KR100908780B1 - Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method - Google Patents

Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method Download PDF

Info

Publication number
KR100908780B1
KR100908780B1 KR1020070097419A KR20070097419A KR100908780B1 KR 100908780 B1 KR100908780 B1 KR 100908780B1 KR 1020070097419 A KR1020070097419 A KR 1020070097419A KR 20070097419 A KR20070097419 A KR 20070097419A KR 100908780 B1 KR100908780 B1 KR 100908780B1
Authority
KR
South Korea
Prior art keywords
electrode assembly
membrane electrode
membrane
solid polymer
polymer electrolyte
Prior art date
Application number
KR1020070097419A
Other languages
Korean (ko)
Other versions
KR20090032313A (en
Inventor
박경일
문전수
박광규
이재봉
박필양
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020070097419A priority Critical patent/KR100908780B1/en
Publication of KR20090032313A publication Critical patent/KR20090032313A/en
Application granted granted Critical
Publication of KR100908780B1 publication Critical patent/KR100908780B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

본 발명은 고체 고분자 수전해(Solid Polymer Water Electrolysis)의 단위전지에 해당하는 막 전극 접합체(Membrane Electrode Assembly, MEA) 및 그 제조 방법에 관한 것으로, 고체고분자전해질 막 양쪽에 백금(Pt)을 무전해 도금시키는 단계와 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 고체고분자전해질 막 한쪽에 직접 스프레이 코팅하는 단계로 이루어진 수전해용 막 전극 접합체 및 그 제조 방법을 제공한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane electrode assembly (MEA) corresponding to a unit cell of solid polymer water electrolysis and a method of manufacturing the same, and to electroless platinum (Pt) on both sides of a solid polymer electrolyte membrane. The present invention provides a membrane electrode assembly for water electrolysis comprising a plating step and spray coating a mixture of iridium (Ir) oxide and proton conductive ionomer directly on one side of a solid polymer electrolyte membrane, and a method of manufacturing the same.

본 발명에 따른 막 전극 접합체는 전극 내 수소 이온 이동이 원활하여 저항이 감소되고 촉매 이용률이 높아 경제적으로 활용 가치가 높다.Membrane electrode assembly according to the present invention has a high value of economic utilization because the smooth migration of hydrogen ions in the electrode is reduced resistance and high catalyst utilization.

고체 고분자 수전해, 막 전극 접합체 Solid Polymer Electrolyte, Membrane Electrode Assembly

Description

수전해용 막 전극 접합체 및 그 제조 방법{Membrane electrode assembly for water electrolysis and method of making the same}Membrane electrode assembly for water electrolysis and method of making the same}

본 발명은 수전해용 막 전극 접합체 및 그 제조 방법에 관한 것이다.The present invention relates to a membrane electrode assembly for water electrolysis and a method of manufacturing the same.

고체 고분자 수전해는 물의 산화 환원 반응 중에 발생하는 전자를 이용하여 수소와 산소를 생산하는 방법이다. 고체 고분자 수전해의 단위전지 구조는 고분자 물질로 구성된 고체고분자전해질(주로 나피온, Nafion) 막을 중심으로 양쪽에 양극과 음극이 코팅되어 있는 구조를 이루고 있는데 이를 막 전극 접합체(Membrane Electrode Assembly)라 칭한다. 양극(Anode)에서는 물이 공급되어 전극촉매 상에서 반응하여 산소, 수소이온과 전자를 발생시킨다(반응 1). 음극(Cathode)에서는 고체 고분자 막을 통과한 수소이온이 전자와 결합하여 순수한 수소가 발생된다.(반응 2).The solid polymer hydroelectrolyte is a method of producing hydrogen and oxygen using electrons generated during the redox reaction of water. The unit cell structure of a solid polymer electrolyte is formed by coating a positive electrode and a negative electrode on both sides of a solid polymer electrolyte (mainly Nafion) membrane composed of a polymer material, which is called a membrane electrode assembly. . Water is supplied from the anode to react on the electrocatalyst to generate oxygen, hydrogen ions and electrons (reaction 1). At the cathode, hydrogen ions passing through the solid polymer membrane combine with electrons to generate pure hydrogen (reaction 2).

