KR20210074392A - 유동매체 모니터링장치 - Google Patents

유동매체 모니터링장치 Download PDF

Info

Publication number
KR20210074392A
KR20210074392A KR1020217016065A KR20217016065A KR20210074392A KR 20210074392 A KR20210074392 A KR 20210074392A KR 1020217016065 A KR1020217016065 A KR 1020217016065A KR 20217016065 A KR20217016065 A KR 20217016065A KR 20210074392 A KR20210074392 A KR 20210074392A
Authority
KR
South Korea
Prior art keywords
unit
light
wavelength
collimator
flow cell
Prior art date
Application number
KR1020217016065A
Other languages
English (en)
Other versions
KR102580490B1 (ko
Inventor
박현국
최창호
박성환
Original Assignee
주식회사 제우스
주식회사 제우스이엔피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제우스, 주식회사 제우스이엔피 filed Critical 주식회사 제우스
Publication of KR20210074392A publication Critical patent/KR20210074392A/ko
Application granted granted Critical
Publication of KR102580490B1 publication Critical patent/KR102580490B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • G01N15/075
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0693Investigating concentration of particle suspensions by optical means, e.g. by integrated nephelometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3122Atomic absorption analysis using a broad source with a monochromator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3137Determining multicomponents by multiwavelength light with selection of wavelengths after the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Abstract

본 발명의 유동매체 모니터링장치는: 광을 조사하는 광원부; 광원부에서 조사되는 광을 시준하는 제1 컬리메이터부; 유동매체가 유동되고, 유동매체의 진행방향을 따라 광이 진행되면서 유동매체의 파장을 흡수하게 하는 플로우셀부; 플로우셀부를 통과한 광의 파장을 검출하는 광검출부를 포함하는 것을 특징으로 한다.

