KR20210083531A - 전자방출 소자 및 이의 제조방법 - Google Patents

전자방출 소자 및 이의 제조방법 Download PDF

Info

Publication number
KR20210083531A
KR20210083531A KR1020190175892A KR20190175892A KR20210083531A KR 20210083531 A KR20210083531 A KR 20210083531A KR 1020190175892 A KR1020190175892 A KR 1020190175892A KR 20190175892 A KR20190175892 A KR 20190175892A KR 20210083531 A KR20210083531 A KR 20210083531A
Authority
KR
South Korea
Prior art keywords
emitter
electron
carbon
emitting device
manufacturing
Prior art date
Application number
KR1020190175892A
Other languages
English (en)
Other versions
KR102358284B1 (ko
Inventor
류제황
조종길
여승준
아마르 프라사드 굽타
Original Assignee
주식회사 씨에이티빔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 씨에이티빔텍 filed Critical 주식회사 씨에이티빔텍
Priority to KR1020190175892A priority Critical patent/KR102358284B1/ko
Publication of KR20210083531A publication Critical patent/KR20210083531A/ko
Application granted granted Critical
Publication of KR102358284B1 publication Critical patent/KR102358284B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

개시된 본 발명에 의한 전자방출 소자의 제조방법은, 에미터로부터 탄소나노튜브(Carbon Nano Tube, CNT)를 성장시키는 성장단계, 탄소나노튜브가 성장된 에미터를 원심력을 이용해 수지를 포함하는 코팅제로 코팅하는 코팅단계 및, 코팅된 에미터를 열처리하는 열처리단계를 포함하며, 에미터는 전자가 방출되는 방향으로 뾰족한 에미터 팁이 적어도 하나 마련된다. 이러한 구성에 의하면, 탄소나노튜브의 성장 효율 향상과 함께 전자 방출 효율을 증대시킬 수 있게 된다.

Description

전자방출 소자 및 이의 제조방법{ELECTRON EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF}
본 발명은 전자방출 소자 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 전자를 방출시키기 위한 탄소나노튜브(CNT)의 성장 효율이 우수하며 수지 코팅과 열처리로 인한 전자방출 특성이 향상된 전자방출 소자 및 이의 제조방법에 관한 것이다.
일반적으로 엑스레이는 진공관인 X선관(X-ray tube)을 구비하여, X선을 방출한다. 이러한 X선관의 음극은 텅스텐 필라멘트로 형성되며, 전류에 의해 가열되어 열 전자를 방출시킨다. 이에 대하여, 수만 볼트 이상의 고전압이 X선관의 양극에 인가되면, 음극에서 방출된 전자류가 고속으로 양극을 향해서 운동한다. 이때, 전자류가 양극의 텅스텐, 몰리브덴 등으로 만든 대항극에 충돌하였을 때 가지고 있는 에너지를 X선으로 방출한다.
한편, 근래에는 엑스레이의 전계 방출원으로 나노물질인 탄소나노튜브(CNT)의 성장을 이용한 엑스레이의 개발이 활발하게 진행 중이다. 탄소나노튜브는 탄소로 이루어진 탄소 동소체(carbon allotrope)로서, 하나의 탄소 원자가 다른 탄소 원자와 육각형 벌집무늬로 결합되어 튜브형태를 이루고 있어 다양한 전기 전자 분야에서 응용되고 있다.
참고로, 탄소나노튜브(CNT)가 적용된 엑스레이는 촉매 금속층에 전자방출 소스인 탄소나노튜브를 리소그래피 제조 방법을 통해 성장시켜 전자방출 소스를 형성하는 제조방식이 일반적이다. 이러한 리소그래피 제조 방법은 제조가 단순함에 비해, 비경제적이며 탄소나노튜브(CNT)의 성장 제어가 용이하지 않은 단점을 가진다. 뿐만 아니라, 탄소나노튜브의 주변 불순물로 인해 전자 방출 특성이 불안정하다는 문제점을 가진다.
이에 따라, 근래에는 탄소나노튜브를 이용한 전자방출 소자의 성장 효율과 함께 전자방출 특성을 향상시키기 위한 다양한 연구가 지속적으로 요구되고 있는 추세이다.
한국등록특허 제10-0851950호 한국등록특허 제10-0490480호
본 발명의 목적은 전자 방출을 위한 탄소나노튜브의 성장 효율을 향상시키면서도 에미터에 대한 접착력을 증대시켜 전자방출 효율을 향상시킬 수 있는 전자방출 소자의 제조방법을 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 상기 목적이 달성된 전자방출 소자의 제조방법에 의해 제조된 전자방출 소자를 제공하기 위한 것이다.