양극 : H2O -> 1/2O2 + 2H+ + 2e- ----(반응 1) Anode: H 2 O -> 1 / 2O 2 + 2H + + 2e - ---- ( reaction 1)

음극 : 2H+ + 2e- -> H2 ------------(반응 2) Cathode: 2H + + 2e - -> H 2 ------------ ( reaction 2)

총 : H2O -> H2 + 1/2O2 Total: H 2 O-> H 2 + 1 / 2O 2

이때 이런 일련의 반응들이 막 전극 접합체를 중심으로 진행되며, 이 막 전극 접합체는 고체고분자전해질 막의 양쪽에 양극 전극 물질(주로 이리듐(Ir), 이리듐(Ir) 산화물로 이루어지는 촉매물질)과 음극 전극 물질 (주로 백금(Pt), 백금(Pt) 담지 탄소로 이루어지는 촉매물질)을 얇게 코팅하여 제조한다. In this case, a series of reactions are carried out around the membrane electrode assembly, which is a cathode electrode material (catalyst mainly composed of iridium (Ir) and iridium (Ir) oxide) and a cathode electrode material on both sides of the solid polymer electrolyte membrane. It is prepared by thinly coating (a catalyst material mainly composed of platinum (Pt) and platinum (Pt) supported carbon).

이때 각 반응물과 생성물은 전극의 미세기공(pore)을 통해 이동하며, 수소 이온은 전극 내 프로톤 전도성 이오노머(ionomer)를 통해 그리고 전자는 촉매를 매개체로 이동한다. 따라서 반응 1, 2의 효율을 높이기 위해서는 촉매와 프로톤 전도성 이오노머를 적절하게 혼합되어야 한다. Each reactant and product then migrates through the pores of the electrode, hydrogen ions move through the proton conductive ionomer in the electrode, and electrons move the catalyst through the medium. Therefore, in order to increase the efficiency of reactions 1 and 2, the catalyst and the proton conductive ionomer must be properly mixed.

백금(Pt)을 고체고분자전해질 막에 코팅하는 일반적인 방법은 무전해도금법이다. 이 방법은 고체고분자전해질 막의 표면에 백금(Pt) 양이온을 함침시킨 후 환원제를 이용하여 백금(Pt)을 막 표면에 석출시켜 전극을 형성시킨다. 무전해도금법은 막과 촉매 전극의 저항이 작고, 접합강도가 커서 많이 이용되고 있다. 그러나 백금(Pt)은 산소 과전압이 매우 높기 때문에 수전해 수소생산용으로 사용하기 위해서는 백금(Pt) 외에 산소 과전압이 낮은 이리듐(Ir) 또는 이리듐(Ir) 산화물을 추가로 도포해야 한다. 그러나 이리듐(Ir)은 백금(Pt)과 달리 무전해 도금이 쉽지 않아 이를 개선 또는 변형한 다른 여러 가지 방법이 사용되고 있다. A common method of coating platinum (Pt) on a solid polymer electrolyte film is the electroless plating method. In this method, the surface of the solid polymer electrolyte membrane is impregnated with platinum (Pt) cation, and then platinum (Pt) is deposited on the surface of the membrane using a reducing agent to form an electrode. In electroless plating, the resistance between the membrane and the catalyst electrode is small, and the bonding strength is large, and thus it is widely used. However, since platinum (Pt) has a very high oxygen overvoltage, in addition to platinum (Pt), an iridium (Ir) or iridium (Ir) oxide having a low oxygen overvoltage needs to be additionally applied. However, unlike platinum (Pt), iridium (Ir) is not easily electroless plated, and various other methods of improving or modifying it are used.