Description

유동매체 모니터링장치
본 발명은 유동매체 모니터링장치에 관한 것으로서, 보다 상세하게는 유동매체의 사용 조건에서 유동매체의 상태를 정확하게 모니터링할 수 있는 유동매체 모니터링장치에 관한 것이다.
일반적으로 반도체 웨이퍼나 태양광셀 등의 반도체 제조 공정에는 에칭공정이 수행된다. 에칭공정에서는 실리콘질화막을 에칭하기 위해 인산 용액과 같은 고온의 에칭용액(유동매체)이 사용된다. 반도체 웨이퍼에서 실리콘과 같은 용출물이 녹아 에칭용액에 함유되므로, 반도체 웨이퍼의 에칭공정이 진행될수록 에칭용액에서 용출물의 농도가 증가된다. 에칭용액에서 용출물의 농도가 일정 농도 이상 증가되면, 에칭용액을 교체한다.
에칭용액이 고온 상태에서 실리콘의 농도를 미량 분석하는 것이 어려우므로, 에칭용액의 일부를 수집하여 상온으로 냉각시킨다. 냉각된 에칭용액의 검출 감도를 증가시키기 위해 화학처리를 복수 번 수행한 후 에칭용액의 농도를 검출한다.
그러나, 종래에는 에칭용액을 상온으로 냉각시킨 후 복수 번의 화학처리를 수행하므로, 에칭용액의 온도차에 따라 검출 오차 범위가 증가된다. 따라서, 실제 반도체 공정에서 적용되는 사용 조건에서 에칭용액의 상태를 정확하게 예측하기 어려웠다.
또한, 고온의 에칭용액을 상온으로 낮출 때에 에칭용액에서 용출물이 쉽게 석출되므로, 에칭용액에서 용출물의 농도를 정확하게 측정하기 어려울 수 있다.
또한, 에칭용액의 농도를 정확하게 측정하기 위해 화학처리를 복수 번에 걸쳐 수행하므로, 농도 분석 중 매트릭스를 복잡하게 만들어 분석 농도의 정확성을 저하시키게 된다.
본 발명의 배경기술은 대한민국 등록특허공보 제1785859호(2017. 09. 29 등록, 발명의 명칭: 구리이온 검출용 형광실리콘 나노입자, 이의 제조방법, 및 이를 이용한 검출센서)에 개시되어 있다.
본 발명의 일 실시예에 의하면, 유동매체의 사용 조건에서 유동매체의 상태를 정확하게 모니터링할 수 있는 유동매체 모니터링장치를 제공하는 것이다.
본 발명에 따른 유동매체 모니터링장치는: 광을 조사하는 광원부; 상기 광원부에서 조사되는 광을 시준하는 제1 컬리메이터부; 유동매체가 유동되고, 유동매체의 진행방향을 따라 광이 진행되면서 유동매체의 파장을 흡수하게 하는 플로우셀부; 상기 플로우셀부를 통과한 광의 파장을 검출하는 광검출부를 포함하는 것을 특징으로 한다.
상기 광검출부는 상기 플로우셀부를 통과한 광을 집광하는 제2 컬리메이터부; 및 상기 제2 컬리메이터부를 통과한 광의 파장을 검출하는 광검출유닛부를 포함할 수 있다.
상기 광원부는 광이 조사되는 발광램프; 및 상기 발광램프에서 조사되는 광을 집광시키는 볼록렌즈부를 포함할 수 있다.
상기 제1 컬리메이터부는 상기 광원부로부터 일정한 각도를 가지고 입사되는 광의 각도를 평행하게 만들 수 있다.
상기 제2 컬리메이터부는 상기 플로우셀부를 통과한 평행한 광을 상기 광검출유닛부에 집광할 수 있다.
상기 유동매체 모니터링장치는 상기 광검출부를 냉각시키도록 상기 광검출부에 설치되는 노이즈 저감부를 더 포함할 수 있다.
상기 유동매체 모니터링장치는 상기 제2 컬리메이터부에서 조사되는 광이 통과하면서 회절되게 하는 슬릿부; 및 상기 슬릿부와 상기 광검출유닛부 사이에 배치되고, 상기 슬릿부에서 입사되는 광을 상기 광검출부에 분광하는 파장선택부를 더 포함할 수 있다.
상기 유동매체 모니터링장치는 상기 파장선택부를 회전시킴에 따라 상기 광검출부에 조사되는 광의 파장을 조절하는 검출파장 조절부를 더 포함할 수 있다.
상기 유동매체 모니터링장치는 상기 광원부와 상기 제1 컬리메이터부 사이에 배치되고, 상기 광원부에서 입사되는 광을 분광시키는 파장선택부를 더 포함할 수 있다.
상기 유동매체 모니터링장치는 상기 광원부와 상기 제1 컬리메이터부에 연결되고, 상기 광원부에서 조사되는 광을 상기 제1 컬리메이터부에 조사하도록 광통로를 형성하는 제1 광섬유부를 더 포함할 수 있다.
상기 유동매체 모니터링장치는 상기 플로우셀부를 통해 조사되는 광을 상기 광검출유닛부에 조사하도록 광통로를 형성하는 제2 광섬유부를 더 포함할 수 있다.
본 발명에 따르면, 플로우셀부에서 유동매체의 진행방향을 따라 광이 진행되므로, 광이 유동매체를 투과할 때에 기포나 용출물에 의해 산란 및 굴절되는 것을 최소화하여 광 손실을 감소시킬 수 있다.
또한, 본 발명에 따르면, 플로우셀부에 고온의 유동매체가 유입되고, 유동매체에 광이 조사되므로, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하고, 유동매체의 검출 감도를 증가시키기 위해 유동매체를 복수 번에 걸쳐 화학처리하지 않아도 된다.