상기 목적을 달성하기 위한 본 발명에 의한 전자방출 소자의 제조방법은, 에미터로부터 탄소나노튜브(Carbon Nano Tube, CNT)를 성장시키는 성장단계, 상기 탄소나노튜브가 성장된 상기 에미터를 원심력을 이용해 수지를 포함하는 코팅제로 코팅하는 코팅단계 및, 코팅된 상기 에미터를 열처리하는 열처리단계를 포함하며, 상기 에미터는 전자가 방출되는 방향으로 뾰족한 에미터 팁이 적어도 하나 마련될 수 있다.
또한, 상기 코팅단계는, 상기 에미터 팁이 원심력 방향과 마주하도록 회전시킬 수 있다.
또한, 상기 전자방출 소스는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며, 상기 코팅단계는 상기 에미터를 상기 에미터 바의 길이 방향을 중심으로 회전시킬 수 있다.
또한, 상기 전자방출 소스는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며, 상기 코팅단계는 상기 에미터가 회전 반경을 따라 회전되도록 상기 에미터 바의 일단을 중심으로 회전시킬 수 있다.
또한, 상기 에미터는 상기 탄소나노튜브가 성장된 상태로 가이더에 결합되어 설치가 가이드되며, 상기 코팅단계는 상기 가이더에 상기 에미터가 결합된 상태에서 상기 에미터를 회전시킬 수 있다.
또한, 상기 전자방출 소자는 금속 또는 탄소계열 물질로 형성될 수 있다.
또한, 상기 열처리단계는 600 내지 1500℃의 온도에서 코팅된 상기 에미터를 열처리할 수 있다.
또한, 상기 코팅제는 포토-레지스트(PR: photo-resist), 탄소성분을 포함한 유기화합물, 탄소기반 물질 중 적어도 어느 하나를 포함하며, 상기 탄소기반 물질은 그래파이트 접착제(Graphite adhesive), 카본 페이스트(Carbon paste) 및 탄소나노튜브 페이스트(CNT paste) 중 적어도 어느 하나를 포함할 수 있다.
본 발명의 바람직한 일 실시예에 의한 전자방출 소자는, 에미터로부터 탄소나노튜브(Carbon Nano Tube, CNT)를 성장시키는 성장단계, 상기 탄소나노튜브가 성장된 상기 에미터를 원심력을 이용해 수지를 포함하는 코팅제로 코팅하는 코팅단계 및, 코팅된 상기 에미터를 열처리하는 열처리단계를 포함하여 제조되며, 상기 에미터는 전자가 방출되는 방향으로 뾰족한 에미터 팁이 적어도 하나 마련된다.
본 발명의 바람직한 일 실시예에 의한 전자방출 소자는, 단부가 뾰족한 첨단 형상을 가지는 에미터 팁을 구비하여, 전자를 방출하는 에미터 및 상기 에미터를 사이에 두고 적층되어, 방출된 상기 전자를 외부로 안내하는 안내부를 포함하며, 상기 에미터는 탄소나노튜브(Carbon Nano Tube, CNT)가 성장된 후, 수지를 포함하는 코팅제로 코팅되어 열처리된다.
또한, 상기 에미터는 회전되어 원심력에 의해 상기 코팅제가 코팅되며, 상기 에미터 팁은 회전 시, 원심력 방향과 마주할 수 있다.
또한, 상기 에미터는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며, 상기 에미터는 상기 에미터 바의 길이 방향을 중심으로 회전되거나, 상기 에미터 바의 일단을 중심으로 회전되어 상기 코팅제가 코팅될 수 있다.
또한, 상기 에미터는 상기 탄소나노튜브가 성장된 상태로 가이더에 결합되어 상기 안내부에 대한 설치가 가이드되되, 상기 에미터는 상기 가이더에 결합된 상태에서 회전되어 상기 코팅제가 코팅될 수 있다.
또한, 상기 에미터는 600 내지 1500℃의 온도에서 열처리될 수 있다.
또한, 상기 코팅제는 포토-레지스트(PR: photo-resist), 탄소성분을 포함한 유기화합물, 탄소기반 물질 중 적어도 어느 하나를 포함하며, 상기 탄소기반 물질은 그래파이트 접착제(Graphite adhesive), 카본 페이스트(Carbon paste) 및 탄소나노튜브 페이스트(CNT paste) 중 적어도 어느 하나를 포함할 수 있다.
상기와 같은 구성을 가지는 본 발명에 의하면, 첫째, 원심력에 의해 탄소나노튜브가 성장된 에미터를 코팅함으로써, 탄소나노튜브 전영역에 대한 코팅력을 향상시킬 수 있게 된다.
둘째, 코팅 및 열처리 과정을 거쳐 에미터와 탄소나노튜브 사이의 결합력을 증대시킬 수 있음과 아울러, 탄소나노튜브 주변의 불순물 제거에 용이하여, 전자 방출 효율 향상에 기여할 수 있게 된다.
셋째, 전자의 방출 방향으로 뾰족한 첨단 형상의 에미터 팁을 구비하는 에미터로부터 탄소나노튜브가 성장됨으로써, 탄소나노튜브의 성장 효율 향상과 함께 전자의 직진성을 향상시킬 수 있게 된다.
