KR20210098547A - Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 - Google Patents
Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 Download PDFInfo
- Publication number
- KR20210098547A KR20210098547A KR1020217024118A KR20217024118A KR20210098547A KR 20210098547 A KR20210098547 A KR 20210098547A KR 1020217024118 A KR1020217024118 A KR 1020217024118A KR 20217024118 A KR20217024118 A KR 20217024118A KR 20210098547 A KR20210098547 A KR 20210098547A
- Authority
- KR
- South Korea
- Prior art keywords
- cell
- rna
- dna
- cas9
- binding protein
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2/00—Peptides of undefined number of amino acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3519—Fusion with another nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/33—Alteration of splicing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/50—Methods for regulating/modulating their activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/40—Systems of functionally co-operating vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/34—Vector systems having a special element relevant for transcription being a transcription initiation element
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2999/00—Further aspects of viruses or vectors not covered by groups C12N2710/00 - C12N2796/00 or C12N2800/00
- C12N2999/007—Technological advancements, e.g. new system for producing known virus, cre-lox system for production of transgenic animals
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
다중 직교 Cas9 단백질을 상응하는 유전자의 동시 및 독립적 조절 또는 상응하는 유전자의 동시 및 독립적 편집을 위해 사용하는 것을 포함하는, 세포에서 표적 핵산의 발현을 조절하는 방법이 제공된다.
Description
관련 출원 데이터
본원은 2013년 7월 10일에 출원된 미국 특허 가출원 번호 61/844,844를 우선권 주장하며, 이로써 상기 문헌은 모든 목적을 위해 그 전문이 본원에 참조로 포함된다.
정부 권리의 진술
본 발명은 미국 국립 보건원으로부터의 승인 번호 P50 HG005550 및 미국 에너지국으로부터의 DE-FG02-02ER63445 하에 정부 지원으로 이루어졌다. 정부는 본 발명에서 특정 권리를 갖는다.
박테리아성 및 고세균성 CRISPR-Cas 시스템은 침입 외래 핵산 내에 존재하는 상보적 서열의 분해를 지시하는 Cas 단백질과 복합체화된 짧은 가이드 RNA에 의존한다. 문헌 [Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011); Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America 109, E2579-2586 (2012); Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012); Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research 39, 9275-9282 (2011); 및 Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics 45, 273-297 (2011)]을 참조한다. 최근, 에스. 피오게네스(S. pyogenes) 유형 II CRISPR 시스템을 시험관내에서 재구성한 결과, 정상적으로 트랜스-코딩된 tracrRNA ("트랜스-활성화 CRISPR RNA")와 융합된 crRNA ("CRISPR RNA")가, crRNA와 매칭되는 표적 DNA 서열을 서열-특이적으로 절단하도록 Cas9 단백질을 지시하는데 충분한 것으로 입증되었다. 표적 부위에 상동성인 gRNA의 발현은 Cas9 동원 및 표적 DNA의 분해를 유도한다. 문헌 [H. Deveau et al., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190, 1390 (Feb, 2008)]을 참조한다.
본 개시내용의 측면은 가이드 RNA, DNA 결합 단백질 및 이중 가닥 DNA 표적 서열의 복합체에 관한 것이다. 특정 측면에 따르면, 본 개시내용의 범위 내의 DNA 결합 단백질은, 가이드 RNA와 복합체를 형성하는 단백질을 포함하는데, 여기서 가이드 RNA는 상기 복합체를 이중 가닥 DNA 서열로 가이드하고 여기서 상기 복합체가 DNA 서열에 결합한다. 본 개시내용의 이러한 측면은 이중 가닥 DNA로의 또는 그와의 RNA 및 DNA 결합 단백질의 공동-국재화로서 지칭될 수 있다. 이러한 방식으로, DNA 결합 단백질-가이드 RNA 복합체는 표적 DNA의 발현을 조절하기 위해 표적 DNA에 전사 조절 단백질 또는 도메인을 국재화시키는데 사용될 수 있다. 한 측면에 따르면, 2개 이상 또는 복수의 직교 RNA 가이드된 DNA 결합 단백질 또는 직교 RNA 가이드된 DNA 결합 단백질의 세트가 세포에서 DNA 내의 유전자를 동시에 및 독립적으로 조절하기 위해 사용될 수 있다. 한 측면에 따르면, 2개 이상 또는 복수의 직교 RNA 가이드된 DNA 결합 단백질 또는 직교 RNA 가이드된 DNA 결합 단백질의 세트가 세포에서 DNA 내의 유전자를 동시에 및 독립적으로 편집하기 위해 사용될 수 있다. DNA 결합 단백질 또는 RNA 가이드된 DNA 결합 단백질이 언급된 경우에, 이러한 언급은 직교 DNA 결합 단백질 또는 직교 RNA 가이드된 DNA 결합 단백질을 포함하는 것으로 이해될 것이다. 이러한 직교 DNA 결합 단백질 또는 직교 RNA 가이드된 DNA 결합 단백질은 뉴클레아제 활성을 가질 수 있거나, 닉카제 활성을 가질 수 있거나, 또는 뉴클레아제-기능부재일 수 있다.
특정 측면에 따르면, 표적 핵산을 포함하는 DNA (데옥시리보핵산)에 상보적인 1개 이상의 RNA (리보핵산)를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, DNA에 결합하며 1개 이상의 RNA에 의해 가이드되는, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 제2 외래 핵산을 세포 내로 도입하고, 전사 조절 단백질 또는 도메인을 코딩하는 제3 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 1개 이상의 RNA, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질 및 전사 조절 단백질 또는 도메인이 발현되고, 여기서 1개 이상의 RNA, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질 및 전사 조절 단백질 또는 도메인이 DNA로 공동-국재화되고, 여기서 전사 조절 단백질 또는 도메인이 표적 핵산의 발현을 조절하는 것인, 세포에서 표적 핵산의 발현을 조절하는 방법이 제공된다.
한 측면에 따르면, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 외래 핵산은 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질에 융합된 전사 조절 단백질 또는 도메인을 추가로 코딩한다. 한 측면에 따르면, 1개 이상의 RNA를 코딩하는 외래 핵산은 RNA-결합 도메인의 표적을 추가로 코딩하고, 전사 조절 단백질 또는 도메인을 코딩하는 외래 핵산은 전사 조절 단백질 또는 도메인에 융합된 RNA-결합 도메인을 추가로 코딩한다.
한 측면에 따르면, 세포는 진핵 세포이다. 한 측면에 따르면, 세포는 효모 세포, 식물 세포 또는 동물 세포이다. 한 측면에 따르면, 세포는 포유동물 세포이다.
한 측면에 따르면, RNA는 약 10 내지 약 500개의 뉴클레오티드이다. 한 측면에 따르면, RNA는 약 20 내지 약 100개의 뉴클레오티드이다.
한 측면에 따르면, 전사 조절 단백질 또는 도메인은 전사 활성인자이다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 질환 또는 유해 상태를 치료하기 위해 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 전사 리프레서이다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 표적 핵산의 발현을 하향조절한다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 질환 또는 유해 상태를 치료하기 위해 표적 핵산의 발현을 하향조절한다. 한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다.
한 측면에 따르면, 1개 이상의 RNA는 가이드 RNA이다. 한 측면에 따르면, 1개 이상의 RNA는 tracrRNA-crRNA 융합체이다.
한 측면에 따르면, DNA는 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA이다.
특정 측면에 따르면, 표적 핵산을 포함하는 DNA (데옥시리보핵산)에 상보적인 1개 이상의 RNA (리보핵산)를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, DNA에 결합하며 1개 이상의 RNA에 의해 가이드되는 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 제2 외래 핵산을 세포 내로 도입하고, 전사 조절 단백질 또는 도메인을 코딩하는 제3 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 1개 이상의 RNA, 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질 및 전사 조절 단백질 또는 도메인이 발현되고, 여기서 1개 이상의 RNA, 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질 및 전사 조절 단백질 또는 도메인이 DNA로 공동-국재화되고, 여기서 전사 조절 단백질 또는 도메인이 표적 핵산의 발현을 조절하는 것인, 세포에서 표적 핵산의 발현을 조절하는 방법이 제공된다.
한 측면에 따르면, 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 외래 핵산은 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질에 융합된 전사 조절 단백질 또는 도메인을 추가로 코딩한다. 한 측면에 따르면, 1개 이상의 RNA를 코딩하는 외래 핵산은 RNA-결합 도메인의 표적을 추가로 코딩하고, 전사 조절 단백질 또는 도메인을 코딩하는 외래 핵산은 전사 조절 단백질 또는 도메인에 융합된 RNA-결합 도메인을 추가로 코딩한다.
한 측면에 따르면, 세포는 진핵 세포이다. 한 측면에 따르면, 세포는 효모 세포, 식물 세포 또는 동물 세포이다. 한 측면에 따르면, 세포는 포유동물 세포이다.
한 측면에 따르면, RNA는 약 10 내지 약 500개의 뉴클레오티드이다. 한 측면에 따르면, RNA는 약 20 내지 약 100개의 뉴클레오티드이다.
한 측면에 따르면, 전사 조절 단백질 또는 도메인은 전사 활성인자이다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 질환 또는 유해 상태를 치료하기 위해 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다.
한 측면에 따르면, 1개 이상의 RNA는 가이드 RNA이다. 한 측면에 따르면, 1개 이상의 RNA는 tracrRNA-crRNA 융합체이다.
한 측면에 따르면, DNA는 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA이다.
특정 측면에 따르면, 표적 핵산을 포함하는 DNA (데옥시리보핵산)에 상보적인 1개 이상의 RNA (리보핵산)를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, DNA에 결합하며 1개 이상의 RNA에 의해 가이드되는 뉴클레아제-기능부재 Cas9 단백질을 코딩하는 제2 외래 핵산을 세포 내로 도입하고, 전사 조절 단백질 또는 도메인을 코딩하는 제3 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 1개 이상의 RNA, 뉴클레아제-기능부재 Cas9 단백질 및 전사 조절 단백질 또는 도메인이 발현되고, 여기서 1개 이상의 RNA, 뉴클레아제-기능부재 Cas9 단백질 및 전사 조절 단백질 또는 도메인이 DNA로 공동-국재화되고, 여기서 전사 조절 단백질 또는 도메인이 표적 핵산의 발현을 조절하는 것인, 세포에서 표적 핵산의 발현을 조절하는 방법이 제공된다.
한 측면에 따르면, 뉴클레아제-기능부재 Cas9 단백질을 코딩하는 외래 핵산은 뉴클레아제-기능부재 Cas9 단백질에 융합된 전사 조절 단백질 또는 도메인을 추가로 코딩한다. 한 측면에 따르면, 1개 이상의 RNA를 코딩하는 외래 핵산은 RNA-결합 도메인의 표적을 추가로 코딩하고, 전사 조절 단백질 또는 도메인을 코딩하는 외래 핵산은 전사 조절 단백질 또는 도메인에 융합된 RNA-결합 도메인을 추가로 코딩한다.
한 측면에 따르면, 세포는 진핵 세포이다. 한 측면에 따르면, 세포는 효모 세포, 식물 세포 또는 동물 세포이다. 한 측면에 따르면, 세포는 포유동물 세포이다.
한 측면에 따르면, RNA는 약 10 내지 약 500개의 뉴클레오티드이다. 한 측면에 따르면, RNA는 약 20 내지 약 100개의 뉴클레오티드이다.
한 측면에 따르면, 전사 조절 단백질 또는 도메인은 전사 활성인자이다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 질환 또는 유해 상태를 치료하기 위해 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다.
한 측면에 따르면, 1개 이상의 RNA는 가이드 RNA이다. 한 측면에 따르면, 1개 이상의 RNA는 tracrRNA-crRNA 융합체이다.
한 측면에 따르면, DNA는 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA이다.
한 측면에 따르면, 표적 핵산을 포함하는 DNA에 상보적인 1개 이상의 RNA를 코딩하는 제1 외래 핵산, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 제2 외래 핵산, 및 전사 조절 단백질 또는 도메인을 코딩하는 제3 외래 핵산을 포함하며, 여기서 1개 이상의 RNA, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질 및 전사 조절 단백질 또는 도메인이 표적 핵산에 대한 공동-국재화 복합체의 구성원인 세포가 제공된다.
한 측면에 따르면, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질을 코딩하는 외래 핵산은 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질에 융합된 전사 조절 단백질 또는 도메인을 추가로 코딩한다. 한 측면에 따르면, 1개 이상의 RNA를 코딩하는 외래 핵산은 RNA-결합 도메인의 표적을 추가로 코딩하고, 전사 조절 단백질 또는 도메인을 코딩하는 외래 핵산은 전사 조절 단백질 또는 도메인에 융합된 RNA-결합 도메인을 추가로 코딩한다.
한 측면에 따르면, 세포는 진핵 세포이다. 한 측면에 따르면, 세포는 효모 세포, 식물 세포 또는 동물 세포이다. 한 측면에 따르면, 세포는 포유동물 세포이다.
한 측면에 따르면, RNA는 약 10 내지 약 500개의 뉴클레오티드이다. 한 측면에 따르면, RNA는 약 20 내지 약 100개의 뉴클레오티드이다.
한 측면에 따르면, 전사 조절 단백질 또는 도메인은 전사 활성인자이다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 전사 조절 단백질 또는 도메인은 질환 또는 유해 상태를 치료하기 위해 표적 핵산의 발현을 상향조절한다. 한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다.
한 측면에 따르면, 1개 이상의 RNA는 가이드 RNA이다. 한 측면에 따르면, 1개 이상의 RNA는 tracrRNA-crRNA 융합체이다.
한 측면에 따르면, DNA는 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA이다.
특정 측면에 따르면, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질은 유형 II CRISPR 시스템의 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질이다. 특정 측면에 따르면, RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질은 뉴클레아제-기능부재 Cas9 단백질이다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 2개 이상의 RNA에 의해 가이드되는 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제 (직교 RNA 가이드된 DNA 결합 단백질 닉카제일 수 있음)를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 발현되고, 여기서 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 2개 이상의 RNA에 의해 가이드되는 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 발현되고, 여기서 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 1개의 불활성 뉴클레아제 도메인을 가지며 2개 이상의 RNA에 의해 가이드되는 1개 이상의 Cas9 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 1개 이상의 Cas9 단백질 닉카제가 발현되고, 여기서 1개 이상의 Cas9 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
DNA 표적 핵산을 변경시키는 방법에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 동일한 가닥 상에 있다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 동일한 가닥 상에 있고, 상동 재조합을 일으킨다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있고, 이중 가닥 파괴를 생성한다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있고, 비상동 말단 연결을 일으키는 이중 가닥 파괴를 생성한다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있고, 서로에 대해 오프셋된다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있고, 서로에 대해 오프셋되고, 이중 가닥 파괴를 생성한다. 한 측면에 따르면, 2개 이상의 인접 닉은 이중 가닥 DNA의 상이한 가닥 상에 있고, 서로에 대해 오프셋되고, 비상동 말단 연결을 일으키는 이중 가닥 파괴를 생성한다. 한 측면에 따르면, 방법은 공여자 핵산 서열을 코딩하는 제3 외래 핵산을 세포 내로 도입하는 것을 추가로 포함하며, 여기서 2개 이상의 닉은 표적 핵산과 공여자 핵산 서열의 상동 재조합을 일으킨다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 2개 이상의 RNA에 의해 가이드되는 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 발현되고, 여기서 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하고, 여기서 2개 이상의 인접 닉이 이중 가닥 DNA의 상이한 가닥 상에 있고, 표적 핵산의 단편화를 일으키는 이중 가닥 파괴를 생성하여 표적 핵산의 발현을 방지하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 2개 이상의 RNA에 의해 가이드되는 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 발현되고, 여기서 유형 II CRISPR 시스템의 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하고, 여기서 2개 이상의 인접 닉이 이중 가닥 DNA의 상이한 가닥 상에 있고, 표적 핵산의 단편화를 일으키는 이중 가닥 파괴를 생성하여 표적 핵산의 발현을 방지하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고, 1개의 불활성 뉴클레아제 도메인을 가지며 2개 이상의 RNA에 의해 가이드되는 1개 이상의 Cas9 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것을 포함하며, 여기서 2개 이상의 RNA 및 1개 이상의 Cas9 단백질 닉카제가 발현되고, 여기서 1개 이상의 Cas9 단백질 닉카제가 2개 이상의 RNA와 함께 DNA 표적 핵산으로 공동-국재화되고, DNA 표적 핵산을 닉킹하여 2개 이상의 인접 닉을 생성하고, 여기서 2개 이상의 인접 닉이 이중 가닥 DNA의 상이한 가닥 상에 있고, 표적 핵산의 단편화를 일으키는 이중 가닥 파괴를 생성하여 표적 핵산의 발현을 방지하는 것인, 세포에서 DNA 표적 핵산을 변경시키는 방법이 제공된다.
한 측면에 따르면, 각각의 RNA가 DNA 표적 핵산 내의 인접 부위에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산, 및 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 포함하며, 여기서 2개 이상의 RNA 및 1개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제가 DNA 표적 핵산에 대한 공동-국재화 복합체의 구성원인 세포가 제공된다.
한 측면에 따르면, RNA 가이드된 DNA 결합 단백질 닉카제는 유형 II CRISPR 시스템의 RNA 가이드된 DNA 결합 단백질 닉카제이다. 한 측면에 따르면, RNA 가이드된 DNA 결합 단백질 닉카제는 1개의 불활성 뉴클레아제 도메인을 갖는 Cas9 단백질 닉카제이다.
한 측면에 따르면, 세포는 진핵 세포이다. 한 측면에 따르면, 세포는 효모 세포, 식물 세포 또는 동물 세포이다. 한 측면에 따르면, 세포는 포유동물 세포이다.
한 측면에 따르면, RNA는 약 10 내지 약 500개의 뉴클레오티드를 포함한다. 한 측면에 따르면, RNA는 약 20 내지 약 100개의 뉴클레오티드를 포함한다.
한 측면에 따르면, 표적 핵산은 질환 또는 유해 상태와 연관된다.
한 측면에 따르면, 2개 이상의 RNA는 가이드 RNA이다. 한 측면에 따르면, 2개 이상의 RNA는 tracrRNA-crRNA 융합체이다.
한 측면에 따르면, DNA 표적 핵산은 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA이다.
한 측면에 따르면, 방법은 직교 RNA 가이드된 DNA 결합 단백질 닉카제, 직교 RNA 가이드된 DNA 결합 단백질 뉴클레아제, 직교 RNA 가이드된 뉴클레아제-기능부재 DNA 결합 단백질의 동시 사용을 포함할 수 있다. 따라서, 동일한 세포에서, 변경은 DNA의 닉킹 및 컷팅에 의해 생성될 수 있고, 번역 조정이 수행될 수 있다. 또한, 1개 이상 또는 복수의 외인성 공여자 핵산이 또한, 핵산을 세포에 도입시키는 통상의 기술자에게 공지된 방법, 예컨대 전기 천공을 이용하여 세포에 부가될 수 있고, 1개 이상 또는 복수의 외인성 공여자 핵산은 재조합, 예컨대 상동 재조합, 또는 통상의 기술자에게 공지된 다른 메카니즘에 의해 세포의 DNA에 도입될 수 있다. 따라서, 본원에 기재된 복수의 직교 RNA 가이드된 DNA 결합 단백질의 사용은 닉킹 또는 컷팅에 의한 단일 세포의 변경, 세포에서 공여자 핵산의 DNA로의 도입, 및 유전자의 전사적 조절을 가능하게 한다.
본 발명의 특정 실시양태의 추가의 특징 및 이점은 하기 실시양태의 설명 및 그의 도면, 및 청구범위로부터 보다 충분히 명백해질 것이다.
본 발명의 상기 및 다른 특징 및 이점은 첨부된 도면과 함께 하기 예시적 실시양태의 상세한 설명으로부터 보다 충분히 이해될 것이다.
도 1a 및 도 1b는 RNA-가이드된 전사 활성화의 개략도이다. 도 1c는 리포터 구축물의 설계이다. 도 1d는 Cas9N-VP64 융합체가 형광-활성화 세포 분류 (FACS) 및 면역형광 검정 (IF) 둘 다에 의해 검정시에 RNA-가이드된 전사 활성화를 나타낸다는 것을 입증하는 데이터를 보여준다. 도 1e는 Cas9N, MS2-VP64, 및 적절한 MS2 압타머 결합 부위를 보유하는 gRNA의 존재 하에 리포터 구축물로부터의 gRNA 서열-특이적 전사 활성화를 입증하는, FACS 및 IF에 의한 검정 데이터를 보여준다. 도 1f는 개별 gRNA 및 다중 gRNA에 의한 전사 유도를 입증하는 데이터를 도시한다.
도 2a는 Cas9-gRNA 복합체 및 TALE에 의한 표적화의 랜드스케이프를 평가하기 위한 방법론을 도시한다. 도 2b는 Cas9-gRNA 복합체가 평균적으로 그의 표적 서열에서 1-3개의 돌연변이에 내성이 있다는 것을 입증하는 데이터를 도시한다. 도 2c는 Cas9-gRNA 복합체가, PAM 서열에 국재화된 것들을 제외하고는 주로 점 돌연변이에 비감수성이라는 것을 입증하는 데이터를 도시한다. 도 2d는 2개의 염기 미스매치의 도입이 Cas9-gRNA 복합체 활성을 유의하게 손상시킨다는 것을 입증하는 열 플롯 데이터를 도시한다. 도 2e는 18-량체 TALE가 평균적으로 그의 표적 서열에서 1-2개의 돌연변이에 내성을 나타낸다는 것을 입증하는 데이터를 도시한다. 도 2f는 18-량체 TALE가, 그의 표적에서 미스매치된 단일 염기에 주로 비감수성인 Cas9-gRNA 복합체와 유사하다는 것을 입증하는 데이터를 도시한다. 도 2g는 2개의 염기 미스매치의 도입이 18-량체 TALE 활성을 유의하게 손상시킨다는 것을 입증하는 열 플롯 데이터를 도시한다.
도 3a는 가이드 RNA 설계의 개략도를 도시한다. 도 3b는 5' 오버행으로 이어지는 오프셋 닉 및 5' 오버행으로 이어지는 오프셋 닉에 대한 비-상동 말단 연결의 백분율 비율을 보여주는 데이터를 도시한다. 도 3c는 5' 오버행으로 이어지는 오프셋 닉 및 5' 오버행으로 이어지는 오프셋 닉에 대한 표적화의 백분율 비율을 보여주는 데이터를 도시한다.
도 4a는 RuvC PDB ID: 4EP4 (청색) 위치 D7에서의 금속 배위 잔기의 개략도 (좌측), 배위된 Mg-이온 (회색 구체) 및 3M7K로부터의 DNA (자주색)를 포함하는 PDB ID: 3M7K (오렌지색) 및 4H9D (시안색)로부터의 HNH 엔도뉴클레아제 도메인의 개략도 (중앙) 및 분석된 돌연변이체의 목록 (우측)이다. 도 4b는 Cas9 돌연변이체 m3 및 m4 및 또한 VP64와의 이들 각각의 융합체에 대한 검출불가능한 뉴클레아제 활성을 보여주는 데이터를 도시한다. 도 4c는 도 4b에서의 데이터의 보다 고해상도 검사이다.