도 1은 본 발명의 제1 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
도 2는 본 발명의 제2 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
도 3은 본 발명의 제3 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 유동매체 모니터링장치의 실시예들을 설명한다. 유동매체 모니터링장치를 설명하는 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
먼저, 본 발명의 제1 실시예에 따른 유동매체 모니터링장치에 관해 설명하기로 한다.
도 1은 본 발명의 제1 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 유동매체 모니터링장치는 광원부(10), 제1 컬리메이터부(20), 플로우셀부(30) 및 광검출부(40,50)를 포함한다.
광원부(10)는 광을 조사한다. 이때, 광원부(10)는 광이 조사되는 발광램프(11)와, 발광램프(11)에서 조사되는 광을 집광시키는 볼록렌즈부(13)를 포함한다. 발광램프(11)로는 150-450nm 파장 범위의 자외선(UV: Ultraviolet)을 조사하는 자외선램프가 적용될 수 있다.
제1 컬리메이터부(20)는 광원부(10)에서 조사되는 광을 평행하게 시준(collimating)한다. 제1 컬리메이터부(20)에서 광을 평행하게 시준하므로, 플로우셀부(30)에는 광이 평행하게 입사된다. 물론, 제1 컬리메이터부(20)는 광학 설계에 따라 광원부(10)에서 조사되는 광을 약간 굴절되게 조사하거나 광의 파장이 교차하도록 조사할 수도 있다.
제1 컬리메이터부(20)는 볼록렌즈부(13)를 통과한 일정한 각도를 갖는 광을 평행하게 플로우셀부(30)의 내부로 조사한다.
플로우셀부(30)는 유동매체가 유동되고, 유동매체의 진행방향을 따라 광이 진행되면서 유동매체의 파장을 흡수하게 한다. 플로우셀부(30)의 내부에는 유동매체가 유동되도록 플로우챔버(미도시)가 형성된다. 플로우셀부(30)에서 유동매체의 진행방향을 따라 광이 진행되므로, 광이 유동매체를 투과할 때에 기포나 용출물에 의해 산란 및 굴절되는 것을 최소화하여 광 손실을 감소시킬 수 있다. 또한, 광이 유동매체를 투과하면서 유동매체에 함유된 용출물의 파장을 원활하게 흡수할 수 있으므로, 광검출 효율이 향상될 수 있다.
유동매체는 반도체 웨이퍼나 태양광셀 등을 제조할 때에 반도체 공정에 사용되는 에칭용액일 수 있다. 에칭용액으로는 150-200℃의 인산용액일 수 있다. 플로우셀부(30)는 고온의 에칭용액에 열변형 및 부식되는 것을 방지할 수 있는 석영재질, 파이렉스 글라스 및 테플론 재질로 형성될 수 있다.
플로우셀부(30)의 하부에는 유동매체가 유입되도록 유입관부(31)가 연결되고, 플로우셀부(30)의 상측에는 플로우셀부(30)에서 유동되는 유동매체가 배출되도록 배출관부(33)가 형성된다. 이때, 플로우셀부(30)의 길이방향을 따라 광이 진행된다. 유입관부(31)가 플로우셀부(30)의 하부에 연결되고, 배출관부(33)가 플로우셀부(30)의 상측에 연결되므로, 유동매체가 플로우셀부(30)의 하측에서 상측으로 유동된다. 또한, 유동매체에 함유된 기포는 대부분 플로우셀부(30)의 직경을 가로질러 유동된 후 플로우셀부(30)의 상측을 따라 유동되므로, 광이 플로우셀부(30)의 내부를 따라 유동될 때에 기포에 의해 광손실이 발생되는 것을 최소화할 수 있다.
플로우셀부(30)에는 유동매체에 함유된 물질이 석출되는 것을 억제하도록 150-200℃로 가열된 유동매체가 유동된다. 또한, 플로우셀부(30)에는 가열된 유동매체의 파장이 광에 흡수되도록 고온의 유동매체가 유동될 수 있다.
따라서, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하고, 유동매체의 검출 감도를 증가시키기 위해 유동매체를 복수 번에 걸쳐 화학처리 할 필요가 없다. 또한, 유동매체를 상온으로 냉각하지 않아도 되므로, 유동매체의 온도차에 의해 검출 오차가 발생되는 것을 방지하고, 실제 반도체 공정에서 적용되는 사용 조건에서 유동매체의 상태를 정확하게 예측할 수 있다. 또한, 농도 분석 중 매트릭스를 간단하게 만들어 분석 농도의 정확성을 향상시킬 수 있다.
광검출부(40,50)는 플로우셀부(30)를 통해 조사되는 광의 파장을 검출한다. 광검출부(40,50)는 광이 유동매체를 투과하면서 흡수한 파장을 검출하고, 광검출부(40,50)에서 송신되는 데이터를 분석하여 유동매체에 함유된 용출물의 농도를 측정할 수 있다.