도 1은 본 발명의 일 실시예에 의한 전자방출 소스를 구비하는 엑스레이 장치를 개략적으로 도시한 사시도이다.
도 2는 도 1에 도시된 전자방출 소스를 개략적으로 분해 도시한 분해 사시도이다.
도 3은 도 2에 도시된 에미터를 개략적으로 확대 도시한 사시도이다.
도 4는 본 발명의 바람직한 일 실시예에 전자방출 소스의 제조방법을 설명하기 위해 개략적으로 도시한 순서도이다.
도 5는 도 4에 도시된 코팅단계에서 에미터가 회전됨을 설명하기 위해 개략적으로 도시한 도면이다.
도 6은 도 5에 도시된 에미터의 회전 변형예를 설명하기 위해 개략적으로 도시한 도면이다. 그리고,
도 7은 에미터가 가이더에 결합된 상태로 회전되는 상태를 설명하기 위해 개략적으로 도시한 도면이다.
이하, 본 발명의 바람직한 일 실시예를 첨부된 도면을 참고하여 설명한다. 다만, 본 발명의 사상이 그와 같은 실시예에 제한되지 않고, 본 발명의 사상은 실시예를 이루는 구성요소의 부가, 변경 및 삭제 등에 의해서 다르게 제안될 수 있을 것이나, 이 또한 발명의 사상에 포함되는 것이다.
도 1은 본 발명의 바람직한 일 실시예에 전자방출 소스(20)를 구비하는 엑스레이 장치(1)가 개략적으로 도시된다. 도 1과 같이, 본 발명의 일 실시예에 의한 전자방출 소스(20)를 구비하는 엑스레이 장치(1)는 챔버부(10), 전자방출 소스(20) 및 애노드부(30)를 포함한다.
챔버부(10)는 내부에 공간이 마련되는 원통형상을 가지며, 내부는 진공 상태이다. 이러한 챔버부(10)의 일측에는 챔버부(10)의 내부에서 외부로 방출되는 엑스레이의 출입구인 윈도우(11)가 마련된다. 윈도우(11)는 베릴륨 및 알루미늄 등의 금속재질 또는 형광물질이 도포된 유리재질로 형성될 수 있다.
윈도우(11)가 베릴륨 등의 금속 재질로 형성되는 경우에는, 소정 파장 이하의 엑스레이만 방출되도록 필터링될 수 있다. 또한, 윈도우(11)가 형광물질이 도포된 유리재질로 형성되는 경우에는 윈도우(11)를 통하여 가시광선이 방출될 수 있다.
챔버부(10)는 비금속성 재질로 형성될 수 있으며, 이 경우 후술할 전자방출 소스(20)에 인가되는 7만 볼트 이상의 고압 전류가 챔버부(10)의 내벽을 따라 흐름을 방지하도록 절연성을 확보할 수 있다.
전자방출 소스(20)는 챔버부(10)의 내부에서 전자를 방출한다. 여기서, 전자방출 소스(20)는 엑스레이를 발생시키기 위해 전자를 방출하는 전자방출 모듈 내지 전자총을 포함하며, 챔버부(10)의 하부에 마련된다. 이러한 전자방출 소스(20)는 진공의 챔버부(10)의 내부에서 탄소나노튜브(Carbon Nano Tube, CNT) 기반의 전계 방출(field emission) 방식으로 전자를 방출하는 것으로 예시한다. 그러나, 꼭 이에 한정되지 않으며, 에미터(210)가 빛을 발생시키는 광원수단에 적용되는 변형예도 가능하다. 이러한 전자방출 소스(20)의 구성은 보다 자세히 후술한다.
애노드부(30)는 전자방출 소스(20)으로부터 방출된 전자와 충돌하여 엑스레이와 같은 광을 발생시켜 챔버부(10)의 외부로 안내한다. 애노드부(30)에서 발생하는 엑스레이를 포함하는 광은 애노드부(30)의 재질과 엑스레이장치(1)에 인가되는 전압의 크기에 따라서 달라질 수 있으며, 구체적으로 엑스레이, 가시광선, 적외선, 자외선 가운데 어느 하나가 될 수 있다.
애노드부(30)는 전자방출 소스(20)와 마주하도록 챔버부(10)의 상부에 마련된다. 또한, 애노드부(30)는 전자와 충돌에 의해 엑스레이(L) 또는 광을 발생시켜 챔버부(10)의 외부로 안내하기 위해 반사면(미도시)을 구비할 수 있다. 이러한 반사면을 구비하는 애노드부(30)의 구성은 본 발명의 요지가 아니므로, 자세한 설명은 생략한다.