일본 특개평(特開平) 8-158059호에서는 이리듐(Ir) 히드라진을 전구체로 사용하고 pH 1~7의 조건에서 무전해 도금을 시행하여 이리듐(Ir)의 밀착성을 개선하 였다. 일본 특개(特開) 2003-105579호에서는 백금을 도금한 고분자 막을 0.03~2N 산으로 50℃이하에서 세척한 후에, 이리듐(Ir)을 무전해 도금하는 것이 효과가 좋다고 설명하고 있다. 일본 특개평(特開平) 10-330979호에서는 전해도금법을 적용하여 이리듐(Ir)을 고체고분자전해질 막에 코팅하였다.Japanese Patent Application Laid-Open No. 8-158059 improved the adhesion of iridium (Ir) by using iridium (Ir) hydrazine as a precursor and electroless plating under the conditions of pH 1-7. Japanese Laid-Open Patent Publication No. 2003-105579 explains that it is effective to electrolessly plate iridium (Ir) after washing a platinum-plated polymer film with 0.03 to 2N acid at 50 ° C or below. In Japanese Patent Laid-Open No. 10-330979, iridium (Ir) was coated on a solid polymer electrolyte membrane by applying an electroplating method.

그러나 위의 방법은 모두 도금법이기 때문에 이리듐(Ir) 밖에 접합 할 수 없어 이리듐(Ir) 산화물을 전극으로 이용하는 것은 한계가 있다. 또한 전극 내부에 수소 이온 경로를 제공하는 프로톤 전도성 이오노머가 없기 때문에 수소 이온이 원활하게 이동하기 어려워 전극 성능을 저하시킬 수 있다. However, since the above methods are all plating methods, only iridium (Ir) can be bonded, and there is a limit to using iridium (Ir) oxide as an electrode. In addition, since there is no proton conductive ionomer that provides a hydrogen ion path inside the electrode, it is difficult for hydrogen ions to move smoothly, thereby degrading electrode performance.

본 발명은 상술한 종래의 문제점을 극복하기 위한 것으로서, 본 발명의 목적은 백금(Pt)이 도금된 고체고분자전해질 막에 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 제조하여 막에 직접 코팅함으로써 고효율의 수전해용 막 전극 접합체 및 그 제조 방법을 제공하는데 있다.The present invention is to overcome the above-mentioned conventional problems, an object of the present invention is to prepare a mixture of iridium (Ir) oxide and proton conductive ionomer in a platinum (Pt) -plated solid polymer electrolyte membrane and directly coating the membrane The present invention provides a highly efficient electrolytic membrane electrode assembly and a method of manufacturing the same.

상기한 목적을 달성하기 위해 본 발명에 의한 수전해용 막 전극 접합체 및 그 제조 방법은 고체고분자전해질 막 양쪽에 백금(Pt)을 무전해 도금시키는 단계(S1)와, 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 고체고분자전해질 막 한쪽에 직접 코팅하는 단계(S2)를 포함한다.In order to achieve the above object, the membrane electrode assembly for water electrolysis according to the present invention and a method for manufacturing the same are prepared by electroplating platinum (Pt) on both sides of a solid polymer electrolyte membrane (S1), and iridium (Ir) oxide and proton conductivity. Coating a mixture of ionomers directly on one side of the solid polymer electrolyte membrane (S2).

상술한 바와 같이 하여, 본 발명에 따른 수전해용 막 전극 접합체 및 그 제조 방법은 전극 내 수소 이온 이동이 용이하여 전극 내 과전압을 상당히 감소시킬 수 있게 된다.As described above, the membrane electrode assembly for water electrolysis according to the present invention and a method of manufacturing the same are easily moved with hydrogen ions in the electrode, so that the overvoltage in the electrode can be significantly reduced.

도 1 및 도 2는 본 발명에 따른 수전해용 막 전극 접합체의 제조 방법을 순차적으로 도면이다.1 and 2 are views sequentially showing a method of manufacturing a membrane electrode assembly for water electrolysis according to the present invention.