광검출부(40,50)는 플로우셀부(30)를 통과한 광을 집광하는 제2 컬리메이터부(40)와, 제2 컬리메이터부(40)에서 조사되는 광의 파장을 검출하는 광검출유닛부(50)를 포함한다.
제2 컬리메이터부(40)는 플로우셀부(30)에서 조사되는 평행한 광을 집광한다. 평행한 광이 제2 컬리메이터부(40)를 투과하면서 집광되므로, 광검출유닛부(50)에서 검출 효율이 향상될 수 있다.
광검출유닛부(50)는 제2 컬리메이터부(40)에서 조사되는 광의 파장을 검출한다. 광검출유닛부(50)는 광이 유동매체를 투과하면서 흡수한 파장을 검출하고, 광검출유닛부(50)에서 송신되는 데이터를 분석하여 유동매체에 함유된 용출물의 농도를 측정할 수 있다.
광검출유닛부(50)는 복수의 파장을 동시에 스캔할 수 있는 CCD 모듈일 수 있다. 따라서, 광검출유닛부(50)에서 복수의 파장을 한 번에 스캔하므로, 광검출유닛부(50)의 광검출 시간을 현저히 감소시킬 수 있다.
유동매체 모니터링장치는 광검출유닛부(50)를 냉각시키도록 광검출유닛부(50)에 설치되는 노이즈 저감부(51)를 더 포함한다. 노이즈 저감부(51)는 광검출유닛부(50)를 냉각시킴에 의해 광검출유닛부(50)의 노이즈를 감소시키는 냉각소자나 냉각장치일 수 있다. 노이즈 저감부(51)가 광검출유닛부(50)의 과열을 억제시키므로, 검출 신호의 노이즈가 감소될 수 있다.
유동매체 모니터링장치는 제2 컬리메이터부(40)에서 조사되는 평행한 광이 통과하면서 회절되게 하는 슬릿부(53)와, 슬릿부(53)와 광검출유닛부(50) 사이에 배치되고, 슬릿부(53)에서 입사되는 광을 분광시키는 파장선택부(55)를 더 포함한다. 파장선택부(55)로는 광을 복수의 파장으로 분광시키는 회절격자가 적용될 수 있다. 회절격자는 복수의 파장을 거의 평행하게 분광시킨다. 슬릿부(53)와 파장선택부(55)가 광을 복수의 파장으로 분광시키므로, 광검출유닛부(50)에는 복수의 파장이 5-10msec 정도의 짧은 시간 동안에 검출된다. 따라서, 광검출유닛부(50)의 스캔시간이 현저히 감소된다.
유동매체 모니터링장치는 광원부(10)와 제1 컬리메이터부(20)에 연결되고, 광원부(10)에서 조사되는 광을 제1 컬리메이터부(20)에 조사하도록 광통로를 형성하는 제1 광섬유부(61)를 더 포함한다. 제1 컬리메이터부(20)와 제1 광섬유부(61)는 제1 광섬유 커플러(62)에 의해 연결된다.
광원부(10)가 플로우셀부(30)의 설치 위치에 관계없이 다양한 위치에 설치될 수 있으므로, 광원부(10)와 플로우셀부(30)의 설치 자유도를 증가시킬 수 있다.
또한, 제1 광섬유부(61)가 광원부(10)와 제1 컬리메이터부(20)에 연결되므로, 광원부(10)가 플로우셀부(30)와 이격되게 설치될 수 있다. 150-200℃ 정도의 고온의 유동매체가 플로우셀부(30)를 통과하므로, 플로우셀부(30)가 고온의 유동매체에 의해 가열된다. 광원부(10)와 광검출유닛부(50)가 제1 광섬유부(61)에 의해 플로우셀부(30)와 이격되게 설치되므로, 광원부(10)가 플로우셀부(30)의 열기에 의해 과열되는 것을 방지할 수 있다. 또한, 광원부(10)를 냉각시키거나 단열시키기 위해 별도의 냉각장치나 단열부재를 설치하지 않아도 된다.
유동매체 모니터링장치는 플로우셀부(30)를 통해 조사되는 평행한 광을 광검출유닛부(50)에 조사하도록 광통로를 형성하는 제2 광섬유부(65)를 더 포함한다. 이때, 제2 광섬유부(65)는 플로우셀부(30)를 통해 광이 입사되는 제2 컬리메이터부(40)와, 광검출유닛부(50)에 연결된다. 제2 광섬유부(65)는 제2 광섬유 커플러(66)에 의해 연결된다.
또한, 제2 광섬유부(65)는 플로우셀부(30)와 광검출유닛부(50)에 연결될 수 있다.
광검출유닛부(50)가 플로우셀부(30)의 설치 위치에 관계없이 다양한 위치에 설치될 수 있으므로, 광검출유닛부(50)와 플로우셀부(30)의 설치 자유도를 증가시킬 수 있다.
또한, 제2 광섬유부(65)가 광검출유닛부(50)와 제2 컬리메이터부(40)에 연결되므로, 광검출유닛부(50)가 플로우셀부(30)와 이격되게 설치될 수 있다. 150-200℃ 정도의 고온의 유동매체가 플로우셀부(30)를 통과하므로, 플로우셀부(30)가 고온의 유동매체에 의해 가열된다. 광검출유닛부(50)가 제2 광섬유부(65)에 의해 플로우셀부(30)와 이격되게 설치되므로, 광검출유닛부(50)가 플로우셀부(30)의 열기에 의해 과열되는 것을 방지할 수 있다. 또한, 광검출유닛부(50)를 냉각시키거나 단열시키기 위해 별도의 냉각장치나 단열부재를 설치하지 않아도 된다.
유동매체 모니터링장치는 제1 광섬유부(61)와 제2 광섬유부(65) 중 하나만 설치되거나 제1 광섬유부(61)와 제2 광섬유부(65)가 모두 설치될 수 있다. 플로우셀부(30)의 양측에 제1 광섬유부(61)와 제2 광섬유부(65)가 설치되는 경우, 플로우셀부(30), 광원부(10) 및 광검출유닛부(50)를 일렬로 배열해야 하지 않아도 되므로, 유동매체 모니터링장치의 설치 자유도를 증가시킬 수 있다.
또한, 유동매체 모니터링장치에는 제1 광섬유부(61)와 제2 광섬유부(65)가 설치되지 않을 수 있다. 이 경우, 광원부(10)와 플로우셀부(30)가 제1 컬리메이터부(20)에 의해 직결되고, 광검출유닛부(50)와 플로우셀부(30)가 제2 컬리메이터부(40)에 의해 직결될 수 있다.
다음으로, 본 발명의 제2 실시예에 따른 유동매체 모니터링장치에 관해 설명하기로 한다. 제2 실시예에서는 광검출부와 검출파장 조절부를 제외하고는 제1 실시예와 실질적으로 동일하므로, 제1 실시예와 동일한 구성에 관해서는 동일한 도번을 부여하고 그 설명을 생략하기로 한다.
도 2는 본 발명의 제2 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
도 2를 참조하면, 본 발명의 제2 실시예에 따른 유동매체 모니터링장치는 파장선택부(55)를 회전시킴에 따라 광검출유닛부(50)에 조사되는 광의 파장을 조절하는 검출파장 조절부(57)를 더 포함한다. 검출파장 조절부(57)로는 파장선택부(55)를 1피치씩 회전시킬 수 있는 스텝 모터부(step motor)를 제시한다. 파장선택부(55)가 1피치 회전될 때마다 특정 단위 파장이 순차적으로 광검출유닛부(50)에 조사된다. 검출파장 조절부(57)의 피치각은 단위 파장의 범위에 따라 적절하게 조절될 수 있다. 검출파장 조절부(57)가 1피치씩 회전되면서 단위 파장을 순차적으로 광검출유닛부(50)에 조사하면, 광검출유닛부(50)는 복수의 단위 파장을 하나씩 검출하여 조합한다. 따라서, 복수의 단위 파장을 조합하여 유동매체의 농도 등의 상태를 모니터링할 수 있다.
광검출유닛부(50)로는 파장선택부(55)에서 조사되는 단위 파장을 순차적으로 검출할 수 있는 광전자 증배관(PMT 소자: Photomultiplier tube)이 적용될 수 있다. 광전자 증배관이 적용되는 경우, 단위 파장을 순차적으로 판독하므로, 검출 감도가 현저히 증가될 있다. 또한, 복수의 단위 파장을 조합해야 하므로, 분석 속도가 지연될 수 있다.
다음으로, 본 발명의 제3 실시예에 따른 유동매체 모니터링장치에 관해 설명하기로 한다. 제3 실시예에서는 파장선택부를 제외하고는 제1 실시예와 실질적으로 동일하므로, 제1 실시예와 동일한 구성에 관해서는 동일한 도번을 부여하고 그 설명을 생략하기로 한다.
도 3은 본 발명의 제3 실시예에 따른 유동매체 모니터링장치를 도시한 구성도이다.
도 3을 참조하면, 본 발명의 제3 실시예에 따른 유동매체 모니터링장치는 광원부(10)와 제1 컬리메이터부(20) 사이에 배치되고, 광원부(10)에서 입사되는 광을 분광시키는 파장선택부(55)를 더 포함한다. 이때, 파장선택부(55)는 제1 광섬유 커플러(62)와 광원부(10)의 볼록렌즈부(13) 사이에 배치된다.
파장선택부(55)는 광원부(10)에서 조사되는 복수의 단위 파장 중에서 하나의 단위 파장을 선택하여 제1 광섬유부(61)에 전달한다. 하나의 단위 파장은 제1 광섬유부(61)를 통해 제1 컬리메이터부(20), 플로우셀부(30), 제2 컬리메이터부(40) 및 제2 광섬유부(65)를 통해 광검출유닛부(50)에 도달된다. 상기한 하나의 단위 파장은 유동매체에 함유된 복수의 용출물 중 1종의 용출물의 파장을 흡수하는 파장으로 정의된다. 플로우셀부(30)에 하나의 단위 파장이 조사되어 유동매체에서 1종의 용출물의 파장을 흡수하므로, 복수의 파장이 복수 종류의 용출물에서 파장을 흡수할 때에 파장 사이에 스펙트럼의 방해가 발생되는 백그라운드 현상을 방지할 수 있다. 따라서, 단위 파장이 유동매체에 함유된 특정의 용출물에서만 파장을 흡수하므로, 유동매체의 농도 등을 보다 정확하게 검출할 수 있다.
광검출유닛부(50)와 제2 광섬유 커플러(66) 사이에는 제2 볼록렌즈가 배치된다. 제2 볼록렌즈는 제2 광섬유 커플러(66)에서 조사되는 광을 광검출유닛부(50)에 집광한다. 검출소자로는 감도가 향상되는 광전자 증배관(PMT: Photomultiplier tube) 또는 아발란체 포토다이오드(APD: Avalanche Photo Diode)가 적용될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
따라서, 본 발명의 진정한 기술적 보호범위는 청구범위에 의해서 정하여져야 할 것이다.

Claims (11)

  1. 광을 조사하는 광원부;
    상기 광원부에서 조사되는 광을 시준하는 제1 컬리메이터부;
    유동매체가 유동되고, 유동매체의 진행방향을 따라 광이 진행되면서 유동매체의 파장을 흡수하게 하는 플로우셀부; 및
    상기 플로우셀부를 통과한 광의 파장을 검출하는 광검출부를 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  2. 제1 항에 있어서,
    상기 광검출부는,
    상기 플로우셀부를 통과한 광을 집광하는 제2 컬리메이터부; 및
    상기 제2 컬리메이터부를 통과한 광의 파장을 검출하는 광검출유닛부를 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  3. 제1 항에 있어서,
    상기 광원부는,
    광이 조사되는 발광램프; 및
    상기 발광램프에서 조사되는 광을 집광시키는 볼록렌즈부를 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  4. 제1 항에 있어서,
    상기 제1 컬리메이터부는 상기 광원부로부터 일정한 각도를 가지고 입사되는 광의 각도를 평행하게 만드는 것을 특징으로 하는 유동매체 모니터링장치.
  5. 제2 항에 있어서,
    상기 제2 컬리메이터부는 상기 플로우셀부를 통과한 평행한 광을 상기 광검출유닛부에 집광하는 것을 특징으로 하는 유동매체 모니터링장치.
  6. 제1 항에 있어서,
    상기 광검출부를 냉각시키도록 상기 광검출부에 설치되는 노이즈 저감부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  7. 제2 항에 있어서,
    상기 제2 컬리메이터부에서 조사되는 광이 통과하면서 회절되게 하는 슬릿부; 및
    상기 슬릿부와 상기 광검출유닛부 사이에 배치되고, 상기 슬릿부에서 입사되는 광을 상기 광검출유닛부에 분광하는 파장선택부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  8. 제7 항에 있어서,
    상기 파장선택부를 회전시킴에 따라 상기 광검출부에 조사되는 광의 파장을 조절하는 검출파장 조절부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  9. 제1 항에 있어서,
    상기 광원부와 상기 제1 컬리메이터부 사이에 배치되고, 상기 광원부에서 입사되는 광을 분광시키는 파장선택부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  10. 제1 항에 있어서,
    상기 광원부와 상기 제1 컬리메이터부에 연결되고, 상기 광원부에서 조사되는 광을 상기 제1 컬리메이터부에 조사하도록 광통로를 형성하는 제1 광섬유부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
  11. 제1항에 있어서,
    상기 플로우셀부를 통해 조사되는 광을 상기 광검출유닛부에 조사하도록 광통로를 형성하는 제2 광섬유부를 더 포함하는 것을 특징으로 하는 유동매체 모니터링장치.
KR1020217016065A 2018-09-20 2020-03-20 유동매체 모니터링장치 KR102580490B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180113038 2018-09-20
KR1020190055827 2019-05-13
KR1020190055827A KR20200034563A (ko) 2018-09-20 2019-05-13 유동매체 모니터링장치
PCT/KR2020/003822 WO2020230995A1 (ko) 2018-09-20 2020-03-20 유동매체 모니터링장치

Publications (2)

Publication Number Publication Date
KR20210074392A true KR20210074392A (ko) 2021-06-21
KR102580490B1 KR102580490B1 (ko) 2023-09-21

Family

ID=70002293

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020190055827A KR20200034563A (ko) 2018-09-20 2019-05-13 유동매체 모니터링장치
KR1020190055828A KR20200034564A (ko) 2018-09-20 2019-05-13 플로우셀장치
KR1020217016065A KR102580490B1 (ko) 2018-09-20 2020-03-20 유동매체 모니터링장치
KR1020217016064A KR102531525B1 (ko) 2018-09-20 2020-03-20 플로우셀장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020190055827A KR20200034563A (ko) 2018-09-20 2019-05-13 유동매체 모니터링장치
KR1020190055828A KR20200034564A (ko) 2018-09-20 2019-05-13 플로우셀장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217016064A KR102531525B1 (ko) 2018-09-20 2020-03-20 플로우셀장치

Country Status (5)

Country Link
US (2) US11674875B2 (ko)
KR (4) KR20200034563A (ko)
CN (2) CN112654853A (ko)
TW (2) TWI784250B (ko)
WO (2) WO2020230996A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771629A (en) * 1985-09-17 1988-09-20 Westinghouse Electric Corp. System for chemical analysis
JPH02500613A (ja) * 1986-11-26 1990-03-01 リシュブルーク・ジョン 高感度光学的イメージ装置
JPH10300671A (ja) * 1997-04-22 1998-11-13 Yokogawa Electric Corp 微粒子計測装置
WO2007062800A1 (en) * 2005-11-29 2007-06-07 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the concentration of a substance in a solution
WO2016171042A1 (ja) * 2015-04-21 2016-10-27 国立大学法人香川大学 分光測定装置
KR20180027331A (ko) * 2016-09-06 2018-03-14 (주)링크옵틱스 유체포커싱채널부를 구비하는 세포 계수 및 세포 크기 측정시스템

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH452233A (de) * 1964-10-08 1968-05-31 Ceskoslovenska Akademie Ved Durchflussphotometer-Anordnung
DE1598269A1 (de) * 1965-05-27 1971-12-23 Ceskoslovenska Akademie Ved Kuevette fuer Durchflussphotometer
US3514210A (en) * 1968-01-15 1970-05-26 Jiri Hrdina Device for programmed drawing off of gas bubbles from a measuring cell separator and the liquid from the extinction cell space
US4368047A (en) * 1981-04-27 1983-01-11 University Of Utah Research Foundation Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
JPH02212742A (ja) * 1989-02-13 1990-08-23 Kowa Co 液中微粒子測定装置
US5242586A (en) * 1990-12-17 1993-09-07 Biotage Inc. Column protection system for liquid chromatography system
KR100196198B1 (ko) * 1995-09-30 1999-06-15 가시마 쥰이치로 코리오리 유량계
US6082205A (en) * 1998-02-06 2000-07-04 Ohio State University System and device for determining particle characteristics
CN1339610A (zh) * 2001-10-09 2002-03-13 张添 基因芯片时间分辨荧光检测方法及检测装置
CN1717581A (zh) 2002-10-28 2006-01-04 华盛顿大学 波长可调谐表面等离子体激元谐振传感器
US20060182664A1 (en) * 2005-02-14 2006-08-17 Peck Bill J Flow cell devices, systems and methods of using the same
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
JP4964647B2 (ja) * 2007-03-30 2012-07-04 ジーエルサイエンス株式会社 蛍光検出装置
JP2009002806A (ja) * 2007-06-21 2009-01-08 Hitachi Ltd 化学発光計測装置
US20090139311A1 (en) * 2007-10-05 2009-06-04 Applied Biosystems Inc. Biological Analysis Systems, Devices, and Methods
JP2009162592A (ja) * 2007-12-28 2009-07-23 Nippon Applied Technology Inc 微弱発光分析装置
JP5190945B2 (ja) * 2008-07-14 2013-04-24 富士フイルム株式会社 検出方法、検出装置、検出用試料セルおよび検出用キット
JP5066110B2 (ja) * 2009-01-30 2012-11-07 株式会社日立ハイテクノロジーズ 蛍光分析装置、及び蛍光分析方法
JP2010217031A (ja) * 2009-03-17 2010-09-30 Shimadzu Corp 光学式ガス分析システム及びガスフローセル
CN101634748A (zh) * 2009-08-27 2010-01-27 上海交通大学 微弱发光及荧光光学成像装置及其成像方法
KR101213059B1 (ko) * 2011-02-23 2012-12-18 광운대학교 산학협력단 태양전지 측정시스템과 그 제어방법
US8817259B2 (en) * 2011-03-25 2014-08-26 Parker-Hannifin Corporation Optical sensors for monitoring biopharmaceutical solutions in single-use containers
JP5906407B2 (ja) * 2011-04-11 2016-04-20 パナソニックIpマネジメント株式会社 気体成分検出装置
JP5516486B2 (ja) * 2011-04-14 2014-06-11 株式会社島津製作所 分光測定装置及びプログラム
KR101958387B1 (ko) * 2011-07-28 2019-03-20 주식회사 동진쎄미켐 근적외선 분광기를 이용한 구리막 식각 공정 제어방법 및 구리막 식각액 조성물의 재생방법
CN202994641U (zh) * 2012-11-13 2013-06-12 北京瑞升特科技有限公司 一种连续流动分析用气泡脱离装置
JP6121319B2 (ja) * 2013-03-29 2017-04-26 シスメックス株式会社 粒子測定装置、照射光学系および照射位置調整方法
CN104103546A (zh) * 2013-04-02 2014-10-15 盛美半导体设备(上海)有限公司 化学液供应与回收装置
CN104280355B (zh) * 2014-10-24 2017-07-14 中国科学院上海光学精密机械研究所 氨气和二氧化硫气体浓度的检测装置和检测方法
WO2016154193A1 (en) * 2015-03-24 2016-09-29 Illumina, Inc. Methods, carrier assemblies, and systems for imaging samples for biological or chemical analysis
WO2017029792A1 (ja) * 2015-08-18 2017-02-23 国立大学法人徳島大学 濃度測定装置
JP6103008B2 (ja) * 2015-09-09 2017-03-29 ソニー株式会社 非線形ラマン分光装置、顕微分光装置及び顕微分光イメージング装置
RU172097U1 (ru) * 2016-04-27 2017-06-28 Общество с ограниченной ответственностью "Производственно-технологический центр "УралАлмазИнвест" Фотометрическое устройство распознавания многокомпонентных примесей нефтепродуктов в воде
KR102025667B1 (ko) * 2016-06-17 2019-09-30 주식회사 제우스 솔더링장치
KR101785859B1 (ko) 2016-08-04 2017-10-16 중앙대학교 산학협력단 구리이온 검출용 형광실리콘 나노입자, 이의 제조방법, 및 이를 이용한 검출센서
WO2018123771A1 (ja) * 2016-12-27 2018-07-05 国立研究開発法人産業技術総合研究所 光学測定用フローセル
CN206906244U (zh) * 2017-04-25 2018-01-19 南京舜唯科技工程有限公司 基于近红外光谱的磨煤机气体分析仪
US10591408B2 (en) * 2017-06-20 2020-03-17 Ci Systems (Israel) Ltd. Flow cell and optical system for analyzing fluid
JP7081146B2 (ja) * 2017-12-27 2022-06-07 富士電機株式会社 ガス分析装置
US10677767B2 (en) * 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
CN113358604B (zh) * 2021-06-02 2022-11-01 天津大学 一种斜入射式光谱型反射差分测量装置及方法
CN113659220A (zh) * 2021-08-05 2021-11-16 中国民航大学 基于腔衰荡光谱技术的锂电池热失控早期预警系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771629A (en) * 1985-09-17 1988-09-20 Westinghouse Electric Corp. System for chemical analysis
JPH02500613A (ja) * 1986-11-26 1990-03-01 リシュブルーク・ジョン 高感度光学的イメージ装置
JPH10300671A (ja) * 1997-04-22 1998-11-13 Yokogawa Electric Corp 微粒子計測装置
WO2007062800A1 (en) * 2005-11-29 2007-06-07 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the concentration of a substance in a solution
WO2016171042A1 (ja) * 2015-04-21 2016-10-27 国立大学法人香川大学 分光測定装置
KR20180027331A (ko) * 2016-09-06 2018-03-14 (주)링크옵틱스 유체포커싱채널부를 구비하는 세포 계수 및 세포 크기 측정시스템

Also Published As

Publication number Publication date
WO2020230995A1 (ko) 2020-11-19
WO2020230996A1 (ko) 2020-11-19
KR20200034563A (ko) 2020-03-31
US20220349814A1 (en) 2022-11-03
KR20200034564A (ko) 2020-03-31
KR20210093917A (ko) 2021-07-28
TW202107062A (zh) 2021-02-16
KR102531525B1 (ko) 2023-05-15
KR102580490B1 (ko) 2023-09-21
CN112654852A (zh) 2021-04-13
TWI741537B (zh) 2021-10-01
US20220057314A1 (en) 2022-02-24
TW202109005A (zh) 2021-03-01
US11674875B2 (en) 2023-06-13
CN112654853A (zh) 2021-04-13
TWI784250B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
CN100350584C (zh) 在热处理室中用于校准温度测量装置的系统和方法
CN104204739B (zh) 分光测定装置
KR101393143B1 (ko) 기판 처리 장치
KR20090133079A (ko) 중합효소 연쇄반응 블록 및 이를 이용한 연속형 실시간 모니터링 장치
JP6286183B2 (ja) 分析装置
US20110017905A1 (en) Microfluidic device, microfluidic system including the same, and method for detecting reference angle of the microfluidic device
KR101801087B1 (ko) 광산란을 이용한 입자측정장치
CN108955889B (zh) 用于低温透射测温的探测器
KR102580490B1 (ko) 유동매체 모니터링장치
JP6500474B2 (ja) 光学分析装置
US10175171B2 (en) Compact multi-UV-LED probe system and methods of use thereof
JP5358466B2 (ja) 液体クロマトグラフ装置
KR102555556B1 (ko) 흡광도계
US11703391B2 (en) Continuous spectra transmission pyrometry
US20230395408A1 (en) Optical sensor for remote temperature measurements
JP2016217731A (ja) ガス分析装置
KR20220014824A (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)