참고로, 애노드부(30)의 반사면(미도시)은 애노드부(30)와 동일 재질로 형성되거나, 형광물질로 형성되어 엑스레이, 가시광선, 적외선, 자외선 중 적어도 어느 하나의 광을 발생시킨다. 아울러, 반사면(미도시)이 금속이 아닌 유리와 같은 재질로 형성될 경우, 전자와의 충돌에 의해 조명을 위한 광을 발생시키는 변형예도 가능하다.
한편, 이상과 같은 엑스레이장치(10)에 구비되는 전자방출 소스(20)를 도 2를 참고하여 보다 자세히 설명한다.
도 2와 같이, 전자방출 소스(20)는 에미터(210), 가이더(220), 게이트(230), 커버(240) 및 스페이서(250)를 포함한다.
에미터(210)는 엑스레이 발생을 위한 전자를 방출한다. 이를 위해, 에미터(210)는 도 3의 도시와 같이, 에미터 바(211) 및 에미터 팁(212)을 포함한다.
에미터 바(211)는 금속 재질의 바(Bar) 형상을 가지고 마련된다. 여기서, 에미터 바(211)는 후술할 가이더(220)에 대해 직경 방향으로 삽입 가능하도록 마련된다. 또한, 에미터 바(211)는 상호 이웃하게 겹쳐지도록 복수개 마련된다. 이때, 복수의 에미터 바(211)는 접착제와 같은 접착수단에 의해 상호 결합될 수 있다.
참고로, 에미터 바(211)의 개수는 도시된 예로만 한정하지 않으며, 전자 방출 조건에 따라 다양하게 변형 가능함은 당연하다.
에미터 팁(212)은 에미터 바(211)의 전자가 방출되는 면(이하, 방출면으로 지칭함)에 상호 길이 방향으로 나란하도록 적어도 하나 돌출 형성된다. 이러한 에미터 팁(212)은 에미터 바(211)의 방출면(213)이 비 평면 형상을 가지도록 방출면(213)으로부터 상술한 애노드부(30)를 향해 뾰족한 팁 형상으로 돌출 형성되게 된다.
에미터 팁(212)은 도 3의 도시와 같이, 에미터 바(211)의 길이 방향으로 첨단이 뽀족한 형상을 가지도록 단일 또는 복수개가 돌출된다. 또한, 에미터 바(211)가 복수개 마련되어 상호 길이방향으로 이웃함에 따라, 복수의 에미터 바(211)로부터 각각 돌출된 복수의 에미터 팁(212) 또한, 이웃하는 에미터 바(211)의 에미터 팁(212)과 중첩되도록 이웃함이 좋다.
그러나, 꼭 이에 한정하는 것은 아니며, 복수의 에미터 바(211)로부터 각각 돌출되는 복수의 에미터 팁(212)의 형상, 개수 및 크기 등은 전자 방출 조건에 따라 다양하게 변형 가능함은 당연하다. 아울러, 도 4의 도시에서는 복수의 에미터 바(211)에 각각 돌출되는 복수의 에미터 팁(212)의 개수가 상호 같은 것으로 예시하나, 꼭 이에 한정되지 않으며 에미터 팁(212)의 개수가 상호 다를 수도 있다.
한편, 에미터 팁(212)은 뽀족한 형상으로 인해, 에미터 팁(212)에서 나노 소재인 탄소나노튜브(Carbon Nano Tube, CNT)의 성장 유도에 유리하다. 이를 위해, 에미터 팁(212)은 탄소나노튜브가 성장될 수 있는 금속, 탄소계열 물질로 구성될 수 있다. 참고로, 에미터 팁(212)이 마련되는 에미터 바(211) 또한, 금속, 탄소계열 물질로 구성되어 에미터 팁(212)과 일체로 형성될 수 있으나, 꼭 이에 한정되지 않음은 당연하다.
참고로, 에미터 팁(212)과 같이 뾰족한 첨점을 가지는 에미터(210)는 방출되는 전자의 투과성이 향상됨과 아울러, 전자의 직진성을 향상시켜, 애노드부(30)에 대한 전자의 집속 효과를 얻을 수 있다.
한편, 에미터 바(211) 및 에미터 팁(212)을 포함하는 에미터(210)는 레진(Resin)과 같은 수지 물질로 코팅된 후에 열처리됨으로써, 에미터(210)로부터 성장된 탄소나노튜브의 접착성이 증대된다. 이러한 에미터(210)의 코팅 및 열처리는 보다 자세히 후술한다.
가이더(220)는 에미터(210)의 설치를 가이드한다. 이러한 가이더(220)는 플레이트 형상을 가지며, 에미터(210)가 삽입되도록 면방향으로 소정 깊이 형성된 삽입홈(221)이 마련된다.
삽입홈(221)은 외주로부터 중심을 향해 점차 폭이 좁아지는 확장영역(222) 및, 확장영역(222)으로부터 연결되어 에미터(210)의 폭에 대응되는 폭을 가지는 고정영역(223)을 가진다. 즉, 삽입홈(221)은 확장영역(222)으로부터 고정영역(223)까지 Y자 형상으로 연결되게 된다. 이러한 삽입홈(221)의 형상으로 인해, 에미터(210)는 확장영역(222)을 통해 삽입되어 고정영역(223)으로 진입함으로써, 고정영역(223)내에서 유동되지 않고 자세 고정된다.
한편, 가이더(220)의 직경 방향으로 상호 이격된 위치에 한 쌍의 가이더 설치홀(224)이 마련됨으로써, 본체부(10)에 대한 가이더(220)의 설치 위치가 가이드될 수 있다.
게이트(230)는 에미터(210)로부터 방출되는 전자를 추출한다. 이러한 게이트(230)는 에미터(210)로부터 방출되는 전자를 추출하는 게이트 메쉬(231) 및 에미터(210)와 마주하는 영역에 관통 형성된 게이트홀(232)이 마련된다. 이때, 게이트 메쉬(231)는 금속성 재질로 마련될 수 있다.
게이트(230)는 가이더(220)와 마주하도록 적층된 플레이트 형상을 가지며, 가이더(220)의 가이더 설치홀(224)과 대응되는 위치에 한 쌍의 게이트 설치홀(233)이 관통 형성된다. 또한, 게이트홀(232)은 에미터(210)가 노출되도록 직경 방향으로 연장된 형상을 가지며, 이러한 게이트홀(232)을 통해 에미터(210)의 에미터 팁(212)이 노출된다.
커버(240)는 에미터(210)와 마주하는 영역에 커버홀(241)이 관통 형성되며, 에미터(210)가 삽입된 가이더(220)와 게이트(230) 사이에 마련된다. 여기서, 커버(240)는 가이더(220)의 삽입홈(221)에 삽입된 에미터(210)를 커버하되, 커버홀(241)을 통해 에미터 팁(212)을 노출시킨다. 이러한 커버(240)는 가이더(220)의 상면에 밀착되도록 적층되어 삽입홈(221)에 삽입된 에미터(210)의 에미터 바(211)를 커버한다. 동시에 커버(240)는 커버홀(241)을 통해 에미터 팁(212)을 노출시킴으로써, 전자 방출을 간섭하지 않도록 마련된다.
스페이서(250)는 게이트(230)에 대한 에미터(210)의 이격 간격을 조절하도록, 커버(240)와 게이트(230)의 사이에 마련된다. 스페이서(250)는 에미터(210)와 마주하는 영역에 스페이서홀(251)이 관통 형성되어, 에미터(210)의 에미터 팁(212)을 노출시킨다.
한편, 스페이서(250)의 바닥면에는 커버(240)가 삽입될 수 있도록 단차지게 마련될 수 있다. 즉, 스페이서(250)의 바닥면에는 커버(240)가 삽입되며, 커버(240)와 함께 스페이서(250)는 가이더(220)와 게이트(230)의 사이에 개재되도록 적층될 수 있는 것이다.
또한, 커버(240)와 스페이서(250)에는 본체부(10)에 대한 설치 위치를 가이드하기 위해, 직경 방향으로 마주하도록 한 쌍의 커버 설치홀(242) 및 스페이서 설치홀(252)이 각각 관통 형성될 수 있다. 참고로, 가이더 설치홀(224), 커버 설치홀(242), 스페이서 설치홀(252) 및 가이더 설치홀(224)이 순차적으로 상호 연통함으로써, 하나의 설치홀을 형성하여 본체부(10)에 대한 전자방출 소스(20)의 설치 위치를 가이드할 수 있게 된다.
이러한 구성을 가지는 전자방출 소스(20)는 도 4와 같은 제조방법에 의해 제조된다. 도 4를 참고하면, 전자방출 소스(20)의 제조방법은 성장단계(2), 코팅단계(3) 및 열처리단계(4)를 포함한다.
성장단계(2)는 에미터(210)로부터 탄소나노튜브를 성장시킨다. 여기서, 성장단계(2)는 전자가 방출되는 방향으로 뾰족한 에미터 팁(212)이 적어도 하나 마련되는 에미터 바(211)를 마련한 후, 전자의 방출을 위한 탄소나노튜브(CNT: Carbon NanoTube)를 성장시킨다.
참고로, 성장단계(2)는 플라즈마 화학기상증착(PE-CVD: plasma enhanced chemical vapor deposition)을 이용하는 랩(RAP: Resist-Assisted Patterning)공정에 의해 에미터(210)로부터 탄소나노튜브가 성장될 수 있다. 이때, 성장단계(2)는 아세틸렌(C2H2) 및 암모니아(NH3)가 40:60 비율로 혼합된 상태에서 800℃ 온도로 [0021] 2.0 토르(Torr) 압력으로 탄소나노튜브가 성장되는 것이 바람직하다.
코팅단계(3)는 성장단계(2)를 통해 탄소나노튜브가 성장된 에미터(210)를 수지를 포함하는 코팅제로 원심력에 의해 코팅한다. 보다 구체적으로, 코팅단계(3)는 도 5의 도시와 같이, 에미터(210)를 회전시켜 원심력에 의해 수지를 에미터(210)에 코팅시키게 된다.
여기서, 코팅단계(3)는 도 5의 도시와 같이, 에미터(210)의 길이 방향을 중심으로 회전시키거나, 도 6과 같이 에미터(210)가 회전 반경을 따라 회전되도록 에미터 바(211)의 일단을 중심으로 회전시킬 수 있다. 이때, 에미터(210)의 회전 시, 에미터 팁(212)이 원심력 방향과 마주하도록 위치한다. 그로 인해, 에미터 팁(212)이 원심력 방향과 마주하여 원심력 방향으로 퍼지는 수지가 뾰족한 형상의 에미터 팁(212) 사이의 공간까지도 전영역에 걸쳐 골고루 코팅될 수 있게 된다.
또한, 도 7과 같이, 가이더(220)에 에미터(210)가 결합된 상태로 회전시켜, 에미터(210)에 코팅제를 코팅시키는 변형예도 가능하다. 이 경우, 에미터(210)가 가이더(220)의 삽입홈(221)에 삽입되어 에미터 팁(212)이 노출된 상태이며, 노출된 에미터 팁(212)으로부터 탄소나노튜브가 성장된 상태이다. 이에 따라, 노출된 에미터(210)에만 코팅제가 원심력에 의해 코팅되어도, 에미터(210)로부터 성장된 탄소나노튜브에 골고루 코팅제가 도포되어 코팅될 수 있다.
참고로, 도 7의 도시에서는 가이더(220)에 에미터(210)가 결합되어 에미터(210)의 길이 방향을 중심으로 회전되는 것으로만 도시하였으나, 에미터(210)의 회전 방향은 도시된 예로만 한정되지 않는다. 예컨대, 가이더(220)에 결합된 에미터(210)가 가이더(220)의 면방향 또는 에미터(210)의 일단을 중심으로 회전되는 변형예도 가능함은 당연하다.
코팅단계(3)는 코팅제를 에미터(210)로 분사하거나, 코팅제에 에미터(210)를 침지시킨 후 회전시켜 원심력으로 코팅제가 에미터(210)에 코팅될 수 있다. 참고로, 코팅단계(3)에서 수지는 대략 300RPM에서 30초간 유지하여 약 1-2μm두께로 코팅층을 형성하는 것이 바람직하나, 꼭 이에 한정하는 것은 아니다.
또한, 코팅제는 수지 뿐만 아니라, 포토-레지스트(PR: photo-resist)이거나 탄소성분을 포함한 유기화합물을 포함할 수도 있다. 또한, 코팅제는 탄소기반 물질을 포함할 수 있으며, 탄소기반 물질로써 그래파이트 접착제(Graphite adhesive), 카본 페이스트(Carbon paste) 및 탄소나노튜브 페이스트(CNT paste) 중 적어도 하나를 포함할 수도 있다.
한편, 에미터(210)로부터 전자가 방출될 때, 탄소나노튜브의 증발(evaporating)을 방지하기 위해서는 탄소나노튜브와 에미터(210) 사이의 접촉력 유지가 중요 인자이다. 이에 따라, 코팅단계(3)에서 에미터(210)를 수지로 코팅함으로써, 탄소나노튜브와 에미터(210) 사이의 접착력을 보완할 수 있게 된다. 뿐만 아니라, 고전류의 전자 방출 시, 에미터(210) 표면의 아킹 소스(arcing source)도 수지 코팅을 통해 제거할 수 있다.
열처리단계(4)는 수지 코팅된 에미터(210)를 열처리하여 어닐링(Annealing)한다. 이러한 열처리단계(4)를 통해 에미터(210)로부터 성장된 탄소나노튜브의 결정화도를 증가시킬 수 있으며, 에미터(210)와 탄소나노튜브 사이의 결합력을 보다 증가시킬 수 있게 된다.
열처리단계(4)는 에미터(210)의 불순물을 제거함으로써, 아킹(arcing)을 방지할 수 있도록 아르곤 가스 분위기에서 진공압 또는 3밀리 토르(Milli Torr)의 압력과 대략 600 내지 1500℃ 사이의 온도로 1시간 가량 열처리할 수 있다. 그러나, 꼭 이에 한정하는 것은 아니며, 열처리단계(4)에서의 압력, 온도 및 시간은 에미터(210)의 성장 조건 및 전자 방출 조건 등에 따라 가변 가능하다.
이러한 열처리단계(4)를 통해 에미터(210)에 코팅된 수지는 그래파이트로 성상이 변화하여 탄소나노튜브의 벽과 뿌리 부분에 대한 접착력이 증대된다. 그로 인해, 에미터(210)로부터 성장된 탄소나노튜브의 코팅 및 열처리를 거쳐, 에미터(210)에 대한 탄소나노튜브의 접착력이 더욱 향상되어, 전자방출 효율 향상에 기여하게 된다.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
1: 엑스레이 장치
10: 챔버부
11: 윈도우
20: 전자방출 소스
30: 애노드부
210: 에미터
211: 에미터 바
212: 에미터 팁
220: 가이더
230: 게이트
240: 커버
250: 스페이서

Claims (15)

  1. 에미터로부터 탄소나노튜브(Carbon Nano Tube, CNT)를 성장시키는 성장단계;
    상기 탄소나노튜브가 성장된 상기 에미터를 원심력을 이용해 수지를 포함하는 코팅제로 코팅하는 코팅단계; 및
    코팅된 상기 에미터를 열처리하는 열처리단계;
    를 포함하며,
    상기 에미터는 전자가 방출되는 방향으로 뾰족한 에미터 팁이 적어도 하나 마련되는 전자방출 소자의 제조방법.
  2. 제1항에 있어서,
    상기 코팅단계는, 상기 에미터 팁이 원심력 방향과 마주하도록 회전시키는 전자방출 소자의 제조방법.
  3. 제2항에 있어서,
    상기 전자방출 소스는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며,
    상기 코팅단계는 상기 에미터를 상기 에미터 바의 길이 방향을 중심으로 회전시키는 전자방출 소자의 제조방법.
  4. 제1항에 있어서,
    상기 전자방출 소스는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며,
    상기 코팅단계는 상기 에미터가 회전 반경을 따라 회전되도록 상기 에미터 바의 일단을 중심으로 회전시키는 전자방출 소자의 제조방법.
  5. 제2항에 있어서,
    상기 에미터는 상기 탄소나노튜브가 성장된 상태로 가이더에 결합되어 설치가 가이드되며,
    상기 코팅단계는 상기 가이더에 상기 에미터가 결합된 상태에서 상기 에미터를 회전시키는 전자방출 소스의 제조방법.
  6. 제1항에 있어서,
    상기 전자방출 소자는 금속 또는 탄소계열 물질로 형성되는 전자방출 소자의 제조방법.
  7. 제1항에 있어서,
    상기 코팅제는 포토-레지스트(PR: photo-resist), 탄소성분을 포함한 유기화합물, 탄소기반 물질 중 적어도 어느 하나를 포함하며,
    상기 탄소기반 물질은 그래파이트 접착제(Graphite adhesive), 카본 페이스트(Carbon paste) 및 탄소나노튜브 페이스트(CNT paste) 중 적어도 어느 하나를 포함하는 전자방출 소자의 제조방법.
  8. 제1항에 있어서,
    상기 열처리단계는 600 내지 1500℃의 온도에서 코팅된 상기 에미터를 열처리하는 전자방출 소자의 제조방법.
  9. 제1항 내지 제8항 중 적어도 어느 한 항에 기재된 제조방법에 의해 제조된 전자방출 소자.
  10. 단부가 뾰족한 첨단 형상을 가지는 에미터 팁을 구비하여, 전자를 방출하는 에미터; 및
    상기 에미터를 사이에 두고 적층되어, 방출된 상기 전자를 외부로 안내하는 안내부;
    를 포함하며,
    상기 에미터는 탄소나노튜브(Carbon Nano Tube, CNT)가 성장된 후, 수지를 포함하는 코팅제로 코팅되어 열처리되는 전자방출 소스.
  11. 제10항에 있어서,
    상기 에미터는 회전되어 원심력에 의해 상기 코팅제가 코팅되며,
    상기 에미터 팁은 회전 시, 원심력 방향과 마주하는 전자방출 소자.
  12. 제11항에 있어서,
    상기 에미터는 길이 방향으로 연장된 바(Bar) 형상을 가지는 에미터 바에 상기 적어도 하나의 에미터 팁이 돌출 마련되며,
    상기 에미터는 상기 에미터 바의 길이 방향을 중심으로 회전되거나, 상기 에미터 바의 일단을 중심으로 회전되어 상기 코팅제가 코팅되는 전자방출 소자.
  13. 제11항에 있어서,
    상기 에미터는 상기 탄소나노튜브가 성장된 상태로 가이더에 결합되어 상기 안내부에 대한 설치가 가이드되되, 상기 에미터는 상기 가이더에 결합된 상태에서 회전되어 상기 코팅제가 코팅되는 전자방출 소스.
  14. 제10항에 있어서,
    상기 에미터는 600 내지 1500℃의 온도에서 열처리되는 전자방출 소자.
  15. 제10항에 있어서,
    상기 코팅제는 포토-레지스트(PR: photo-resist), 탄소성분을 포함한 유기화합물, 탄소기반 물질 중 적어도 어느 하나를 포함하며,
    상기 탄소기반 물질은 그래파이트 접착제(Graphite adhesive), 카본 페이스트(Carbon paste) 및 탄소나노튜브 페이스트(CNT paste) 중 적어도 어느 하나를 포함하는 전자방출 소자.
KR1020190175892A 2019-12-27 2019-12-27 전자방출 소스 및 이의 제조방법 KR102358284B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190175892A KR102358284B1 (ko) 2019-12-27 2019-12-27 전자방출 소스 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190175892A KR102358284B1 (ko) 2019-12-27 2019-12-27 전자방출 소스 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20210083531A true KR20210083531A (ko) 2021-07-07
KR102358284B1 KR102358284B1 (ko) 2022-02-08

Family

ID=76862533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190175892A KR102358284B1 (ko) 2019-12-27 2019-12-27 전자방출 소스 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR102358284B1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490480B1 (ko) 2002-06-04 2005-05-17 충남대학교산학협력단 탄소 나노튜브를 이용한 전계 방출 소자의 제조방법
KR20060000144A (ko) * 2004-06-28 2006-01-06 학교법인 성균관대학 금속 화합물을 이용한 탄소나노튜브 전자방출원의 제조방법
KR100851950B1 (ko) 2006-05-18 2008-08-12 경희대학교 산학협력단 선택적 위치 제어를 이용한 전자방출 소자 형성방법
KR101208770B1 (ko) * 2011-10-20 2012-12-05 경희대학교 산학협력단 전자방출 특성이 향상된 에미터 및 그 제조방법
KR20180106291A (ko) * 2017-03-20 2018-10-01 경희대학교 산학협력단 전자방출 소스유닛 및 이를 구비하는 디지털 엑스레이 소스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100490480B1 (ko) 2002-06-04 2005-05-17 충남대학교산학협력단 탄소 나노튜브를 이용한 전계 방출 소자의 제조방법
KR20060000144A (ko) * 2004-06-28 2006-01-06 학교법인 성균관대학 금속 화합물을 이용한 탄소나노튜브 전자방출원의 제조방법
KR100851950B1 (ko) 2006-05-18 2008-08-12 경희대학교 산학협력단 선택적 위치 제어를 이용한 전자방출 소자 형성방법
KR101208770B1 (ko) * 2011-10-20 2012-12-05 경희대학교 산학협력단 전자방출 특성이 향상된 에미터 및 그 제조방법
KR20180106291A (ko) * 2017-03-20 2018-10-01 경희대학교 산학협력단 전자방출 소스유닛 및 이를 구비하는 디지털 엑스레이 소스

Also Published As

Publication number Publication date
KR102358284B1 (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
Parmee et al. X-ray generation using carbon nanotubes
US7997950B2 (en) Field emission electron source having carbon nanotubes and method for manufacturing the same
JP4575349B2 (ja) 電界放出陰極及び該陰極を用いる電界放出照明装置
JP5491035B2 (ja) 電界放出型電子源の製造方法
JP2008518759A5 (ko)
JP2008181876A5 (ko)
JP5762411B2 (ja) 集束電界放出のためのカーボンナノチューブ配列
KR101040536B1 (ko) 나노구조 물질 기반 x-선관을 위한 게이트-집속전극 일체형 전극 구조
JP3842159B2 (ja) ドーピング装置
KR100577473B1 (ko) 전계방출팁을 이용한 저에너지 대면적 전자빔 조사장치
WO2017112937A1 (en) Electron transparent membrane for cold cathode devices
JPWO2007015445A1 (ja) プラズマ発生装置およびこれを用いた成膜方法
KR102358284B1 (ko) 전자방출 소스 및 이의 제조방법
KR100668332B1 (ko) 카바이드 및 나이트라이드 나노 전자 에미터를 구비한 소자의 제조방법
KR101956540B1 (ko) 탄소나노튜브 실을 포함한 초소형 엑스레이 소스 및 이를 이용한 엑스레이 발생장치
KR102264672B1 (ko) 전자방출 소스 및 이를 포함하는 엑스레이장치
KR20060122377A (ko) 탄소나노튜브 에미터를 구비하는 전계 방출 디스플레이 및그 제조 방법
JP4076890B2 (ja) プラズマ生成装置、エッチング装置、スパッタ装置及び成膜装置。
CN110832616B (zh) 用于场发射装置的一种场发射阴极结构
KR102358244B1 (ko) 에미터 및 이를 포함하는 전자방출 소스
JP4796313B2 (ja) カーボンナノチューブの成長方法及びトランジスタ
Park et al. Direct grown vertically full aligned carbon nanotube electron emitters for X-ray and UV devices
KR102494599B1 (ko) 엑스레이 튜브용 에미터 및 이의 제조방법
JP5406748B2 (ja) 電界放出型電子源及びその製造方法
TWI478201B (zh) 離子注入裝置、離子注入裝備系統及在離子注入過程中之離子產生方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant