/cm2이 되도록 스프레이 하였다. 한편, 음극 기체 확산층으로는 마이크로 기공층이 미리 형성된 카본 페이퍼(carbon paper)를 사용하였다.As a cathode catalyst, a commercial Pt-supported carbon catalyst was applied and sprayed so that the catalyst loading amount was 2 mg/cm 2 . Meanwhile, as the cathode gas diffusion layer, carbon paper in which the microporous layer was previously formed was used.

4. 막전극접합체의 제작4. Fabrication of membrane electrode assembly

상기와 같은 양극 및 음극의 촉매층 겸용 기체 확산층이 각각 준비되면, 고분자 전해질 막 또한 준비한다. 여기서, 양극의 촉매층 겸용 기체 확산층은 표 1, 표 2의 조건에서 제조한 것을 이용하였다. 한편, 고분자 전해질 막은 80℃ 이상의 황산 및 순수에서 1시간 정도 침지하여 전처리를 완료한 150 ~ 180㎛의 기공을 갖는 것으로 준비하였다. 그런 다음, 이러한 고분자 전해질 막의 양 쪽에 양극 및 음극의 기체 확산층(촉매층 겸용)을 위치시킨 상태에서 1 ~ 4Mpa의 압력과 110 ~ 140℃의 온도에서 약 2분 이상 가압하여 막전극접합체를 제조하였다. When the gas diffusion layers for both the anode and the cathode are prepared as described above, the polymer electrolyte membrane is also prepared. Here, as the gas diffusion layer for the catalyst layer of the anode, those prepared under the conditions of Tables 1 and 2 were used. On the other hand, the polymer electrolyte membrane was prepared with pores of 150 to 180 μm, which were pre-treated by immersion in sulfuric acid and pure water at 80° C. or higher for about 1 hour. Then, a membrane electrode assembly was prepared by pressing at a pressure of 1 to 4 Mpa and a temperature of 110 to 140 ° C. for about 2 minutes or more while placing the gas diffusion layers (combining the catalyst layer) of the anode and the cathode on both sides of the polymer electrolyte membrane.

5. 막전극접합체의 수전해 전압 성능5. Water Electrolysis Voltage Performance of Membrane Electrode Assemblies

상기와 같이 제조된 막전극접합체의 수전해 전압 성능을 확인하기 위해서, 티타늄 소재로 구성된 전류판(current feeder)에 물과 수소 및 산소가 공급 및 배출될 수 있는 유로를 갖는 셀을 이용하여 실험하였다. 이때, 막전극접합체를 셀에 체결함에 있어서는 10 ~ 100 kgf.cm2로 조절하여 체결하였다. 체결이 완료된 셀의 전류판에서 음극은 마이너스, 양극은 플러스 단자를 정류기로부터 연결하고, 양극에 80℃로 유지된 순수(저항 18MΩ 이상)를 분당 100 ~ 1,000 사이의 유속으로 조절하여 공급하면서 전류밀도를 가변시키면서 전압을 측정하였다. 도 5는 이 발명에 따른 MEA의 수전해 전압 성능에 대한 그래프로서, 도 5에서 알 수 있듯이, 이 발명에 따른 막전극접합체의 수전해 전압 성능이 우수함을 확인하였다. In order to confirm the electrolytic voltage performance of the membrane electrode assembly prepared as described above, an experiment was conducted using a cell having a flow path through which water, hydrogen, and oxygen can be supplied and discharged to a current feeder made of titanium. . At this time, when fastening the membrane electrode assembly to the cell, it was tightened by adjusting it to 10 ~ 100 kgf.cm 2 . On the current plate of the cell where the connection is completed, connect the negative terminal to the negative terminal and the positive terminal to the positive terminal from the rectifier, and supply pure water (resistance 18MΩ or more) maintained at 80°C to the positive electrode at a flow rate between 100 and 1,000 per minute. The voltage was measured while varying the 5 is a graph of the electrolysis voltage performance of the MEA according to the present invention, and as can be seen in FIG. 5 , it was confirmed that the water electrolysis voltage performance of the membrane electrode assembly according to the present invention was excellent.

이상에서 이 발명의 수전해용 막전극접합체 및 그 제조방법과 이를 구비한 전기화학 셀에 대한 기술사항을 첨부도면과 함께 서술하였지만 이는 이 발명의 가장 양호한 실시예를 예시적으로 설명한 것이다. 따라서, 이 발명이 상기에 기재된 실시예에 한정되는 것은 아니고, 이 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게 자명하므로, 그러한 변형예 또는 수정예들 또한 이 발명의 청구범위에 속한다 할 것이다.In the above, the description of the membrane electrode assembly for water electrolysis of the present invention, the method for manufacturing the same, and the electrochemical cell having the same have been described along with the accompanying drawings, but this is an exemplary description of the best embodiment of the present invention. Therefore, the present invention is not limited to the above-described embodiments, and it is apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Examples or modifications will also fall within the scope of the claims of this invention.

Claims (6)

고분자 전해질 막의 양 쪽에 양극 및 음극의 촉매층 겸용 기체 확산층을 위치시킨 상태에서 일정 온도에서 일정 압력으로 압착하여 서로 간에 일체화하되,
상기 양극의 촉매층 겸용 기체 확산층은 기체 확산층을 촉매 잉크에 침지시키는 딥 코팅 방식으로 제조하는 것을 특징으로 하는 수전해용 막전극접합체의 제조방법.
In a state where the gas diffusion layer for both the anode and the cathode is placed on both sides of the polymer electrolyte membrane, it is pressed under a certain pressure at a certain temperature to integrate it with each other,
The method of manufacturing a membrane electrode assembly for water electrolysis, characterized in that the gas diffusion layer for the catalyst layer of the anode is prepared by a dip coating method in which the gas diffusion layer is immersed in the catalyst ink.
청구항 1에 있어서,
상기 양극의 촉매층은 양극 촉매 잉크로 형성하며,
상기 양극 촉매 잉크는 Ir, Ru, Pt, Co, Ce, Sn, Sb, 또는 Ti의 산화물 성분이 함유된 수전해 나노 촉매 입자를 촉매 담지량이 4mg/cm2 이면서 촉매 대비 10 ~ 50wt%의 나피온 이오노머(Nafion ionomer)(20wt% solution)의 함량이 되도록 정량하여, IPA와 순수의 용제에 Titanium(Ⅳ) isopropoxide(TPT) 및 HCl와 같이 첨가하여 1시간 이상 초음파 분산하여 제조하는 것을 특징으로 하는 수전해용 막전극접합체의 제조방법.
The method according to claim 1,
The catalyst layer of the anode is formed of anode catalyst ink,
The cathode catalyst ink contains aqueous electrolytic nanocatalyst particles containing an oxide component of Ir, Ru, Pt, Co, Ce, Sn, Sb, or Ti with a catalyst loading of 4 mg/cm 2 and 10 to 50 wt% of Nafion compared to the catalyst. The faucet, characterized in that it is quantified so that the content of Nafion ionomer (20wt% solution) becomes, and is added to IPA and pure solvent along with Titanium(IV) isopropoxide(TPT) and HCl, followed by ultrasonic dispersion for at least 1 hour. A method for manufacturing a dissolving membrane electrode assembly.
청구항 1에 있어서,
상기 양극의 촉매층 겸용 기체 확산층은 상기 딥 코팅 방식으로 기체 확산층을 코팅하고 400℃에서 10분 동안 소결시키는 공정을 반복 수행하여 4mg의 촉매 로딩량을 갖는 것을 특징으로 하는 수전해용 막전극접합체의 제조방법.
The method according to claim 1,
Method for producing a membrane electrode assembly for water electrolysis, characterized in that the gas diffusion layer combined with the catalyst layer of the anode has a catalyst loading of 4 mg by repeating the process of coating the gas diffusion layer by the dip coating method and sintering at 400° C. for 10 minutes .
청구항 1에 있어서,
상기 일정 온도는 110 ~ 140℃이고, 상기 일정 압력은 1 ~ 4Mpa인 것을 특징으로 하는 수전해용 막전극접합체의 제조방법.
The method according to claim 1,
The constant temperature is 110 ~ 140 ℃, the method of manufacturing a membrane electrode assembly for water electrolysis, characterized in that the constant pressure is 1 ~ 4Mpa.
청구항 1 내지 청구항 4 중 어느 한 항에 기재된 수전해용 막전극접합체의 제조방법에 의해 제조된 것을 특징으로 하는 막전극접합체.A membrane electrode assembly, characterized in that it is manufactured by the method for manufacturing a membrane electrode assembly for water electrolysis according to any one of claims 1 to 4. 청구항 5에 기재된 막전극접합체를 포함하는 것을 특징으로 하는 전기화학 셀.An electrochemical cell comprising the membrane electrode assembly according to claim 5 .
KR1020200024205A 2020-02-27 2020-02-27 Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same KR20210109226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200024205A KR20210109226A (en) 2020-02-27 2020-02-27 Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200024205A KR20210109226A (en) 2020-02-27 2020-02-27 Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same

Publications (1)

Publication Number Publication Date
KR20210109226A true KR20210109226A (en) 2021-09-06

Family

ID=77782434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200024205A KR20210109226A (en) 2020-02-27 2020-02-27 Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same

Country Status (1)

Country Link
KR (1) KR20210109226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676983A (en) * 2022-12-29 2023-02-03 深圳永清水务有限责任公司北京分公司 Lead-antimony coating titanium anode with cerium-doped intermediate layer and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115676983A (en) * 2022-12-29 2023-02-03 深圳永清水务有限责任公司北京分公司 Lead-antimony coating titanium anode with cerium-doped intermediate layer and preparation method thereof

Similar Documents

Publication Publication Date Title
Phillips et al. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas
AU2009246798B2 (en) Permselective membrane-free direct fuel cell and components thereof
JP6685961B2 (en) Laminated electrolyte membrane for water electrolysis, membrane electrode assembly, cell for water electrolysis, stack and water electrolysis apparatus
US20040247978A1 (en) Bipolar plate for fuel cell and method for production thereof
KR100908780B1 (en) Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method
KR101931504B1 (en) Membrane Electrode Assembly for the Electrochemical Cell
KR100599667B1 (en) Separator for fuel cell using the metal coated with TiN, method to prepare thereit, and polymer electrolyte membrane fuel cell comprising the same
JPH06330367A (en) Production of gas electrode
KR20210109226A (en) Membrane electrode assembly for water electrolysis and manufacturing method thereof and electrochemical cell having the same
WO2018216356A1 (en) Organic hydride production device
JP4290454B2 (en) Method for producing gas diffusion electrode, electrolytic cell and electrolysis method
KR20190040678A (en) Pressure pad with anti-corrosion coating layer using metal foam, electrochemical reaction chamber frame, and electrochemical cell and electrochemical stack having the same
US11228042B2 (en) Aluminum separator for fuel cell and manufacturing method thereof
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
KR20210027924A (en) High efficiency unitized regenerative fuel cell based on polymer electrolyte membrane, method of operating the same, and method of manufacturing the same
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP5065727B2 (en) Method for manufacturing solid electrolyte membrane, solid electrolyte membrane, and water electrolysis device
JP6854399B2 (en) Electrode catalyst layer for fuel cells and its manufacturing method
JP4355921B2 (en) Fuel cell electrode and manufacturing method thereof
CN117855538A (en) Preparation method of membrane electrode and membrane electrode
JP2023128449A (en) Cathode, membrane electrode assembly and organic hydride production device
CN115863715A (en) Preparation method of membrane electrode and membrane electrode
JP2005174786A (en) Electrode for fuel cell and its manufacturing method
JP2007018906A (en) Manufacturing method for membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell provided with it