도시된 바와 같이 본 발명에 따른 수전해용 막 전극 접합체의 제조 방법은 고체고분자전해질 막 양쪽에 백금(Pt)을 무전해 도금시키는 단계(도 1 참조)와, 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 고체고분자전해질 막 한쪽에 직접 스프레이 코팅하는 단계(도 2 참조)를 포함한다.As shown in the drawing, the method for preparing a membrane electrode assembly for water electrolysis according to the present invention comprises electroplating platinum (Pt) on both sides of a solid polymer electrolyte membrane (see FIG. 1), and iridium (Ir) oxide and proton conductive ionomer. Spray coating the mixed solution directly on one side of the solid polymer electrolyte membrane (see FIG. 2).

먼저 도 1에 도시된 바와 같이 고체고분자전해질 막 양쪽에 백금(Pt)을 무전해 도금시킨다.First, platinum (Pt) is electroless plated on both sides of the solid polymer electrolyte membrane as shown in FIG. 1.

백금(Pt)을 고체고분자전해질 막에 무전해 도금하는 방법은 당해 분야에서 많이 알려진 내용이다. 본 발명에서는 1989년 밀렛(Millet)이 논문에 발표한 무전해 도금법을 이용하였다. [P. Millet, M. Pineri, Journal of Applied Electrochemistry, 19(1989) 162-166 참조]The electroless plating of platinum (Pt) on a solid polymer electrolyte membrane is well known in the art. In the present invention, the electroless plating method disclosed by Millet in 1989 was used. [P. See Millet, M. Pineri, Journal of Applied Electrochemistry, 19 (1989) 162-166].

다음으로 도 2에 도시된 바와 같이 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 고체고분자전해질 막 한쪽에 직접 코팅한다.Next, as shown in FIG. 2, a mixed solution of iridium (Ir) oxide and proton conductive ionomer is directly coated on one side of the solid polymer electrolyte membrane.

이를 위해 이리듐(Ir) 산화물, 프로톤 전도성 이오노머, 유기용매를 균일하게 혼합한 촉매용액을 제조한 후, 백금(Pt)이 도금된 고체고분자전해질 막에 촉매 용액을 균일하게 코팅한다.To this end, after preparing a catalyst solution in which iridium (Ir) oxide, a proton conductive ionomer, and an organic solvent are uniformly mixed, the catalyst solution is uniformly coated on a platinum (Pt) plated polymer electrolyte membrane.

상기 프로톤 전도성 이오노머는 프로톤(proton)이 투과할 수 있는 물질이 이용된다. 바람직하게는 듀폰(Dupont)사에서 제작된 나피온(NafionTM) 이오노머를 이용할 수 있지만, 이러한 종류로 본 발명을 한정하는 것은 아니다.As the proton conductive ionomer, a material through which a proton can penetrate is used. Preferably, Nafion ionomers manufactured by Dupont may be used, but the present invention is not limited to this kind.

상기 유기 용매는 물, 이소프로필알콜, 에탄올, 1-프로판올 또는 그 혼합액을 이용할 수 있으나, 이러한 종류로 본 발명을 한정하는 것은 아니다.The organic solvent may be water, isopropyl alcohol, ethanol, 1-propanol or a mixture thereof, but the present invention is not limited to this kind.

코팅 방법은 브러쉬, 스프레이 등이 이용될 수 있는데 바람직하게는 스프레이법을 사용한다. 물론, 이러한 방법으로 본 발명을 한정하는 것은 아니다.As the coating method, a brush, a spray, or the like may be used, and preferably a spray method is used. Of course, the present invention is not limited to this method.

본 발명자들은 상기 두 번째 단계에서 이리듐(Ir) 산화물과 프로톤 전도성 이오노머 무게비를 여러 가지로 바꾸고 제작한 막 전극 접합체를 평가하여 최적의 막 전극 접합체 제작 조건을 도출하였다. The present inventors derived the optimum membrane electrode assembly conditions by evaluating the membrane electrode assembly fabricated by changing the weight ratio of iridium (Ir) oxide and proton conductive ionomer in various ways in the second step.

이러한 수전해용 막 전극 접합체는 도 3에 도시된 성능 평가 장치에 의해 전압, 전류밀도가 측정된다. 구체적으로, 도 3에 도시된 바와 같이 순수 저장조(11)에 있는 물을 펌프(12)를 이용하여 막 전극 접합체(13)의 양극 유로판(14)에 보낸다. 반응에 참여하지 않은 물과 생성된 산소는 섞여있는 혼합액 상태로 기액 분리기(15)를 거쳐 순수한 산소와 물로 분리된다. 이때 막 전극 접합체의 음극에서는 수소가 생성되며 음극 유로판(16)을 통과한 미량의 물과 섞여 나오는데, 기액 분리기를 거처 순수한 수소가 분리된다. 직류전원 공급장치(17)에서는 반응에 필요한 전압을 공급하며, 막 전극 접합체에 동일한 전압을 인가 한 후 전류를 측정하여 성능을 비교한다. 이때 생성되는 전류가 클수록 막 전극 접합체의 성능이 우수함을 의미한다. 여기서, 막 전극 접합체로 이루어진 단위 전지의 운전 조건은 다음과 같다.In this membrane of the electrolytic membrane electrode assembly, voltage and current density are measured by the performance evaluation apparatus shown in FIG. 3. Specifically, as shown in FIG. 3, the water in the pure water storage tank 11 is sent to the anode flow path plate 14 of the membrane electrode assembly 13 using the pump 12. Water and oxygen produced in the reaction are separated into pure oxygen and water through the gas-liquid separator 15 in a mixed liquid state. At this time, hydrogen is generated at the negative electrode of the membrane electrode assembly and mixed with a small amount of water passing through the negative electrode flow path plate 16. Pure hydrogen is separated through the gas-liquid separator. The DC power supply 17 supplies the voltage required for the reaction, and applies the same voltage to the membrane electrode assembly, and then compares the performance by measuring the current. In this case, the larger the current generated, the better the performance of the membrane electrode assembly. Here, the operating conditions of the unit cell made of the membrane electrode assembly are as follows.

펌프 유량 : 물 1cc/minPump flow rate: water 1cc / min

촉매 사용량 : 0.5mg Pt/cm2, 1mg IrO2(or Ir)/cm2 Catalyst usage: 0.5mg Pt / cm 2 , 1mg IrO 2 (or Ir) / cm 2

온도 : 80℃Temperature: 80 ℃

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하면 다음과 같다. 그러나 이들은 본 발명을 상세히 설명하기 위한 것으로 제공되는 것일 뿐 본 발명의 범위가 이들에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following Examples. However, these are provided only to explain the present invention in detail, but the scope of the present invention is not limited thereto.

<실시예><Example>

<Pt/Nafion 117/Pt 막 전극 접합체 제조><Pt / Nafion 117 / Pt Membrane Electrode Assembly>

① Nafion 117(Dupont사 고체고분자전해질 막)양면을 샌드 블라스트 처리한다.① Sandblast both sides of Nafion 117 (Dupont's solid polymer electrolyte membrane).

② 10-2M Pt(NH3)4Cl2 수용액에 ①에서 처리한 막을 넣고, 15분간 막 내부의 수소 이온을 백금 양이온으로 치환한다.② Put the membrane treated in ① into 10 -2 M Pt (NH 3 ) 4 Cl 2 aqueous solution and replace hydrogen ions inside the membrane with platinum cations for 15 minutes.

③ 상온에서 NaBH4 3g/L 수용액에 ②에서 처리한 막을 2시간 담가둔다.③ Soak the membrane treated in ② in NaBH 4 3g / L aqueous solution for 2 hours at room temperature.

④ 0.5M H2SO4 용액에 ③에서 처리한 막을 넣고 30분간 끓여준다. ④ Put the membrane treated in ③ into 0.5MH 2 SO 4 solution and boil for 30 minutes.

<Pt/Nafion 117/Pt-IrO2 막 전극 접합체 제조><Pt / Nafion 117 / Pt-IrO 2 Membrane Electrode Assembly>

① 에탄올 유기용매에 IrO2와 Nafion 이오노머를 넣고, 잘 분산되도록 교반과 초음파 처리를 진행한다. 이때 Nafion 이오노머와 IrO2 무게비를 0.02 ~ 0.5까지 변화시킨다.① Put IrO 2 and Nafion ionomer in ethanol organic solvent and proceed stirring and sonication to disperse well. At this time, the weight ratio of Nafion ionomer and IrO 2 is changed to 0.02 ~ 0.5.

② Pt/Nafion 117/Pt 막 전극 접합체의 한쪽 면에 ①에서 제조한 촉매용액을 스프레이 코팅한 후, 50℃ 진공 하에서 열처리하여 잔여 유기용매를 제거한다.② Spray coating the catalyst solution prepared in ① on one side of the Pt / Nafion 117 / Pt membrane electrode assembly and heat-treat it under vacuum at 50 ℃ to remove residual organic solvent.

<Pt/Nafion 117/Pt-Ir 막 전극 접합체 제조><Pt / Nafion 117 / Pt-Ir Membrane Electrode Assembly>

① 에탄올 유기용매에 이리듐(Ir)과 Nafion 이오노머를 넣고, 잘 분산되도록 교반과 초음파 처리를 진행한다. 이때 Nafion 이오노머와 이리듐(Ir) 무게비는 0.05로 고정하였다..① Add iridium (Ir) and Nafion ionomer to ethanol organic solvent and proceed with stirring and sonication to disperse well. At this time, the weight ratio of Nafion ionomer and iridium (Ir) was fixed at 0.05.

② Pt/Nafion 117/Pt 막 전극 접합체의 한쪽 면에 ①에서 제조한 촉매용액을 스프레이 코팅한 후, 50℃ 진공 하에서 열처리하여 잔여 유기용매를 제거한다.② Spray coating the catalyst solution prepared in ① on one side of the Pt / Nafion 117 / Pt membrane electrode assembly and heat-treat it under vacuum at 50 ℃ to remove residual organic solvent.

이때 전극의 크기는 9cm2, 나피온 막의 크기는 25cm2가 되게 하였다. At this time, the size of the electrode was 9cm 2 , the size of the Nafion membrane was 25cm 2 .

## 막 전극 접합체 형태Membrane Electrode Assembly Mode Nafion 이오노머 /IrO2 (또는 이리듐(Ir)) 무게비Nafion ionomer / IrO 2 (or iridium (Ir)) weight ratio 1.75V에서 전류밀도 (A/cm2)Current density at 1.75 V (A / cm 2 ) 비 고Remarks 실시예1Example 1 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.010.01 0.820.82 본 발명의 제조 방법Manufacturing method of the present invention 실시예2Example 2 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.030.03 0.940.94 실시예3Example 3 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.050.05 0.950.95 실시예4Example 4 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.080.08 0.930.93 실시예6Example 6 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.10.1 0.780.78 실시예7Example 7 Pt/Nafion 117/Pt-IrO2 Pt / Nafion 117 / Pt-IrO 2 0.30.3 0.380.38 비교예1Comparative Example 1 Pt/Nafion 117/PtPt / Nafion 117 / Pt -- 0.350.35 종래 기술Prior art 비교예2Comparative Example 2 Pt/Nafion 117/Pt-IrPt / Nafion 117 / Pt-Ir 0.050.05 0.550.55

[표 1] 막 전극 접합체 성능 평가 결과TABLE 1 Membrane Electrode Assembly Performance Evaluation Results

표 1의 실시예 3과 비교예 2를 비교해 보면, 동일한 조건에서 IrO2가 이리듐(Ir)보다 수전해 반응 효율이 우수한 촉매임을 알 수 있다. 또한 동일한 조건에서 Nafion 이오노머와 IrO2 비율이 0.03~0.08일 때 다른 경우보다 높은 성능을 보여주었다. 이는 Nafion 이오노머와 IrO2의 최적 혼합비가 0.03~0.08 임을 의미한다.Comparing Example 3 of Table 1 and Comparative Example 2, it can be seen that under the same conditions, IrO 2 is a catalyst having better electrolytic reaction efficiency than iridium (Ir). In addition, the Nafion ionomer and IrO 2 ratio were 0.03 ~ 0.08 under the same conditions. This means that the optimum mixing ratio of Nafion ionomer and IrO 2 is 0.03 ~ 0.08.

이상에서 설명한 것은 본 발명에 따른 수전해용 막 전극 접합체 및 그 제조 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is just one embodiment for carrying out the membrane electrode assembly for water electrolysis according to the present invention and a method for producing the same, and the present invention is not limited to the above-described embodiment, and is claimed in the following claims. As described above, any person having ordinary knowledge in the field of the present invention without departing from the gist of the present invention will have the technical spirit of the present invention to the extent that various modifications can be made.

도 1 및 도 2는 본 발명에 따른 수전해용 막 전극 접합체의 제조 방법을 순차적으로 도면이다.1 and 2 are views sequentially showing a method of manufacturing a membrane electrode assembly for water electrolysis according to the present invention.

도 3은 막 전극 접합체 성능 평가 장치 구성도이다.3 is a configuration diagram of a membrane electrode assembly performance evaluation apparatus.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11. 순수 저장조 12. 펌프11. Pure reservoir 12. Pump

13. 막 전극 접합체 14. 양극 유로판13. Membrane electrode assembly 14. Anode flow plate

15. 기액 분리기 16. 음극 유로판15. Gas-liquid separator 16. Cathode flow plate

17. 직류전원 공급장치17. DC power supply

Claims (3)

고체고분자전해질 막 양쪽에 백금(Pt)을 무전해 도금시키는 단계; 및,Electroless plating platinum (Pt) on both sides of the solid polymer electrolyte film; And, 이리듐(Ir) 산화물과 프로톤 전도성 이오노머의 혼합액을 고체고분자전해질 막 한쪽에 직접 스프레이 코팅하는 단계를 포함하는 수전해용 막 전극 접합체 제조 방법.A method for producing a membrane electrode assembly for water electrolysis, comprising spray coating a mixture of iridium (Ir) oxide and proton conductive ionomer directly on one side of a solid polymer electrolyte membrane. 제 1 항에 있어서, 상기 프로톤 전도성 이오노머와 이리듐(Ir) 산화물의 무게비는 0.03 ~ 0.08인 것을 특징으로 하는 수전해용 막 전극 접합체 제조 방법.The method according to claim 1, wherein the weight ratio of the proton conductive ionomer to the iridium (Ir) oxide is 0.03 to 0.08. 제 1 항 또는 제 2 항에 기재된 방법으로 제조된 것을 특징으로 하는 수전해용 막 전극 접합체.A membrane electrode assembly for water electrolysis, which is produced by the method according to claim 1.
KR1020070097419A 2007-09-27 2007-09-27 Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method KR100908780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070097419A KR100908780B1 (en) 2007-09-27 2007-09-27 Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070097419A KR100908780B1 (en) 2007-09-27 2007-09-27 Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method

Publications (2)

Publication Number Publication Date
KR20090032313A KR20090032313A (en) 2009-04-01
KR100908780B1 true KR100908780B1 (en) 2009-07-22

Family

ID=40759150

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070097419A KR100908780B1 (en) 2007-09-27 2007-09-27 Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method

Country Status (1)

Country Link
KR (1) KR100908780B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117176A1 (en) * 2021-12-22 2023-06-29 Siemens Energy Global GmbH & Co. KG Membrane electrode arrangement and method for producing same
KR20230101340A (en) 2021-12-29 2023-07-06 한국에너지기술연구원 Method of manufacturing membrane electrode assembly for PEM electrolysis capable of improving the electrical conductivity of the electrode layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096548B1 (en) * 2009-11-06 2011-12-20 주식회사 비에스이 Mems microphone and manufacturing method of the same
KR20190027251A (en) 2017-09-06 2019-03-14 한국과학기술연구원 Membrane electrode assembly for anion exchange membrane water electrolyzer and method of manufacturing membrane electrode assembly for anion exchange membrane water electrolyzer
KR102126183B1 (en) 2017-11-29 2020-06-24 한국과학기술연구원 Diffusion layer and oxygen electrode composite layers of polymer electrolyte membrane water electrolysis apparatus and method for preparing the same and polymer electrolyte membrane water electrolysis apparatus using the same
CN113166298B (en) * 2018-12-07 2023-08-01 Agc株式会社 Perfluoropolymer, liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer type water electrolysis device
KR20240026558A (en) 2022-08-22 2024-02-29 주식회사 에코퓨어셀 manufacturing method of membrane electrode assembly for PEMWE using slot die coating
KR102543140B1 (en) 2022-12-29 2023-06-14 주식회사 에코퓨어셀 manufacturing method of membrane electrode assembly for PEMFC

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020072192A (en) * 2001-03-08 2002-09-14 조통래 Solid polymer electrolyte film and preparing method thereof
JP2003105579A (en) * 2001-09-28 2003-04-09 Hitachi Zosen Corp Method of manufacturing electrode connector for solid polymer-type water electrolysis
KR20040036461A (en) * 2002-10-26 2004-04-30 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020072192A (en) * 2001-03-08 2002-09-14 조통래 Solid polymer electrolyte film and preparing method thereof
JP2003105579A (en) * 2001-09-28 2003-04-09 Hitachi Zosen Corp Method of manufacturing electrode connector for solid polymer-type water electrolysis
KR20040036461A (en) * 2002-10-26 2004-04-30 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023117176A1 (en) * 2021-12-22 2023-06-29 Siemens Energy Global GmbH & Co. KG Membrane electrode arrangement and method for producing same
KR20230101340A (en) 2021-12-29 2023-07-06 한국에너지기술연구원 Method of manufacturing membrane electrode assembly for PEM electrolysis capable of improving the electrical conductivity of the electrode layer

Also Published As

Publication number Publication date
KR20090032313A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
KR100908780B1 (en) Membrane Electrode Assembly for Water Electrolysis and its Manufacturing Method
Su et al. Study of catalyst sprayed membrane under irradiation method to prepare high performance membrane electrode assemblies for solid polymer electrolyte water electrolysis
US10889903B2 (en) Oxygen-generating anode
CN107075700B (en) The manufacturing method of organic hydride material producing device and the organic hydride using it
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
EP3378970A1 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis cell, stack and water electrolysis apparatus
CN108611655B (en) Electrode unit and electrode composed of same
US9865884B2 (en) Roll-to-roll fabrication of high performance fuel cell electrode with core-shell catalyst using seeded electrodes
JP5072652B2 (en) Water electrolysis equipment
CN114196965B (en) Proton membrane and CCM (continuous current module) integrated preparation process and equipment for PEM (proton exchange membrane) water electrolysis
KR100822034B1 (en) Method of Manufacturing Membrane Electrode Assembly for Solid Polymer Water Electrolysis
WO2018216356A1 (en) Organic hydride production device
CN116219470B (en) Membrane electrode with double-layer anode coating and preparation method thereof
KR20170058352A (en) Polymer electrolyte membrane water electrolysis anode and method for preparing the same using IrO₂electrodeposited porous carbon material, polymer electrolyte membrane water electrolysis apparatus and method using the same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
CN1683596A (en) Method for producing hydrogen and storaging hydrogen integrately
CN114737211B (en) Proton exchange composite reinforced membrane, preparation method, water electrolysis membrane electrode and application
JP2006079904A (en) Polymer electrolyte fuel cell and its manufacturing method
KR101209486B1 (en) Method for fabricating of fuel cell
KR20190040678A (en) Pressure pad with anti-corrosion coating layer using metal foam, electrochemical reaction chamber frame, and electrochemical cell and electrochemical stack having the same
CN110797539B (en) Preparation method of hydrogen fuel cell membrane electrode and hydrogen fuel cell membrane electrode
WO2022250122A1 (en) Method for producing catalyst and catalyst
US6846510B2 (en) Method for deposition of a catalyst
KR20160127535A (en) Polymer electrolyte membrane water electrolysis anode and method for preparing the same using IrOelectrodeposited porous carbon material polymer electrolyte membrane water electrolysis apparatus and method using the same
CN117305877A (en) Preparation method of membrane electrode assembly for PEM (PEM) electrolyzed water

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 11