도 5a는 Cas9-gRNA 활성을 결정하기 위한 상동 재조합 검정의 개략도이다. 도 5b는 무작위 서열 삽입을 갖는 가이드 RNA 및 상동 재조합의 백분율 비율을 도시한다.
도 6a는 OCT4 유전자에 대한 가이드 RNA의 개략도이다. 도 6b는 프로모터-루시페라제 리포터 구축물에 대한 전사 활성화를 도시한다. 도 6c는 내인성 유전자의 qPCR을 통한 전사 활성화를 도시한다.
도 7a는 REX1 유전자에 대한 가이드 RNA의 개략도이다. 도 7b는 프로모터-루시페라제 리포터 구축물에 대한 전사 활성화를 도시한다. 도 7c는 내인성 유전자의 qPCR을 통한 전사 활성화를 도시한다.
도 8a는 정규화된 발현 수준의 계산을 위한 고수준 특이성 분석 프로세싱 흐름 개략도를 도시한다. 도 8b는 편재된 구축물 라이브러리 내에 생성된 미스매치의 수에 대한 결합 부위의 백분율의 분포의 데이터를 도시한다. 좌측: 이론적 분포. 우측: 실제 TALE 구축물 라이브러리로부터 관찰된 분포. 도 8c는 미스매치의 수에 대한 결합 부위에 대해 집계된 태그 카운트의 백분율의 분포의 데이터를 도시한다. 좌측: 양성 대조군 샘플로부터 관찰된 분포. 우측: 비-대조군 TALE가 유도된 샘플로부터 관찰된 분포.
도 9a는 그의 표적 서열에서 1-3개의 돌연변이에 내성을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스캐이프의 분석에 대한 데이터를 도시한다. 도 9b는 PAM 서열에 국재된 것들을 제외하고는 점 돌연변이에 대해 비감수성을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스케이프의 분석에 대한 데이터를 도시한다. 도 9c는 2개의 염기 미스매치의 도입이 활성을 유의하게 손상시킨다는 것을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스케이프의 분석에 대한 열 플롯 데이터를 도시한다. 도 9d는 에스. 피오게네스 Cas9에 대한 추정 PAM이 NGG 및 또한 NAG임을 확인하는 뉴클레아제 매개 HR 검정으로부터의 데이터를 도시한다.
도 10a는 18-량체 TALE가 그의 표적 서열에서 다중 돌연변이를 허용한다는 것을 확인하는 뉴클레아제 매개 HR 검정으로부터의 데이터를 도시한다. 도 10b는 3가지 상이한 크기 (18-량체, 14-량체 및 10-량체)의 TALE의 표적화 랜드스케이프의 분석으로부터의 데이터를 도시한다. 도 10c는 근사 단일-염기 미스매치 해상도를 나타내는 10-량체 TALE에 대한 데이터를 도시한다. 도 10d는 근사 단일-염기 미스매치 해상도를 나타내는 10-량체 TALE에 대한 열 플롯 데이터를 도시한다.
도 11a는 설계된 가이드 RNA 도시한다. 도 11b는 다양한 가이드 RNA에 대한 비상동 말단 연결의 백분율 비율을 도시한다.
도 12a-12f는 추정되는 직교 Cas9 단백질의 비교 및 특성화를 도시한다. 도 12a: SP, ST1, NM, 및 TD의 반복 서열. 염기는 보존의 정도를 나타내기 위해 채색된다. 도 12b: 이. 콜라이에서 Cas9 단백질의 특성화에 사용되는 플라스미드. 도 12c: 스페이서 및 프로토스페이서가 Cas9 컷팅으로 인해 매치되는 경우에 기능적 PAM가 라이브러리로부터 결실된다. 도 12d: Cas9는 표적화 플라스미드 스페이서 및 라이브러리 프로토스페이서가 매치되지 않는 경우에 컷팅하지 않는다. 도 12d: 비기능적 PAM는 전혀 컷팅되거나 또는 고갈되지 않는다. 도 12f: PAM을 확인하기 위한 선택 도식. Cas9 단백질 및 2개의 스페이서-함유 표적화 플라스미드 중 1개를 발현하는 세포를 해당하는 프로토스페이서를 갖는 2개의 라이브러리 중 1개로 형질전환시키고, 항생제 선택에 적용하였다. 생존한 비절단된 플라스미드를 딥 시퀀싱(deep sequencing)에 적용하였다. 매치된 대 미스매치된 프로토스페이서 라이브러리 내에서의 각 서열의 상대적 존재비를 비교하여 Cas9-매개 PAM 고갈을 정량화하였다.
도 13a-13f는 Cas9 단백질에 의한 라이브러리로부터의 기능적 프로토스페이서-인접 모티프 (PAM)의 고갈을 도시한다. 매치된 스페이서-프로토스페이서 쌍에 대한 모든 위치에서의 각 염기의 로그 빈도를 스페이서 및 프로토스페이서가 매치되지 않은 대조 조건에 대해 플롯팅한다. 결과는 2개의 특징적인 프로토스페이서 서열 (도 13d)에 기초하여 NM (도 13a), ST1 (도 13b), 및 TD (도 13c)에 의한 라이브러리의 평균 고갈을 반영한다. 각 프로토스페이서에 특이적인 서열의 고갈은 각 Cas9 단백질에 대해 개별적으로 플롯팅한다 (도 13e-13f).
도 14a-14b는 NM에 의해 매개되는 전사 억제를 도시한다. 도 14a: 억제의 정량화에 사용된 리포터 플라스미드. 도 14b: 매치된 및 미스매치된 스페이서-프로토스페이서 쌍에 대해 정규화된 세포 형광. 오차 막대는 5회 반복에 걸친 표준 편차를 나타낸다.
도 15는 이. 콜라이에서 crRNA의 직교 인식을 도시한다. Cas9 및 crRNA의 모든 조합을 갖는 세포를 매치된 또는 미스매치된 프로토스페이서 및 적절한 PAM을 보유하는 플라스미드로 시험하였다. 매칭 스페이서로부터 콜로니를 확실하게 수득하기에 충분한 세포를 플레이팅하고, 프로토스페이서 쌍 및 전체 콜로니 수를 사용하여 고갈 배수를 계산하였다.
도 16a-16b는 인간 세포에서의 Cas9-매개 유전자 편집을 도시한다. 도 16a: 상동 재조합 검정을 이용하여 유전자 편집 효율을 정량화하였다. 프로토스페이서 내의 Cas9-매개 이중-가닥 브레이크는 공여자 주형을 사용하여 방해되는 GFP 카세트의 복구를 자극함으로써, 무손상 GFP를 갖는 세포를 생성한다. 각 Cas9에 대해 정확한 PAM을 제공하기 위해 3가지 상이한 주형을 사용하였다. 형광 세포를 유동 세포측정법에 의해 정량화하였다. 도 16b: 각각의 sgRNA 각각과 조합된 NM, ST1, 및 TD에 대한 세포 분류 결과. 각 Cas9에 대한 프로토스페이서 및 PAM 서열이 각 세트 위에 제시된다. 복구 효율은 각 플롯의 상부-우측 코너에 표시된다.
도 17a-17b는 인간 세포에서 전사 활성화를 도시한다. 도 17a: 최소의 프로모터 구동 td토마토(tdTomato)를 특징으로 하는 전사 활성화를 위한 리포터 구축물. 프로토스페이서 및 PAM 서열을 최소 프로모터 상류에 위치시켰다. 프로토스페이서에 대한 뉴클레아제-기능부재 Cas9-VP64 융합 단백질 결합은 전사 활성화 및 형광 증진을 발생시킨다. 도 17b: Cas9 활성인자 및 sgRNA의 모든 조합으로 형질감염되고 td토마토 형광 시각화된 세포. 전사 활성화는 오직 각 Cas9가 그 자신의 sgRNA와 쌍을 형성한 경우에만 발생하였다.
도 1a 및 도 1b는 RNA-가이드된 전사 활성화의 개략도이다. 도 1c는 리포터 구축물의 설계이다. 도 1d는 Cas9N-VP64 융합체가 형광-활성화 세포 분류 (FACS) 및 면역형광 검정 (IF) 둘 다에 의해 검정시에 RNA-가이드된 전사 활성화를 나타낸다는 것을 입증하는 데이터를 보여준다. 도 1e는 Cas9N, MS2-VP64, 및 적절한 MS2 압타머 결합 부위를 보유하는 gRNA의 존재 하에 리포터 구축물로부터의 gRNA 서열-특이적 전사 활성화를 입증하는, FACS 및 IF에 의한 검정 데이터를 보여준다. 도 1f는 개별 gRNA 및 다중 gRNA에 의한 전사 유도를 입증하는 데이터를 도시한다.
도 2a는 Cas9-gRNA 복합체 및 TALE에 의한 표적화의 랜드스케이프를 평가하기 위한 방법론을 도시한다. 도 2b는 Cas9-gRNA 복합체가 평균적으로 그의 표적 서열에서 1-3개의 돌연변이에 내성이 있다는 것을 입증하는 데이터를 도시한다. 도 2c는 Cas9-gRNA 복합체가, PAM 서열에 국재화된 것들을 제외하고는 주로 점 돌연변이에 비감수성이라는 것을 입증하는 데이터를 도시한다. 도 2d는 2개의 염기 미스매치의 도입이 Cas9-gRNA 복합체 활성을 유의하게 손상시킨다는 것을 입증하는 열 플롯 데이터를 도시한다. 도 2e는 18-량체 TALE가 평균적으로 그의 표적 서열에서 1-2개의 돌연변이에 내성을 나타낸다는 것을 입증하는 데이터를 도시한다. 도 2f는 18-량체 TALE가, 그의 표적에서 미스매치된 단일 염기에 주로 비감수성인 Cas9-gRNA 복합체와 유사하다는 것을 입증하는 데이터를 도시한다. 도 2g는 2개의 염기 미스매치의 도입이 18-량체 TALE 활성을 유의하게 손상시킨다는 것을 입증하는 열 플롯 데이터를 도시한다.
도 3a는 가이드 RNA 설계의 개략도를 도시한다. 도 3b는 5' 오버행으로 이어지는 오프셋 닉 및 5' 오버행으로 이어지는 오프셋 닉에 대한 비-상동 말단 연결의 백분율 비율을 보여주는 데이터를 도시한다. 도 3c는 5' 오버행으로 이어지는 오프셋 닉 및 5' 오버행으로 이어지는 오프셋 닉에 대한 표적화의 백분율 비율을 보여주는 데이터를 도시한다.
도 4a는 RuvC PDB ID: 4EP4 (청색) 위치 D7에서의 금속 배위 잔기의 개략도 (좌측), 배위된 Mg-이온 (회색 구체) 및 3M7K로부터의 DNA (자주색)를 포함하는 PDB ID: 3M7K (오렌지색) 및 4H9D (시안색)로부터의 HNH 엔도뉴클레아제 도메인의 개략도 (중앙) 및 분석된 돌연변이체의 목록 (우측)이다. 도 4b는 Cas9 돌연변이체 m3 및 m4 및 또한 VP64와의 이들 각각의 융합체에 대한 검출불가능한 뉴클레아제 활성을 보여주는 데이터를 도시한다. 도 4c는 도 4b에서의 데이터의 보다 고해상도 검사이다.
도 5a는 Cas9-gRNA 활성을 결정하기 위한 상동 재조합 검정의 개략도이다. 도 5b는 무작위 서열 삽입을 갖는 가이드 RNA 및 상동 재조합의 백분율 비율을 도시한다.
도 6a는 OCT4 유전자에 대한 가이드 RNA의 개략도이다. 도 6b는 프로모터-루시페라제 리포터 구축물에 대한 전사 활성화를 도시한다. 도 6c는 내인성 유전자의 qPCR을 통한 전사 활성화를 도시한다.
도 7a는 REX1 유전자에 대한 가이드 RNA의 개략도이다. 도 7b는 프로모터-루시페라제 리포터 구축물에 대한 전사 활성화를 도시한다. 도 7c는 내인성 유전자의 qPCR을 통한 전사 활성화를 도시한다.
도 8a는 정규화된 발현 수준의 계산을 위한 고수준 특이성 분석 프로세싱 흐름 개략도를 도시한다. 도 8b는 편재된 구축물 라이브러리 내에 생성된 미스매치의 수에 대한 결합 부위의 백분율의 분포의 데이터를 도시한다. 좌측: 이론적 분포. 우측: 실제 TALE 구축물 라이브러리로부터 관찰된 분포. 도 8c는 미스매치의 수에 대한 결합 부위에 대해 집계된 태그 카운트의 백분율의 분포의 데이터를 도시한다. 좌측: 양성 대조군 샘플로부터 관찰된 분포. 우측: 비-대조군 TALE가 유도된 샘플로부터 관찰된 분포.
도 9a는 그의 표적 서열에서 1-3개의 돌연변이에 내성을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스캐이프의 분석에 대한 데이터를 도시한다. 도 9b는 PAM 서열에 국재된 것들을 제외하고는 점 돌연변이에 대해 비감수성을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스케이프의 분석에 대한 데이터를 도시한다. 도 9c는 2개의 염기 미스매치의 도입이 활성을 유의하게 손상시킨다는 것을 보여주는 Cas9-gRNA 복합체의 표적화 랜드스케이프의 분석에 대한 열 플롯 데이터를 도시한다. 도 9d는 에스. 피오게네스 Cas9에 대한 추정 PAM이 NGG 및 또한 NAG임을 확인하는 뉴클레아제 매개 HR 검정으로부터의 데이터를 도시한다.
도 10a는 18-량체 TALE가 그의 표적 서열에서 다중 돌연변이를 허용한다는 것을 확인하는 뉴클레아제 매개 HR 검정으로부터의 데이터를 도시한다. 도 10b는 3가지 상이한 크기 (18-량체, 14-량체 및 10-량체)의 TALE의 표적화 랜드스케이프의 분석으로부터의 데이터를 도시한다. 도 10c는 근사 단일-염기 미스매치 해상도를 나타내는 10-량체 TALE에 대한 데이터를 도시한다. 도 10d는 근사 단일-염기 미스매치 해상도를 나타내는 10-량체 TALE에 대한 열 플롯 데이터를 도시한다.
도 11a는 설계된 가이드 RNA 도시한다. 도 11b는 다양한 가이드 RNA에 대한 비상동 말단 연결의 백분율 비율을 도시한다.
도 12a-12f는 추정되는 직교 Cas9 단백질의 비교 및 특성화를 도시한다. 도 12a: SP, ST1, NM, 및 TD의 반복 서열. 염기는 보존의 정도를 나타내기 위해 채색된다. 도 12b: 이. 콜라이에서 Cas9 단백질의 특성화에 사용되는 플라스미드. 도 12c: 스페이서 및 프로토스페이서가 Cas9 컷팅으로 인해 매치되는 경우에 기능적 PAM가 라이브러리로부터 결실된다. 도 12d: Cas9는 표적화 플라스미드 스페이서 및 라이브러리 프로토스페이서가 매치되지 않는 경우에 컷팅하지 않는다. 도 12d: 비기능적 PAM는 전혀 컷팅되거나 또는 고갈되지 않는다. 도 12f: PAM을 확인하기 위한 선택 도식. Cas9 단백질 및 2개의 스페이서-함유 표적화 플라스미드 중 1개를 발현하는 세포를 해당하는 프로토스페이서를 갖는 2개의 라이브러리 중 1개로 형질전환시키고, 항생제 선택에 적용하였다. 생존한 비절단된 플라스미드를 딥 시퀀싱(deep sequencing)에 적용하였다. 매치된 대 미스매치된 프로토스페이서 라이브러리 내에서의 각 서열의 상대적 존재비를 비교하여 Cas9-매개 PAM 고갈을 정량화하였다.
도 13a-13f는 Cas9 단백질에 의한 라이브러리로부터의 기능적 프로토스페이서-인접 모티프 (PAM)의 고갈을 도시한다. 매치된 스페이서-프로토스페이서 쌍에 대한 모든 위치에서의 각 염기의 로그 빈도를 스페이서 및 프로토스페이서가 매치되지 않은 대조 조건에 대해 플롯팅한다. 결과는 2개의 특징적인 프로토스페이서 서열 (도 13d)에 기초하여 NM (도 13a), ST1 (도 13b), 및 TD (도 13c)에 의한 라이브러리의 평균 고갈을 반영한다. 각 프로토스페이서에 특이적인 서열의 고갈은 각 Cas9 단백질에 대해 개별적으로 플롯팅한다 (도 13e-13f).
도 14a-14b는 NM에 의해 매개되는 전사 억제를 도시한다. 도 14a: 억제의 정량화에 사용된 리포터 플라스미드. 도 14b: 매치된 및 미스매치된 스페이서-프로토스페이서 쌍에 대해 정규화된 세포 형광. 오차 막대는 5회 반복에 걸친 표준 편차를 나타낸다.
도 15는 이. 콜라이에서 crRNA의 직교 인식을 도시한다. Cas9 및 crRNA의 모든 조합을 갖는 세포를 매치된 또는 미스매치된 프로토스페이서 및 적절한 PAM을 보유하는 플라스미드로 시험하였다. 매칭 스페이서로부터 콜로니를 확실하게 수득하기에 충분한 세포를 플레이팅하고, 프로토스페이서 쌍 및 전체 콜로니 수를 사용하여 고갈 배수를 계산하였다.
도 16a-16b는 인간 세포에서의 Cas9-매개 유전자 편집을 도시한다. 도 16a: 상동 재조합 검정을 이용하여 유전자 편집 효율을 정량화하였다. 프로토스페이서 내의 Cas9-매개 이중-가닥 브레이크는 공여자 주형을 사용하여 방해되는 GFP 카세트의 복구를 자극함으로써, 무손상 GFP를 갖는 세포를 생성한다. 각 Cas9에 대해 정확한 PAM을 제공하기 위해 3가지 상이한 주형을 사용하였다. 형광 세포를 유동 세포측정법에 의해 정량화하였다. 도 16b: 각각의 sgRNA 각각과 조합된 NM, ST1, 및 TD에 대한 세포 분류 결과. 각 Cas9에 대한 프로토스페이서 및 PAM 서열이 각 세트 위에 제시된다. 복구 효율은 각 플롯의 상부-우측 코너에 표시된다.
도 17a-17b는 인간 세포에서 전사 활성화를 도시한다. 도 17a: 최소의 프로모터 구동 td토마토(tdTomato)를 특징으로 하는 전사 활성화를 위한 리포터 구축물. 프로토스페이서 및 PAM 서열을 최소 프로모터 상류에 위치시켰다. 프로토스페이서에 대한 뉴클레아제-기능부재 Cas9-VP64 융합 단백질 결합은 전사 활성화 및 형광 증진을 발생시킨다. 도 17b: Cas9 활성인자 및 sgRNA의 모든 조합으로 형질감염되고 td토마토 형광 시각화된 세포. 전사 활성화는 오직 각 Cas9가 그 자신의 sgRNA와 쌍을 형성한 경우에만 발생하였다.
본원에 열거된 지지 참조문헌은 위첨자로 언급될 수 있다. 위첨자는 참조문헌을 특정한 설명을 뒷받침하기 위해 전부 열거되는 것처럼 지칭하는 것으로 이해되어야 한다.
박테리아 및 고세균의 CRISPR-Cas 시스템은 바이러스 또는 플라스미드 DNA의 단편을 CRISPR 유전자좌에 혼입시키고 전사된 crRNA를 사용하여 뉴클레아제가 상동 서열을 분해하도록 가이드함으로써 후천성 면역을 부여한다1,2. 유형 II CRISPR 시스템에서, Cas9 뉴클레아제와 crRNA 및 tracrRNA (트랜스-활성화 crRNA)의 3원 복합체는 crRNA 스페이서에 매치되고 또한 짧은 프로토스페이서-인접 모티프 (PAM)를 함유하는 dsDNA 프로토스페이서 서열에 결합하여 이를 절단한다3,4. crRNA와 tracrRNA의 융합은 표적 Cas9를 표적화하기에 충분한 단일 가이드 RNA (sgRNA)를 생성한다4.
RNA-가이드 뉴클레아제 및 닉카제로서의 Cas9는 다양한 유기체에서 표적화된 유전자의 편집5-9 및 선택10에 사용되어 왔다. 이러한 성공이 변화하는 것은 거의 틀림없으나, 뉴클레아제-기능부재 Cas9 변이체는 단백질 및 RNA를 dsDNA 서열의 거의 모든 세트에 국재화시키는 능력이 생물학적 시스템의 제어에 큰 융통성을 부여하므로 조절 목적을 위해 유용하다11-17. 박테리아에서의 프로모터 및 5'-UTR 차단을 통한 표적화된 유전자 억제로 시작하여18, Cas9-매개 조절은 인간 세포에서의 VP6419 동원에 의한 전사 활성화로 확장된다. 특정 측면에 따르면, 직교 RNA 가이드된 DNA 결합 단백질, 예컨대 직교 Cas9 단백질을 포함한 본원에 기재된 DNA 결합 단백질은 전사 활성인자, 리프레서, 형광 단백질 표지, 염색체 테더, 및 통상의 기술자에게 공지된 다수의 다른 도구와 함께 사용될 수 있다. 이러한 측면에 따르면, 직교 Cas9의 사용은 임의의 및 모든 전사 활성인자, 리프레서, 형광 단백질 표지, 염색체 테더, 및 통상의 기술에게 공지된 다수의 다른 도구를 사용하는 유전자 변형을 가능하게 한다. 따라서, 본 개시내용의 측면은 멀티플렉스화 RNA-가이드된 전사 활성화, 억제, 및 유전자 편집을 위한 직교 Cas9 단백질의 용도에 관한 것이다.
본 개시내용의 한 실시양태는 박테리아 및 인간 세포에서의 다중 Cas9 단백질 사이의 직교성의 특성화 및 입증에 관한 것이다. 이러한 직교 RNA 가이드된 DNA 결합 단백질은 개별 세포의 DNA 내의 복수의 유전자의 동시 및 독립적 전사 조절, 표지 또는 편집을 위해 복수로 또는 세트로 사용될 수 있다.
한 측면에 따르면, 복수의 직교 Cas9 단백질은 단일 패밀리 내의 CRISPR 시스템으로부터 확인된다. 분명히 관련되긴 하지만, 에스. 피오게네스, 엔. 메닌기티디스(N. meningitidis), 에스. 써모필루스(S. thermophilus), 및 티. 덴티콜라(T. denticola)로부터의 예시적인 Cas9 단백질은 길이가 3.25 내지 4.6 kb 범위이고, 완전히 다른 PAM 서열을 인식한다.
본 개시내용의 실시양태는 DNA에 전사 조절 단백질 또는 도메인을, 표적 핵산을 조절하는 방식으로 공동-국재화시키기 위한 DNA 결합 단백질의 사용에 기초한다. 다양한 목적을 위해 DNA에 결합하는 이러한 DNA 결합 단백질은 통상의 기술자에게 널리 공지되어 있다. 이러한 DNA 결합 단백질은 자연 발생의 것일 수 있다. 본 개시내용의 범위 내에 포함되는 DNA 결합 단백질은 본원에서 가이드 RNA로 지칭되는 RNA에 의해 가이드될 수 있는 것들을 포함한다. 이러한 측면에 따르면, 가이드 RNA와 RNA 가이드된 DNA 결합 단백질은 DNA에서 공동-국재화 복합체를 형성한다. 특정 측면에 따르면, DNA 결합 단백질은 뉴클레아제-기능부재 DNA 결합 단백질일 수 있다. 이러한 측면에 따르면, 뉴클레아제-기능부재 DNA 결합 단백질은 뉴클레아제 활성을 갖는 DNA 결합 단백질의 변경 또는 변형으로부터 생성될 수 있다. 뉴클레아제 활성을 갖는 이러한 DNA 결합 단백질은 통상의 기술자에게 공지되어 있고, 예를 들어 유형 II CRISPR 시스템으로 존재하는, Cas9 단백질과 같은, 뉴클레아제 활성을 갖는 자연 발생 DNA 결합 단백질을 포함한다. 이러한 Cas9 단백질 및 유형 II CRISPR 시스템은 관련 기술분야에 널리 문헌화되어 있다. 모든 보충 정보를 포함하여 문헌 [Makarova et al., Nature Reviews, Microbiology, Vol. 9, June 2011, pp. 467-477]을 참조하며, 이는 그 전문이 본원에 참조로 포함된다.
특정 측면에 따르면, 2개 이상 또는 복수의 또는 한 세트의 직교 DNA 결합 단백질, 예컨대 직교 RNA 가이드된 DNA 결합 단백질, 예컨대 유형 II CRISPR 시스템의 직교 RNA 가이드된 DNA 결합 단백질, 예컨대 직교 cas9 단백질 (각각 뉴클레아제 활성 또는 뉴클레아제-기능부재일 수 있음)을 확인하기 위한 방법이 제공된다. 특정 측면에 따르면, 2개 이상 또는 복수의 또는 한 세트의 직교 DNA 결합 단백질이 세포 내에서 동시에 및 독립적으로 유전자를 조절하거나 또는 핵산을 편집하기 위해 상응하는 가이드 RNA와 함께 사용될 수 있다. 특정 측면에 따르면, 2개 이상의 또는 복수의 또는 한 세트의 직교 DNA 결합 단백질, 상응하는 가이드 RNA 및 2개 이상의 또는 복수의 또는 한 세트의 상응하는 전사 조절제 또는 도메인을 코딩하는 핵산이 세포에 도입될 수 있다. 이러한 방식으로, 다수의 유전자가 동일한 세포 내에서 조절 또는 편집을 위해 동시에 표적화될 수 있다. 게놈 DNA의 편집 방법은 통상의 기술자에게 널리 공지되어 있다.
뉴클레아제 활성을 갖는 예시적인 DNA 결합 단백질은 이중 가닥 DNA를 닉킹하거나 컷팅하는 기능을 한다. 이러한 뉴클레아제 활성은 뉴클레아제 활성을 나타내는 하나 이상의 폴리펩티드 서열을 갖는 DNA 결합 단백질로부터 생성될 수 있다. 이러한 예시적인 DNA 결합 단백질은, 각각 이중 가닥 DNA의 특정한 가닥을 컷팅 또는 닉킹하는 역할을 하는 2개의 별개의 뉴클레아제 도메인을 가질 수 있다. 뉴클레아제 활성을 갖는 예시적인 폴리펩티드 서열은 통상의 기술자에게 공지되어 있고, McrA-HNH 뉴클레아제 관련 도메인 및 RuvC-유사 뉴클레아제 도메인을 포함한다. 따라서, 예시적인 DNA 결합 단백질은 자연적으로 하나 이상의 McrA-HNH 뉴클레아제 관련 도메인 및 RuvC-유사 뉴클레아제 도메인을 함유하는 것들이다. 특정 측면에 따르면, DNA 결합 단백질은 뉴클레아제 활성이 불활성화되도록 변경되거나 달리 변형된다. 이러한 변경 또는 변형은 뉴클레아제 활성 또는 뉴클레아제 도메인을 불활성화시키기 위해 하나 이상의 아미노산을 변경시키는 것을 포함한다. 이러한 변형은 뉴클레아제 활성을 나타내는 폴리펩티드 서열 또는 폴리펩티드 서열들, 즉 뉴클레아제 도메인이 DNA 결합 단백질에 부재하도록, 뉴클레아제 활성을 나타내는 폴리펩티드 서열 또는 폴리펩티드 서열들, 즉 뉴클레아제 도메인을 제거하는 것을 포함한다. 뉴클레아제 활성을 불활성화시키기 위한 다른 변형은 본 개시내용을 기초로 하여 통상의 기술자에게 용이하게 명백할 것이다. 따라서, 뉴클레아제-기능부재 DNA 결합 단백질은 뉴클레아제 활성이 불활성화되도록 변형된 폴리펩티드 서열, 또는 뉴클레아제 활성을 불활성화시키기 위한 폴리펩티드 서열 또는 서열들의 제거를 포함한다. 뉴클레아제-기능부재 DNA 결합 단백질은 뉴클레아제 활성이 불활성화되었더라도 DNA에 결합하는 능력을 유지한다. 따라서, DNA 결합 단백질은 DNA 결합에 요구되는 폴리펩티드 서열 또는 서열들을 포함하지만, 뉴클레아제 활성을 나타내는 하나 이상의 또는 모든 뉴클레아제 서열이 결여될 수 있다. 따라서, DNA 결합 단백질은 DNA 결합에 요구되는 폴리펩티드 서열 또는 서열들을 포함하지만, 불활성화된 뉴클레아제 활성을 나타내는 하나 이상의 또는 모든 뉴클레아제 서열을 가질 수 있다.
한 측면에 따르면, 2개 이상의 뉴클레아제 도메인을 갖는 DNA 결합 단백질은 뉴클레아제 도메인 전부가 아닌 그 중 하나가 불활성화되도록 변형 또는 변경될 수 있다. 이러한 변형 또는 변경된 DNA 결합 단백질은, DNA 결합 단백질이 이중 가닥 DNA의 단 1개의 가닥만을 컷팅 또는 닉킹하는 정도까지, DNA 결합 단백질 닉카제로 지칭된다. RNA에 의해 DNA로 가이드되는 경우에, DNA 결합 단백질 닉카제는 RNA 가이드된 DNA 결합 단백질 닉카제로 지칭된다.
예시적인 DNA 결합 단백질은 뉴클레아제 활성이 결여된 유형 II CRISPR 시스템의 RNA 가이드된 DNA 결합 단백질이다. 예시적인 DNA 결합 단백질은 뉴클레아제-기능부재 Cas9 단백질이다. 예시적인 DNA 결합 단백질은 Cas9 단백질 닉카제다.
에스. 피오게네스에서, Cas9는 단백질에서 2개의 촉매 도메인 (DNA의 상보적 가닥을 절단하는 HNH 도메인 및 비-상보적 가닥을 절단하는 RuvC-유사 도메인)에 의해 매개되는 과정을 통해 프로토스페이서-인접 모티프 (PAM)의 3bp 상류에서 평활-말단 이중-가닥 파괴를 생성한다. 문헌 [Jinke et al., Science 337, 816-821 (2012)]을 참조하며, 이는 그 전문이 본원에 참조로 포함된다. Cas9 단백질은 문헌 [Makarova et al., Nature Reviews, Microbiology, Vol. 9, June 2011, pp. 467-477]에 대한 보충 정보에서 확인되는 하기 것들을 비롯하여 다수의 유형 II CRISPR 시스템으로 존재하는 것으로 공지되어 있다: 메타노코쿠스 마리팔루디스(Methanococcus maripaludis) C7; 코리네박테리움 디프테라이에(Corynebacterium diphtheriae); 코리네박테리움 에피시엔스(Corynebacterium efficiens) YS-314; 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032 키타사토(Kitasato); 코리네박테리움 글루타미쿰 ATCC 13032 빌레펠트(Bielefeld); 코리네박테리움 글루타미쿰 R; 코리네박테리움 크로펜스테티이(Corynebacterium kroppenstedtii) DSM 44385; 미코박테리움 압세수스(Mycobacterium abscessus) ATCC 19977; 노카르디아 파르시니카(Nocardia farcinica) IFM10152; 로도코쿠스 에리트로폴리스(Rhodococcus erythropolis) PR4; 로도코쿠스 조스티이(Rhodococcus jostii) RHA1; 로도코쿠스 오파쿠스(Rhodococcus opacus) B4 uid36573; 아시도테르무스 셀룰롤리티쿠스(Acidothermus cellulolyticus) 11B; 아르트로박터 클로로페놀리쿠스(Arthrobacter chlorophenolicus) A6; 크리벨라 플라비다(Kribbella flavida) DSM 17836 uid43465; 써모모노스포라 쿠르바타(Thermomonospora curvata) DSM 43183; 비피도박테리움 덴티움(Bifidobacterium dentium) Bd1; 비피도박테리움 롱굼(Bifidobacterium longum) DJO10A; 슬라키아 헬리오트리니레두센스(Slackia heliotrinireducens) DSM 20476; 페르세포넬라 마리나(Persephonella marina) EX H1; 박테로이데스 프라길리스(Bacteroides fragilis) NCTC 9434; 카프노시토파가 오크라세아(Capnocytophaga ochracea) DSM 7271; 플라보박테리움 사이크로필룸(Flavobacterium psychrophilum) JIP02 86; 악케르만시아 무시니필라(Akkermansia muciniphila) ATCC BAA 835; 로세이플렉수스 카스텐홀치이(Roseiflexus castenholzii) DSM 13941; 로세이플렉수스(Roseiflexus) RS1; 시네코시스티스(Synechocystis) PCC6803; 엘루시미크로비움 미누툼(Elusimicrobium minutum) Pei191; 비배양된 흰개미 군 1 박테리아 계통형 Rs D17; 피브로박터 숙시노게네스(Fibrobacter succinogenes) S85; 바실루스 세레우스(Bacillus cereus) ATCC 10987; 리스테리아 이노쿠아(Listeria innocua); 락토바실루스 카세이(Lactobacillus casei); 락토바실루스 람노수스(Lactobacillus rhamnosus) GG; 락토바실루스 살리바리우스(Lactobacillus salivarius) UCC118; 스트렙토코쿠스 아갈락티아에(Streptococcus agalactiae) A909; 스트렙토코쿠스 아갈락티아에 NEM316; 스트렙토코쿠스 아갈락티아에 2603; 스트렙토코쿠스 디스갈락티아에 에퀴시밀리스(Streptococcus dysgalactiae equisimilis) GGS 124; 스트렙토코쿠스 에퀴 주에피데미쿠스(Streptococcus equi zooepidemicus) MGCS10565; 스트렙토코쿠스 갈롤리티쿠스(Streptococcus gallolyticus) UCN34 uid46061; 스트렙토코쿠스 고르도니이 칼리스(Streptococcus gordonii Challis) subst CH1; 스트렙토코쿠스 뮤탄스(Streptococcus mutans) NN2025 uid46353; 스트렙토코쿠스 뮤탄스; 스트렙토코쿠스 피오게네스(Streptococcus pyogenes) M1 GAS; 스트렙토코쿠스 피오게네스 MGAS5005; 스트렙토코쿠스 피오게네스 MGAS2096; 스트렙토코쿠스 피오게네스 MGAS9429; 스트렙토코쿠스 피오게네스 MGAS10270; 스트렙토코쿠스 피오게네스 MGAS6180; 스트렙토코쿠스 피오게네스 MGAS315; 스트렙토코쿠스 피오게네스 SSI-1; 스트렙토코쿠스 피오게네스 MGAS10750; 스트렙토코쿠스 피오게네스 NZ131; 스트렙토코쿠스 써모필레스(Streptococcus thermophiles) CNRZ1066; 스트렙토코쿠스 써모필레스 LMD-9; 스트렙토코쿠스 써모필레스 LMG 18311; 클로스트리디움 보툴리눔(Clostridium botulinum) A3 로크 마리(Loch Maree); 클로스트리디움 보툴리눔 B 에클룬드(Eklund) 17B; 클로스트리디움 보툴리눔 Ba4 657; 클로스트리디움 보툴리눔 F 랑겔란드(Langeland); 클로스트리디움 셀룰롤리티쿰(Clostridium cellulolyticum) H10; 피네골디아 마그나(Finegoldia magna) ATCC 29328; 유박테리움 렉탈레(Eubacterium rectale) ATCC 33656; 미코플라스마 갈리셉티쿰(Mycoplasma gallisepticum); 미코플라스마 모빌레(Mycoplasma mobile) 163K; 미코플라스마 페네트란스(Mycoplasma penetrans); 미코플라스마 시노비아에(Mycoplasma synoviae) 53; 스트렙토바실루스 모닐리포르미스(Streptobacillus moniliformis) DSM 12112; 브라디리조비움(Bradyrhizobium) BTAi1; 니트로박터 함부르겐시스(Nitrobacter hamburgensis) X14; 로도슈도모나스 팔루스트리스(Rhodopseudomonas palustris) BisB18; 로도슈도모나스 팔루스트리스 BisB5; 파르비바쿨룸 라바멘티보란스(Parvibaculum lavamentivorans) DS-1; 디노로세오박터 쉬바에(Dinoroseobacter shibae) DFL 12; 글루코나세토박터 디아조트로피쿠스(Gluconacetobacter diazotrophicus) Pal 5 FAPERJ; 글루코나세토박터 디아조트로피쿠스(Gluconacetobacter diazotrophicus) Pal 5 JGI; 아조스피릴룸(Azospirillum) B510 uid46085; 로도스피릴룸 루브룸(Rhodospirillum rubrum) ATCC 11170; 디아포로박터(Diaphorobacter) TPSY uid29975; 베르미네프로박터 에이세니아에(Verminephrobacter eiseniae) EF01-2; 네이세리아 메닌기티데스(Neisseria meningitides) 053442; 네이세리아 메닌기티데스(Neisseria meningitides) 알파14; 네이세리아 메닌기티데스 Z2491; 데술포비브리오 살렉시겐스(Desulfovibrio salexigens) DSM 2638; 캄필로박터 제주니 도일레이(Campylobacter jejuni doylei) 269 97; 캄필로박터 제주니 81116; 캄필로박터 제주니; 캄필로박터 라리(Campylobacter lari) RM2100; 헬리코박터 헤파티쿠스(Helicobacter hepaticus); 월리넬라 숙시노게네스(Wolinella succinogenes); 톨루모나스 아우엔시스(Tolumonas auensis) DSM 9187; 슈도알테로모나스 아틀란티카(Pseudoalteromonas atlantica) T6c; 슈와넬라 페알레아나(Shewanella pealeana) ATCC 700345; 레지오넬라 뉴모필라 파리스(Legionella pneumophila Paris); 악티노바실루스 숙시노게네스(Actinobacillus succinogenes) 130Z; 파스테우렐라 물토시다(Pasteurella multocida); 프란시셀라 툴라렌시스 노비시다(Francisella tularensis novicida) U112; 프란시셀라 툴라렌시스 홀라르크티카(Francisella tularensis holarctica); 프란시셀라 툴라렌시스 FSC 198; 프란시셀라 툴라렌시스 툴라렌시스; 프란시셀라 툴라렌시스 WY96-3418; 및 트레포네마 덴티콜라(Treponema denticola) ATCC 35405. 따라서, 본 개시내용의 측면은 본원에 기재된 바와 같이 뉴클레아제-기능부재된 또는 닉카제가 된 유형 II CRISPR 시스템으로 존재하는 Cas9 단백질에 관한 것이다.
Cas9 단백질은 통상의 기술자에 의해 문헌에서 Csn1로서 지칭될 수 있다. 본원에 기재된 실험의 대상인 에스. 피오게네스 Cas9 단백질 서열이 하기 제시된다. 문헌 [Deltcheva et al., Nature 471, 602-607 (2011)]을 참조하며, 이는 그 전문이 본원에 참조로 포함된다.
본원에 기재된 RNA-가이드된 게놈 조절의 방법의 특정 측면에 따르면, Cas9는 뉴클레아제 활성이 감소되거나, 실질적으로 감소되거나 또는 제거되도록 변경된다. 이러한 Cas9는, 예컨대 1개 초과의 Cas9 단백질이 구상되는 경우, 직교 Cas9일 수 있다. 이러한 맥락에서, 2개 이상 또는 복수개 또는 한 세트의 직교 Cas9 단백질이 본원에 기재된 방법에 사용될 수 있다. 한 측면에 따르면, Cas9 뉴클레아제 활성은 RuvC 뉴클레아제 도메인 또는 HNH 뉴클레아제 도메인의 변경에 의해 감소되거나, 실질적으로 감소되거나 또는 제거된다. 한 측면에 따르면, RuvC 뉴클레아제 도메인은 불활성화된다. 한 측면에 따르면, HNH 뉴클레아제 도메인은 불활성화된다. 한 측면에 따르면, RuvC 뉴클레아제 도메인 및 HNH 뉴클레아제 도메인은 불활성화된다. 추가의 측면에 따르면, RuvC 뉴클레아제 도메인 및 HNH 뉴클레아제 도메인이 불활성화된 Cas9 단백질이 제공된다. 추가의 측면에 따르면, RuvC 뉴클레아제 도메인 및 HNH 뉴클레아제 도메인이 불활성화되어 있는 한, 뉴클레아제-기능부재 Cas9 단백질이 제공된다. 추가의 측면에 따르면, RuvC 뉴클레아제 도메인 또는 HNH 뉴클레아제 도메인 중 어느 하나가 불활성화되어 뉴클레아제 활성에 대한 뉴클레아제 도메인 활성이 유지되고 있는 Cas9 닉카제가 제공된다. 이러한 방식으로, 이중 가닥 DNA 중 단지 1개의 가닥만이 컷팅 또는 닉킹된다.
추가의 측면에 따르면, Cas9에서 1개 이상의 아미노산이 변경되거나 달리 제거되어 뉴클레아제-기능부재 Cas9 단백질을 제공하는, 뉴클레아제-기능부재 Cas9 단백질이 제공된다. 한 측면에 따르면, 아미노산은 D10 및 H840을 포함한다. 문헌 [Jinke et al., Science 337, 816-821 (2012)]을 참조한다. 추가의 측면에 따르면, 아미노산은 D839 및 N863을 포함한다. 한 측면에 따르면, D10, H840, D839 및 H863 중 1개 이상 또는 모두가 뉴클레아제 활성을 감소시키거나, 실질적으로 제거하거나 또는 제거하는 아미노산으로 치환된다. 한 측면에 따르면, D10, H840, D839 및 H863 중 1개 이상 또는 모두가 알라닌으로 치환된다. 한 측면에 따르면, D10, H840, D839 및 H863 중 1개 이상 또는 모두가 뉴클레아제 활성을 감소시키거나, 실질적으로 제거하거나 또는 제거하는 아미노산, 예컨대 알라닌으로 치환된 Cas9 단백질은 뉴클레아제-기능부재 Cas9 또는 Cas9N으로 지칭되고, 감소 또는 제거된 뉴클레아제 활성을 나타내거나, 또는 검출 수준 내에서 뉴클레아제 활성이 부재하거나 실질적으로 부재한다. 이러한 측면에 따르면, Cas9N에 대한 뉴클레아제 활성은 공지된 검정의 이용시에 검출불가능할 수 있으며, 즉 공지된 검정의 검출 수준 미만이다.
한 측면에 따르면, 뉴클레아제-기능부재 Cas9 단백질은, DNA에 결합하고 RNA에 의해 가이드되는 단백질의 능력을 유지하는 그의 상동체 및 오르토로그를 포함한다. 한 측면에 따르면, 뉴클레아제-기능부재 Cas9 단백질은 D10, H840, D839 및 H863 중 1개 이상 또는 모두가 알라닌으로 치환된, 에스. 피오게네스로부터의 자연 발생 Cas9에 대해 제시된 서열, 및 상기 서열에 대해 적어도 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98% 또는 99% 상동성을 갖는 단백질 서열을 포함하며, 이는 DNA 결합 단백질, 예컨대 RNA 가이드된 DNA 결합 단백질이다.
한 측면에 따르면, 뉴클레아제-기능부재 Cas9 단백질은 RuvC 뉴클레아제 도메인 및 HNH 뉴클레아제 도메인의 단백질 서열이 제외된 에스. 피오게네스로부터의 자연 발생 Cas9에 대해 제시된 서열, 및 또한 상기 서열에 대해 적어도 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98% 또는 99% 상동성을 갖는 단백질 서열을 포함하며, 이는 DNA 결합 단백질, 예컨대 RNA 가이드된 DNA 결합 단백질이다. 이러한 방식으로, 본 개시내용의 측면은, DNA 결합, 예를 들어 가이드 RNA와의 공동-국재화 및 DNA에 대한 결합의 역할을 하는 단백질 서열 및 그에 상동성인 단백질 서열을 포함하며, 뉴클레아제-기능부재 Cas9 단백질을 생산하기 위해 RuvC 뉴클레아제 도메인 및 HNH 뉴클레아제 도메인은 자연 발생 Cas9 단백질의 단백질 서열로부터 불활성화 또는 제거될 수 있기 때문에, 이들 도메인에 대한 단백질 서열을 포함할 필요는 없다 (DNA 결합에 필요하지 않은 정도까지).
본 개시내용의 목적을 위해, 도 4a는 Cas9에 대한 상동성을 갖는 공지된 단백질 구조에서의 금속 배위 잔기를 도시한다. 잔기는 Cas9 서열의 위치를 기초로 표지된다. 좌측: Cas9 서열에서 D10에 상응하는 RuvC 구조, PDB ID: 4EP4 (청색) 위치 D7은 Mg-이온 배위 위치가 강조되어 있다. 중앙: 배위된 Mg-이온 (회색 구체) 및 3M7K로부터의 DNA (자주색)를 포함하는 PDB ID: 3M7K (오렌지색) 및 4H9D (시안색)로부터의 HNH 엔도뉴클레아제 도메인의 구조. Cas9 아미노산 D839 및 N863에 대한 서열 상동성을 갖는 3M7K 및 4H9D 위치 D53 및 N77에서의 잔기 D92 및 N113을 막대로 나타내었다. 우측: 제조하여 뉴클레아제 활성에 대해 분석된 돌연변이체의 목록: Cas9 야생형; D10이 알라닌으로 치환된 Cas9m1; D10이 알라닌으로, H840이 알라닌으로 치환된 Cas9m2; D10이 알라닌으로, H840이 알라닌으로, D839가 알라닌으로 치환된 Cas9m3; 및 D10이 알라닌으로, H840이 알라닌으로, D839가 알라닌으로, N863이 알라닌으로 치환된 Cas9m4.
도 4b에 나타낸 바와 같이, Cas9 돌연변이체: m3 및 m4, 및 또한 VP64와의 그의 각각의 융합체는 표적화된 유전자좌에서 심층 서열분석시에 검출불가능한 뉴클레아제 활성을 나타내었다. 플롯은 게놈 위치에 대한 돌연변이 빈도를 보여주며, 여기서 적색 선은 gRNA 표적과의 경계이다. 도 4c는 도 4b에서의 데이터의 보다 고해상도 검사이고, 돌연변이 랜드스케이프가 비변형된 유전자좌와 대등한 프로파일을 보여준다는 것이 확인된다.
한 측면에 따르면, 뉴클레아제-기능부재 Cas9에 또는 가이드 RNA에 대한 전사 활성화 도메인의 테더링에 의해 인간 세포에서 RNA-가이드된 게놈 조절을 가능하게 하는 조작된 Cas9-gRNA 시스템이 제공된다. 본 개시내용의 한 측면에 따르면, 하나 이상의 전사 조절 단백질 또는 도메인 (상기 용어는 상호교환가능하게 사용됨)은 뉴클레아제-결핍 Cas9 또는 하나 이상의 가이드 RNA (gRNA)에 연결되거나 또는 달리 결합된다. 전사 조절 도메인은 표적화된 유전자좌에 상응한다. 따라서, 본 개시내용의 측면은 전사 조절 도메인을 Cas9N에 또는 gRNA에 융합, 결합 또는 연결시킴으로써 상기 도메인을 표적화된 유전자좌에 국재화시키기 위한 방법 및 물질을 포함한다.
한 측면에 따르면, 전사 활성화가 가능한 Cas9N-융합 단백질이 제공된다. 한 측면에 따르면, VP64 활성화 도메인 (전문이 본원에 참조로 포함되는 문헌 [Zhang et al., Nature Biotechnology 29, 149-153 (2011)] 참조)은 Cas9N의 C 말단에 연결, 융합, 결합 또는 달리 테더링된다. 한 방법에 따르면, 전사 조절 도메인은 Cas9N 단백질에 의해 표적 게놈 DNA의 부위에 제공된다. 한 방법에 따르면, 전사 조절 도메인에 융합된 Cas9N은 하나 이상의 가이드 RNA와 함께 세포 내에 제공된다. 전사 조절 도메인이 융합되어 있는 Cas9N은 표적 게놈 DNA에 또는 그 부근에 결합된다. 하나 이상의 가이드 RNA는 표적 게놈 DNA에 또는 그 부근에 결합된다. 전사 조절 도메인은 표적 유전자의 발현을 조절한다. 구체적 측면에 따르면, Cas9N-VP64 융합체는 프로모터 부근의 서열을 표적화하는 gRNA와의 조합시에 리포터 구축물의 전사를 활성화하여, RNA-가이드된 전사 활성화를 나타낸다.
한 측면에 따르면, 전사 활성화가 가능한 gRNA-융합 단백질이 제공된다. 한 측면에 따르면, VP64 활성화 도메인은 gRNA에 연결, 융합, 결합 또는 달리 테더링된다. 한 방법에 따르면, 전사 조절 도메인은 gRNA에 의해 표적 게놈 DNA의 부위에 제공된다. 한 방법에 따르면, 전사 조절 도메인에 융합된 gRNA는 Cas9N 단백질과 함께 세포 내에 제공된다. Cas9N은 표적 게놈 DNA에 또는 그 부근에 결합된다. 전사 조절 단백질 또는 도메인이 융합되어 있는 하나 이상의 가이드 RNA는 표적 게놈 DNA에 또는 그 부근에 결합된다. 전사 조절 도메인은 표적 유전자의 발현을 조절한다. 구체적 측면에 따르면, 전사 조절 도메인과 융합된 Cas9N 단백질 및 gRNA는 리포터 구축물의 전사를 활성화시켜, RNA-가이드된 전사 활성화를 나타낸다.
무작위 서열을 gRNA 내로 삽입하고 Cas9 기능에 대해 검정하여 gRNA의 어느 영역이 변형에 내성을 갖는지를 확인함으로써 전사 조절이 가능한 gRNA 테더를 구축하였다. 키메라 gRNA의 crRNA 부분의 5' 말단 또는 tracrRNA 부분의 3' 말단에 무작위 서열 삽입을 보유하는 gRNA는 기능성을 유지하는 반면, 키메라 gRNA의 tracrRNA 스캐폴드 부분 내로의 삽입은 기능 상실을 일으킨다. 무작위 염기 삽입에 대한 gRNA 유연성을 요약하는 도 5a-5b를 참조한다. 도 5a는 Cas9-gRNA 활성을 결정하기 위한 상동 재조합 (HR) 검정의 개략도이다. 도 5b에 나타낸 바와 같이, 키메라 gRNA의 crRNA 부분의 5' 말단 또는 tracrRNA 부분의 3' 말단에 무작위 서열 삽입을 보유하는 gRNA는 기능성을 유지하는 반면, 키메라 gRNA의 tracrRNA 스캐폴드 부분 내로의 삽입은 기능 상실을 일으킨다. gRNA 서열 내의 삽입 지점은 적색 뉴클레오티드에 의해 표시된다. 과학 이론에 얽매이기를 원하지 않으면서, 5' 말단에서의 무작위 염기 삽입시에 증가된 활성은 보다 긴 gRNA의 증가된 반감기로 인한 것일 수 있다.
gRNA에 VP64를 부착시키기 위해, RNA 줄기-루프에 결합하는 MS2 박테리오파지 코트-단백질의 2개 카피를 gRNA의 3' 말단에 첨부하였다. 전문이 본원에 참조로 포함되는 문헌 [Fusco et al., Current Biology: CB13, 161-167 (2003)]을 참조한다. 이들 키메라 gRNA를 Cas9N 및 MS2-VP64 융합 단백질과 함께 발현시켰다. 리포터 구축물로부터의 서열-특이적 전사 활성화는 3가지 성분 모두의 존재 하에 관찰되었다.
도 1a는 RNA-가이드된 전사 활성화의 개략도이다. 도 1a에 나타낸 바와 같이, 전사 활성화가 가능한 Cas9N-융합 단백질을 생성하기 위해, VP64 활성화 도메인을 직접적으로 Cas9N의 C 말단에 테더링하였다. 도 1b에 나타낸 바와 같이, 전사 활성화가 가능한 gRNA 테더를 생성하기 위해, RNA 줄기-루프에 결합하는 MS2 박테리오파지 코트-단백질의 2개 카피를 gRNA의 3' 말단에 첨부하였다. 이들 키메라 gRNA를 Cas9N 및 MS2-VP64 융합 단백질과 함께 발현시켰다. 도 1c는 전사 활성화를 검정하는데 사용된 리포터 구축물의 설계를 보여준다. 2개의 리포터는 독특한 gRNA 표적 부위를 보유하고, 대조 TALE-TF 표적 부위를 공유한다. 도 1d에 나타낸 바와 같이, Cas9N-VP64 융합체는 형광-활성화 세포 분류 (FACS) 및 면역형광 검정 (IF) 둘 다에 의해 검정시에 RNA-가이드된 전사 활성화를 나타낸다. 구체적으로, 대조 TALE-TF는 리포터 둘 다를 활성화시킨 반면, Cas9N-VP64 융합체는 gRNA 서열 특이적 방식으로 리포터를 활성화시킨다. 도 1e에 나타낸 바와 같이, Cas9N, MS2-VP64 및 적절한 MS2 압타머 결합 부위를 보유하는 gRNA의 3개 성분 모두의 존재 하에서만 리포터 구축물로부터의 gRNA 서열-특이적 전사 활성화가 FACS 및 IF 둘 다에 의해 관찰되었다.
특정 측면에 따르면, Cas9N, 하나 이상의 gRNA 및 전사 조절 단백질 또는 도메인을 사용하여 내인성 유전자를 조절하는 방법이 제공된다. 한 측면에 따르면, 내인성 유전자는 표적 유전자로서 본원에 지칭되는 임의의 바람직한 유전자일 수 있다. 하나의 예시적인 측면에 따르면, 조절을 위한 유전자 표적은 ZFP42 (REX1) 및 POU5F1 (OCT4)을 포함하며, 이들은 둘 다 다능성의 유지에 관여하는 엄격하게 조절된 유전자이다. 도 1f에 나타낸 바와 같이, 전사 출발 부위의 DNA 상류의 ~5kb 스트레치를 표적화하는 10개의 gRNA (DNase 과민 부위를 녹색으로 강조함)를 REX1 유전자에 대해 설계하였다. 프로모터-루시페라제 리포터 구축물을 사용하여 (전문이 본원에 참조로 포함되는 문헌 [Takahashi et al., Cell 131 861-872 (2007)] 참조) 또는 내인성 유전자의 qPCR을 통해 직접적으로 전사 활성화를 검정하였다.
도 6a-6d는 Cas9N-VP64를 사용한 RNA-가이드된 OCT4 조절에 관한 것이다. 도 6a에 나타낸 바와 같이, 전사 출발 부위의 DNA 상류의 ~5kb 스트레치를 표적화하는 21개의 gRNA를 OCT4 유전자에 대해 설계하였다. DNase 과민 부위는 녹색으로 강조된다. 도 6b는 프로모터-루시페라제 리포터 구축물을 사용한 전사 활성화를 보여준다. 도 6c는 내인성 유전자의 qPCR을 통한 직접적 전사 활성화를 보여준다. 개별 gRNA의 도입은 전사를 중간 정도로 자극하지만, 다중 gRNA는 상승작용적으로 작용하여 강건한 다중-배수 전사 활성화를 자극한다.
도 7a-7c는 Cas9N, MS2-VP64 및 gRNA+2X-MS2 압타머를 사용한 RNA-가이드된 REX1 조절에 관한 것이다. 도 7a에 나타낸 바와 같이, 전사 출발 부위의 DNA 상류의 ~5kb 스트레치를 표적화하는 10개의 gRNA를 REX1 유전자에 대해 설계하였다. DNase 과민 부위는 녹색으로 강조된다. 도 7b는 프로모터-루시페라제 리포터 구축물을 사용한 전사 활성화를 보여준다. 도 7c는 내인성 유전자의 qPCR을 통한 직접적 전사 활성화를 보여준다. 개별 gRNA의 도입은 전사를 중간 정도로 자극하지만, 다중 gRNA는 상승작용적으로 작용하여 강건한 다중-배수 전사 활성화를 자극한다. 한 측면에서, gRNA에서의 2X-MS2 압타머의 부재는 전사 활성화를 일으키지 않는다. 각각의 전문이 본원에 참조로 포함되는 문헌 [Maeder et al., Nature Methods 10, 243-245 (2013) 및 Perez-Pinera et al., Nature Methods 10, 239-242 (2013)]을 참조한다.
따라서, 방법은 다중 가이드 RNA와 Cas9N 단백질 및 표적 유전자의 발현을 조절하기 위한 전사 조절 단백질 또는 도메인의 사용에 관련된다.
Cas9 및 gRNA 테더링 접근법은 둘 다 효과적이었고, 전자의 경우 ~1.5-2배 더 높은 효력을 나타내었다. 이러한 차이는 3-성분 복합체 어셈블리와 대조적으로 2-성분에 대한 요건으로 인한 것일 수 있다. 그러나, gRNA 테더링 접근법은 원칙적으로 각각의 gRNA가 상이한 RNA-단백질 상호작용 쌍을 사용하는 한 상이한 이펙터 도메인이 별개의 gRNA에 의해 동원되도록 할 수 있다. 전문이 본원에 참조로 포함되는 문헌 [Karyer-Bibens et al. Biology of the Cell / Under the Auspices of the European Cell Biology Organization 100, 125- 138 (2008)]을 참조한다. 본 개시내용의 한 측면에 따르면, 다양한 표적 유전자는 특이적 가이드 RNA 및 일반적 Cas9N 단백질, 즉 다양한 표적 유전자와 동일하거나 유사한 Cas9N 단백질을 사용하여 조절될 수 있다. 한 측면에 따르면, 멀티플렉스 유전자 조절의 방법은 동일하거나 유사한 Cas9N을 사용하여 제공된다.
본 개시내용의 방법은 또한 Cas9N 단백질 및 본원에 기재된 가이드 RNA를 사용하여 표적 유전자를 편집함으로써 인간 세포의 멀티플렉스 유전적 및 후성적 조작을 제공하는 것에 관한 것이다. Cas9-gRNA 표적화를 목표로 (전문이 본원에 참조로 포함되는 문헌 [Jiang et al., Nature Biotechnology 31, 233-239 (2013)] 참조), 표적 서열 변이의 매우 큰 공간에 대한 Cas9 친화도의 심층 조사를 위한 방법이 제공된다. 따라서, 본 개시내용의 측면은 dsDNA 절단 독성에 의해 도입된 복잡성 및 천연 뉴클레아제-활성 Cas9를 사용한 특이성 시험에 의해 초래된 돌연변이유발 복구를 회피하면서, 인간 세포에서의 Cas9 표적화의 직접적 고처리량 판독을 제공한다.
본 개시내용의 추가 측면은 일반적으로 표적 유전자의 전사 조절을 위한 DNA 결합 단백질 또는 시스템의 용도에 관한 것이다. 통상의 기술자는 본 개시내용을 기초로 예시적인 DNA 결합 시스템을 용이하게 확인할 것이다. 이러한 DNA 결합 시스템은 자연 발생 Cas9 단백질과 같이, 어떠한 뉴클레아제 활성도 가질 필요가 없다. 따라서, 이러한 DNA 결합 시스템은 뉴클레아제 활성을 불활성화시킬 필요가 없다. 하나의 예시적인 DNA 결합 시스템은 TALE이다. 한 측면에 따르면, TALE 특이성을 도 2a에 나타낸 방법론을 이용하여 평가하였다. 라이브러리의 각각의 성분이 d토마토 형광 단백질을 유도하는 최소 프로모터를 포함하는 구축물 라이브러리를 설계한다. 전사 출발 부위 m의 하류에 24bp (A/C/G) 무작위 전사체 태그를 삽입하고, 2개의 TF 결합 부위를 프로모터의 상류에 위치시켰다: 하나는 모든 라이브러리 요소에 의해 공유되는 불변 DNA 서열이고, 두번째 것은 돌연변이의 많은 조합이 프로그램가능 DNA 표적화 복합체가 결합하도록 설계된 표적 서열로부터 떨어져 존재하는 서열의 다수의 집합을 포괄하도록 조작된 결합 부위의 '편재된' 라이브러리를 보유하는 가변 특징부이다. 이것은 표적 서열 뉴클레오티드가 79% 빈도로 나타나고 각각의 다른 뉴클레오티드가 7% 빈도로 발생하도록 각각의 위치에서의 뉴클레오티드 빈도를 보유하도록 조작된 축중성 올리고뉴클레오티드를 사용하여 달성된다. 전문이 본원에 참조로 포함되는 문헌 [Patwardhan et al., Nature Biotechnology 30, 265-270 (2012)]을 참조한다. 이어서, 리포터 라이브러리를 서열분석하여, 라이브러리 요소에서 24bp d토마토 전사체 태그와 그의 상응하는 '편재된' 표적 부위 사이의 회합을 밝혀냈다. 전사체 태그의 큰 다양성은 다양한 표적 사이의 태그의 공유가 극히 드물 것이라는 것을 보장하는 반면, 표적 서열의 편재된 구축은 소수의 돌연변이를 갖는 부위가 더 많은 돌연변이를 갖는 부위보다 더 많은 태그와 회합될 것이라는 것을 의미한다. 다음으로, d토마토 리포터 유전자의 전사가 공유된 DNA 부위에 결합하도록 조작된 대조-TF, 또는 표적 부위에 결합하도록 조작된 표적-TF로 자극된다. 각각의 발현된 전사체 태그의 존재비가 자극된 세포 상에서 RNAseq를 수행함으로써 각각의 샘플에서 측정되고, 이어서 보다 먼저 확립된 회합 표를 사용하여 그의 상응하는 결합 부위로 재맵핑한다. 대조-TF는 그의 결합 부위가 모든 라이브러리 요소에 걸쳐 공유되기 때문에 동등하게 모든 라이브러리 구성원을 여기시킬 것으로 예상되고, 반면에 표적-TF는 발현된 성분의 분포가 그에 의해 우선적으로 표적화되는 것들에 대해 치우칠 것으로 예상된다. 이러한 가정은 표적-TF에 대해 수득된 태그 카운트를 대조-TF에 대해 수득된 것들로 나눔으로써 각각의 결합 부위에 대한 정규화된 발현 수준을 계산하기 위해 단계 5에서 사용된다.
도 2b에 나타낸 바와 같이, Cas9-gRNA 복합체의 표적화 랜드스케이프는 그가 평균적으로 그의 표적 서열에서 1-3개의 돌연변이에 내성이 있다는 것을 나타낸다. 도 2c에 나타낸 바와 같이, Cas9-gRNA 복합체는 또한 PAM 서열에 국재화된 것들을 제외하고는 주로 점 돌연변이에 비감수성이다. 두드러지게, 이러한 데이터는 에스. 피오게네스 Cas9에 대한 추정 PAM이 NGG 뿐만 아니라 NAG임을 나타낸다. 도 2d에 나타낸 바와 같이, 2개의 염기 미스매치의 도입은 Cas9-gRNA 복합체 활성을 유의하게 손상시키지만, 단지 이들이 gRNA 표적 서열의 3' 말단에 보다 가까운 8-10개의 염기에 국재화된 경우에만 그러하다 (열 플롯에서 표적 서열 위치는 5' 말단으로부터 출발하여 1-23 표지됨).
또 다른 널리 사용되는 게놈 편집 도구인, TALE 도메인의 돌연변이 내성을 본원에 기재된 전사 특이성 검정을 이용하여 결정하였다. 도 2e에 나타낸 바와 같이, 18-량체 TALE에 대한 TALE 오프-표적화 데이터는 그가 평균적으로 그의 표적 서열에서 1-2개의 돌연변이에 내성일 수 있으며, 그의 표적에서 대다수의 3개의 염기 미스매치 변이체를 활성화하는데 실패한 것을 나타낸다. 도 2f에 나타낸 바와 같이, 18-량체 TALE는 그의 표적에서 미스매치된 단일 염기에 주로 비감수성인 Cas9-gRNA 복합체와 유사하다. 도 2g에 나타낸 바와 같이, 2개의 염기 미스매치의 도입은 18-량체 TALE 활성을 유의하게 손상시킨다. TALE 활성은 그의 표적 서열의 5' 말단에 보다 가까운 미스매치에 보다 감수성이다 (열 플롯에서 표적 서열 위치는 5' 말단으로부터 출발하여 1-18 표지됨).
결과를, 다양한 크기의 TALE에 의한 표적화의 랜드스케이프를 평가하는 것에 관련된 도 10a-10d의 대상인 뉴클레아제 검정으로 표적화된 실험을 이용하여 확인하였다. 도 10a에 나타낸 바와 같이, 뉴클레아제 매개 HR 검정을 이용하여, 18-량체 TALE가 그의 표적 서열에서 다중 돌연변이를 허용한다는 것을 확인하였다. 도 10b에 나타낸 바와 같이, 도 2a에서 기재된 접근법을 이용하여, 3가지 상이한 크기 (18-량체, 14-량체 및 10-량체)의 TALE의 표적화 랜드스케이프를 분석하였다. 보다 짧은 TALE (14-량체 및 10-량체)는 그의 표적화에서 점점 더 특이적이지만, 또한 거의 한 자릿수만큼 활성이 감소된다. 도 10c 및 10d에 나타낸 바와 같이, 10-량체 TALE는 근사 단일-염기 미스매치 해상도를 나타내며, 2개의 미스매치를 보유하는 표적에 대해 거의 모든 활성이 손실된다 (열 플롯에서 표적 서열 위치는 5' 말단에서 출발하여 1-10 표지됨). 종합하여, 이들 데이터는 보다 짧은 TALE를 조작하는 것이 게놈 조작 적용에서 보다 높은 특이성을 생성할 수 있는 반면에 TALE 뉴클레아제 적용에서의 FokI 이량체화에 대한 요건이 오프-표적 효과를 회피하는데 필수적이라는 것을 나타낸다. 각각의 전문이 본원에 참조로 포함되는 문헌 [Kim et al., Proceedings of the National Academy of Sciences of the United States of America 93, 1156-1160 (1996) 및 Pattanayak et al., Nature Methods 8, 765-770 (2011)]을 참조한다.
도 8a-8c는 실험 데이터로부터의 예로 예시된 정규화된 발현 수준의 계산을 위한 고수준 특이성 분석 프로세싱 흐름에 관한 것이다. 도 8a에 나타낸 바와 같이, 구축물 라이브러리는 리포터 유전자 전사체 내로 혼입될 결합 부위 서열의 편재 분포 및 무작위 서열 24bp 태그를 갖도록 생성된다 (상단). 전사된 태그는 그들이 Cas9 또는 TALE 결합 서열에 다 대 일로 맵핑되어야 하도록 고도로 축중된다. 구축물 라이브러리를 서열분석하여 (제3 수준, 좌측) 태그가 결합 부위와 공동-발생한다는 것을 확립함으로써, 결합 부위 대 전사된 태그의 회합 표를 생성하였다 (제4 수준, 좌측). 라이브러리 바코드 (여기서 담청색 및 담황색에 의해 나타냄; 수준 1-4, 좌측)를 사용하여 다양한 결합 부위에 대해 구축된 다중 구축물 라이브러리를 한 번에 서열분석할 수 있다. 이어서, 구축물 라이브러리를 세포 집단 내로 형질감염시키고, 일련의 다양한 Cas9/gRNA 또는 TALE 전사 인자를 집단의 샘플에서 유도한다 (제2 수준, 우측). 하나의 샘플은 항상 구축물 내의 고정된 결합 부위 서열 (상단 수준, 녹색 박스)에 표적화된 고정된 TALE 활성인자에 의해 유도되고; 이러한 샘플은 양성 대조군 (녹색 샘플, 또한 + 부호로 나타냄)의 역할을 한다. 이어서, 유도된 샘플에서 리포터 mRNA 분자로부터 생성된 cDNA를 서열분석하고, 샘플에서 각각의 태그에 대한 태그 카운트를 얻기 위해 분석한다 (제3 및 제4 수준, 우측). 구축물 라이브러리 서열분석과 같이, 양성 대조군을 포함하는 다중 샘플을 서열분석하고, 샘플 바코드를 첨부함으로써 함께 분석하였다. 여기서 담적색은 서열분석되고 양성 대조군 (녹색)과 함께 분석된 하나의 비-대조 샘플을 나타낸다. 각각의 리드에 구축물 결합 부위가 아닌 전사된 태그만이 나타나기 때문에, 이어서, 구축물 라이브러리 서열분석으로부터 수득한 결합 부위 대 태그 회합 표를 사용하여 각각의 샘플에서 각각의 결합 부위로부터 발현된 태그의 총 카운트를 총계한다 (제5 수준). 이어서, 각각의 비-양성 대조군 샘플에 대한 총계를 양성 대조군 샘플에서 수득한 총계로 나눔으로써 이를 각각의 결합 부위에 대한 정규화된 발현 수준으로 변환한다. 미스매치의 수에 대한 정규화된 발현 수준의 플롯의 예가 도 2b 및 2e, 및 도 9a 및 도 10b에 제공된다. 잘못된 태그에 대한, 구축물 라이브러리와 회합될 수 없는 태그에 대한, 및 다중 결합 부위와 명백히 공유된 태그에 대한 필터링의 몇몇 수준이 상기 전반적인 공정 흐름에 포함되지 않는다. 도 8b는 편재된 구축물 라이브러리 내에 생성된 미스매치의 수에 대한 결합 부위의 백분율의 예시적 분포를 도시한다. 좌측: 이론적 분포. 우측: 실제 TALE 구축물 라이브러리로부터 관찰된 분포. 도 8c는 미스매치의 수에 대한 결합 부위에 대해 집계된 태그 카운트의 백분율의 예시적 분포를 도시한다. 좌측: 양성 대조군 샘플로부터 관찰된 분포. 우측: 비-대조 TALE가 유도된 샘플로부터 관찰된 분포. 양성 대조군 TALE가 구축물 내의 고정된 부위에 결합하기 때문에, 집계된 태그 카운트의 분포는 도 8b에서의 결합 부위의 분포를 밀접하게 반영하고, 반면에 더 적은 미스매치를 갖는 부위가 더 높은 발현 수준을 유도하기 때문에 분포는 비-대조 TALE 샘플의 경우에 좌측으로 치우친다. 하단: 표적-TF에 대해 수득된 태그 카운트를 대조-TF에 대해 수득된 것으로 나눔으로써 이들 사이의 상대적 풍부화를 계산하는 것은 표적 부위에서의 돌연변이의 수에 대한 평균 발현 수준을 나타낸다.
이들 결과는 다양한 Cas9-gRNA 복합체를 사용하여 생성된 특이성 데이터에 의해 추가로 재확인된다. 도 9a에 나타낸 바와 같이, 다양한 Cas9-gRNA 복합체는 그의 표적 서열에서 1-3개의 돌연변이에 내성이 있다. 도 9b에 나타낸 바와 같이, Cas9-gRNA 복합체는 또한 PAM 서열에 국재화된 것들을 제외하고는 주로 점 돌연변이에 대해 비감수성이다. 그러나, 도 9c에 나타낸 바와 같이, 2개의 염기 미스매치의 도입은 활성을 유의하게 손상시킨다 (열 플롯에서 표적 서열 위치는 5' 말단으로부터 출발하여 1-23 표지됨). 도 9d에 나타낸 바와 같이, 뉴클레아제 매개 HR 검정을 이용하여 에스. 피오게네스 Cas9에 대한 추정 PAM이 NGG 및 또한 NAG임을 확인하였다.
특정 측면에 따르면, 결합 특이성은 본원에 기재된 방법에 따라 증가된다. 다중 복합체 사이의 상승작용은 Cas9N-VP64에 의한 표적 유전자 활성화의 요인이기 때문에, 개별 오프-표적 결합 이벤트는 최소 효과를 가져야 하고, 따라서 Cas9N의 전사 조절 적용은 자연적으로 상당히 특이적이다. 한 측면에 따르면, 오프셋 닉은 게놈-편집의 방법에 사용된다. 대다수의 닉은 드물게 NHEJ 이벤트를 일으키고 (전문이 본원에 참조로 포함되는 문헌 [Certo et al., Nature Methods 8, 671-676 (2011)] 참조), 따라서 오프-표적 닉킹의 효과를 최소화한다. 대조적으로, 오프셋 닉을 유도하여 이중 가닥 파괴 (DSB)를 생성하는 것은 유전자 파괴를 유도하는데 있어서 고도로 효과적이다. 특정 측면에 따르면, 5' 오버행은 3' 오버행과는 대조적으로 보다 유의한 NHEJ 이벤트를 생성한다. 유사하게, 3' 오버행은 NHEJ 이벤트에 비해 HR을 선호하지만, HR 이벤트의 총 수는 5' 오버행이 생성하는 경우보다 유의하게 더 낮다. 따라서, 상동 재조합을 위해 닉을 사용하고, 오프-표적 Cas9-gRNA 활성의 효과가 최소화되도록 이중 가닥 파괴를 생성하기 위해 오프셋 닉을 사용하는 방법이 제공된다.
도 3a-3c는 멀티플렉스 오프셋 닉킹 및 가이드 RNA와의 오프-표적 결합을 감소시키는 방법에 관한 것이다. 도 3a에 나타낸 바와 같이, 신호등 리포터를 사용하여 표적화된 닉 또는 파괴의 도입시의 HR 및 NHEJ 이벤트에 대해 동시에 검정하였다. HDR 경로를 통해 해상된 DNA 절단 이벤트는 GFP 서열을 복원하는 반면, 돌연변이유발 NHEJ는 GFP를 프레임에서 벗어나게, 하류 m체리 서열을 프레임에 맞게 프레임시프트되게 한다. 검정을 위해, 센스 가닥을 표적화하는 7개 (U1-7) 및 안티센스 가닥을 표적화하는 7개 (D1-7)의, 200bp 스트레치의 DNA를 포함하는 14개의 gRNA를 설계하였다. 상보적 가닥을 닉킹하는 Cas9D 10A 돌연변이체를 사용하여, gRNA의 다양한 2-원 조합을 사용하여 다수의 프로그래밍된 5' 또는 3' 오버행을 유도하였다 (14개의 gRNA에 대한 닉킹 부위를 표시함). 도 3b에 나타낸 바와 같이, 오프셋 닉을 유도하여 이중 가닥 파괴 (DSB)를 생성하는 것은 유전자 파괴를 유도하는데 있어서 고도로 효과적이다. 두드러지게, 5' 오버행으로 이어지는 오프셋 닉은 3' 오버행과는 대조적으로 보다 많은 NHEJ 이벤트를 일으킨다. 도 3c에 나타낸 바와 같이, 3' 오버행의 생성은 또한 NHEJ 이벤트에 비해 HR의 비가 우세하지만, HR 이벤트의 총 수는 5' 오버행이 생성하는 경우보다 유의하게 더 낮다.
도 11a-11b는 Cas9D10A 닉카제 매개 NHEJ에 관한 것이다. 도 11a에 나타낸 바와 같이, 신호등 리포터를 사용하여 표적화된 닉 또는 이중-가닥 파괴의 도입시의 NHEJ 이벤트를 검정하였다. 간략하게, DNA 절단 이벤트의 도입시에, 파괴가 돌연변이유발 NHEJ를 통해 진행되면, GFP는 프레임을 벗어나서 번역되고, 하류 m체리 서열은 프레임 내에서 적색 형광을 생성하게 된다. 센스 가닥을 표적화하는 7개 (U1-7) 및 안티센스 가닥을 표적화하는 7개 (D1-7)의, 200bp 스트레치의 DNA를 포함하는 14개의 gRNA를 설계하였다. 도 11b에 나타낸 바와 같이, 모든 표적에 걸쳐 DSB 및 강건한 NHEJ를 일으키는 야생형 Cas9와 달리, (Cas9D 10A 돌연변이체 사용시) 대부분의 닉이 드물게 NHEJ 이벤트를 일으키는 것으로 관찰되었다. 모든 14개의 부위는 DNA의 인접 200bp 스트레치 내에 위치하고, 표적화 효율에서 10배가 넘는 차이가 관찰되었다.
특정 측면에 따르면, 1개 이상, 2개 이상 또는 다수의 외래 핵산을 세포 내로 도입하는 것을 포함하는, 세포에서 표적 핵산의 발현을 조절하는 방법이 본원에 기재된다. 세포 내로 도입된 외래 핵산은 가이드 RNA 또는 가이드 RNA들, 뉴클레아제-기능부재 Cas9 단백질 또는 단백질들, 및 전사 조절 단백질 또는 도메인을 코딩한다. 함께, 가이드 RNA, 뉴클레아제-기능부재 Cas9 단백질 및 전사 조절 단백질 또는 도메인은 공동-국재화 복합체로서 지칭되며, 상기 용어는 가이드 RNA, 뉴클레아제-기능부재 Cas9 단백질 및 전사 조절 단백질 또는 도메인이 DNA에 결합하고 표적 핵산의 발현을 조절한다는 정도로 통상의 기술자에 의해 이해된다. 특정의 추가의 측면에 따르면, 세포 내로 도입된 외래 핵산은 가이드 RNA 또는 가이드 RNA들 및 Cas9 단백질 닉카제를 코딩한다. 함께, 가이드 RNA 및 Cas9 단백질 닉카제는 공동-국재화 복합체로서 지칭되며, 상기 용어는 가이드 RNA 및 Cas9 단백질 닉카제가 DNA에 결합하고 표적 핵산을 닉킹한다는 정도로 통상의 기술자에 의해 이해된다.
본 개시내용에 따른 세포는 외래 핵산이 본원에 기재된 바와 같이 도입되고 발현될 수 있는 임의의 세포를 포함한다. 본원에 기재된 본 개시내용의 기본 개념은 세포 유형에 제한되지 않는 것으로 이해되어야 한다. 본 개시내용에 따른 세포는 진핵 세포, 원핵 세포, 동물 세포, 식물 세포, 진균 세포, 고세균 세포, 유박테리아 세포 등을 포함한다. 세포는 진핵 세포, 예컨대 효모 세포, 식물 세포 및 동물 세포를 포함한다. 특정한 세포는 포유동물 세포를 포함한다. 또한, 세포는 표적 핵산을 조절하는데 유익하거나 바람직한 임의의 것을 포함한다. 이러한 세포는 질환 또는 유해 상태를 유발하는 특정한 단백질의 발현이 결핍된 것들을 포함할 수 있다. 이러한 질환 또는 유해 상태는 통상의 기술자에게 용이하게 공지되어 있다. 본 개시내용에 따르면, 특정한 단백질의 발현에 원인이 되는 핵산은, 표적 핵산 및 특정한 단백질의 상응하는 발현의 상향조절이 일어나도록 본원에 기재된 방법 및 전사 활성인자에 의해 표적화될 수 있다. 이러한 방식으로, 본원에 기재된 방법은 치유적 치료를 제공한다.
표적 핵산은, 본원에 기재된 바와 같은 공동-국재화 복합체가 조절 또는 닉킹에 유용할 수 있는 임의의 핵산 서열을 포함한다. 표적 핵산은 유전자를 포함한다. 본 개시내용의 목적을 위해, DNA, 예컨대 이중 가닥 DNA는 표적 핵산을 포함할 수 있고, 공동-국재화 복합체는 표적 핵산에서 또는 그에 인접하여 또는 그 부근에서 공동-국재화 복합체가 표적 핵산에 대해 바람직한 효과를 가질 수 있는 방식으로 DNA에 결합할 수 있거나, 또는 그와 달리 공동-국재화될 수 있다. 이러한 표적 핵산은 내인성 (또는 자연 발생) 핵산 및 외인성 (또는 외래) 핵산을 포함할 수 있다. 본 개시내용을 기초로 하여 통상의 기술자는 표적 핵산을 포함하는 DNA에 공동-국재화되는 가이드 RNA 및 Cas9 단백질을 용이하게 확인 또는 설계할 수 있을 것이다. 통상의 기술자는 또한, 마찬가지로 표적 핵산을 포함하는 DNA에 공동-국재화되는 전사 조절 단백질 또는 도메인을 확인할 수 있을 것이다. DNA는 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA를 포함한다.
외래 핵산 (즉, 세포의 천연 핵산 조성물의 부분이 아닌 것들)이, 이러한 도입에 대해 통상의 기술자에게 공지된 임의의 방법을 이용하여 세포 내로 도입될 수 있다. 이러한 방법은 형질감염, 형질도입, 바이러스 형질도입, 미세주사, 리포펙션, 뉴클레오펙션, 나노입자 포격, 형질전환, 접합 등을 포함한다. 통상의 기술자는 용이하게 확인가능한 문헌 공급원을 이용하여 이러한 방법을 용이하게 이해하고 적합화할 것이다.
전사 활성인자인 전사 조절 단백질 또는 도메인은 VP16 및 VP64, 및 본 개시내용을 기초로 하여 통상의 기술자에 의해 용이하게 확인가능한 다른 것들을 포함한다.
질환 및 유해 상태는 특정한 단백질의 발현의 비정상적 손실을 특징으로 하는 것들이다. 이러한 질환 또는 유해 상태는 특정한 단백질의 상향조절로 치료될 수 있다. 따라서, 본원에 기재된 바와 같은 공동-국재화 복합체가 표적 핵산을 포함하는 DNA에 회합 또는 달리 결합되고, 공동-국재화 복합체의 전사 활성인자가 표적 핵산의 발현을 상향조절하는 것인, 질환 또는 유해 상태를 치료하는 방법이 제공된다. 예를 들어, PRDM16 및 갈색 지방 분화를 촉진하고 대사 섭취를 증가시키는 다른 유전자의 상향조절이 대사 증후군 또는 비만을 치료하는데 사용될 수 있다. 항염증 유전자의 활성화는 자가면역 및 심혈관 질환에 유용하다. 종양 억제 유전자의 활성화는 암의 치료에 유용하다. 통상의 기술자는 본 개시내용을 기초로 하여 이러한 질환 및 유해 상태를 용이하게 확인할 것이다.
하기 실시예는 본 개시내용을 대표하는 것으로서 제시된다. 이들 실시양태 및 다른 등가의 실시양태가 본 개시내용, 도면 및 첨부된 청구범위의 관점에서 명백할 것이기 때문에, 이들 실시예는 본 개시내용의 범위를 제한하는 것으로 해석되어서는 안된다.
실시예 I
Cas9 돌연변이체
기지의 구조를 갖는 Cas9에 상동성인 서열을 검색하여, 그의 RuvC 및 HNH 도메인의 본래의 활성을 제거할 수 있는 Cas9에서의 후보 돌연변이를 확인하였다. HHpred (www.toolkit.tuebingen.mpg.de/hhpred)를 이용하여, Cas9의 전체 서열을 전체 단백질 데이터 뱅크(Protein Data Bank) (January 2013)와 대조하여 조회하였다. 다시, Cas9의 HNH 도메인에 대해 유의한 서열 상동성을 갖는 2종의 상이한 HNH 엔도뉴클레아제인 PacI 및 추정 엔도뉴클레아제 (각각 PDB ID: 3M7K 및 4H9D)를 검색하였다. 이들 단백질을, 마그네슘 이온 배위에 관여하는 잔기를 찾기 위해 조사하였다. 이어서, 상응하는 잔기를 Cas9에 대한 서열 정렬에서 확인하였다. Cas9의 동일한 아미노산 유형에 대해 정렬된 각각의 구조 내에서 2개의 Mg-배위 측쇄가 확인되었다. 이들은 3M7K D92 및 N113, 및 4H9D D53 및 N77이다. 이들 잔기는 Cas9 D839 및 N863에 상응하였다. 또한, PacI 잔기 D92 및 N113의 알라닌으로의 돌연변이가 뉴클레아제를 촉매작용이 결여되도록 만든다고 보고되었다. 이러한 분석에 기초하여 Cas9 돌연변이 D839A 및 N863A를 만들었다. 또한, HHpred는 Cas9와 써무스 써모필루스(Thermus thermophilus) RuvC (PDB ID: 4EP4)의 N-말단 사이의 상동성을 예측하기도 한다. 이러한 서열 정렬은 Cas9에서 RuvC 도메인의 기능을 제거한 이전의 보고된 돌연변이 D10A를 포함한다. 이것이 적절한 돌연변이인지 확인하기 위해, 금속 결합 잔기를 이전과 같이 결정하였다. 4EP4에서, D7은 마그네슘 이온의 배위를 돕는다. 이 위치가 Cas9 D10에 상응하는 서열 상동성을 가지므로, 이러한 돌연변이가 금속 결합의 제거를 도와, Cas9 RuvC 도메인으로부터의 촉매 활성을 제거한다는 것을 확인하였다.
실시예 II
플라스미드 구축
Cas9 돌연변이체를 퀵체인지(Quikchange) 키트 (애질런트 테크놀로지스(Agilent technologies))를 사용하여 제조하였다. 표적 gRNA 발현 구축물은 (1) IDT로부터 개별 지블록(gBlock)으로 직접 주문하여 pCR-BluntII-TOPO 벡터 (인비트로젠(Invitrogen))에 클로닝한 것이거나; 또는 (2) 진위즈(Genewiz)에 의해 주문 합성된 것이거나; 또는 (3) 올리고뉴클레오티드의 깁슨(Gibson) 어셈블리를 사용하여 gRNA 클로닝 벡터 (플라스미드 #41824)에 어셈블리된 것이다. 붕괴된 GFP가 수반되는 HR 리포터 검정에 사용하기 위한 벡터를, 정지 코돈을 보유하는 GFP 서열과 애드진(Addgene)으로부터의 EGIP 렌티벡터 (플라스미드 #26777)에 어셈블리된 적절한 단편의 융합 PCR 어셈블리에 의해 구축하였다. 이어서, 이러한 렌티벡터를 사용하여 GFP 리포터 안정한 라인을 확립하였다. 이 연구에서 사용되는 TALEN은 표준 프로토콜을 이용하여 구축하였다. 본원에 그 전문이 참조로 포함된 문헌 [Sanjana et al., Nature Protocols 7, 171-192 (2012)]을 참조한다. 표준 PCR 융합 프로토콜 절차를 이용하여 Cas9N과 MS2 VP64를 융합시켰다. OCT4 및 REX1에 대한 프로모터 루시페라제 구축물 (플라스미드 #17221 및 플라스미드 #17222)을 애드진으로부터 입수하였다.
실시예 III
세포 배양 및 형질감염
HEK 293T 세포를 10% 소 태아 혈청 (FBS, 인비트로젠), 페니실린/스트렙토마이신 (pen/strep, 인비트로젠), 및 비-필수 아미노산 (NEAA, 인비트로젠)이 보충된 둘베코 변형 이글 배지 (DMEM, 인비트로젠) 고 글루코스에서 배양하였다. 세포를 가습 인큐베이터에서 37℃ 및 5% CO2에서 유지하였다.
뉴클레아제 검정에 수반되는 형질감염은 다음과 같다: 리포펙타민(Lipofectamine) 2000을 제조업체의 프로토콜에 따라 사용하여 0.4 x 106개 세포를 2μg Cas9 플라스미드, 2μg gRNA 및/또는 2μg DNA 공여자 플라스미드로 형질감염시켰다. 형질감염시키고 3일 후에 세포를 수거하여, FACS에 의해 분석하거나, 또는 게놈 절단물의 직접 검정을 위해 DNAeasy 키트 (퀴아젠(Qiagen))를 사용하여 ~1 X 106개 세포의 게놈 DNA를 추출하였다. 이러한 경우, 세포로부터 유래된 게놈 DNA로 PCR을 수행하여 표적화 영역을 증폭시키고, 앰플리콘을 MiSeq 퍼스널 시퀀서(MiSeq Personal Sequencer) (일루미나(Illumina))에 의해 유효범위 >200,000개 판독물로 심층 서열분석하였다. 이러한 서열분석 데이터를 분석하여 NHEJ 효율을 추정하였다.
전사 활성화 검정에 수반되는 형질감염의 경우: 0.4 x 106개 세포를 (1) 2μg Cas9N-VP64 플라스미드, 2μg gRNA 및/또는 0.25μg의 리포터 구축물; 또는 (2) 2μg Cas9N 플라스미드, 2μg MS2-VP64, 2μg gRNA-2XMS2압타머 및/또는 0.25μg의 리포터 구축물로 형질감염시켰다. 형질감염시키고 24-48시간 후에 세포를 수거하여, FACS 또는 면역형광 방법을 이용하여 검정하거나, 또는 그의 전체 RNA를 추출하고, 이후에 RT-PCR에 의해 분석하였다. 여기서 OCT4 및 REX1에 대한 표준 택맨(taqman) 프로브 (인비트로젠)가 사용되었으며, 각 샘플을 GAPDH에 대해 정규화하였다.
Cas9-gRNA 복합체 및 TALE의 특이성 프로파일에 대한 전사 활성화 검정에 수반되는 형질감염의 경우: 0.4 x 106개 세포를 (1) 2μg Cas9N-VP64 플라스미드, 2μg gRNA 및 0.25μg의 리포터 라이브러리; 또는 (2) 2μg TALE-TF 플라스미드 및 0.25μg의 리포터 라이브러리; 또는 (3) 2μg 대조-TF 플라스미드 및 0.25μg의 리포터 라이브러리로 형질감염시켰다. 형질감염시키고 24시간 후에 (리포터의 자극이 포화 모드가 되는 것을 피하기 위함) 세포를 수거하였다. RNAeasy-플러스 키트 (퀴아젠)를 사용하여 전체 RNA를 추출하고, 슈퍼스크립트(Superscript)-III (인비트로젠)을 사용하여 표준 RT-pcr을 수행하였다. 전사체-태그의 표적화된 pcr 증폭에 의해 차세대 서열분석을 위한 라이브러리가 생성되었다.
실시예 IV
Cas9-TF 및 TALE-TF 리포터 발현 수준의 계산을 위한 전산 및 서열 분석
이러한 과정을 위한 고수준 논리 흐름도가 도 8a에 도시되고, 추가의 세부사항이 여기에 제시된다. 구축물 라이브러리 조성에 대한 세부사항은, 도 8a (레벨 1) 및 8b를 참조한다.
서열분석: Cas9 실험의 경우, 구축물 라이브러리 (도 8a, 레벨 3, 좌측) 및 리포터 유전자 cDNA 서열 (도 8a, 레벨 3, 우측)을 일루미나 MiSeq 상에서 150bp 중첩 쌍형성된 말단 판독물로서 수득하고, TALE 실험의 경우, 상응하는 서열을 일루미나 HiSeq 상에서 51bp 비-중첩 쌍형성된 말단 판독물로서 수득하였다.
구축물 라이브러리 서열 처리: 정렬: Cas9 실험의 경우, 노보얼라인(novoalign) V2.07.17 (www.novocraft.com/main/index/php)을 이용하여, 8bp 라이브러리 바코드의 쌍에 의해 플랭킹된 234bp의 구축물에 상응하는 250bp 참조 서열의 세트에 대해 쌍형성된 판독물을 정렬시켰다 (도 8a, 제3 레벨, 좌측 참조). 노보얼라인에 제공된 참조 서열에는, 구축물 라이브러리 바코드가 명확하게 제시되면서 23bp 축중성 Cas9 결합 부위 영역 및 24bp 축중성 전사체 태그 영역 (도 8a, 제1 레벨 참조)이 N으로 명시되어 있다. TALE 실험의 경우, 참조 서열의 길이가 203bp이고, 축중성 결합 부위 영역의 길이가 18bp 대 23bp인 것을 제외하고 동일한 절차를 이용하였다. 유효성 검사: 각각의 판독물 쌍에 대한 좌측 및 우측 판독물이 참조 서열에 대해 개별적으로 정렬되도록 구성된 파일에 대한 노보얼라인 결과. 둘 모두가 참조 서열에 대해 특유하게 정렬된 판독물 쌍만이 추가의 유효성 조건에 적용되었으며, 이러한 모든 조건을 통과한 판독물 쌍만을 남겨두었다. 유효성 조건은 다음을 포함하였다:
(i) 2개의 구축물 라이브러리 바코드는 각각 참조 서열 바코드에 대해 적어도 4군데 위치에서 정렬되어야 하고, 2개의 바코드는 동일한 구축물 라이브러리에 대한 바코드 쌍에 대해 정렬되어야 한다.
(ii) 참조 서열의 N 영역에 대해 정렬된 모든 염기는 노보얼라인에 의해 A, C, G 또는 T로 지명되어야 한다. Cas9 실험 뿐만 아니라 TALE 실험에서도 좌측 및 우측 판독물이 참조 N 영역에서 중첩되지 않았으며, 이에 따라 이러한 N 염기가 노보얼라인에 의해 불분명하게 지명될 가능성이 발생하지 않았다는 점을 주목한다. (iii) 마찬가지로, 노보얼라인-지명된 삽입부 또는 결실부가 이들 영역에서 나타나지 않아야 한다. (iv) (이러한 무작위 서열은 오직 A, C, 및 G로부터 생성되므로) T가 전사체 태그 영역에서 나타나지 않아야 한다. 이러한 조건 중 어느 하나를 위반하는 판독물 쌍을 불합격 판독물 쌍 파일에 수집하였다. 이러한 유효성 검사를 주문형 perl 스크립트를 사용하여 시행하였다.
유도된 샘플 리포터 유전자 cDNA 서열 처리: 정렬: 먼저 SeqPrep (www.github.com/jstjohn/SeqPrep로부터 다운로드됨)을 사용하여 중첩 판독물 쌍을 79bp 공통 절편에 병합시킨 후에, 노보얼라인 (상기 버전)을 사용하여 이들 79bp 공통 절편들을, (구축물 라이브러리 서열분석의 경우) 샘플 바코드가 명확하게 제시되면서 24bp 축중성 전사체 태그가 N으로 명시된 참조 서열의 세트에 대해 쌍형성되지 않은 단일 판독물로서 정렬시켰다 (도 8a, 제3 레벨, 우측 참조). TALE 및 Cas9 cDNA 서열 영역은 둘 다 8bp 샘플 바코드 서열의 쌍에 의해 플랭킹된 cDNA의 동일한 63bp 영역에 상응하였다. 유효성 검사: 하기를 제외한 동일한 조건이 구축물 라이브러리 서열분석에 적용되었다 (상기 참조): (a) 여기서, 판독물 쌍의 이전의 SeqPrep 병합으로 인해, 유효성 처리는 판독물 쌍 내의 두 판독물의 특유한 정렬을 필터링하는 것이 아니라 오직 병합된 판독물의 특유한 정렬을 필터링해야 한다. (b) 유효성 처리가 오직 참조 서열의 전사체 태그 영역에만 적용되고, 별도의 결합 부위 영역에는 적용되지 않도록, 오직 전사체 태그만이 cDNA 서열 판독물에서 나타나야 한다.
결합 부위 대 전사체 태그 회합의 표의 어셈블리: 주문형 perl을 사용하여, 유효 구축물 라이브러리 서열로부터 상기 표를 작성하였다 (도 8a, 제4 레벨, 좌측). A, C, 및 G 염기로 구성된 24bp 태그 서열은 구축물 라이브러리의 전반에 걸쳐 본질적으로 특유해야 하지만 (공유 확률 = ~2.8e-11), 결합 부위 대 태그 회합의 초기 분석에서 태그 서열의 무시할 수 없는 분획이 실제로 다중 결합 서열에 의해 공유되는 것으로 밝혀졌으며, 이는 아마도 주로 결합 서열에서의 서열 오류, 또는 구축물 라이브러리를 생성하는데 사용되는 올리고에서의 올리고 합성 오류의 조합에 의해 유발된 것일 것이다. 태그 공유에 더하여, 유효 판독물 쌍에서 결합 부위와 회합되어 발견되는 태그는 바코드 미스매치로 인해 이들이 어느 구축물 라이브러리로부터 유래된 것인지 분명하지 않은 경우에 구축물 라이브러리 판독물 쌍 불합격 파일에서 발견될 수도 있을 것이다. 마지막으로, 태그 서열은 그 자체가 서열 오류를 함유할 수 있다. 이러한 오류의 근원을 처리하기 위해, 태그를 3가지 속성으로 분류하였다: (i) 안전 대 불안, 여기서 불안은 태그가 구축물 라이브러리 불합격 판독물 쌍 파일에서 발견될 수 있음을 의미한다; 공유 대 비공유, 여기서 공유는 태그가 다중 결합 부위 서열과 회합되어 발견되었다는 것을 의미한다; 및 2+ 대 1-유일, 여기서 2+는 태그가 유효 구축물 라이브러리 서열 가운데서 적어도 2회 나타나고, 이에 따라 서열 오류를 함유할 가능성이 더 작은 것으로 간주됨을 의미한다. 이러한 3가지 기준을 조합하여, 각 결합 부위와 회합된 태그의 8가지 클래스를 만들었다: 가장 많이 안전한 (그러나 가장 덜 풍부한) 클래스는 오직 안전, 비공유, 2+ 태그만을 포함하고, 가장 덜 안전한 (그러나 가장 많이 풍부한) 클래스는 안전성, 공유여부, 또는 발생 횟수에 관계없이 모든 태그를 포함한다.
정규화된 발현 수준의 계산: 주문형 perl 코드를 사용하여 도 8a, 레벨 5-6에 지시된 단계를 시행하였다. 먼저, 각각의 유도된 샘플에서 수득한 태그 수를, 구축물 라이브러리에 대하여 이전에 계산된 결합 부위 대 전사체 태그 표를 사용하여 각 결합 부위에 대해 집계하였다 (도 8c 참조). 이어서, 각 샘플에 대하여, 각 결합 부위에 대해 집계된 태그 수를 양성 대조군 샘플에 대해 집계된 태그 수로 나누어, 정규화된 발현 수준을 생성하였다. 이러한 계산과 관련된 추가의 고려사항은 다음을 포함한다:
1. 각 샘플에서, 유효성-검사된 cDNA 유전자 서열 가운데서 결합 부위 대 전사체 태그 회합 표에서 찾아볼 수 없었던 "신규" 태그의 하위세트가 발견되었다. 이러한 태그는 후속 계산에서 무시하였다.
2. 결합 부위 대 전사체 태그 회합 표에 상기 기재된 태그의 8개 클래스 각각에 대하여 상기 기재된 태그 수의 집계를 수행하였다. 구축물 라이브러리 내의 결합 부위가 중앙 서열에 유사한 서열은 빈번하게 생성하지만, 증가하는 개수의 미스매치를 갖는 서열은 점점 더 드물게 생성하는 편재성을 나타내기 때문에, 소수의 미스매치를 갖는 결합 부위는 일반적으로 태그의 큰 수로 집계되는 한편, 보다 많은 미스매치를 갖는 결합 부위는 보다 적은 수로 집계된다. 따라서, 일반적으로는 가장 안전한 태그 클래스의 사용이 바람직할 수 있으나, 2개 이상의 미스매치를 갖는 결합 부위의 평가는 결합 부위당 적은 수의 태그에 기초할 수 있을 것이며, 이로 인해 안전한 수 및 비는, 태그 그 자체는 보다 더 신뢰할만하더라도, 통계적으로 보다 덜 신뢰할만하게 되었다. 이러한 경우에, 모든 태그가 사용되었다. 이러한 고려사항은, n개 미스매칭 위치에 대해 별도로 집계된 태그 수의 개수가 미스매칭 위치의 조합의 개수 (= )에 따라 상승하여, n에 따라 현저하게 증가하고; 따라서 상이한 개수(n)의 미스매치에 대해 집계된 태그 수의 평균 (도 2b, 2e, 및 도 9a, 10b에 제시됨)은 n≥2에 대해 집계된 태그 수의 통계적으로 매우 큰 세트에 기초한다는 사실에 의거하여 약간 보정된다.
3. 마지막으로, TALE 구축물 라이브러리에 구축된 결합 부위는 18bp였고, 태그 회합은 이들 18bp 서열에 기초하여 할당되었으나, 일부 실험은 18bp 구축물 결합 부위 영역 내의 중앙 14bp 또는 10bp 영역에 결합하도록 프로그램화된 TALE를 사용하여 수행하였다. 이러한 TALE에 대한 발현 수준의 계산에서, 태그를 회합 표 내의 18bp 결합 부위의 상응하는 영역에 기초하여 결합 부위에 집합시켜, 이러한 영역 외부의 결합 부위 미스매치는 무시하였다.
실시예 V
벡터 및 균주 구축
에스. 써모필루스, 엔. 메틴기티디스, 및 티. 덴티콜라로부터의 Cas9 서열을, NCBI 및 JCAT (www.jcat.de)를 이용하여 최적화되고27, 계층적 중복 PCR 및 등온 어셈블리에 의해 연결된 이. 콜라이 500 bp 지블록 (인테그레이티드 DNA 테크놀로지스(Integrated DNA Technologies), 아이오와주 코랄빌)에서 DNA 합성 및 발현이 용이하도록 변형된 인간 코돈으로부터 입수하였다24. 생성된 전장 생성물을 박테리아 및 인간 발현 벡터에 서브클로닝하였다. 이들 주형으로부터 표준 방법에 의해 뉴클레아제-기능부재 Cas9 카세트 (NM: D16A D587A H588A N611A, SP: D10A D839A H840A N863A, ST1: D9A D598A H599A N622A, TD: D13A D878A H879A N902A)를 구축하였다.
실시예 VI
박테리아 플라스미드
Cas9를 박테리아에서 cloDF13/aadA 플라스미드 백본으로부터 중간-강도 proC 구성적 프로모터를 사용하여 발현시켰다. 천연 박테리아 유전자좌로부터의 프로모터 및 종결인자를 포함하는 tracrRNA 카세트를, 강건한 tracrRNA 생산을 위해 지블록으로서 합성하고, 각 벡터에서 Cas9 코딩 서열의 하류에 삽입하였다. tracrRNA 카세트가 프로모터를 반대 배향으로 추가로 함유할 것으로 예상된 경우에, 람다 t1 종결인자를 삽입하여 cas9 전사 방해를 방지하였다. 박테리아 표적화 플라스미드는 강한 J23100 프로모터에 이어, SP를 사용하여 기능하는 것으로 이전에 결정된 2가지의 20 염기 쌍 스페이서 서열 중 하나를 갖는 p15A/cat 백본을 기반으로 하였다 (도 13d). 스페이서 서열의 바로 뒤에 도 12a에 도시된 3가지 36 염기 쌍 반복 서열 중 하나가 존재하였다. YFP 리포터 벡터는 GFP를 구동하는 pR 프로모터, EYFP 코딩 서열 바로 앞의 T7 g10 RBS, 및 5' UTR에서 비-주형 가닥에 삽입된 프로토스페이서 1 및 AAAAGATT PAM을 갖는 pSC101/kan 백본을 기반으로 하였다. 박테리아에서의 직교성 시험을 위한 기질 플라스미드는 라이브러리 플라스미드 (하기 참조)와 동일하였으나, 하기 PAM을 갖는다: GAAGGGTT (NM), GGGAGGTT (SP), GAAGAATT (ST1), AAAAAGGG (TD).
실시예 VII
포유동물 벡터
포유동물 Cas9 발현 벡터는 C-말단 SV40 NLS를 갖는 pcDNA3.3-TOPO를 기반으로 하였다. crRNA 반복부를 tracrRNA와 정렬시키고, Cas9 상호작용을 위한 안정한 줄기가 남아있도록 5' crRNA 반복부를 3' tracrRNA에 융합시켜 각 Cas9에 대한 sgRNA를 설계하였다25. 455 bp 지블록을 pCR-BluntII-TOPO 벡터 백본에 클로닝하여 sgRNA 발현 구축물을 제조하였다. 스페이서는 이전 작업에서 사용된 것과 동일하였다8. 파괴된-GFP HR 리포터 검정을 위한 렌티벡터를 이전에 기재된 것으로부터 각 Cas9에 적절한 PAM 서열을 포함하도록 변형시키고, 이를 사용하여 안정한 GFP 리포터 라인을 확립하였다.
VP64 활성인자에 융합된 뉴클레아제-기능부재 Cas9 단백질 및 최소 프로모터에 의해 구동된 td토마토를 보유하는 상응하는 리포터 구축물로 이루어진 RNA-가이드된 전사 활성인자를 구축하였다.
실시예 VIII
라이브러리 구축 및 형질전환
2개의 프로토스페이서 서열 중 하나에 이어 8개 랜덤 염기를 코딩하는 프라이머 (IDT, 아이오와주 코랄빌)를 사용하여 pZE21 벡터 (익스프레스시스(ExpressSys), 독일 룰츠하임)를 증폭시켜 프로토스페이서 라이브러리를 구축하고, 표준 등온 방법에 의해 어셈블리하였다24. 라이브러리 어셈블리를 우선 NEB터보(NEBTurbo) 세포 (뉴잉글랜드 바이오랩스(New England Biolabs), 매사추세츠주 입스위치)에 형질전환시켜, 희석 플레이팅에 따라 라이브러리당 >1E8개 클론을 수득하고, 미디프렙(Midiprep) (퀴아젠(Qiagen), 캘리포니아주 칼스배드)에 의해 정제하였다. Cas9 발현 플라스미드 (DS-NMcas, DS-ST1cas, 또는 DS-TDcas) 및 표적화 플라스미드 (PM-NM!sp1, PM-NM!sp2, PM-ST1!sp1, PM-ST1!sp2, PM-TD!sp1, 또는 PM-TD!sp2)를 함유하는 전기적격 NEB터보 세포를 200 ng의 각 라이브러리로 형질전환시키고, 2시간 동안 37℃에서 회수한 후에 스펙티노마이신 (50 μg/mL), 클로람페니콜 (30 μg/mL), 및 카나마이신 (50 μg/mL)을 함유하는 배지로 희석하였다. 연속 희석물을 플레이팅하여 형질전환후 라이브러리 크기를 추정하였다. 모든 라이브러리는, 65,536개 랜덤 PAM 서열의 완전한 커버리지를 나타내는, ~1E7개 초과의 클론을 포함한다.
실시예 IX
고처리량 서열분석
라이브러리 DNA를 항생제 선택 12시간 후에 스핀 칼럼 (퀴아젠, 캘리포니아주 칼스배드)에 의해 수거하였다. 무손상 PAM을 바코드화된 프라이머 및 일루미나(Illumina) MiSeq 상에서 중첩 25bp 쌍형성된-말단 판독물로부터 수득한 서열을 사용하여 증폭시켰다. MiSeq는 18,411,704개 총 판독물 또는 9,205,852개 쌍형성된-말단 판독물 (각 라이브러리에 대한 평균 품질 스코어 >34)을 생성한다. 쌍형성된 말단 판독물을 병합하고, 서로, 그의 프로토스페이서, 및 플라스미드 백본에 대한 정확한 정렬을 위해 필터링하였다. 나머지 7,652,454개 병합된 필터링 판독물을 트리밍하여 플라스미드 백본 및 프로토스페이서 서열을 제거한 후에, 이를 사용하여 각 PAM 라이브러리에 대한 위치 중량 매트릭스를 생성하였다. 각 라이브러리 조합은 적어도 450,000개 고품질 판독물을 수용하였다.
실시예 X
서열 프로세싱
각 후보 PAM에 대한 고갈 배수를 계산하기 위해, 본 발명자들은 데이터를 필터링하기 위한 2개의 스크립트를 사용하였다. 패턴프로프(patternProp) (usage: python patternProp.py [PAM] file.fastq)는 지시된 PAM의 각 1-염기 유도체에 매칭되는 판독물의 수 및 분율을 반환한다. 패턴프로프3은 라이브러리에서의 판독물의 총 수에 대한 각 1-염기 유도체에 매칭되는 판독물의 분율을 반환한다. 각 계산된 PAM의 고갈 비를 상술한 스프레드시트를 사용하여 모든 1-염기 유도체 사이의 최소 고갈 배수를 확인하고, 이에 따라 PAM을 분류하였다.
실시예 XI
박테리아에서의 억제 및 직교성 검정
Cas9-매개 억제를, NM 발현 플라스미드 및 YFP 리포터 플라스미드를 각각의 2개의 상응하는 표적화 플라스미드와 형질전환시켜 검정하였다. 매칭 또는 미스매치된 스페이서 및 프로토스페이서를 갖는 콜로니를 피킹하여 96-웰 플레이트에서 성장시켰다. 495/528 nm에서의 형광 및 600nm에서의 흡광도를 시너지 네오(Synergy Neo) 마이크로플레이트 판독기 (바이오텍(BioTek), 버몬트주 위누스키)를 이용하여 측정하였다.
Cas9 및 표적화 플라스미드의 모든 조합을 보유하는 전기적격 NEB터보 세포를 제조하고, 이들을 각 Cas9에 대해 적절한 PAM을 보유하는 매치된 또는 미스매치된 기질 플라스미드로 형질전환시켜, 직교성 시험을 수행하였다. 전형적으로 Cas9 또는 crRNA의 돌연변이성 불활성화로 인해 발생하는, 정확한 Cas9 + 표적화 + 매칭 프로토스페이서 조합의 경우에라도 콜로니가 적어도 일부 나타나도록, 충분한 세포 및 희석액을 플레이팅하였다. 콜로니를 계수하고, 각각에 대해 고갈 배수를 계산하였다.
실시예 XII
세포 배양 및 형질감염
HEK 293T 세포를 10% 소 태아 혈청 (FBS, 인비트로젠), 페니실린/스트렙토마이신 (pen/strep, 인비트로젠), 및 비-필수 아미노산 (NEAA, 인비트로젠)이 보충된 둘베코 변형 이글 배지 (DMEM, 인비트로젠) 고 글루코스에서 배양하였다. 세포를 가습 인큐베이터에서 37℃ 및 5% CO2에서 유지하였다.
뉴클레아제 검정에 수반되는 형질감염은 다음과 같다: 리포펙타민(Lipofectamine) 2000을 제조업체의 프로토콜에 따라 사용하여 0.4x106개 세포를 2μg Cas9 플라스미드, 2μg gRNA 및/또는 2μg DNA 공여자 플라스미드로 형질감염시켰다. 형질감염시키고 3일 후에 세포를 수거하여, FACS에 의해 분석하거나, 또는 게놈 절단물의 직접 검정을 위해 DNAeasy 키트 (퀴아젠)를 사용하여 ~1 X 106개 세포의 게놈 DNA를 추출하였다.
전사 활성화 검정에 수반되는 형질감염의 경우: 0.4x106개 세포를 2μg Cas9N-VP64 플라스미드, 2μg gRNA 및/또는 0.25μg 리포터 구축물로 형질감염시켰다. 형질감염시키고 24-48시간 후에 세포를 수거하여, FACS 또는 면역형광 방법을 이용하여 검정하거나, 또는 그의 전체 RNA를 추출하고, 이후에 RT-PCR에 의해 분석하였다.
실시예 XIII
추정적 직교 Cas9 단백질 선택
Cas9 RNA 결합 및 sgRNA 특이성은 주로 crRNA 내의 36 염기 쌍 반복 서열에 의해 결정된다. 기지의 Cas9 유전자를 그의 인접한 CRISPR 유전자좌에서 고분기형 반복부에 대해 조사하였다. 유전자좌가 서로 및 SP 및 ST1의 것과 적어도 13개 뉴클레오티드가 상이한 반복부를 갖는, 스트렙토코쿠스 피오게네스 및 스트렙토코쿠스 써모필루스 CRISPR1 Cas9 단백질 (SP 및 ST1)6,22 및 네이세리아 메닌기티디스 (NM) 및 트레포네마 덴티콜라 (TD)로부터의 2개의 추가의 Cas9 단백질을 선택하였다 (도 12a).
실시예 XIV
PAM 특성화
Cas9 단백질은 관심 Cas9에 특이적인 3' PAM 서열에 의해 플랭킹된 표적 dsDNA 서열만을 표적화할 것이다. 4개의 Cas9 변이체 중에서, 오직 SP만이 실험적으로 특성화된 PAM을 갖는 한편, ST1 PAM, 및 매우 최근에는 NM PAM가 생물정보학에 의해 추정되었다. SP는 NGG의 짧은 PAM로 인해 용이하게 표적화가능한 반면10, ST1 및 NM 표적화는 각각 NNAGAAW 및 NNNNGATT의 PAM으로 인해 덜 용이하게 표적화가능하다22,23. 생물정보학적 접근법은 스페이서 획득 단계로 인해 이펙터 절단이 경험적으로 필수적인, Cas9 활성을 위한 보다 엄격한 PAM 요건을 추론하였다. PAM 서열이 탈출 파지에서의 돌연변이의 가장 빈번한 표적이기 때문에, 획득된 PAM에서의 중복성은 저항성을 배제할 것이다. 고처리량 서열분석을 이용하여 박테리아에서 이들 서열을 포괄적으로 특성화하기 위한 라이브러리-기반 접근법을 채택하였다.
ST1, NM, 및 TD를 코딩하는 유전자를 합성 단편으로부터 어셈블리하고, 그의 연관 tracrRNA와 함께 박테리아 발현 플라스미드에 클로닝하였다 (도 12b). 6개의 표적화 플라스미드로의 혼입을 위한 2개의 SP-기능적 스페이서를 선택하였다. 2개의 스페이서 중 1개에 이어 Cas9 단백질에 특이적인 36 염기-쌍 반복 서열을 갖는 각 표적화 플라스미드는 구성적으로 발현된 crRNA를 코딩한다 (도 12b). 모든 가능한 8 염기 쌍 PAM 서열에 이어 2개의 프로토스페이서 중 1개를 함유하는 플라스미드 라이브러리를 PCR 및 어셈블리에 의해 생성하였다24. Cas9 단백질, 스페이서, 및 프로토스페이서의 총 12개 조합에 대한 각 라이브러리를 Cas9 발현 및 표적화 플라스미드를 갖는 이. 콜라이 세포에 전기천공에 의해 도입하였다. 생존 라이브러리 플라스미드를 바코드화된 PCR에 의해 선택적으로 증폭시키고 MiSeq에 의해 서열분석하여, 전혀 고갈되지 않는 비기능적 PAM과 (도 12d-12e) 스페이서 및 프로토스페이서가 매칭되는 경우에만 고갈되는 기능적 PAM 서열 (도 12c-12d)을 구별하였다. 모든 위치에서의 각 뉴클레오티드의 중요성을 그래프로 도시하기 위해, 매치된 스페이서-프로토스페이서 쌍의 각 염기의 상응하는 미스매치된 경우에 대한 로그 상대 빈도를 플롯팅하였다 (도 13a-13f).
NM 및 ST1은 초기의 생물학적 예측보다 덜 엄격하고 더 복합한 PAM을 인식하며, 이는 스페이서 획득을 위한 요건이 이펙터 절단을 위한 것보다 더 엄격함을 시사한다. NM은 주로 프로토스페이서의 3' 말단으로부터 5번째 염기 위치에 있는 단일 G 뉴클레오티드를 필요로 하는 반면 (도 13a), ST1 및 TD는 각각 적어도 3개의 특이적 염기를 필요로 한다 (도 5b-c). 위치에 의한 분류 결과를 이용하여 각 프로토스페이서 라이브러리로부터의 임의의 PAM 서열의 고갈을 정량화하였다 (도 13d-13f). 3개의 효소는 모두 거의 모든 PAM에 대해 프로토스페이서 2를 프로토스페이서 1보다 효과적으로 절단하였으며, ST1는 대략 10배 차이를 나타내었다. 그러나, 또한 이러한 상호작용에서 상당한 PAM-의존성 변이가 존재하였다. 예를 들어, NM은 프로토스페이서 1 및 2를 TNNNGNNN에 매칭되는 서열로 이어지는 경우에 대략적으로 동등하게 절단하였으나, PAM가 ANNNGNNN에 매치되는 경우에는 프로토스페이서 2를 절단하는데 10배 더 활성이었다.
결과는 주어진 Cas9에 대한 단일 허용되는 PAM을 규정하는 것에 대한 어려움을 강조한다. 활성 수준이 프로토스페이서 서열에 좌우될 뿐만 아니라, 바람직하지 않은 PAM 염기의 특정 조합이 주요 염기 요건을 만족시킨 경우에라도 활성을 유의하게 감소시킬 수 있다. 본 발명자들은 처음에 보다 낮은-활성의 프로토스페이서 1이 평균 >100배 고갈되고, 고정된 1개의 추가 염기를 갖는 모든 유도체가 >50배 고갈되는 패턴의 PAM을 확인하였다 (표 1, 일반 텍스트). 이들 수준은 아마도 박테리아에서 표적에 대해 방어하기에는 충분할 것이나, 유해 돌연변이의 특정한 조합은 활성을 현저하게 감소시켰다. 예를 들어, NM은 NCCAGGTN에 매칭되는 서열을 단지 4배 고갈시켰다. 매칭 서열의 >500배 고갈 및 1-염기 유도체의 >200배 고갈을 필요로 하는 보다 엄격한 역치는 고친화도를 필요로 하는 응용에 대해 정의되었다 (표 1, 볼드체).
<표 1>
실시예 XV
박테리아에서의 전사 조절
SP의 뉴클레아제-기능부재 변이체는 표적화된 프로토스페이서 및 PAM의 위치에 의존성인 효능을 갖는 박테리아에서 표적화된 유전자를 억제하는 것으로 입증되었다18. NM의 PAM은 SP의 것보다 더 빈번하게 발생하기 때문에, 뉴클레아제-기능부재 버전도 유사하게 표적화된 억제가 가능하였다. RuvC 및 HNH 뉴클레아제 도메인의 촉매 잔기를 서열 상동성에 의해 확인하고 이를 불활성화시켜, 추정 뉴클레아제-기능부재 NM을 생성하였다. 적합한 리포터를 생성하기 위해, 프로토스페이서 1을 적절한 PAM과 함께 YFP 리포터 플라스미드의 5'UTR 내의 비-주형 가닥에 삽입하였다 (도 14a). 이들 구축물을 각각의 이전에 사용된 2개의 NM 표적화 플라스미드와 함께 이. 콜라이에 공동-형질감염시키고, 그의 비교 형광을 측정하였다. 매칭 스페이서 및 프로토스페이서를 갖는 세포는 상응하는 미스매치된 경우보다 ~22배 더 약한 형광을 나타내었다 (도 14b). 이러한 결과는 NM이 Cas9-매개 억제가 적용될 수 있는 내인성 유전자의 수를 실질적으로 증가시킴으로써, 박테리아에서의 전사를 제어하기 위해 용이하게 표적화되는 리프레서로서 기능할 수 있음을 시사한다.
실시예 XVI
박테리아에서의 직교성
Cas9 단백질의 세트를 그의 다른 crRNA 반복 서열에 대해 선택하였다. 이들이 실제로 직교성인지 검증하기 위해, 각 Cas9 발현 플라스미드를 스페이서 2를 함유하는 모두 4개의 표적화 플라스미드와 함께 공동-형질전환시켰다. 이들 세포를 프로토스페이서 1 또는 프로토스페이서 2 중 어느 하나 및 적합한 PAM을 함유하는 기질 플라스미드의 형질전환에 의해 시험감염시켰다. 플라스미드 고갈은 오직 각 Cas9가 그 자신의 crRNA와 쌍을 형성한 경우에만 관찰되었으며, 이는 모든 4개의 구축물이 박테리아에서 실제로 직교성이라는 것을 입증한다 (도 15).
실시예 XVII
인간 세포에서의 게놈 편집
이어서, 이들 Cas9 변이체를 사용하여 인간 세포를 조작하였다. 단일 가이드 RNA (sgRNA)는, 2개의 보다 작은 Cas9 오르토로그인 NM 및 ST1에 대해 상응하는 crRNA 및 tracrRNA로부터, crRNA와 tracrRNA 사이의 상보적 영역을 조사하고25, 2개의 서열을 스템-루프를 통해 SP에 대해 생성된 sgRNA의 것과 유사한 다양한 융합 접합부에서 융합시켜 구축하였다. 다중 연속 우라실이 발현 시스템에서 Pol III 종결을 유발하는 특정의 경우에, 다중 단일-염기 돌연변이체가 생성되었다. 말단절단은 유해한 것으로 알려져 있어, 항상 완전한 3' tracrRNA 서열이 포함되었다8. 모든 sgRNA를 293 세포에서 이전에 기재된 상동 재조합 검정을 이용하여 그의 상응하는 Cas9 단백질과 함께 활성에 대해 검정하였다8. 간략하게, GFP 코딩 서열에 정지 코돈을 코딩하는 인서트 및 기능적 PAM을 갖는 프로토스페이서 서열이 개재되어 있는 각 Cas9 단백질에 대해 게놈-통합된 비-형광 GFP 리포터 라인을 구축하였다. 리포터 라인을 Cas9 단백질을 코딩하는 발현 벡터 및 상응하는 sgRNA와 뉴클레아제-유도된 상동 재조합시에 형광을 복구시킬 수 있는 복구 공여자로 형질감염시켰다 (도 16a). ST1- 및 NM-매개 편집이 SP에 의해 유도된 것과 대등한 수준에서 관찰되었다. 5개 연속 우라실을 갖는 ST1 sgRNA가 효율적으로 기능하였으며, 이는 Pol III 종결이 활성을 손상시키기에 충분한 수준으로 일어나지 않았음을 시사한다. 전장 crRNA-tracrRNA 융합체는 모든 경우에 활성이었으며, 키메라 sgRNA 설계에 유용하다. NM 및 ST1은 둘 다 키메라 가이드 RNA를 사용하여 인간 세포에서 효율적인 유전자 편집이 가능하다.
실시예 XVIII
포유동물 세포에서의 Cas9 직교성
인간 세포에서 NM 및 ST1 활성에 고도로 효과적인 sgRNA가 발견되었으며, 3개의 단백질 중 어느 것도 다른 것의 sgRNA에 의해 가이드될 수 없다는 것이 검증되었다. 동일한 상동 재조합 검정을 이용하여 3개의 sgRNA 각각과 조합된 NM, SP, 및 ST1의 비교 효율을 측정하였다. 모든 3개의 Cas9 단백질은 서로에 대해 완전하게 직교성인 것으로 결정되었으며, 이는 이들이 동일한 세포에서 서열의 별개의 비-중첩 세트를 표적화할 수 있음을 입증한다 (도 16b). 직교 표적화에서 sgRNA 및 PAM의 역할을 대조하기 위해, SP 및 ST1을 갖는 다양한 하류 PAM 서열 및 그의 각 sgRNA를 시험하였다. 매칭 sgRNA 및 유효 PAM이 둘 다 활성을 위해 필요하며, 직교성은 거의 전적으로 상응하는 Cas9에 특이적인 sgRNA 친화도에 의해 결정되었다.
실시예 XIX
인간 세포에서의 전사 활성화
NM 및 ST1은 인간 세포에서 전사 활성화를 매개한다. 뉴클레아제-기능부재 NM 및 ST1 유전자를 VP64 활성인자 도메인에 그의 C-말단에서 융합시켜 추정 RNA-가이드된 활성인자를 수득하고, 이는 이후에 SP 활성인자를 모델링하였다. 활성화를 위한 리포터 구축물은 td토마토 코딩 영역의 상류에 삽입된 적절한 PAM과 프로토스페이서로 이루어진다. RNA-가이드된 전사 활성인자, sgRNA, 및 적절한 리포터를 발현하는 벡터를 공동-형질감염시키고, 전사 활성화의 정도를 FACS에 의해 측정하였다 (도 17a). 각 경우에, 모든 3개의 Cas9 변이체에 의한 강건한 전사 활성화가 관찰되었다 (도 17b). 각 Cas9 활성인자는 오직 그의 상응하는 sgRNA와 쌍을 형성한 경우에만 전사를 자극하였다.
실시예 XX
논의
포괄적 PAM 특성화를 위해 2개의 특징적인 프로토스페이서를 사용하여 프로토스페이서 및 PAM 인식에 관여하는 복잡성을 조사하였다. 차등적 프로토스페이서 절단 효율은, 그 차이의 정도는 오르토로그 사이에서 상당히 달랐으나, 다양한 Cas9 단백질 사이에서 일관된 경향을 나타내었다. 이러한 패턴은 D-루프 형성 또는 안정화에서의 서열-의존성 차이가 각 프로토스페이서에 대한 기저 표적화 효율을 결정하지만, 추가의 Cas9 또는 반복부-의존성 인자가 또한 소정의 역할을 수행함을 시사한다. 유사하게, 다수의 인자는 단일 서열 모티프를 사용한 PAM 인식을 설명하고자 하는 노력을 배제한다. 일차 PAM 인식 결정인자에 인접한 개별 염기를 전체 친화도가 현저하게 감소하도록 조합할 수 있다. 실제로, 특정 PAM은 스페이서 또는 프로토스페이서와 비선형적으로 상호작용하여 전체 활성을 결정하는 것으로 보인다. 또한, 상이한 친화도 수준은 다른 세포 유형 사이에서 특징적인 활성을 위해 필요할 수 있다. 최종적으로, 실험적으로 확인된 PAM은 생물정보학적 분석으로부터 추론된 것보다 적은 염기를 필요로 하며, 이는 스페이서 획득 요건이 이펙터 절단을 위한 것과 상이함을 시사한다.
이러한 차이는 생물정보학적 예측 및 현재 통상적인 에스. 피오게네스로부터의 Cas9 둘 다에 비해 보다 적은 PAM 요건을 갖는 네이세리아 메닌기티디스로부터의 Cas9 단백질의 경우에 가장 유의하다. 그의 발견은 Cas9 단백질로 용이하게 표적화될 수 있는 서열의 수를 상당히 확장시킨다. 3.25 kbp 길이에서, 이는 또한 SP보다 850 bp 더 작고, 이러한 점이 유전자 전달 용량이 제한되는 경우에 유의한 이점이다. 가장 주목할만하게, NM 및 ST1은 둘 다 치료 용도를 위해 AAV 벡터에 맞추기에 충분히 작은 한편, NM은 PAM 인식 또는 특이성을 변경하도록 설계한 지시된 진화 노력을 위해 보다 적합한 출발점을 나타낼 수 있다.
하기 참고문헌은 모든 목적을 위해 그의 전문이 본원에 참조로 포함된다.
참고문헌
SEQUENCE LISTING
<110> President and Fellows of Harvard College
<120> Orthogonal Cas9 Proteins For RNA-Guided Gene Regulation and
Editing
<130> 010498.00519
<140> PCT/US14/045700
<141> 2014-07-08
<150> US 61/844,844
<151> 2013-07-10
<160> 35
<170> PatentIn version 3.5
<210> 1
<211> 1368
<212> PRT
<213> Streptococcus pyogenes
<400> 1
Met Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr
485 490 495
Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510
Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys
515 520 525
Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln
530 535 540
Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr
545 550 555 560
Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp
565 570 575
Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590
Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp
595 600 605
Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr
610 615 620
Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala
625 630 635 640
His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr
645 650 655
Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp
660 665 670
Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe
675 680 685
Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe
690 695 700
Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu
705 710 715 720
His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly
725 730 735
Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly
740 745 750
Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765
Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile
770 775 780
Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro
785 790 795 800
Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815
Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg
820 825 830
Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys
835 840 845
Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg
850 855 860
Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys
865 870 875 880
Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895
Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp
900 905 910
Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr
915 920 925
Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp
930 935 940
Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser
945 950 955 960
Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975
Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val
980 985 990
Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe
995 1000 1005
Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala
1010 1015 1020
Lys Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe
1025 1030 1035
Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala
1040 1045 1050
Asn Gly Glu Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu
1055 1060 1065
Thr Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val
1070 1075 1080
Arg Lys Val Leu Ser Met Pro Gln Val Asn Ile Val Lys Lys Thr
1085 1090 1095
Glu Val Gln Thr Gly Gly Phe Ser Lys Glu Ser Ile Leu Pro Lys
1100 1105 1110
Arg Asn Ser Asp Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro
1115 1120 1125
Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr Val Ala Tyr Ser Val
1130 1135 1140
Leu Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys Leu Lys
1145 1150 1155
Ser Val Lys Glu Leu Leu Gly Ile Thr Ile Met Glu Arg Ser Ser
1160 1165 1170
Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys
1175 1180 1185
Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys Tyr Ser Leu
1190 1195 1200
Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala Gly
1205 1210 1215
Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val
1220 1225 1230
Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser
1235 1240 1245
Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys
1250 1255 1260
His Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys
1265 1270 1275
Arg Val Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala
1280 1285 1290
Tyr Asn Lys His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn
1295 1300 1305
Ile Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala
1310 1315 1320
Phe Lys Tyr Phe Asp Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser
1325 1330 1335
Thr Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile Thr
1340 1345 1350
Gly Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln Leu Gly Gly Asp
1355 1360 1365
<210> 2
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide Probe
<400> 2
gtcccctcca ccccacagtg ggg 23
<210> 3
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 3
ggggccacta gggacaggat tgg 23
<210> 4
<211> 70
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 4
taatactttt atctgtcccc tccaccccac agtggggcca tagggacagg attggtgaca 60
gaaaagcccc 70
<210> 5
<211> 98
<212> RNA
<213> Artificial
<220>
<223> gRNA scaffold
<400> 5
ggggccacag ggacaggagu uuuagagcua gaaauagcaa guuaaaauaa ggcuaguccg 60
uuaucaacuu gaaaaagugg caccgagucg gugcuuuu 98
<210> 6
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 6
gtcccctcca ccccacagtg cag 23
<210> 7
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 7
gtcccctcca ccccacagtg caa 23
<210> 8
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 8
gtcccctcca ccccacagtg cgg 23
<210> 9
<211> 52
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 9
tgtcccctcc accccacagt ggggccacta gggacaggat tggtgacaga aa 52
<210> 10
<211> 52
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 10
tgtccccccc accccacagt ggggccacta gggacaggat tggtgacaga aa 52
<210> 11
<211> 52
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 11
aaaaccctcc accccacagt ggggccacta gggacaggat tggtgacaga aa 52
<210> 12
<211> 52
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 12
tgtcccctcc ttttttcagt ggggccacta gggacaggat tggtgacaga aa 52
<210> 13
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 13
caccggggtg gtgcccatcc tgg 23
<210> 14
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 14
ggtgcccatc ctggtcgagc tgg 23
<210> 15
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 15
cccatcctgg tcgagctgga cgg 23
<210> 16
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 16
ggccacaagt tcagcgtgtc cgg 23
<210> 17
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 17
cgcaaataag agctcaccta cgg 23
<210> 18
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 18
ctgaagttca tctgcaccac cgg 23
<210> 19
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 19
ccggcaagct gcccgtgccc tgg 23
<210> 20
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 20
gaccaggatg ggcaccaccc cgg 23
<210> 21
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 21
gccgtccagc tcgaccagga tgg 23
<210> 22
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 22
ggccggacac gctgaacttg tgg 23
<210> 23
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 23
taacagggta atgtcgaggc cgg 23
<210> 24
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 24
aggtgagctc ttatttgcgt agg 23
<210> 25
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 25
cttcagggtc agcttgccgt agg 23
<210> 26
<211> 23
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 26
gggcacgggc agcttgccgg tgg 23
<210> 27
<211> 36
<212> RNA
<213> Artificial
<220>
<223> RNA probe
<400> 27
guuuuagagc uaugcuguuu ugaauggucc caaaac 36
<210> 28
<211> 36
<212> RNA
<213> Artificial
<220>
<223> RNA probe
<400> 28
guuuuuguac ucucaagauu uaaguaacug uacaac 36
<210> 29
<211> 36
<212> RNA
<213> Artificial
<220>
<223> RNA probe
<400> 29
guuguagcuc ccuuucucau uucgcagugc uacaau 36
<210> 30
<211> 36
<212> RNA
<213> Artificial
<220>
<223> RNA probe
<400> 30
guuugagagu uguguaauuu aagauggauc ucaaac 36
<210> 31
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Protospacer
<400> 31
taccatctca agcttgttga 20
<210> 32
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Protospacer
<400> 32
actttaaaag tattcgccat 20
<210> 33
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 33
gtcccctcca ccccacagtg cgggaaa 27
<210> 34
<211> 27
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 34
gtcccctcca ccccacagtg caagaaa 27
<210> 35
<211> 28
<212> DNA
<213> Artificial
<220>
<223> Oligonucleotide probe
<400> 35
gtcccctcca ccccacagtg ggaggatt 28
Claims (44)
- 2개 이상의 표적 핵산에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고,
상기 2개 이상의 표적 핵산에 각각 결합하며 상기 2개 이상의 RNA에 의해 가이드되는 2개 이상의 직교성(orthogonal) RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것
을 포함하며,
여기서 RNA 및 직교성 RNA 가이드된 DNA 결합 단백질 닉카제가 발현되고,
여기서 RNA, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제, 및 표적 핵산 사이에 2개 이상의 공동-국재화 복합체가 형성되고,
여기서 2개 이상의 RNA 가이드된 DNA 결합 단백질 닉카제는 2개 이상의 표적 핵산을 닉킹하는 것인,
시험관내 또는 생체외에서 세포 내의 2개 이상의 표적 핵산을 변경하는 방법. - 제1항에 있어서, 세포가 진핵 세포인 방법.
- 제1항에 있어서, 세포가 인간 세포인 방법.
- 제1항에 있어서, 세포가 효모 세포, 식물 세포 또는 동물 세포인 방법.
- 제1항에 있어서, RNA가 약 10 내지 약 500개의 뉴클레오티드를 포함하는 것인 방법.
- 제1항에 있어서, RNA가 약 20 내지 약 100개의 뉴클레오티드를 포함하는 것인 방법.
- 제1항에 있어서, 2개 이상의 RNA가 각각 가이드 RNA인 방법.
- 제1항에 있어서, 2개 이상의 가이드 RNA가 각각 tracrRNA-crRNA 융합체인 방법.
- 제1항에 있어서, DNA가 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA인 방법.
- 제1항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제가 유형 II CRISPR 시스템의 DNA 결합 단백질인 방법.
- 제1항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제가 직교성 Cas9 닉카제인 방법.
- 2개 이상의 각각의 표적 핵산에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산, 및
2개 이상의 직교성 RNA 가이드된 DNA 결합 단백질 닉카제를 코딩하는 제2 외래 핵산을 포함하며,
2개 이상의 RNA 및 2개 이상의 직교성 RNA 가이드된 DNA 결합 단백질 닉카제를 발현하도록 구성되고,
RNA, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제 및 표적 핵산을 각각 포함하는 2개 이상의 공동-국재화 복합체를 포함하는,
세포. - 제12항에 있어서, 진핵 세포인 세포.
- 제12항에 있어서, 인간 세포인 세포.
- 제12항에 있어서, 효모 세포, 식물 세포 또는 동물 세포인 세포.
- 제12항에 있어서, RNA가 약 10 내지 약 500개의 뉴클레오티드를 포함하는 것인 세포.
- 제12항에 있어서, RNA가 약 20 내지 약 100개의 뉴클레오티드를 포함하는 것인 세포.
- 제12항에 있어서, 2개 이상의 RNA가 각각 가이드 RNA인 세포.
- 제12항에 있어서, 2개 이상의 가이드 RNA가 각각 tracrRNA-crRNA 융합체인 세포.
- 제12항에 있어서, DNA가 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA인 세포.
- 제12항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제가 유형 II CRISPR 시스템의 DNA 결합 단백질인 세포.
- 제12항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 닉카제가 직교성 Cas9 닉카제인 세포.
- 2개 이상의 표적 핵산에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산을 세포 내로 도입하고,
상기 2개 이상의 표적 핵산에 각각 결합하며 상기 2개 이상의 RNA에 의해 가이드되는 2개 이상의 직교성(orthogonal) RNA 가이드된 DNA 결합 단백질 뉴클레아제를 코딩하는 제2 외래 핵산을 세포 내로 도입하는 것
을 포함하며,
여기서 RNA 및 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제가 발현되고,
여기서 RNA, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제, 및 표적 핵산 사이에 2개 이상의 공동-국재화 복합체가 형성되고,
여기서 2개 이상의 RNA 가이드된 DNA 결합 단백질 뉴클레아제는 2개 이상의 표적 핵산을 컷팅하는 것인,
시험관내 또는 생체외에서 세포 내의 2개 이상의 표적 핵산을 변경하는 방법. - 제23항에 있어서, 세포가 진핵 세포인 방법.
- 제23항에 있어서, 세포가 인간 세포인 방법.
- 제23항에 있어서, 세포가 효모 세포, 식물 세포 또는 동물 세포인 방법.
- 제23항에 있어서, RNA가 약 10 내지 약 500개의 뉴클레오티드를 포함하는 것인 방법.
- 제23항에 있어서, RNA가 약 20 내지 약 100개의 뉴클레오티드를 포함하는 것인 방법.
- 제23항에 있어서, 2개 이상의 RNA가 각각 가이드 RNA인 방법.
- 제23항에 있어서, 2개 이상의 가이드 RNA가 각각 tracrRNA-crRNA 융합체인 방법.
- 제23항에 있어서, DNA가 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA인 방법.
- 제23항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제가 유형 II CRISPR 시스템의 DNA 결합 단백질인 방법.
- 제23항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제가 직교성 Cas9 뉴클레아제인 방법.
- 2개 이상의 각각의 표적 핵산에 상보적인 2개 이상의 RNA를 코딩하는 제1 외래 핵산, 및
2개 이상의 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제를 코딩하는 제2 외래 핵산을 포함하며,
2개 이상의 RNA 및 2개 이상의 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제를 발현하도록 구성되고,
RNA, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제 및 표적 핵산을 각각 포함하는 2개 이상의 공동-국재화 복합체를 포함하는,
세포. - 제34항에 있어서, 진핵 세포인 세포.
- 제34항에 있어서, 인간 세포인 세포.
- 제34항에 있어서, 효모 세포, 식물 세포 또는 동물 세포인 세포.
- 제34항에 있어서, RNA가 약 10 내지 약 500개의 뉴클레오티드를 포함하는 것인 세포.
- 제34항에 있어서, RNA가 약 20 내지 약 100개의 뉴클레오티드를 포함하는 것인 세포.
- 제34항에 있어서, 2개 이상의 RNA가 각각 가이드 RNA인 세포.
- 제34항에 있어서, 2개 이상의 가이드 RNA가 각각 tracrRNA-crRNA 융합체인 세포.
- 제34항에 있어서, DNA가 게놈 DNA, 미토콘드리아 DNA, 바이러스 DNA 또는 외인성 DNA인 세포.
- 제34항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제가 유형 II CRISPR 시스템의 DNA 결합 단백질인 세포.
- 제34항에 있어서, 직교성 RNA 가이드된 DNA 결합 단백질 뉴클레아제가 직교성 Cas9 뉴클레아제인 세포.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361844844P | 2013-07-10 | 2013-07-10 | |
US61/844,844 | 2013-07-10 | ||
KR1020167003074A KR102285485B1 (ko) | 2013-07-10 | 2014-07-08 | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 |
PCT/US2014/045700 WO2015006294A2 (en) | 2013-07-10 | 2014-07-08 | Orthogonal cas9 proteins for rna-guided gene regulation and editing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167003074A Division KR102285485B1 (ko) | 2013-07-10 | 2014-07-08 | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210098547A true KR20210098547A (ko) | 2021-08-10 |
KR102481330B1 KR102481330B1 (ko) | 2022-12-23 |
Family
ID=52280701
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167003074A KR102285485B1 (ko) | 2013-07-10 | 2014-07-08 | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 |
KR1020217024118A KR102481330B1 (ko) | 2013-07-10 | 2014-07-08 | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167003074A KR102285485B1 (ko) | 2013-07-10 | 2014-07-08 | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 |
Country Status (13)
Country | Link |
---|---|
US (4) | US10329587B2 (ko) |
EP (2) | EP3666892A1 (ko) |
JP (3) | JP6718813B2 (ko) |
KR (2) | KR102285485B1 (ko) |
CN (2) | CN110819658B (ko) |
AU (3) | AU2014287397B2 (ko) |
BR (1) | BR112016000571B1 (ko) |
CA (2) | CA2917639C (ko) |
HK (1) | HK1217907A1 (ko) |
IL (3) | IL282489B (ko) |
RU (3) | RU2748433C2 (ko) |
SG (3) | SG10201800213VA (ko) |
WO (1) | WO2015006294A2 (ko) |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013066438A2 (en) | 2011-07-22 | 2013-05-10 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
DE202013012241U1 (de) | 2012-05-25 | 2016-01-18 | Emmanuelle Charpentier | Zusammensetzungen für die durch RNA gesteuerte Modifikation einer Ziel-DNA und für die durch RNA gesteuerte Modulation der Transkription |
PL2928496T3 (pl) | 2012-12-06 | 2020-04-30 | Sigma-Aldrich Co. Llc | Modyfikacja i regulacja genomu w oparciu o CRISPR |
RU2699523C2 (ru) * | 2012-12-17 | 2019-09-05 | Президент Энд Фэллоуз Оф Харвард Коллидж | Рнк-направляемая инженерия генома человека |
AU2014253942B9 (en) | 2013-04-16 | 2020-08-13 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
EP3036334A1 (en) | 2013-08-22 | 2016-06-29 | E. I. du Pont de Nemours and Company | A soybean u6 polymerase iii promoter and methods of use |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
DE202014010413U1 (de) | 2013-09-18 | 2015-12-08 | Kymab Limited | Zellen und Organismen |
JP2016536021A (ja) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR関連方法および支配gRNAのある組成物 |
WO2015070062A1 (en) * | 2013-11-07 | 2015-05-14 | Massachusetts Institute Of Technology | Cell-based genomic recorded accumulative memory |
RU2725520C2 (ru) | 2013-12-11 | 2020-07-02 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
US11028388B2 (en) | 2014-03-05 | 2021-06-08 | Editas Medicine, Inc. | CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa |
US11339437B2 (en) | 2014-03-10 | 2022-05-24 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
ES2745769T3 (es) | 2014-03-10 | 2020-03-03 | Editas Medicine Inc | Procedimientos y composiciones relacionados con CRISPR/CAS para tratar la amaurosis congénita de Leber 10 (LCA10) |
US11141493B2 (en) | 2014-03-10 | 2021-10-12 | Editas Medicine, Inc. | Compositions and methods for treating CEP290-associated disease |
US11242525B2 (en) | 2014-03-26 | 2022-02-08 | Editas Medicine, Inc. | CRISPR/CAS-related methods and compositions for treating sickle cell disease |
WO2016022363A2 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
AU2015342749B2 (en) | 2014-11-07 | 2022-01-27 | Editas Medicine, Inc. | Methods for improving CRISPR/Cas-mediated genome-editing |
CA2969619A1 (en) | 2014-12-03 | 2016-06-09 | Agilent Technologies, Inc. | Guide rna with chemical modifications |
CN116059378A (zh) | 2014-12-10 | 2023-05-05 | 明尼苏达大学董事会 | 用于治疗疾病的遗传修饰的细胞、组织和器官 |
CA2976387A1 (en) | 2015-03-27 | 2016-10-06 | E I Du Pont De Nemours And Company | Soybean u6 small nuclear rna gene promoters and their use in constitutive expression of small rna genes in plants |
CA2981715A1 (en) | 2015-04-06 | 2016-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide rnas for crispr/cas-mediated gene regulation |
EP3286571B1 (en) | 2015-04-24 | 2021-08-18 | Editas Medicine, Inc. | Evaluation of cas9 molecule/guide rna molecule complexes |
US11390884B2 (en) | 2015-05-11 | 2022-07-19 | Editas Medicine, Inc. | Optimized CRISPR/cas9 systems and methods for gene editing in stem cells |
US20190136248A1 (en) * | 2015-05-15 | 2019-05-09 | Pioneer Hi-Bred International, Inc. | Novel guide rna/cas endonuclease systems |
KR20180031671A (ko) | 2015-06-09 | 2018-03-28 | 에디타스 메디신, 인코포레이티드 | 이식의 개선을 위한 crispr/cas-관련 방법 및 조성물 |
WO2016205745A2 (en) * | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Cell sorting |
US20170119820A1 (en) | 2015-07-31 | 2017-05-04 | Regents Of The University Of Minnesota | Modified cells and methods of therapy |
WO2017053879A1 (en) | 2015-09-24 | 2017-03-30 | Editas Medicine, Inc. | Use of exonucleases to improve crispr/cas-mediated genome editing |
IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and their uses |
WO2017074943A1 (en) * | 2015-10-27 | 2017-05-04 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of inducibly targeting chromatin effectors and compositions for use in the same |
JP2019500899A (ja) | 2015-11-23 | 2019-01-17 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | CRISPR/Cas9の核送達を通じた細胞RNAの追跡と操作 |
KR20180096800A (ko) | 2016-01-11 | 2018-08-29 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | 키메라 단백질 및 유전자 발현을 조절하는 방법 |
EP3402494B1 (en) | 2016-01-11 | 2021-04-07 | The Board of Trustees of the Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
US11254928B2 (en) | 2016-01-15 | 2022-02-22 | Astrazeneca Ab | Gene modification assays |
EP3433363A1 (en) | 2016-03-25 | 2019-01-30 | Editas Medicine, Inc. | Genome editing systems comprising repair-modulating enzyme molecules and methods of their use |
WO2017165862A1 (en) | 2016-03-25 | 2017-09-28 | Editas Medicine, Inc. | Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency |
US11692196B2 (en) | 2016-04-12 | 2023-07-04 | Carrygenes Bioengineering, Llc | Methods for creating synthetic chromosomes expressing biosynthetic pathways and uses thereof |
EP3910058A1 (en) * | 2016-04-12 | 2021-11-17 | CarryGenes Bioengineering, LLC | Methods for creating synthetic chromosomes having gene regulatory systems and uses thereof |
US11236313B2 (en) | 2016-04-13 | 2022-02-01 | Editas Medicine, Inc. | Cas9 fusion molecules, gene editing systems, and methods of use thereof |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
WO2017222834A1 (en) * | 2016-06-10 | 2017-12-28 | City Of Hope | Compositions and methods for mitochondrial genome editing |
AU2017305404B2 (en) | 2016-08-02 | 2023-11-30 | Editas Medicine, Inc. | Compositions and methods for treating CEP290 associated disease |
CA3032699A1 (en) | 2016-08-03 | 2018-02-08 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
AU2017308889B2 (en) | 2016-08-09 | 2023-11-09 | President And Fellows Of Harvard College | Programmable Cas9-recombinase fusion proteins and uses thereof |
CN106282228A (zh) * | 2016-08-19 | 2017-01-04 | 苏州兰希亚生物科技有限公司 | 一种基因点突变修复的方法 |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US20190225974A1 (en) | 2016-09-23 | 2019-07-25 | BASF Agricultural Solutions Seed US LLC | Targeted genome optimization in plants |
WO2018071868A1 (en) | 2016-10-14 | 2018-04-19 | President And Fellows Of Harvard College | Aav delivery of nucleobase editors |
CN110520530A (zh) | 2016-10-18 | 2019-11-29 | 明尼苏达大学董事会 | 肿瘤浸润性淋巴细胞和治疗方法 |
WO2018083606A1 (en) | 2016-11-01 | 2018-05-11 | Novartis Ag | Methods and compositions for enhancing gene editing |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
EP4095263A1 (en) | 2017-01-06 | 2022-11-30 | Editas Medicine, Inc. | Methods of assessing nuclease cleavage |
SG11201906795SA (en) * | 2017-01-28 | 2019-08-27 | Inari Agriculture Inc | Novel plant cells, plants, and seeds |
TW201839136A (zh) | 2017-02-06 | 2018-11-01 | 瑞士商諾華公司 | 治療血色素異常症之組合物及方法 |
US11866699B2 (en) | 2017-02-10 | 2024-01-09 | University Of Washington | Genome editing reagents and their use |
US10828330B2 (en) | 2017-02-22 | 2020-11-10 | IO Bioscience, Inc. | Nucleic acid constructs comprising gene editing multi-sites and uses thereof |
CA3054307A1 (en) * | 2017-02-22 | 2018-08-30 | Io Biosciences, Inc. | Nucleic acid constructs comprising gene editing multi-sites and uses thereof |
EP3592853A1 (en) | 2017-03-09 | 2020-01-15 | President and Fellows of Harvard College | Suppression of pain by gene editing |
JP2020510439A (ja) | 2017-03-10 | 2020-04-09 | プレジデント アンド フェローズ オブ ハーバード カレッジ | シトシンからグアニンへの塩基編集因子 |
EP3595694A4 (en) * | 2017-03-14 | 2021-06-09 | The Regents of The University of California | CONSTRUCTION OF CAS9 CRISPR IMMUNE FURTIF |
WO2018170184A1 (en) | 2017-03-14 | 2018-09-20 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
IL269458B2 (en) | 2017-03-23 | 2024-02-01 | Harvard College | Nucleic base editors that include nucleic acid programmable DNA binding proteins |
JPWO2018179578A1 (ja) * | 2017-03-30 | 2020-02-06 | 国立大学法人京都大学 | ゲノム編集によるエクソンスキッピング誘導方法 |
EP3612023A4 (en) | 2017-04-20 | 2021-05-12 | Egenesis, Inc. | GENETICALLY MODIFIED ANIMAL PRODUCTION PROCESSES |
EP3615672A1 (en) | 2017-04-28 | 2020-03-04 | Editas Medicine, Inc. | Methods and systems for analyzing guide rna molecules |
EP3622062A4 (en) | 2017-05-10 | 2020-10-14 | The Regents of the University of California | DIRECTED EDITING OF CELLULAR RNA BY NUCLEAR ADMINISTRATION OF CRISPR / CAS9 |
EP3622070A2 (en) | 2017-05-10 | 2020-03-18 | Editas Medicine, Inc. | Crispr/rna-guided nuclease systems and methods |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
CN110997908A (zh) | 2017-06-09 | 2020-04-10 | 爱迪塔斯医药公司 | 工程化的cas9核酸酶 |
WO2019006418A2 (en) | 2017-06-30 | 2019-01-03 | Intima Bioscience, Inc. | ADENO-ASSOCIATED VIRAL VECTORS FOR GENE THERAPY |
US20200140896A1 (en) | 2017-06-30 | 2020-05-07 | Novartis Ag | Methods for the treatment of disease with gene editing systems |
US11866726B2 (en) | 2017-07-14 | 2024-01-09 | Editas Medicine, Inc. | Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites |
JP2020534795A (ja) | 2017-07-28 | 2020-12-03 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物 |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
CA3073848A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US11603536B2 (en) | 2017-09-29 | 2023-03-14 | Inari Agriculture Technology, Inc. | Methods for efficient maize genome editing |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11547614B2 (en) | 2017-10-31 | 2023-01-10 | The Broad Institute, Inc. | Methods and compositions for studying cell evolution |
US20210180053A1 (en) | 2017-11-01 | 2021-06-17 | Novartis Ag | Synthetic rnas and methods of use |
AU2018364993B2 (en) * | 2017-11-10 | 2022-10-06 | University Of Massachusetts | Targeted CRISPR delivery platforms |
MX2020007466A (es) | 2018-01-12 | 2020-11-12 | Basf Se | Gen subyacente al qtl de la cantidad de espiguillas por espiga en trigo en el cromosoma 7a. |
KR20200124702A (ko) | 2018-02-23 | 2020-11-03 | 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 | 신규한 cas9 오르소로그 |
AU2019236209A1 (en) | 2018-03-14 | 2020-10-01 | Editas Medicine, Inc. | Systems and methods for the treatment of hemoglobinopathies |
CN111885915B (zh) | 2018-03-19 | 2023-04-28 | 瑞泽恩制药公司 | 使用crispr/cas系统对动物进行转录调制 |
JP6614622B2 (ja) * | 2018-04-17 | 2019-12-04 | 国立大学法人名古屋大学 | 植物ゲノム編集方法 |
WO2019204766A1 (en) | 2018-04-19 | 2019-10-24 | The Regents Of The University Of California | Compositions and methods for gene editing |
GB201813011D0 (en) | 2018-08-10 | 2018-09-26 | Vib Vzw | Means and methods for drought tolerance in crops |
JP2022514493A (ja) | 2018-12-14 | 2022-02-14 | パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド | ゲノム編集のための新規なcrispr-casシステム |
EP3696189A1 (en) * | 2019-02-14 | 2020-08-19 | European Molecular Biology Laboratory | Means and methods for preparing engineered target proteins by genetic code expansion in a target protein selective manner |
DE112020001342T5 (de) | 2019-03-19 | 2022-01-13 | President and Fellows of Harvard College | Verfahren und Zusammensetzungen zum Editing von Nukleotidsequenzen |
CA3152931A1 (en) * | 2019-09-30 | 2021-04-08 | Erik Eastlund | Modulation of microbiota compositions using targeted nucleases |
EP4085133A1 (en) * | 2019-12-30 | 2022-11-09 | Lifeedit Therapeutics, Inc. | Rna-guided nucleases and active fragments and variants thereof and methods of use |
JP7525140B2 (ja) | 2020-01-31 | 2024-07-30 | 国立大学法人京都大学 | タンパク質翻訳の制御システム |
DE112021002672T5 (de) | 2020-05-08 | 2023-04-13 | President And Fellows Of Harvard College | Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz |
GB202007943D0 (en) * | 2020-05-27 | 2020-07-08 | Snipr Biome Aps | Products & methods |
RU2749307C1 (ru) * | 2020-10-30 | 2021-06-08 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии" (ФГБНУ ВНИИСБ) | Новая компактная нуклеаза CAS9 II типа из Anoxybacillus flavithermus |
WO2022116139A1 (zh) * | 2020-12-04 | 2022-06-09 | 中国科学院脑科学与智能技术卓越创新中心 | 一种检测细胞内源性低丰度基因和lncRNA水平的方法 |
KR20240055811A (ko) | 2021-09-10 | 2024-04-29 | 애질런트 테크놀로지스, 인크. | 프라임 편집을 위한 화학적 변형을 갖는 가이드 rna |
IL312452A (en) | 2021-11-01 | 2024-06-01 | Tome Biosciences Inc | A transformant has a single structure for the simultaneous transfer of a gene editing mechanism and a nucleic acid cargo |
AU2022420615A1 (en) | 2021-12-22 | 2024-07-04 | Tome Biosciences, Inc. | Co-delivery of a gene editor construct and a donor template |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
WO2024020587A2 (en) | 2022-07-22 | 2024-01-25 | Tome Biosciences, Inc. | Pleiopluripotent stem cell programmable gene insertion |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6933378B2 (en) * | 1997-05-30 | 2005-08-23 | Joseph Atabekov | Methods for coexpression of more than one gene in eukaryotic cells |
US6203986B1 (en) | 1998-10-22 | 2001-03-20 | Robert H. Singer | Visualization of RNA in living cells |
RU2467069C2 (ru) * | 2006-03-09 | 2012-11-20 | Зе Скрипс Ресеч Инститьют | Система экспрессии компонентов ортогональной трансляции в эубактериальной клетке-хозяине |
WO2008019123A2 (en) * | 2006-08-04 | 2008-02-14 | Georgia State University Research Foundation, Inc. | Enzyme sensors, methods for preparing and using such sensors, and methods of detecting protease activity |
PL2126130T3 (pl) | 2007-03-02 | 2015-10-30 | Dupont Nutrition Biosci Aps | Hodowle o ulepszonej fagooporności |
WO2010011961A2 (en) | 2008-07-25 | 2010-01-28 | University Of Georgia Research Foundation, Inc. | Prokaryotic rnai-like system and methods of use |
US20100076057A1 (en) | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
US9404098B2 (en) | 2008-11-06 | 2016-08-02 | University Of Georgia Research Foundation, Inc. | Method for cleaving a target RNA using a Cas6 polypeptide |
US10087431B2 (en) | 2010-03-10 | 2018-10-02 | The Regents Of The University Of California | Methods of generating nucleic acid fragments |
SG185481A1 (en) | 2010-05-10 | 2012-12-28 | Univ California | Endoribonuclease compositions and methods of use thereof |
CA2798988C (en) | 2010-05-17 | 2020-03-10 | Sangamo Biosciences, Inc. | Tal-effector (tale) dna-binding polypeptides and uses thereof |
US20140113376A1 (en) | 2011-06-01 | 2014-04-24 | Rotem Sorek | Compositions and methods for downregulating prokaryotic genes |
GB201122458D0 (en) | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
IN2014DN07853A (ko) | 2012-02-24 | 2015-04-24 | Hutchinson Fred Cancer Res | |
KR102084539B1 (ko) | 2012-02-29 | 2020-03-04 | 상가모 테라퓨틱스, 인코포레이티드 | 헌팅턴병을 치료하기 위한 방법 및 조성물 |
WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
DE202013012241U1 (de) * | 2012-05-25 | 2016-01-18 | Emmanuelle Charpentier | Zusammensetzungen für die durch RNA gesteuerte Modifikation einer Ziel-DNA und für die durch RNA gesteuerte Modulation der Transkription |
EP2880171B1 (en) | 2012-08-03 | 2018-10-03 | The Regents of The University of California | Methods and compositions for controlling gene expression by rna processing |
PL2898075T3 (pl) | 2012-12-12 | 2016-09-30 | PROJEKTOWANIE i OPTYMALIZACJA ULEPSZONYCH SYSTEMÓW, SPOSOBY I KOMPOZYCJE ENZYMÓW DO MANIPULACJI SEKWENCJĄ | |
BR112015013784A2 (pt) * | 2012-12-12 | 2017-07-11 | Massachusetts Inst Technology | aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
-
2014
- 2014-07-08 RU RU2019132195A patent/RU2748433C2/ru active
- 2014-07-08 KR KR1020167003074A patent/KR102285485B1/ko active IP Right Grant
- 2014-07-08 CA CA2917639A patent/CA2917639C/en active Active
- 2014-07-08 CN CN201910999512.6A patent/CN110819658B/zh active Active
- 2014-07-08 RU RU2016104161A patent/RU2704981C2/ru active
- 2014-07-08 CA CA3218040A patent/CA3218040A1/en active Pending
- 2014-07-08 EP EP19219620.2A patent/EP3666892A1/en active Pending
- 2014-07-08 CN CN201480048712.9A patent/CN105517579B/zh active Active
- 2014-07-08 EP EP14823626.8A patent/EP3019204B1/en active Active
- 2014-07-08 KR KR1020217024118A patent/KR102481330B1/ko active IP Right Grant
- 2014-07-08 JP JP2016525414A patent/JP6718813B2/ja active Active
- 2014-07-08 US US14/903,728 patent/US10329587B2/en active Active
- 2014-07-08 SG SG10201800213VA patent/SG10201800213VA/en unknown
- 2014-07-08 AU AU2014287397A patent/AU2014287397B2/en active Active
- 2014-07-08 WO PCT/US2014/045700 patent/WO2015006294A2/en active Application Filing
- 2014-07-08 IL IL282489A patent/IL282489B/en unknown
- 2014-07-08 SG SG11201600060VA patent/SG11201600060VA/en unknown
- 2014-07-08 SG SG10201913015XA patent/SG10201913015XA/en unknown
- 2014-07-08 BR BR112016000571-6A patent/BR112016000571B1/pt active IP Right Grant
-
2015
- 2015-03-31 US US14/674,895 patent/US9587252B2/en active Active
-
2016
- 2016-01-06 IL IL24347616A patent/IL243476B/en active IP Right Grant
- 2016-05-24 HK HK16105910.8A patent/HK1217907A1/zh unknown
-
2019
- 2019-05-14 US US16/411,793 patent/US11649469B2/en active Active
- 2019-10-29 IL IL270259A patent/IL270259B/en active IP Right Grant
- 2019-12-27 JP JP2019238875A patent/JP7153992B2/ja active Active
-
2020
- 2020-01-09 AU AU2020200163A patent/AU2020200163C1/en active Active
-
2021
- 2021-05-20 RU RU2021114286A patent/RU2771583C1/ru active
- 2021-11-25 AU AU2021273624A patent/AU2021273624B2/en active Active
-
2022
- 2022-10-03 JP JP2022159833A patent/JP2022176275A/ja active Pending
-
2023
- 2023-04-06 US US18/296,446 patent/US20230257781A1/en active Pending
Non-Patent Citations (2)
Title |
---|
Cell. Feb 2013, 152(5):1173-1183.* * |
Science. Feb 2013, 339(6121):823-826.* * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102285485B1 (ko) | Rna-가이드된 유전자 조절 및 편집을 위한 직교 cas9 단백질 | |
US20230131972A1 (en) | RNA-Guided Transcriptional Regulation | |
NZ754836B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing | |
NZ754837B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing | |
NZ716605B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |