KR20210041062A - 비디오 코딩에서 참조 화상 관리 - Google Patents

비디오 코딩에서 참조 화상 관리 Download PDF

Info

Publication number
KR20210041062A
KR20210041062A KR1020217007129A KR20217007129A KR20210041062A KR 20210041062 A KR20210041062 A KR 20210041062A KR 1020217007129 A KR1020217007129 A KR 1020217007129A KR 20217007129 A KR20217007129 A KR 20217007129A KR 20210041062 A KR20210041062 A KR 20210041062A
Authority
KR
South Korea
Prior art keywords
picture
reference picture
slice
list
refpiclist
Prior art date
Application number
KR1020217007129A
Other languages
English (en)
Other versions
KR102659936B1 (ko
Inventor
예-쿠이 왕
프뉴 헨드리
Original Assignee
후아웨이 테크놀러지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후아웨이 테크놀러지 컴퍼니 리미티드 filed Critical 후아웨이 테크놀러지 컴퍼니 리미티드
Priority to KR1020247012883A priority Critical patent/KR20240058947A/ko
Publication of KR20210041062A publication Critical patent/KR20210041062A/ko
Application granted granted Critical
Publication of KR102659936B1 publication Critical patent/KR102659936B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44004Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving video buffer management, e.g. video decoder buffer or video display buffer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

코딩된 비디오 비트스트림을 디코딩하는 방법이 제공된다. 이 방법은 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더를 파싱하는 단계를 포함한다. 슬라이스 헤더는 참조 화상 목록 구조를 포함한다. 방법은 참조 화상 목록 구조에 기초하여, 현재 슬라이스의 참조 화상 목록을 유도하는 단계; 및 참조 화상 목록에 기초하여, 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하는 단계를 또한 포함한다.

Description

비디오 코딩에서 참조 화상 관리
이 특허 출원은 Ye-Kui Wang 등에 의해 2018년 8월 17일자로 출원되고 발명의 명칭이 "비디오 코딩에서 참조 화상 관리"인 미국 특허 가출원 번호 제62/719,360호에 대해 유익을 주장하며, 이러한 문헌의 내용은 원용에 의해 전체적으로 본 명세서에 포함된다.
본 개시는 비디오 코딩에서 참조 화상 관리를 위한 기법에 관련된다. 보다 구체적으로, 본 개시는 참조 화상 목록의 구성 및 참조 화상 마킹(marking)을 위한 기법을 기술한다.
비교적 짧은 비디오를 묘사하는데 필요한 비디오 데이터의 양은 상당할 수 있으며, 이는 대역폭 용량이 제한된 통신 네트워크를 통해 데이터가 스트리밍되거나 통신될 때 어려움을 초래할 수 있다. 따라서, 비디오 데이터는 일반적으로 현대 통신 네트워크를 통해 통신되기 전에 압축된다. 메모리 리소스가 제한될 수 있으므로 비디오가 저장 장치에 저장될 때 비디오의 크기가 문제될 수도 있다. 비디오 압축 디바이스는 종종 소스에서 소프트웨어 및/또는 하드웨어를 사용하여 전송 또는 저장 전에 비디오 데이터를 코딩하여 디지털 비디오 이미지를 표현하는데 필요한 데이터 양을 줄인다. 압축된 데이터는 비디오 데이터를 디코딩하는 비디오 압축 해제 디바이스에 의해 목적지에서 수신된다. 네트워크 자원이 제한되고 더 높은 비디오 품질에 대한 요구가 계속 증가함에 따라, 이미지 품질을 거의 또는 전혀 희생하지 않고 압축률을 향상하는 개선된 압축 및 압축 해제 기법이 바람직하다.
제1 측면은 디코딩 코딩된 비디오 비트스트림의 방법에 관련된다. 상기 방법은, 상기 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더를 파싱하는 단계-여기서 상기 슬라이스 헤더는 참조 화상 목록 구조를 포함함-; 상기 참조 화상 목록 구조에 기초하여, 상기 현재 슬라이스의 참조 화상 목록을 유도하는 단계; 및 상기 참조 화상 목록에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하는 단계;를 포함한다.
이 방법은 참조 화상 목록의 시그널링을 단순화하고 보다 효율적으로 만드는 기법을 제공한다. 따라서, 전반적인 코딩 프로세스가 향상된다.
이러한 제1 측면에 따른 방법의 제1 구현 형태에서, 상기 참조 화상 목록 구조에서 엔트리의 순서는 상기 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일하다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제2 구현 형태에서, 상기 순서는 0부터 표시된 값까지이다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제3 구현 형태에서, 상기 표시된 값은 0부터 sps_max_dec_pic_buffering_minus1에 의해 표시되는 값까지이다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제4 구현 형태에서, 상기 참조 화상 목록은 RefPictList[0]로 지정된다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제5 구현 형태에서, 상기 참조 화상 목록은 RefPictList[1]로 지정된다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제6 구현 형태에서, 상기 적어도 하나의 재구성된 블록은 전자 장치의 디스플레이 상에 디스플레이되는 이미지를 생성하는데 사용된다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제7 구현 형태에서, 상기 참조 화상 목록은 인터 예측에 사용되는 참조 화상의 목록을 포함한다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제8 구현 형태에서, 상기 인터 예측은 P 슬라이스 또는 B 슬라이스에 대한 것이다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제9 구현 형태에서, 상기 슬라이스 헤더는 ref_pic_list_sps_flag[ i ]로 지정되는 참조 화상 목록 시퀀스 파라미터 세트(SPS) 플래그를 포함한다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제10 구현 형태에서, 상기 슬라이스 헤더는 num_ref_idx_active_override_flag로 지정되는 번호 참조 인덱스 활성 오버라이드 플래그를 포함한다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제11 구현 형태에서, 상기 참조 화상 목록은 RefPictList[0] 또는 RefPictList[1]로 지정되고, 상기 참조 화상 목록 구조에서 엔트리의 순서는 상기 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일하다.
이러한 제1 측면에 따른 또는 제1 측면의 임의의 선행하는 구현 형태에 따른 방법의 제12 구현 형태에서, 상기 방법은, 상기 코딩된 비디오 비트스트림에서 표현되는 파라미터 세트를 파싱하는 단계-여기서, 상기 파라미터 세트는 참조 화상 목록 구조의 세트를 포함하는 신택스 엘리먼트의 세트를 포함함-; 상기 코딩된 비디오 비트스트림에서 표현되는 참조 화상 목록 구조를 획득하는 단계; 상기 참조 화상 목록 구조에 기초하여, 현재 슬라이스의 제1 참조 화상 목록을 유도하는 단계-여기서, 상기 제1 참조 화상 목록은 적어도 하나의 활성 엔트리 및 적어도 하나의 비활성 엔트리를 포함하고, 상기 적어도 하나의 비활성 엔트리는 상기 현재 슬라이스의 인터 예측에는 사용되지 않으나 제2 참조 화상 목록에서 활성 엔트리에 의해 참조되는 참조 화상을 참조하고, 상기 제2 참조 화상 목록은 디코딩 순서에서 상기 현재 슬라이스를 뒤따르는 슬라이스의 참조 화상 목록 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 참조 화상 목록임-; 및 상기 제1 참조 화상 목록의 적어도 하나의 활성 엔트리에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하는 단계;를 더 포함한다.
제2 측면은 디코딩 디바이스에 관련되며, 디코딩 디바이스는, 코딩된 비디오 비트스트림을 수신하도록 구성되는 수신기; 명령을 저장하며, 상기 수신기에 연결되는 메모리; 및 상기 메모리에 연결되는 프로세서를 포함하되, 상기 프로세서는, 상기 메모리에 저장된 명령을 실행하여, 상기 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더를 파싱-여기서, 상기 슬라이스 헤더는 참조 화상 목록 구조를 포함함-하도록; 상기 참조 화상 목록 구조에 기초하여, 상기 현재 슬라이스의 참조 화상 목록을 유도하도록; 그리고 상기 참조 화상 목록에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하도록; 구성된다.
상기 디코딩 디바이스는 참조 화상 목록의 시그널링을 단순화하고 보다 효율적으로 만드는 기법을 제공한다. 따라서, 전반적인 코딩 프로세스가 향상된다.
이러한 제2 측면에 따른 디코딩 디바이스의 제1 구현 형태에서, 상기 디코딩 디바이스는 상기 적어도 하나의 재구성된 블록에 기초하여 이미지를 디스플레이하도록 구성되는 디스플레이를 더 포함한다.
제3 측면은 코딩 장치에 관련되며, 코딩 장치는, 디코딩할 비트스트림을 수신하도록 구성되는 수신기; 상기 수신기에 연결되며, 디코딩된 이미지를 디스플레이로 전송하도록 구성되는 송신기; 상기 수신기 또는 상기 송신기 중 적어도 하나에 연결되며, 명령을 저장하도록 구성되는 메모리; 및 상기 메모리에 연결되며, 상기 메모리에 저장된 명령을 실행하여 상기 선행하는 측면 또는 구현예 중 어느 하나에서의 방법을 수행하도록 구성되는 프로세서;를 포함한다.
제4 측면은 시스템에 관련되며, 시스템은, 인코더 및 상기 인코더와 통신하는 디코더를 포함한다. 상기 인코더 또는 상기 디코더는 상기 디코딩 디바이스 또는 상기 선행하는 측면 또는 구현예 중 어느 하나의 코딩 장치를 포함한다.
상기 시스템은 참조 화상 목록의 시그널링을 단순화하고 보다 효율적으로 만드는 기법을 제공한다. 따라서, 전반적인 코딩 프로세스가 향상된다.
제5 측면은 코딩을 위한 수단에 관련되며, 코딩을 위한 수단은, 인코딩할 화상을 수신하거나 디코딩할 비트스트림을 수신하도록 구성되는 수신 수단, 상기 수신 수단에 연결되고, 상기 비트스트림을 디코더로 전송하거나 또는 디코딩된 이미지를 디스플레이 수단으로 전송하도록 구성되는 전송 수단, 상기 수신 수단 또는 상기 전송 수단 중 적어도 하나에 연결되고, 명령을 저장하도록 구성되는 저장 수단, 및 상기 저장 수단에 연결되고, 상기 저장 수단에 저장된 명령을 실행하여 선행하는 측면 또는 구현예 중 어느 하나의 방법을 수행하도록 구성되는 처리 수단을 포함한다.
상기 코딩을 위한 수단은 참조 화상 목록의 시그널링을 단순화하고 보다 효율적으로 만드는 기법을 제공한다. 따라서, 전반적인 코딩 프로세스가 향상된다.
본 개시의 보다 완전한 이해를 위해, 첨부 도면 및 상세한 설명과 관련하여 취해진 다음의 간단한 설명을 참조하며, 여기서 동일한 참조 번호는 동일한 부분을 나타낸다.
도 1은 양방향 예측 기법을 이용할 수 있는 예시적인 코딩 시스템을 도시하는 블록도이다.
도 2는 양방향 예측 기법을 구현할 수 있는 예시적인 비디오 인코더를 도시하는 블록도이다.
도 3은 양방향 예측 기법을 구현할 수 있는 비디오 디코더의 예시를 도시하는 블록도이다.
도 4는 참조 화상 세트(RPS)의 모든 서브세트에서 엔트리를 가지는 화상을 가지는 참조 화상 세트(RPS)를 도시하는 개략도이다.
도 5는 코딩된 비디오 비트스트림을 디코딩하는 방법의 실시예이다.
도 6은 비디오 코딩 디바이스의 개략도이다.
도 7은 코딩을 위한 수단의 실시예의 개략도이다.
도 1은 여기에서 기술되는 비디오 코딩 기법을 이용할 수 있는 예시적인 코딩 시스템(10)을 도시하는 블록도이다. 도 1에 도시된 바와 같이, 코딩 시스템(10)은 데스티네이션 디바이스(14)에 의해 후에 디코딩될 인코딩된 비디오 데이터를 제공하는 소스 디바이스(12)를 포함한다. 특히, 소스 디바이스(12)는 컴퓨터-판독 가능한 매체(16)를 통해 비디오 데이터를 데스티네이션 디바이스(14)로 제공할 수 있다. 소스 디바이스(12) 및 데스티네이션 디바이스(14)는, 데스크탑 컴퓨터, 노트북(예컨대, 랩탑) 컴퓨터, 태블릿 컴퓨터, 셋톱 박스, 소위 "스마트" 폰과 같은 전화 핸드셋, 소위 "스마트" 패드, 텔레비전, 카메라, 표시 장치, 디지털 미디어 플레이어, 비디오 게이밍 콘솔, 비디오 스트리밍 디바이스, 등을 포함하여 넓은 범위의 임의의 디바이스를 포함할 수 있다. 일부 경우에, 소스 디바이스(12) 및 데스티네이션 디바이스(14)는 무선 통신을 장착할 수 있다.
데스티네이션 디바이스(14)는 디코딩될 인코딩된 비디오 데이터를 컴퓨터-판독 가능한 매체(16)를 통해 수신할 수 있다. 컴퓨터-판독 가능한 매체(16)는 인코딩된 비디오 데이터를 소스 디바이스(12)로부터 데스티네이션 디바이스(14)로 이동시킬 수 있는 임의의 유형의 매체 또는 디바이스를 포함할 수 있다. 한 예로서, 컴퓨터-판독 가능한 매체(16)는 소스 디바이스(12)로 하여금 인코딩된 비디오 데이터를 직접 데스티네이션 디바이스(14)로 실시간으로 전송할 수 있게 하는 통신 매체를 포함할 수 있다. 인코딩된 비디오 데이터는 무선 통신 프로토콜과 같은 통신 표준에 따라 변조될 수 있고, 데스티네이션 디바이스(14)로 전송될 수 있다. 통신 매체는 무선 주파수 (RF) 스펙트럼 또는 하나 이상의 물리적 전송 라인과 같은, 임의의 무선 또는 유선 통신 매체를 포함할 수 있다. 통신 매체는 근거리 네트워크, 광역 네트워크, 또는 인터넷과 같은 글로벌 네트워크와 같은 패킷-기반 네트워크의 일부를 형성할 수 있다. 통신 매체는 라우터, 스위치, 기지국, 또는 소스 디바이스(12)로부터 데스티네이션 디바이스(14) 로의 통신을 용이하게 하는데 유용할 수 있는 임의의 다른 장비를 포함할 수 있다.
일부 예에서, 인코딩된 데이터는 출력 인터페이스(22)로부터 저장 장치로 출력될 수 있다. 이와 유사하게, 인코딩된 데이터는 입력 인터페이스에 의해 저장 장치로부터 액세스될 수 있다. 저장 장치는 하드 드라이브, 블루-레이 디스크, 디지털 비디오 디스크(DVD), CD-ROM(Compact Disc Read-Only Memories), 플래시 메모리, 휘발성 또는 비휘발성 메모리, 또는 인코딩된 비디오 데이터를 저장하는데 적합한 임의의 다른 디지털 저장 매체와 같은, 다양한 분산 또는 로컬 액세스 데이터 저장 매체를 포함할 수 있다. 추가적인 예로서, 저장 장치는 소스 디바이스(12)에 의해 생성된 인코딩된 비디오를 저장할 수 있는 다른 중간 저장 장치 또는 파일 서버에 대응할 수 있다. 데스티네이션 디바이스(14)는 스트리밍 또는 다운로드를 통해 저장 장치로부터 저장된 비디오 데이터에 액세스할 수 있다. 파일 서버는 인코딩된 비디오 데이터를 저장하고 그 인코딩된 비디오 데이터를 데스티네이션 디바이스(14)로 전송할 수 있는 임의의 유형의 서버일 수 있다. 예시적인 파일 서버에는 웹 서버(예컨대, 웹 사이트 용), 파일 전송 프로토콜(FTP) 서버, 네트워크 연결 스토리지(NAS) 디바이스, 또는 로컬 디스크 드라이브가 포함된다. 데스티네이션 디바이스(14)는 인터넷 연결을 포함하는 임의의 표준 데이터 연결을 통해 인코딩된 비디오 데이터에 액세스할 수 있다. 이에는, 무선 채널(예컨대, Wi-Fi 연결), 유선 연결(예컨대, 디지털 가입자 회선(DSL), 케이블 모뎀, 등), 또는 파일 서버에 저장된 인코딩된 비디오 데이터를 액세스하는데 적합한 양자의 조합이 포함될 수 있다. 저장 장치로부터 인코딩된 비디오 데이터의 전송은 스트리밍 전송, 다운로드 전송, 또는 이들의 조합일 수 있다.
본 개시의 기법은 반드시 무선 애플리케이션 또는 설정으로 제한되는 것은 아니다. 이 기술은, 공중파 텔레비전 방송, 케이블 텔레비전 전송, 위성 텔레비전 전송, DASH(dynamic adaptive streaming over HTTP)와 같은 인터넷 스트리밍 비디오 전송, 데이터 저장 매체 상에 인코딩된 디지털 비디오, 데이터 저장 매체 상에 저장된 디지털 비디오의 디코딩, 또는 다른 애플리케이션과 같은 다양한 멀티미디어 애플리케이션 중 임의의 것을 지원하는 비디오 코딩에 적용될 수 있다. 일부 예에서, 코딩 시스템(10)는 단방향 또는 양방향 비디오 전송을 지원하여 비디오 스트리밍, 비디오 재생, 비디오 방송, 및/또는 비디오 전화와 같은 애플리케이션을 지원하도록 구성될 수 있다.
도 1의 예에서, 소스 디바이스(12)는 비디오 소스(18), 비디오 인코더(20), 및 출력 인터페이스(22)를 포함한다. 데스티네이션 디바이스(14)는 입력 인터페이스(28), 비디오 디코더(30), 및 디스플레이 디바이스(32)를 포함한다. 본 개시에 따르면, 소스 디바이스(12)의 비디오 인코더(20) 및/또는 데스티네이션 디바이스(14)의 비디오 디코더(30)는 비디오 코딩을 위한 기술을 적용하도록 구성될 수 있다. 다른 예로서, 소스 디바이스 및 데스티네이션 디바이스는 다른 콤포넌트 또는 배치를 포함할 수 있다. 예를 들어, 소스 디바이스(12)는 외부 카메라와 같은 외부 비디오 소스로부터 비디오 데이터를 수신할 수 있다. 마찬가지로, 데스티네이션 디바이스(14)는 통합된 디스플레이 디바이스를 포함하지 않고 외부 디스플레이 디바이스와 인터페이스할 수 있다.
도 1에 도시된 코딩 시스템(10)은 단지 하나의 예이다. 비디오 코딩 기술은 임의의 디지털 비디오 인코딩 및/또는 디코딩 디바이스에 의해 수행될 수 있다. 본 개시의 기술은 일반적으로 비디오 코딩 디바이스에 의해 수행되지만, 이 기술은 통상적으로 "CODEC"으로 지칭되는 비디오 인코더/디코더에 의해 수행될 수도 있다. 또한, 본 개시의 기술은 또한 비디오 전처리기(preprocessor)에 의해 수행될 수 있다. 비디오 인코더 및/또는 디코더는 그래픽 처리 유닛(GPU) 또는 유사한 디바이스일 수 있다.
소스 디바이스(12) 및 데스티네이션 디바이스(14)는 소스 디바이스(12)가 데스티네이션 디바이스(14)로 전송하기 위한 코딩된 비디오 데이터를 생성하는 그러한 코딩 디바이스의 예일 뿐이다. 일부 예에서, 소스 디바이스(12) 및 데스티네이션 디바이스(14)는 소스 및 데스티네이션 디바이스들(12, 14) 각각이 비디오 인코딩 및 디코딩 컴포넌트들을 포함하도록 실질적으로 대칭적인 방식으로 동작할 수 있다. 따라서, 코딩 시스템(10)은, 예컨대, 비디오 스트리밍, 비디오 재생, 비디오 방송 또는 비디오 전화를 위해 비디오 디바이스(12, 14) 사이의 단방향 또는 양방향 비디오 전송을 지원할 수 있다.
소스 디바이스(12)의 비디오 소스(18)는, 비디오 카메라와 같은 비디오 캡처 디바이스, 이전에 캡처된 비디오를 포함하는 비디오 아카이브, 및/또는 비디오 컨텐츠 제공자로부터 비디오를 수신하기 위한 비디오 피드 인터페이스를 포함할 수 있다. 추가적인 대안으로서, 비디오 소스(18)는 소스 비디오로서 컴퓨터 그래픽-기반 데이터, 또는 라이브 비디오, 아카이브된 비디오, 및 컴퓨터-생성 비디오의 조합을 생성할 수 있다.
일부 경우에, 비디오 소스(18)가 비디오 카메라인 경우, 소스 디바이스(12) 및 데스티네이션 디바이스(14)는 소위 카메라 폰 또는 비디오 폰을 형성할 수 있다. 그러나, 위에서 언급한 바와 같이, 본 개시에서 설명된 기술은 일반적으로 비디오 코딩에 적용될 수 있고, 무선 및/또는 유선 애플리케이션에 적용될 수 있다. 각각의 경우에, 캡처되는, 사전 캡처된, 또는 컴퓨터-생성된 비디오는 비디오 인코더(20)에 의해 인코딩될 수 있다. 인코딩된 비디오 정보는 출력 인터페이스(22)에 의해 컴퓨터-판독 가능한 매체(16)로 출력될 수 있다.
컴퓨터-판독 가능한 매체(16)는 무선 브로드캐스트 또는 유선 네트워크 전송과 같은 일시적 매체, 또는 하드 디스크, 플래시 드라이브, 컴팩트 디스크, 디지털 비디오 디스크, 블루-레이 디스크, 또는 다른 컴퓨터-판독 가능한 매체와 같은 저장 매체(즉, 비일시적 저장 매체)를 포함할 수 있다. 일부 예에서, 네트워크 서버(도시되지 않음)는 인코딩된 비디오 데이터를 소스 디바이스(12)로부터 수신할 수 있고, 인코딩된 비디오 데이터를 데스티네이션 디바이스(14)로, 예컨대, 네트워크 전송을 통해 제공할 수 있다. 이와 유사하게, 디스크 스탬핑 설비와 같은 매체 생산 설비의 컴퓨팅 디바이스는 인코딩된 비디오 데이터를 소스 디바이스(12)로부터 수신할 수 있고, 인코딩된 비디오 데이터를 포함하는 디스크를 생성할 수 있다. 따라서, 컴퓨터-판독 가능한 매체(16)는 다양한 예들에서 다양한 형태의 하나 이상의 컴퓨터-판독 가능한 매체를 포함하는 것으로 이해될 수 있다.
데스티네이션 디바이스(14)의 입력 인터페이스(28)는 컴퓨터-판독 가능한 매체(16)로부터 정보를 수신한다. 컴퓨터-판독 가능한 매체(16)의 정보는 비디오 인코더(20)에 의해 규정된 신택스 정보를 포함할 수 있으며, 이는 비디오 디코더(30)에 의해 또한 사용되고, 블록 및 다른 코딩된 유닛, 예컨대, 화상의 그룹(GOP)의 특성 및/또는 프로세싱을 기술하는 신택스 엘리먼트를 포함한다. 디스플레이 디바이스(32)는 디코딩된 비디오 데이터를 사용자에게 디스플레이하며, 음극선관(CRT), 액정 디스플레이(LCD), 플라즈마 디스플레이, 유기 발광 다이오드(OLED) 디스플레이, 또는 다른 유형의 디스플레이 디바이스와 같은 다양한 디스플레이 디바이스 중 임의의 것을 포함할 수 있다.
비디오 인코더(20) 및 비디오 디코더(30)은 현재 개발중인 HEVC(High Efficiency Video Coding) 표준과 같은 비디오 코딩 표준에 따라 동작할 수 있으며, HEVC 테스트 모델(HM)에 따를 수 있다. 대안적으로, 비디오 인코더(20) 및 비디오 디코더(30)는, MPEG(Moving Picture Expert Group)-4, Part 10라고도 지칭되는, ITU-T(International Telecommunication Union Telecommunication Standardization Sector) H.264 표준, AVC(Advanced Video Coding), H.265/HEVC, 또는 이러한 표준의 확장과 같은, 다른 독점적 또는 산업 표준에 따라 동작할 수 있다. 그러나, 본 개시의 기법은 임의의 특정한 코딩 표준에 제한되지 않는다. 비디오 코딩 표준의 다른 예로는, MPEG-2 및 ITU-T H.263이 있다. 도 1에는 도시되지 않았으나, 일부 측면에서, 비디오 인코더(20) 및 비디오 디코더(30)는 각각 오디오 인코더 및 디코더와 통합될 수 있고, 공통 데이터 스트림 또는 별개 데이터 스트림에서 오디오 및 비디오 모두의 인코딩을 핸들링하기 위해, 적정 멀티플렉서-디멀티플렉서(MUX-DEMUX) 유닛, 또는 다른 하드웨어 및 소프트웨어를 포함할 수 있다. 해당되는 경우, MUX-DEMUX 유닛은 ITU H.223 멀티플렉서 프로토콜, 또는 UDP(user datagram protocol)와 같은 다른 프로토콜을 준수할 수 있다.
비디오 인코더(20) 및 비디오 디코더(30) 각각은, 하나 이상의 마이크로프로세서, 디지털 신호 처리기(DSP; digital signal processor), 주문형 집적 회로(ASIC; application specific integrated circuit), 필드 프로그래밍 가능 게이트 어레이(FPGA; field-programmable gate array), 이산 논리, 소프트웨어, 하드웨어, 펌웨어 또는 이들의 임의의 조합과 같은 다양한 적합한 인코더 회로 중 하나로 구현될 수 있다. 기술이 부분적으로 소프트웨어로 구현되는 경우, 디바이스는 적절한 비일시적 컴퓨터-판독 가능한 매체에 소프트웨어에 대한 명령을 저장할 수 있고, 하나 이상의 프로세서를 사용하여 하드웨어에서 명령을 실행하여 본 개시의 방법을 수행할 수 있다. 비디오 인코더(20) 및 비디오 디코더(30)의 각각은, 하나 이상의 인코더 또는 디코더에 포함될 수 있으며, 이들 중 어느 것이라도 각각의 디바이스에서 결합된 인코더/디코더(CODEC)의 일부로서 통합될 수 있다. 비디오 인코더(20) 및/또는 비디오 디코더(30)를 포함하는 디바이스는 집적회로, 마이크로프로세서, 및/또는 셀룰러 폰과 같은 무선 통신 디바이스를 포함할 수 있다.
도 2는 비디오 코딩 기법을 구현할 수 있는 비디오 인코더(20)의 예를 도시하는 블록도이다. 비디오 인코더(20)는 비디오 슬라이스 내의 비디오 블록의 인트라-코딩 및 인터-코딩을 수행할 수 있다. 인트라-코딩은 공간적 예측에 의존하여, 주어진 비디오 프레임 또는 화상 내에서 비디오의 공간적 중복성을 줄이거나 제거한다. 인터 코딩은 시간적 예측에 의존하여, 비디오 시퀀스의 인접한 프레임 또는 화상 내의 비디오에서 시간적 중복성을 줄이거나 제거한다. 인트라-모드(I 모드)는 여러 공간 기반 코딩 모드 중 임의의 것을 지칭할 수 있다. 단-방향(유니 예측이라고도 함) 예측(P 모드) 또는 바이-예측(바이 예측이라고도 함)(B 모드)과 같은 인터-모드는, 여러 시간-기반 코딩 모드 중 임의의 것을 지칭할 수 있다.
도 2에 도시된 바와 같이, 비디오 인코더(20)는 인코딩될 비디오 프레임 내에서 현재 비디오 블록을 수신한다. 도 2의 예에서, 비디오 인코더(20)는 모드 선택 유닛(40), 참조 프레임 메모리(64), 합산기(50), 변환 처리 유닛(52), 양자화 유닛(54), 및 엔트로피 코딩 유닛(56)을 포함한다. 다음으로, 모드 선택 유닛(40)은, 모션 보상 유닛(44), 모션 추정 유닛(42), 인트라-예측(인트라 예측이라고도 함) 유닛(46), 및 파티션 유닛(48)을 포함한다. 비디오 블록 재구성을 위해, 비디오 인코더(20)는 역양자화 유닛(58), 역변환 유닛(60), 및 합산기(62)을 또한 포함한다. 블록 경계를 필터링하여 재구성된 비디오로부터 블록성 아티팩트(blockiness artifact)를 제거하기 위해 디블로킹 필터(deblocking filter)(도 2에는 도시되지 않음)가 또한 포함될 수 있다. 원하는 경우, 디블로킹 필터는 통상적으로 합산기(62)의 출력을 필터링한다. 디블로킹 필터와 함께 (인루프(in loop) 또는 사후 루프(post loop)로) 추가적인 필터가 또한 사용될 수 있다. 간결함을 위해 이러한 필터가 표시되지 않지만, 원한다면 합산기 (50)의 출력을 (인-루프 필터로서) 필터링할 수 있다.
인코딩 프로세스 동안, 비디오 인코더(20)는 코딩될 비디오 프레임 또는 슬라이스를 수신한다. 프레임 또는 슬라이스는 여러 비디오 블록으로 분할될 수 있다. 모션 추정 유닛(42) 및 모션 보상 유닛(44)은 시간적 예측을 제공하기 위해 하나 이상의 참조 프레임에서 하나 이상의 블록에 대해 수신된 비디오 블록의 인터-예측 코딩을 수행한다. 인트라-예측 유닛(46)은 공간적 예측을 제공하기 위해 코딩될 블록과 동일한 프레임 또는 슬라이스에서 하나 이상의 이웃하는 블록에 대해 수신된 비디오 블록의 인트라-예측 코딩을 대안적으로 수행할 수 있다. 비디오 인코더(20)는, 예컨대, 비디오 데이터의 각각의 블록에 대해 적절한 코딩 모드를 선택하기 위해 다중 코딩 패스를 수행할 수 있다.
더욱이, 파티션 유닛(48)은 이전의 코딩 패스에서의 이전의 파티션 방식의 평가에 기초하여 비디오 데이터의 블록을 서브-블록으로 분할할 수 있다. 예를 들어, 파티션 유닛(48)은 처음에 프레임 또는 슬라이스를 최대 코딩 유닛(LCU)으로 분할할 수 있고, LCU의 각각을 레이트-왜곡 분석(예컨대, 레이트-왜곡 최적화)에 기초하여 서브-코딩 유닛(서브-CU)으로 분할할 수 있다. 모드 선택 유닛(40)은 추가적으로, LCU의 서브-CU로의 분할을 나타내는 쿼드-트리(quad-tree) 데이터 구조를 생성할 수 있다. 쿼드-트리의 리프-노드(leaf-node) CU는 하나 이상의 예측 유닛(PU; prediction unit) 및 하나 이상의 변환 유닛(TU; transform unit)을 포함할 수 있다.
본 개시는 HEVC의 맥락에서 CU, PU 또는 TU 중 임의의 것을 지칭하기 위해, 또는 다른 표준의 맥락에서 유사한 데이터 구조(예컨대, H.264/AVC에서 이들의 마크로블록 및 서브-블록)를 지칭하기 위해, 용어 "블록"을 사용한다. CU는 코딩 노드, PU, 및 코딩 노드와 관련된 TU를 포함한다. CU의 크기는 코딩 노드의 크기에 대응하며, 정사각형 모양이다. CU의 크기는 8x8 픽셀에서 최대 64x64 픽셀 이상인 트리 블록(tree block)의 크기까지 범위가 될 수 있다. 각각의 CU는 하나 이상의 PU 및 하나 이상의 TU를 포함할 수 있다. CU와 연관된 신택스 데이터는 예를 들어 CU를 하나 이상의 PU로 분할하는 것을 기술할 수 있다. 분할 모드(partitioning mode)는 CU가 스킵 또는 직접 모드 인코딩, 인트라-예측 모드 인코딩, 또는 인터-예측(인터 예측이라고도 함) 모드 인코딩에 있는가 사이에서 다를 수 있다. PU는 정사각형이 아닌 형상으로 분할될 수 있다. CU와 연관된 신택스 데이터는 또한, 예를 들어 쿼드-트리에 따라 CU를 하나 이상의 TU로 분할하는 것을 기술할 수 있다. TU는 정사각형이거나 정사각형이 아닌 (예컨대, 직사각형) 모양일 수 있다.
모드 선택 유닛(40)은 인트라- 또는 인터-코딩 모드 중 하나를, 예컨대, 오류 결과에 기초하여, 선택할 수 있고, 결과적인 인트라- 또는 인터-코딩된 블록을 합산기(50)에 제공하여 잔차 블록 데이터를 생성하도록 하고 합산기(62)에 제공함여 재구성 인코딩된 블록을 참조 프레임으로서 사용하도록 한다. 모드 선택 유닛(40)은 또한 모션 벡터, 인트라-모드 인디케이터, 파티션 정보, 및 기타 그러한 신택스 정보와 같은 신택스 엘리먼트를, 엔트로피 코딩 유닛(56)으로 제공한다.
모션 추정 유닛(42) 및 모션 보상 유닛(44)은 고도로 통합될 수 있으나, 개념적인 목적을 위해 별개로 도시된다. 모션 추정 유닛(42)에 의해 수행되는 모션 추정은 비디오 블록에 대한 움직임을 추정하는 모션 벡터를 생성하는 과정이다. 모션 벡터는, 예를 들어, 현재 프레임(또는 다른 코딩된 유닛)에서 코딩되고 있는 현재 블록에 대해 상대적인 참조 프레임(또는 다른 코딩된 유닛) 내의 예측 블록에 대해 상대적인 현재 비디오 프레임 또는 화상 내에서 비디오 블록의 PU의 변위를 나타낼 수 있다. 예측 블록은, 절대 차이의 합(SAD; sum of absolute difference), 제곱 차이의 합 (SSD; sum of square difference), 또는 다른 차이 메트릭에 의해 결정될 수 있는 픽셀 차이 측면에서, 코딩될 블록과 밀접하게 일치하는 것으로 확인되는 블록이다. 일부 예에서, 비디오 인코더(20)는 참조 프레임 메모리(64)에 저장된 참조 화상의 서브-정수(서브-정수) 픽셀 위치에 대한 값을 계산할 수 있다. 예를 들어, 비디오 인코더(20)는 참조 화상의 1/4 픽셀 위치, 1/8 픽셀 위치, 또는 다른 분수(fractional) 픽셀 위치의 값을 보간(interpolate)할 수 있다. 따라서, 모션 추정 유닛(42)는 전체 픽셀 위치 및 분수 픽셀 위치에 대한 모션 검색을 수행하고 분수 픽셀 정밀도로 모션 벡터를 출력할 수 있다.
모션 추정 유닛(42)는 PU의 위치를 참조 화상의 예측 블록의 위치와 비교하여 인터-코딩된 슬라이스에서 비디오 블록의 PU에 대한 모션 벡터를 계산한다. 참조 화상은 제1 참조 화상 목록(목록 0) 또는 제2 참조 화상 목록(목록 1)로부터 선택될 수 있으며, 각각은 참조 프레임 메모리(64)에 저장된 하나 이상의 참조 화상을 식별한다. 모션 추정 유닛(42)은 계산된 모션 벡터를 엔트로피 인코딩 유닛(56) 및 모션 보상 유닛(44)으로 송신한다.
모션 보상 유닛(44)에 의해 수행되는 모션 보상은 모션 추정 유닛(42)에 의해 결정된 모션 벡터에 기초하여 예측 블록을 불러오거나 생성하는 것을 포함할 수 있다. 다시 말하지만, 모션 추정 유닛(42) 및 모션 보상 유닛(44)은 일부 예들에서 기능적으로 통합될 수 있다. 현재 비디오 블록의 PU에 대한 모션 벡터를 수신하면, 모션 보상 유닛(44)은 참조 화상 목록 중 하나에서 모션 벡터가 가리키는 예측 블록을 찾을 수 있다. 합산기(50)은 코딩되고 있는 현재 비디오 블록의 픽셀 값으로부터 예측 블록의 픽셀 값을 빼서 잔차 비디오 블록을 형성하고, 아래에서 논의되는 바와 같이 픽셀 차이 값을 형성한다. 일반적으로, 모션 추정 유닛(42)은 루마 성분에 대한 모션 추정을 수행하고, 모션 보상 유닛(44)은 크로마 성분 및 루마 성분 모두에 대해 루마 성분에 기초하여 계산된 모션 벡터를 사용한다. 모드 선택 유닛(40)은 비디오 슬라이스의 비디오 블록을 디코딩할 때 비디오 디코더(30)에 의해 사용하기 위해 비디오 블록 및 비디오 슬라이스와 연관된 신택스 엘리먼트를 또한 생성할 수 있다.
인트라-예측 유닛(46)은 위에서 설명한 바와 같이 모션 추정 유닛(42) 및 모션 보상 유닛(44)에 의해 수행되는 인터-예측의 대안으로서 현재 블록을 인트라-예측할 수 있다. 특히, 인트라 예측 유닛(46)은 현재 블록을 인코딩하기 위해 사용할 인트라 예측 모드를 결정할 수 있다. 일부 예에서, 인트라-예측 유닛(46)은, 예컨대, 별개의 인코딩 패스 동안, 다양한 인트라-예측 모드를 사용하여 현재 블록을 인코딩할 수 있고, 인트라-예측 유닛(46)(또는 일부 예에서, 모드 선택 유닛(40))은 사용할 적절한 인트라-예측 모드를 테스트된 모드로부터 선택할 수 있다.
예를 들어, 인트라-예측 유닛(46)은 다양한 테스트된 인트라-예측 모드에 대한 레이트-왜곡 분석을 사용하여 레이트-왜곡 값을 계산할 수 있고, 테스트된 모드 중에서 최상의 레이트-왜곡 특성을 가지는 인트라-예측 모드를 선택할 수 있다. 레이트-왜곡 분석은 일반적으로, 인코딩된 블록을 생성하는데 사용된 비트율(즉, 비트의 수량)과 아울러, 인코딩된 블록과 인코딩된 블록을 생성하기 위해 인코딩 처리된 원래의 인코딩되지 않은 블록 사이의 왜곡(또는 오류)의 양을 결정한다. 인트라-예측 유닛(46)은 어떤 인트라-예측 모드가 블록에 대해 최상의 레이트-왜곡 값을 보이는지를 결정하기 위해 다양한 인코딩된 블록에 대한 왜곡 및 레이트로부터 비율을 계산할 수 있다.
그리고, 인트라-예측 유닛(46)는 깊이 모델링 모드(DMM; depth modeling mode)를 사용하여 깊이 맵의 깊이 블록을 코딩하도록 구성될 수 있다. 모드 선택 유닛(40)는 이용 가능한 DMM 모드가 예컨대 레이트-왜곡 최적화(RDO; rate-distortion optimization)를 사용하여 인트라-예측 모드 및 다른 DMM 모드보다 더 나은 코딩 결과를 생성하는지를 결정할 수 있다. 깊이 맵에 대응하는 텍스처 이미지에 대한 데이터는 참조 프레임 메모리(64)에 저장될 수 있다. 모션 추정 유닛(42) 및 모션 보상 유닛(44)은 또한 깊이 맵의 깊이 블록을 인터-예측하도록 구성될 수 있다.
블록에 대한 인트라-예측 모드(예컨대, 종래의 인트라-예측 모드 또는 DMM 모드 중 하나)를 선택한 후, 인트라-예측 유닛(46)은 블록에 대해 선택된 인트라-예측 모드를 나타내는 정보를 엔트로피 코딩 유닛(56)로 제공할 수 있다. 엔트로피 코딩 유닛(56)은 선택된 인트라-예측 모드를 나타내는 정보를 인코딩할 수 있다. 비디오 인코더(20)는, 전송된 비트스트림 구성 데이터에, 복수의 인트라-예측 모드 인덱스 테이블 및 복수의 수정된 인트라-예측 모드 인덱스 테이블(코드워드(코드워드) 맵핑 테이블이라고도 지칭됨), 다양한 블록에 대한 인코딩 컨텍스트의 정의, 및 각각의 컨텍스트에 사용할 가장 가능성이 높은 인트라-예측 모드, 인트라-예측 모드 인덱스 테이블, 및 수정된 인트라-예측 모드 인덱스 테이블의 표시를 포함할 수 있다.
비디오 인코더(20)는 코딩 중인 원래의 비디오 블록으로부터 모드 선택 유닛(40)으로부터의 예측 데이터를 감산함으로써 잔차 비디오 블록을 형성한다. 합산기(50)은 이 마이너스 연산을 수행하는 콤포넌트를 나타낸다.
변환 처리 유닛(52)은 이산 코사인 변환(DCT; discrete cosine transform) 또는 개념적으로 유사한 변환과 같은 변환을, 잔차 블록에 적용함으로써, 잔차 변환 계수 값을 포함하는 비디오 블록을 생성한다. 변환 처리 유닛(52)은 개념적으로 DCT와 유사한 다른 변환을 수행할 수 있다. 웨이블릿 변환, 정수 변환, 서브밴드 변환 또는 다른 유형의 변환도 또한 사용될 수 있다.
변환 처리 유닛(52)은 변환을 잔차 블록에 적용하여 잔차 변환 계수의 블록을 생성한다. 변환은 잔여 정보를 픽셀 값 도메인으로부터 주파수 도메인과 같은 변환 도메인으로 변환할 수 있다. 변환 처리 유닛(52)은 결과적인 변환 계수를 양자화 유닛(54)에 전송할 수 있다. 양자화 유닛(54)은 비트 레이트를 더욱 감소시키기 위해 변환 계수를 양자화한다. 양자화 프로세스는 계수의 일부 또는 전부와 연관된 비트 깊이를 감소시킬 수 있다. 양자화의 정도는 양자화 파라미터를 조정함으로써 수정될 수 있다. 일부 예에서, 양자화 유닛(54)은 양자화된 변환 계수를 포함하는 매트릭스의 스캔을 수행할 수 있다. 대안적으로, 엔트로피 인코딩 유닛(56)은 스캔을 수행할 수 있다.
양자화 후에, 엔트로피 코딩 유닛(56)은 양자화된 변환 계수를 엔트로피 코딩한다. 예를 들어, 엔트로피 코딩 유닛(56)은 컨텍스트 적응형 가변 길이 코딩(CAVLC; context adaptive variable length coding), 컨텍스트 적응형 이진 산술 코딩(CABAC; context-adaptive binary arithmetic coding), 신택스 기반 컨텍스트 적응형 이진 산술 코딩(SBAC; syntax-based context-adaptive binary arithmetic coding), 확률 간격 분할 엔트로피(PIPE; probability interval partitioning entropy) 코딩, 또는 다른 엔트로피 코딩 기법을 수행할 수 있다. 컨텍스트-기반 엔트로피 코딩의 경우, 컨텍스트는 이웃하는 블록을 기반으로 할 수 있다. 엔트로피 코딩 유닛(56)에 의한 엔트로피 코딩 후에, 인코딩된 비트스트림은 다른 디바이스(예컨대, 비디오 디코더(30))로 전송되거나 추후의 전송 또는 호출을 위해 아카이브(archive)될 수 있다.
역양자화 유닛(58) 및 역변환 유닛(60)은 각각 역양자화 및 역변환을 적용하여, 예를 들어 추후에 참조 블록으로 사용하기 위해 픽셀 도메인에서 잔차 블록을 재구성한다. 모션 보상 유닛(44)은 참조 프레임 메모리(64)의 프레임 중 하나의 예측 블록에 잔차 블록을 더하여 참조 블록을 계산할 수 있다. 모션 보상 유닛(44)은 또한 하나 이상의 보간 필터를 재구성된 잔차 블록에 적용하여 모션 추정에 사용하기 위한 서브-정수 픽셀 값을 계산할 수 있다. 합산기(62)는 모션 보상 유닛(44)에 의해 생성된 모션 보상된 예측 블록에 재구성된 잔차 블록을 더하여 참조 프레임 메모리(64)에 저장하기 위한 재구성된 비디오 블록을 생성한다. 재구성된 비디오 블록은 모션 추정 유닛(42) 및 모션 보상 유닛(44)에 의해 후속 비디오 프레임에서 블록을 인터-코딩하기 위한 참조 블록으로서 사용될 수 있다.
도 3은 비디오 코딩 기법을 구현할 수 있는 비디오 디코더(30)의 예를 도시하는 블록도이다. 도 3의 예에서, 비디오 디코더(30)는 엔트로피 디코딩 유닛(70), 모션 보상 유닛(72), 인트라-예측 유닛(74), 역양자화 유닛(76), 역변환 유닛(78), 참조 프레임 메모리(82) 및 합산기(80)를 포함한다. 일부 예시에서, 비디오 디코더(30)는 비디오 인코더(20)(도 2)에 관해 기술된 인코딩 패스에 일반적으로 역(inverse)인 디코딩 패스를 수행할 수 있다. 모션 보상 유닛(72)은 엔트로피 디코딩 유닛(70)으로부터 수신되는 모션 벡터에 기초하여 예측 데이터를 생성할 수 있고, 인트라-예측 유닛(74)은 엔트로피 디코딩 유닛(70)으로부터 수신되는 인트라-예측 모드 인디케이터에 기초하여 예측 데이터를 생성할 수 있다.
디코딩 프로세스 동안, 비디오 디코더(30)은 인코딩된 비디오 슬라이스의 비디오 블록 및 연관된 신택스 엘리먼트를 표현하는 인코딩된 비디오 비트스트림을 비디오 인코더(20)로부터 수신한다. 비디오 디코더(30)의 엔트로피 디코딩 유닛(70)은 비트스트림을 엔트로피 디코딩하여 양자화된 계수, 모션 벡터 또는 인트라-예측 모드 인디케이터, 및 다른 신택스 엘리먼트를 생성한다. 엔트로피 디코딩 유닛(70)은 모션 벡터 및 다른 신택스 엘리먼트를 모션 보상 유닛(72)으로 전달한다. 비디오 디코더(30)는 비디오 슬라이스 레벨 및/또는 비디오 블록 레벨에서 신택스 엘리먼트를 수신할 수 있다.
비디오 슬라이스가 인트라-코딩된 (I) 슬라이스로서 코딩된 경우, 인트라-예측 유닛(74)은 현재 프레임 또는 화상 이전에 디코딩된 블록으로부터의 데이터 및 시그널링된 인트라-예측 모드에 기초하여 현재 비디오 슬라이스의 비디오 블록에 대한 예측 데이터를 생성할 수 있다. 비디오 프레임이 인터-코딩된 (예컨대, B, P, 또는 GPB) 슬라이스로서 코딩된 경우, 모션 보상 유닛(72)은 모션 벡터 및 엔트로피 디코딩 유닛(70)로부터 수신된 다른 신택스 엘리먼트에 기초하여 현재 비디오 슬라이스의 비디오 블록에 대한 예측 블록을 생성한다. 예측 블록은 참조 화상 목록 중 하나에 있는 참조 화상 중 하나로부터 생성될 수 있다. 비디오 디코더(30)는 참조 프레임 메모리(82)에 저장된 참조 화상에 기초하여 디폴트 구성 기법을 사용하여 참조 프레임 목록, 목록 0 및 목록 1을 구성할 수 있다.
모션 보상 유닛(72)은 모션 벡터 및 다른 신택스 엘리먼트를 파싱(parsing)함으로써 현재 비디오 슬라이스의 비디오 블록에 대한 예측 정보를 결정하고, 예측 정보를 사용하여 디코딩 중인 현재 비디오 블록에 대한 예측 블록을 생성한다. 예를 들어, 모션 보상 유닛(72)은 수신된 신택스 엘리먼트의 일부를 사용하여, 비디오 슬라이스의 비디오 블록을 코딩하는데 사용되는 예측 모드(예컨대, 인트라- 또는 인터-예측), 인터-예측 슬라이스 유형(예컨대, B 슬라이스, P 슬라이스, 또는 GPB 슬라이스), 슬라이스에 대한 참조 화상 목록 중 하나 이상에 대한 구성 정보, 슬라이스의 각각의 인터- 인코딩된 비디오 블록에 대한 모션 벡터, 슬라이스의 각각의 인터-코딩된 비디오 블록에 대한 인터-예측 상태, 및 현재 비디오 슬라이스에서 비디오 블록을 디코딩하기 위한 다른 정보를 결정한다.
모션 보상 유닛(72)은 또한 보간 필터에 기초하여 보간을 수행할 수 있다. 모션 보상 유닛(72)는, 비디오 블록의 인코딩 동안 비디오 인코더(20)에 의해 사용되는 바와 같이 보간 필터를 사용하여 참조 블록의 서브-정수 픽셀에 대한 보간된 값을 계산할 수 있다. 이 경우, 모션 보상 유닛(72)는 수신된 신택스 엘리먼트로부터 비디오 인코더(20)에 의해 사용되는 보간 필터를 결정하고 보간 필터를 사용하여 예측 블록을 생성할 수 있다.
깊이 맵에 대응하는 텍스처 이미지에 대한 데이터는 참조 프레임 메모리(82)에 저장될 수 있다. 모션 보상 유닛(72)은 또한 깊이 맵의 깊이 블록을 인터-예측하도록 구성될 수 있다.
이미지 및 비디오 압축은 급속도로 성장하여 다양한 코딩 표준으로 이어졌다. 이러한 비디오 코딩 표준에는, ITU-T H.261, ISO/IEC 동영상 전문가 그룹 (MPEG)-1 Part2, ITU-T H.262, 또는 ISO(International Organization for Standardization) / IEC(International Electrotechnical Commission) MPEG(Moving Picture Experts Group)-1 Part 2, ITU-T H.262 또는 ISO/IEC MPEG-2 Part 2, ITU-T H.263, ISO/IEC MPEG-4 Part 2, ITU-T H.264 또는 ISO/IEC MPEG-4 Part 10라고도 하는 AVC(Advanced Video Coding), 및 ITU-T H.265 또는 MPEG-H Part 2라고도 하는 HEVC(High Efficiency Video Coding)이 포함된다. AVC에는 SVC(Scalable Video Coding), MVC(Multiview Video Coding), MVC+D(Multiview Video Coding plus Depth), 및 3D-AVC(3D AVC)와 같은 확장이 포함된다. HEVC에는 SHVC(Scalable HEVC), MV-HEVC(Multiview HEVC), 및 3D-HEVC(3D HEVC)와 같은 확장이 포함된다.
VVC(Versatile Video Coding)는 ITU-T 및 ISO/IEC의 JVET(joint video experts team)에서 개발중인 새로운 비디오 코딩 표준이다. 현재, VVC의 최신 작업 초안(Working Draft; WD)이 JVET-K1001-v1에 포함되어 있다. JVET 문서 JVET-K0325-v3는 VVC의 하이-레벨 신택스에 대한 업데이트를 포함한다.
일반적으로, 본 개시는 개발중인 VVC 표준에 기초하여 기술을 설명한다. 그러나, 이 기술은 다른 비디오/미디어 코덱 애플리케이션에도 적용된다.
비디오 압축 기법은 비디오 시퀀스에 내재하는 중복성을 줄이거나 제거하기 위해 공간적 (인트라-화상) 예측 및/또는 시간적 (인터-화상) 예측을 수행한다. 블록-기반 비디오 코딩의 경우, 비디오 슬라이스(예컨대, 비디오 화상 또는 비디오 화상의 일부)는 비디오 블록으로 분할될 수 있으며, 이는 트리 블록, 코딩 트리 블록 (CTB), 코딩 트리 유닛(CTU), 코딩 유닛(CU들) 및/또는 코딩 노드로도 지칭된다. 화상의 인트라-코딩된 (I) 슬라이스에 있는 비디오 블록은 동일한 화상에서 이웃하는 블록에 있는 참조 샘플에 대한 공간적 예측을 사용하여 인코딩된다. 화상의 인터-코딩된 (P 또는 B) 슬라이스에 있는 비디오 블록은 동일한 화상에서 이웃하는 블록에 있는 참조 샘플에 대한 공간적 예측 또는 다른 참조 화상에 있는 참조 샘플에 대한 시간적 예측을 사용할 수 있다. 화상은 프레임으로 지칭될 수 있고, 참조 화상은 참조 프레임으로 지칭될 수 있다.
공간적 또는 시간적 예측은 코딩될 블록에 대한 예측 블록을 생성한다. 잔차 데이터는 코딩될 원래의 블록과 예측 블록 사이의 픽셀 차이를 나타낸다. 인터-코딩된 블록은 예측 블록을 형성하는 참조 샘플의 블록을 가리키는 모션 벡터, 및 코딩된 블록과 예측 블록 사이의 차이를 나타내는 잔차 데이터에 따라 인코딩된다. 인트라-코딩된 블록은 인트라-코딩 모드 및 잔차 데이터에 따라 인코딩된다. 추가적인 압축을 위해, 잔차 데이터는 픽셀 도메인으로부터 변환 도메인으로 변환될 수 있고, 결과적으로 잔차 변환 계수가 생성될 수 있으며, 이는 양자화될 수 있다. 초기에 2차원 어레이로 배열되는 양자화된 변환 계수는 변환 계수의 1차원 벡터를 생성하기 위해 스캔될 수 있으며, 엔트로피 코딩은 더 많은 압축을 달성하기 위해 적용될 수 있다.
비디오 코덱 애플리케이션에서, 화상은, 인터 예측에서 참조 화상으로 사용, 디코딩된 화상 버퍼(DPB)로부터 화상 출력, 모션 벡터의 스케일링, 가중 예측, 등을 포함하여 여러 목적으로 식별된다. AVC 및 HEVC에서, 화상은 화상 순서 카운트(picture order count; POC)에 의해 식별될 수 있다. AVC 및 HEVC에서, DPB에 있는 화상은 "단기 참조용으로 사용됨", "장기 참조용으로 사용됨", 또는 "참조용으로 사용되지 않음"으로서 마킹될 수 있다. 일단 화상이 "참조용으로 사용되지 않음"으로 마킹되면, 화상은 더 이상 예측에 사용될 수 없다. 화상이 더 이상 출력에 필요하지 않으면, DPB에서 화상을 제거할 수 있다.
AVC에는 단기 및 장기의 두 가지 유형의 참조 화상이 있다. 더 이상 예측 참조를 위해 필요하지 않은 경우, 참조 화상은 "참조용으로 사용되지 않음"으로 마킹될 수 있다. 이들 세 가지 상태(단기, 장기, 및 참조용으로 사용되지 않음) 사이의 전환은 디코딩된 참조 화상 마킹 프로세스에 의해 제어된다. 암시적 슬라이딩 윈도우 프로세스(implicit sliding window process) 및 명시적 메모리 관리 제어 작업(explicit memory management control operation; MMCO) 프로세스라는 두 가지 대안적인 디코딩된 참조 화상 마킹 메커니즘이 있다. 참조 프레임의 개수가 주어진 최대 개수(시퀀스 파라미터 세트(SPS)에서 max_num_ref_frames)와 동일한 경우, 슬라이딩 윈도우 프로세스는 단기 참조 화상을 "참조용으로 사용되지 않음"으로 마킹한다. 단기 참조 화상은 선입 선출 방식으로 저장되어 가장 최근에 디코딩된 단기 화상이 DPB에 보관된다.
명시적 MMCO 프로세스는 여러 MMCO 명령을 포함할 수 있다. MMCO 명령은 하나 이상의 단기 또는 장기 참조 화상을 "참조용으로 사용되지 않음"으로 마킹하거나, 모든 화상을 "참조용으로 사용되지 않음"으로 마킹하거나, 현재 참조 화상 또는 기존 단기 참조 화상을 장기로 마킹한 후 장기 화상 인덱스를 해당 장기 참조 화상에 할당할 수 있다.
AVC에서, 참조 화상 마킹 작업과 DPB로부터 화상의 출력 및 제거를 위한 프로세스는 화상이 디코딩된 후에 수행된다.
HEVC는, 참조 화상 세트(RPS)로 지칭되는, 참조 화상 관리를 위한 상이한 접근 방식을 도입한다. AVC의 MMCO/슬라이딩 윈도우 프로세스와 비교하여 RPS 개념의 가장 근본적인 차이는, 현재 화상 또는 임의의 후속 화상에 의해 사용되는 참조 화상의 완전한 세트가 각각의 특정 슬라이스에 대해 제공된다는 것이다. 따라서, 현재 또는 미래의 화상에서 사용하기 위해 DPB에 보관해야 하는 모든 화상의 완전한 세트가 시그널링된다. 이는 DPB에 대한 상대적인 변화만 시그널링 되는 AVC 방식과 다르다. RPS 개념에서, DPB에서 참조 영상의 올바른 상태를 유지하기 위해, 디코딩 순서에서 이전의 영상으로부터 정보가 필요하지 않다.
HEVC에서 화상 디코딩 및 DPB 작업의 순서는 RPS의 장점을 활용하고 오류 복원력을 향상시키기 위해 AVC에 비해 변경된다. AVC에서, 화상 마킹 및 버퍼 작업(DPB로부터 디코딩된 화상의 출력 및 제거 모두)은 일반적으로 현재 화상이 디코딩된 후에 적용된다. HEVC에서, 현재 화상의 슬라이스 헤더로부터 RPS가 먼저 디코딩된 후, 화상 마킹 및 버퍼 동작이 일반적으로 현재 화상을 디코딩하기 전에 적용된다.
HEVC에서 각각의 슬라이스 헤더는, 슬라이스를 포함하는 화상에 대한 RPS 시그널링을 위한 파라미터를 포함해야 한다. 유일한 예외는 IDR(Instantaneous Decoding Refresh) 슬라이스에 대해 RPS가 시그널링 되지 않는다는 것이다. 대신, RPS는 비어 있는 것으로 추론된다. IDR 화상에 속하지 않는 I 슬라이스의 경우, 디코딩 순서에서 I 화상에 선행하는 화상으로부터 인터-예측을 사용하는 디코딩 순서에서 I 화상을 뒤따르는 화상이 있을 수 있으므로, I 화상에 속하더라도 RPS가 제공될 수 있다. RPS에 있는 화상의 개수는 SPS에서 sps_max_dec_pic_buffering 신택스 엘리먼트에 의해 지정되는 DPB 크기 제한을 초과하지 않아야 한다.
각각의 화상은 출력 순서를 나타내는 POC 값과 연관된다. 슬라이스 헤더는 POC LSB라고도 하는, 전체 POC 값의 최하위 비트(LSB)를 나타내는, 고정-길이 코드워드(codeword), pic_order_cnt_lsb를 포함한다. 코드워드의 길이는 SPS에서 시그널링되며, 예를 들어 4 비트에서 16 비트 사이일 수 있다. RPS 개념은 POC를 사용하여 참조 화상을 식별한다. 자체 POC 값 외에도, 각각의 슬라이스 헤더는 RPS에 있는 각각의 화상의 POC 값(또는 LSB)의 코딩된 표현을 직접 포함하거나 SPS로부터 상속한다.
각각의 화상에 대한 RPS는 참조 화상의 5개의 상이한 목록으로 구성되며, 5개의 RPS 서브세트라고도 한다. RefPicSetStCurrBefore는 디코딩 순서 및 출력 순서 모두에서 현재 화상보다 앞선, 그리고 현재 화상의 인터 예측에 사용될 수 있는 모든 단기 참조 화상으로 구성된다. RefPicSetStCurrAfter는 디코딩 순서에서 현재 화상보다 앞선, 출력 순서에서 현재 화상에 이어지는, 그리고 현재 화상의 인터 예측에 사용될 수 있는, 모든 단기 참조 화상으로 구성된다. RefPicSetStFoll는 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는, 그리고 현재 화상의 인터 예측에 사용되지 않는 모든 단기 참조 화상으로 구성된다. RefPicSetLtCurr는 현재 화상의 인터 예측에 사용될 수 있는 모든 장기 참조 화상으로 구성된다. RefPicSetLtFoll는 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는, 그리고 현재 화상의 인터 예측에 사용되지 않는 모든 장기 참조 화상으로 구성된다.
RPS는 상이한 유형의 참조 화상을 반복하는 최대 3개의 루프를 사용하여 시그널링 된다: 현재 화상보다 POC 값이 낮은 단기 참조 화상, 현재 화상보다 POC 값이 높은 단기 참조 화상, 및 장기 참조 화상. 그리고, 플래그(used_by_curr_pic_X_flag)가 각각의 참조 화상에 대해 송신되어 참조 화상이 현재 화상의 참조에 사용되는지(목록 RefPicSetStCurrBefore, RefPicSetStCurrAfter 또는 RefPicSetLtCurr 중 하나에 포함됨) 또는 그렇지 않은지(목록 RefPicSetStFoll 또는 RefPicSetLtFoll 중 하나에 포함됨) 여부를 나타낸다.
도 4는 RPS(400)의 모든 서브세트(402)에서 엔트리(예를 들어, 화상)를 가지는 현재 화상(B14)를 가지는 RPS(400)를 예시한다. 도 4의 예시에서, 현재 화상(B14)은 (RPS 서브세트로도 알려진) 5개의 서브세트(402)의 각각에 정확히 하나의 화상을 포함한다. P8은 화상이 출력 순서에서 앞서고 B14에 의해 사용되므로 RefPicSetStCurrBefore로 지칭되는 서브세트(402) 내의 화상이다. P12은 화상이 출력 순서에서 뒤서고 B14에 의해 사용되므로 RefPicSetStCurrAfter로 지칭되는 서브세트(402) 내의 화상이다. P13은 화상이 B14에 의해 사용되지 않는 단기 참조 화상이므로 (그러나 B15에 의해 사용되므로 DPB 내에 유지되어야 함) RefPicSetStFoll로 지칭되는 서브세트(402) 내의 화상이다. P4은 화상이 B14에 의해 사용되는 장기 참조 화상이므로 RefPicSetLtCurr로 지칭되는 서브세트(402) 내의 화상이다. I0은 화상이 현재 화상에 ?命? 사용되지 않는 장기 참조 화상이므로 (그러나 B15에 의해 사용되므로 DPB 내에 유지되어야 함) RefPicSetLtFoll로 지칭되는 서브세트(402) 내의 화상이다.
RPS(400)의 단기 부분은 슬라이스 헤더에 직접 포함될 수 있다. 대안적으로, 슬라이스 헤더는 인덱스를 나타내는 신택스 엘리먼트만 포함할 수 있으며, 활성 SPS에서 송신되는 RPS의 미리 정의된 목록을 참조한다. RPS(402)의 단기 부분은 두 가지 다른 방식 중 하나를 사용하여 시그널링될 수 있다: 아래에서 기술되는 인터 RPS 또는 여기에서 설명되는 인트라 RPS. 인트라 RPS가 사용되는 경우, num_negative_pics 및 num_positive_pics가 참조 화상의 2개의 상이한 목록의 길이를 표현하도록 시그널링된다. 이러한 목록은 현재 화상과 비교하여 음의 POC 차이 및 양의 POC 차이를 가지는 참조 화상을 각각 포함한다. 이들 목록에서 각각의 엘리먼트는 목록 내의 이전 엘리먼트에 대해 상대적인 POC 값의 차이에서 1을 뺀 값을 타나내는 가변 길이 코드로 인코딩된다. 각각의 목록에서 첫 번째 화상에 대해, 시그널링은 현재 화상의 POC 값에서 1을 뺀 값에 상대적이다.
시퀀스 파라미터 세트에서 반복 RPS를 인코딩하는 경우, 시퀀스 파라미터 세트에서 이미 인코딩된 다른 RPS를 참조하여 하나의 RPS(예컨대, RPS(400))의 엘리먼트를 인코딩할 수 있다. 이는 인터 RPS로 지칭된다. 시퀀스 파라미터 세트의 모든 RPS가 동일한 네트워크 추상화 레이어(network abstraction layer; NAL) 유닛에 있으므로 이 방법과 연관된 오류 강건성(error robustness) 문제는 없다. 인터 RPS 신택스는 이전에 디코딩된 화상의 RPS로부터 현재 화상의 RPS를 예측할 수 있다는 사실을 활용한다. 이는 현재 화상의 모든 참조 화상이 이전의 화상의 참조 화상이거나 이전에 디코딩된 화상 자체여야 하기 때문이다. 이들 화상 중 어느 것이 참조 화상이어야 하고 현재 화상의 예측에 사용되어야 하는지 표시하기만 하면된다. 따라서, 신택스는 다음을 포함한다: 예측자(predictor)로 사용할 RPS를 가리키는 인덱스, 현재 RPS의 델타 POC를 획득하기 위해 예측자의 delta_POC에 추가될 delta_POC, 및 어느 화상이 참조 화상이고 이들이 미래 화상의 예측에만 사용되는지 여부를 표시하는 인디케이터의 세트.
장기 참조 화상의 사용을 활용하려는 인코더는 SPS 신택스 엘리먼트 long_term_ref_pics_present_flag를 1로 설정해야 한다. 장기 참조 화상은 각각의 장기 화상의 전체 POC 값의 최하위 비트를 나타내는, 고정-길이 코드워드, poc_lsb_lt에 의해 슬라이스 헤더에서 시그널링 될 수 있다. 각각의 poc_lsb_lt는 특정 장기 화상에 대해 시그널링된 pic_order_cnt_lsb 코드워드의 복사본이다. SPS에서 장기 화상의 세트를 POC LSB 값의 목록으로서 시그널링 하는 것도 가능하다. 장기 화상에 대한 POC LSB는 슬라이스 헤더에서 이 목록에 대한 인덱스로서 시그널링될 수 있다.
delta_poc_msb_cycle_lt_minus1 신택스 엘리먼트는 현재 화상에 대한 장기 참조 화상의 전체 POC 거리를 계산할 수 있도록 추가로 시그널링될 수 있다. 코드워드 delta_poc_msb_cycle_lt_minus1는 RPS 내의 임의의 다른 참조 화상과 동일한 POC LSB 값을 가지는 각각의 장기 참조 화상에 대해 시그널링 되어야 한다.
HEVC에서 참조 화상 마킹의 경우, 일반적으로 화상 디코딩 전에 DPB에 여러 개의 화상이 존재한다. 일부 화상은 예측에 사용할 수 있으며, "참조용으로 사용됨"으로 마킹되어 있다. 다른 화상은 예측에 사용할 수 없지만 출력 대기 중이므로, "참조용으로 사용되지 않음"으로 마킹된다. 슬라이스 헤더가 파싱되면, 슬라이스 데이터가 디코딩되기 전에 화상 마킹 프로세스가 수행된다. DPB에 있고 "참조용으로 사용됨"으로 마킹되었지만 RPS에는 포함되지 않은 화상은 "참조용으로 사용되지 않음"으로 마킹된다. DPB에는 없지만 참조 화상 세트에 포함된 화상은 used_by_curr_pic_X_flag가 0일 때 무시된다. 그러나, 대신 used_by_curr_pic_X_flag이 1과 같은 경우, 이 참조 화상은 현재 화상에서 예측에 사용하기 위한 것이었지만 누락되었다. 이 경우 의도하지 않은 화상 손실이 추론되고, 디코더는 적정 조치를 취해야 한다.
현재 화상을 디코딩한 후, "단기 참조용으로 사용됨"으로 마킹된다.
다음으로, HEVC에서 참조 화상 목록 구성에 대해 설명한다. HEVC에서, 인터 예측이라는 용어는, 현재 디코딩된 화상 이외의 참조 화상의 데이터 엘리먼트(예컨대, 샘플 값 또는 모션 벡터)로부터 유래되는 예측을 나타내는데 사용된다. AVC와 마찬가지로, 여러 참조 화상에서 화상이 예측될 수 있다. 인터 예측에 사용되는 참조 화상은 하나 이상의 참조 화상 목록으로 구성된다. 참조 인덱스는 목록에서 어느 참조 화상이 예측 신호를 생성하는데 사용되어야 하는지를 식별한다.
단일 참조 화상 목록인 목록 0은 P 슬라이스에 사용되며, 2개의 참조 화상 목록인 목록 0과 목록 1은 B 슬라이스에 사용된다. AVC와 유사하게, HEVC에서 참조 화상 목록 구성은 참조 화상 목록 초기화와 참조 화상 목록 수정을 포함한다.
AVC에서, 목록 0에 대한 초기화 프로세스는 P 슬라이스(디코딩 순서가 사용됨)와 B 슬라이스(출력 순서가 사용됨)에 대해 상이하다. HEVC에서는, 두 경우 모두 출력 순서가 사용된다.
참조 화상 목록 초기화는, RefPicSetStCurrBefore, RefPicSetStCurrAfter 및 RefPicSetLtCurr의 세 가지 RPS 서브세트에 기초하여 디폴트 목록 0 및 목록 1(슬라이스가 B 슬라이스인 경우)을 생성한다. 이른 (늦은) 출력 순서를 가지는 단기 화상이 현재 화상까지의 POC 거리의 오름차순으로 목록 0(목록 1)에 먼저 삽입된 다음, 늦은 (이른) 출력 순서를 가지는 단기 화상이 현재 화상까지의 POC 거리의 오름차순으로 목록 0(목록 1)에 삽입된 후, 마지막으로 장기 화상이 끝에 삽입된다. RPS 측면에서, 목록 0의 경우, RefPicSetStCurrBefore의 엔트리가 초기 목록에 삽입되고, 그 뒤에 RefPicSetStCurrAfter의 엔트리가 삽입된다. 그 후, 사용 가능한 경우, RefPicSetLtCurr의 엔트리가 추가된다.
HEVC에서, 목록에서 엔트리의 개수가 활성 참조 화상(화상 파라미터 세트 또는 슬라이스 헤더에서 시그널링 됨)의 목표 개수보다 작은 경우, 위의 프로세스가 반복된다(참조 화상 목록에 이미 추가된 참조 화상이 다시 추가된다). 엔트리의 개수가 목표 개수보다 큰 경우, 목록을 자른다(truncate).
참조 화상 목록이 초기화된 후, 현재 화상에 대한 참조 화상이, 하나의 특정 참조 화상이 목록 내에 둘 이상의 위치에서 나타나는 경우를 포함하여, 임의의 순서로 배열될 수 있도록, 참조 화상 목록 수정 명령에 기초하여 수정될 수 있다. 목록 수정이 있음을 표시하는 플래그가 1로 설정되는 경우, (참조 화상 목록에서 엔트리의 목표 개수와 동일한) 고정된 수의 명령이 시그널링되고, 각각의 명령은 참조 화상 목록에 대해 하나의 엔트리를 삽입한다. 참조 화상은 RPS 시그널링으로부터 유래되는 현재 화상에 대한 참조 화상의 목록에 대한 인덱스에 의해 명령에서 식별된다. 이는 (frame_num 신택스 엘리먼트로부터 유래되는) 화상 번호 또는 장기 참조 화상 인덱스에 의해 화상이 식별되는 H.264/AVC에서의 참조 화상 목록 수정과는 상이하고, 예컨대, 초기 목록의 처음 2개의 엔트리를 교환하거나 하나의 엔트리를 초기 목록의 시작 부분에 삽입하고 다른 것은 쉬프닝하는데, 더 적은 수의 명령이 필요한 것이 가능하다.
참조 화상 목록은 현재 화상보다 큰 TemporalId를 가지는 참조 화상을 포함할 수 없다. HEVC 비트스트림은 여러 개의 시간적 서브-레이어로 구성될 수 있다. 각각의 NAL 유닛은 (temporal_id_plus1 - 1과 동일한) TemporalId에 의해 표시되는 특정 서브-레이어에 속한다.
참조 화상 관리는 직접적으로 참조 화상 목록에 기초한다. JCT-VC 문서 JCTVC-G643은 DPB에서 참조 화상의 관리를 위해 3개의 참조 화상 목록, 즉 참조 화상 목록 0, 참조 화상 목록 1, 및 아이들 참조 화상 목록을 직접 사용하는 접근 방식을 포함하고, 따라서 1) AVC에서 참조 화상 목록 초기화 및 수정 프로세스뿐만 아니라 MMCO 프로세스 및 슬라이딩 윈도우, 또는 2) HEVC에서 참조 화상 목록 초기화 및 수정 프로세스뿐만 아니라 참조 화상 세트를 포함하는 디코딩 프로세스와 시그널링의 필요를 막을 수 있다.
참조 화상 관리를 위한 접근 방식에는 몇 가지 문제가 있을 수 있다. AVC 접근 방식은 슬라이딩 윈도우, MMCO 프로세스, 및 복잡한 참조 화상 목록 초기화 및 수정 프로세스가 수반한다. 더욱이, 화상의 손실은 추가적인 인터 예측 참조 목적을 위해 DPB에 어느 화상이 있어야 하는가의 관점에서 DPB의 상태의 손실을 초래할 수 있다. HEVC 접근 방식에는 DPB 상태 손실 문제가 없다. 그러나, HEVC 접근 방식은 복잡한 참조 화상 세트 시그널링 및 유도 프로세스뿐만 아니라 복잡한 참조 화상 목록 초기화 및 수정 프로세스를 수반한다. JCTVC-G643에서 DPB에서 참조 화상의 관리를 위해 3개의 참조 화상 목록, 즉 참조 화상 목록 0, 참조 화상 목록 1, 및 아이들 참조 화상 목록을 직접 사용하는 접근 방식은, 다음 측면을 수반한다: 제3 참조 화상 목록, 즉, 아이들 참조 화상 목록; POC 차이의 "단기" 부분 및 ue(v)-코딩된 "장기" 부분으로서 2-부분 코딩; +POC 차이 코딩을 위한 TemporalId-기반 POC 입도(granularity), "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨" 사이의 마킹을 결정하기 위한 POC 차이의 2-부분 코딩의 사용; 특정 이전 참조 화상 목록 설명의 꼬리로부터 참조 화상을 제거함으로써 참조 화상 목록을 특정하는 능력을 가능하게 하는, 참조 화상 목록 서브세트 설명; 신택스 엘리먼트 ref_pic_list_copy_flag에 의해 가능하게 되는 참조 화상 목록 복사 모드; 및 참조 화상 목록 설명 프로세스. 앞의 각 측면은 접근 방식을 불필요하게 복잡하게 만든다. 또한, JCTVC-G643에서 참조 화상 목록에 대한 디코딩 프로세스도 또한 복잡하다. 장기 참조 화상의 시그널링은 슬라이스 헤더에서 POC 사이클의 시그널링이 필요할 수 있다. 이는 효율적이지 않다.
위에 열거된 문제를 해결하기 위해, 여기에서 다음의 해결 수단이 개시되며, 이는 각각 개별적으로 적용될 수 있고 일부는 조합으로 적용될 수 있다. 1) 참조 화상 마킹은 2개의 참조 화상 목록, 즉 참조 화상 목록 0과 참조 화상 목록 1에 직접적으로 기초한다. 1a) 2개의 참조 화상 목록의 유도를 위한 정보는 SPS, PPS, 및/또는 슬라이스 헤더에서 신택스 엘리먼트 및 신택스 구조에 기초하여 시그널링된다. 1b) 화상에 대한 2개의 참조 화상 목록 각각은 참조 화상 목록 구조에서 명시적으로 시그널링된다. 1b.i) 하나 이상의 참조 화상 목록 구조는 SPS에서 시그널링될 수 있으며, 이들의 각각은 인덱스에 의해 슬라이스 헤더로부터 참조될 수 있다. 1b.ii) 참조 화상 목록 0과 1 각각은 슬라이스 헤더에서 직접 시그널링될 수 있다. 2) 2개의 참조 화상 목록의 유도를 위한 정보는 모든 유형의 슬라이스, 즉 B (이중-예측), P (단일-예측) 및 I (인트라) 슬라이스에 대해 시그널링된다. 슬라이스라는 용어는 HEVC 또는 최신 VVC WD에서 슬라이스와 같은 코딩 트리 유닛의 컬렉션을 지칭하며; 또한 HEVC에서 타일과 같은 코딩 트리 유닛의 다른 컬렉션을 지칭할 있다. 3) 모든 유형의 슬라이스, 즉 B, P 및 I 슬라이스에 대해 2개의 참조 화상 목록이 생성된다. 4) 2개의 참조 화상 목록은 참조 화상 목록 초기화 과정과 참조 화상 목록 수정 과정을 사용하지 않고 직접 구성된다. 5) 2개의 참조 화상 목록 각각에서, 현재 화상의 인터 예측에 사용될 수 있는 참조 화상은 목록의 시작 부분에 있는 여러 개의 엔트리에 의해서만 참조될 수 있다. 이들 엔트리는 목록에서 활성 엔트리로 지칭되고, 다른 엔트리는 목록에서 비활성 엔트리로 지칭된다. 총 엔트리의 수와 목록의 활성 엔트리 수를 모두 도출할 수 있다. 6) 참조 화상 목록에서 비활성 엔트리가 참조하는 화상은 참조 화상 목록에서 다른 엔트리나 다른 참조 화상 목록에서 엔트리가 참조하는 것이 허용되지 않는다. 7) 장기 참조 화상은 특정 개수의 POC LSB에 의해서만 식별되며, 여기서 이 개수는 POC 값의 유도를 위해 슬라이스 헤더에서 시그널링되는 POC LSB의 수보다 클 수 있으며, 이 수는 SPS에 표시된다. 8) 참조 화상 목록 구조는 슬라이스 헤더에서만 시그널링되고, 단기 참조 화상 및 장기 참조 화상 모두가 POC LSB에 의해 식별되고, 이는 POC 값의 유도를 위해 슬라이스 헤더에서 시그널링되는 POC LSB를 표현하는데 사용되는 비트의 개수와는 상이한 비트의 개수에 의해 표현될 수 있으며, 단기 참조 화상 및 장기 참조 화상을 식별하기 위한 POC LSB를 표현하는데 사용되는 비트의 개수는 상이할 수 있다. 9) 참조 화상 목록 구조는 슬라이스 헤더에서만 시그널링되고, 단기 및 장기 참조 화상 사이에는 구별이 없고, 모든 참조 화상은 단지 참조 화상으로 명칭되고, 참조 화상은 POC LSB에 의해 식별되며, 이는 POC 값의 유도를 위해 슬라이스 헤더에서 시그널링되는 POC LSB를 표현하는데 사용되는 비트의 개수와는 상이한 여러 개의 비트에 의해 표현된다.
본 개시의 제1 실시예가 제공된다. 설명은 최신 VVC WD를 기준으로 한다. 이 실시예에서, 참조 화상 목록 0 및 참조 화상 목록 1의 각각에 대해 하나씩, 2 세트의 참조 화상 목록 구조가 SPS에서 시그널링된다.
여기에서 사용된 일부 용어에 대한 정의가 제공된다. 인트라 랜덤 액세스 포인트(IRAP) 화상: 각각의 비디오 코딩 레이어(video coding layer; VCL) NAL 유닛이 IRAP_NUT과 동일한 nal_unit_type를 가지는 코딩된 화상. 비-IRAP 화상: 각각의 VCL NAL 유닛이 NON_IRAP_NUT와 동일한 nal_unit_type를 가지는 코딩된 화상. 참조 화상 목록: P 또는 B 슬라이스의 인터 예측에 사용되는 참조 화상의 목록. 2개의 참조 화상 목록, 즉 참조 화상 목록 0 및 참조 화상 목록 1은, 비-IRAP 화상의 각각의 슬라이스에 대해 생성된다. 화상과 연관된 2개의 참조 화상 목록에서 모든 엔트리에 의해 참조되는 고유한 화상의 세트는 연관된 화상 또는 디코딩 순서에서 연관된 화상을 뒤따르는 임의의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상으로 구성된다. P 슬라이스의 슬라이스 데이터를 디코딩하기 위해, 참조 화상 목록 0만 인터 예측에 사용된다. B 슬라이스의 슬라이스 데이터를 디코딩하기 위해, 두 참조 화상 목록이 인터 예측에 사용된다. I 슬라이스의 슬라이스 데이터를 디코딩하기 위해, 참조 화상 목록이 인터 예측에 사용되지 않는다. 장기 참조 화상(LTRP): "장기 참조용으로 사용됨"으로 마킹된 화상. 단기 참조 화상(STRP): "단기 참조용으로 사용됨"으로 마킹된 화상.
"단기 참조용으로 사용됨", "장기 참조용으로 사용됨", 또는 "참조용으로 사용되지 않음"의 용어는, VVC에서 섹션 8.3.3 참조 화상 마킹을 위한 디코딩 프로세스에서 규정되고, HEVC에서 섹션 8.3.2 참조 화상 세트를 위한 디코딩 프로세스에서 규정되고, 그리고 AVC에서 섹션 7.4.3.3 디코딩된 참조 화상 마킹 시맨틱에서 규정된다. 본 명세서에서 사용된 용어는 동일한 의미를 가진다.
제1 실시예에 대한 관련 신택스 및 시맨틱이 이하에서 제공된다.
NAL 유닛 헤더 신택스.
Figure pct00001
시퀀스 파라미터 세트 RBSP(Raw Byte Sequence Payload) 신택스.
Figure pct00002
화상 파라미터 세트 RBSP 신택스.
Figure pct00003
슬라이스 헤더 신택스.
Figure pct00004
참조 화상 목록 구조 신택스.
Figure pct00005
NAL 유닛 헤더 시맨틱.
forbidden_zero_bit는 0과 같아야 한다. nal_unit_type는 NAL 유닛에 포함되는 RBSP 데이터 구조의 유형을 지정한다.
표 7-1 - NAL 유닛 유형 코드 및 NAL 유닛 유형 클래스
Figure pct00006
nuh_temporal_id_plus1 마이너스 1은 NAL 유닛에 대한 시간적 식별자를 지정한다. nuh_temporal_id_plus1의 값은 0과 같지 않아야 한다. 변수 TemporalId은 다음과 같이 지정된다: TemporalId = nuh_temporal_id_plus1 - 1. nal_unit_type이 IRAP_NUT과 같은 경우, 코딩된 슬라이스는 IRAP 화상에 속하고, TemporalId는 0과 같아야 한다. TemporalId의 값은 액세스 유닛의 모든 VCL NAL 유닛에 대해 동일해야 한다. 코딩된 화상 또는 액세스 유닛의 TemporalId의 값은 액세스 유닛 또는 코딩된 화상의 VCL NAL 유닛의 TemporalId의 값이다. 비-VCL NAL 유닛에 대한 TemporalId의 값은 다음과 같이 제한된다: nal_unit_type이 SPS_NUT과 같은 경우, TemporalId은 0과 같아야 하고, NAL 유닛을 포함하는 액세스 유닛의 TemporalId는 0과 같아야 한다. 그렇지 않으면, nal_unit_type가 EOS_NUT 또는 EOB_NUT와 같은 경우, TemporalId는 0과 같아야 한다. 그렇지 않으면, TemporalId은 NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 크거나 같아야 한다. NAL 유닛이 비-VCL NAL 유닛인 경우, TemporalId의 값은 비-VCL NAL 유닛이 적용되는 모든 액세스 유닛의 TemporalId 값의 최소값과 같다. nal_unit_type이 PPS_NUT과 같은 경우, 모든 화상 파라미터 세트(PPS)가 비트스트림의 시작 부분에 포함될 수 있으므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있으며, 여기서 첫 번째 코딩된 화상은 0과 같은 TemporalId을 가진다. nal_unit_type이 PREFIX_SEI_NUT 또는 SUFFIX_SEI_NUT과 같은 경우, SEI NAL 유닛은 SEI NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 큰 TemporalId 값을 가지는 액세스 유닛을 포함하는 비트스트림 서브세트에 적용되는 정보를 포함하므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있다. nuh_reserved_zero_7bits는 '0000000'와 같아야 한다. nuh_reserved_zero_7bits의 다른 값은 ITU-T | ISO/IEC에 의해 향후에 지정될 수 있다. 디코더는 nuh_reserved_zero_7bits의 값이 '0000000'와 같지 않은 NAL 유닛을 무시(즉, 비트스트림으로부터 제거하고 폐기)해야 한다.
시퀀스 파라미터 세트 RBSP 시맨틱.
log2_max_pic_order_cnt_lsb_minus4는 화상 순서 카운트를 위해 디코딩 프로세스에서 사용되는 변수 MaxPicOrderCntLsb의 값을 다음과 같이 지정한다: MaxPicOrderCntLsb = 2 ( log2_max_pic_order_cnt_lsb_minus4 + 4 ). log2_max_pic_order_cnt_lsb_minus4의 값은 0 내지 12의 범위(포함)에 있어야 한다. sps_max_dec_pic_buffering_minus1 플러스 1은 CVS에 대한 디코딩된 화상 버퍼의 최대 요구되는 크기를 화상 저장 버퍼의 단위로 지정한다. sps_max_dec_pic_buffering_minus1의 값은 0 내지 MaxDpbSize - 1의 범위(포함)에 있어야 하며, 여기서 MaxDpbSize는 다른 곳에서 지정된 것과 같다. 0과 같은 long_term_ref_pics_flag는 CVS에서 임의의 코딩된 화상의 인터 예측에 LTRP가 사용되지 않음을 지정한다. 1과 같은 long_term_ref_pics_flag는 CVS에서 하나 이상의 코딩된 화상의 인터 예측에 LTRP가 사용될 수 있음을 지정한다. additional_lt_poc_lsb는 참조 화상 목록을 위해 디코딩 프로세스에서 사용되는 변수 MaxLtPicOrderCntLsb의 값을 다음과 같이 지정한다: MaxLtPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_lt_poc_lsb ). additional_lt_poc_lsb의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4의 범위(포함)에 있어야 한다. 존재하지 않는 경우, additional_lt_poc_lsb의 값은 0과 같은 것으로 추론된다. num_ref_pic_lists_in_sps[ i ]는 SPS에 포함된 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조의 개수를 지정한다. num_ref_pic_lists_in_sps[ i ]의 값은 0 내지 64의 범위(포함)에 있어야 한다. listIdx의 각각의 값(0 또는 1과 같음)에 대해, 현재 화상의 슬라이스 헤더에서 직접 시그널링되는 하나의 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조가 있을 수 있으므로, 디코더는 총 num_ref_pic_lists_in_sps[ i ] + 1 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 개의 신택스 구조에 대한 메모리를 할당해야 한다.
화상 파라미터 세트 RBSP 시맨틱.
i가 0과 같은 경우, num_ref_idx_default_active_minus1[ i ] 플러스 1는 0과 같은 num_ref_idx_active_override_flag를 가지는 P 또는 B 슬라이스에 대한 변수 NumRefIdxActive[ 0 ]의 추론된 값을 지정하고, i이 1과 같은 경우, 0과 같은 num_ref_idx_active_override_flag를 가지는 B 슬라이스에 대한 NumRefIdxActive[ 1 ]의 추론된 값을 지정한다. num_ref_idx_default_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다.
슬라이스 헤더 시맨틱.
존재하는 경우, 슬라이스 헤더 신택스 엘리먼트 slice_pic_parameter_set_id 및 slice_pic_order_cnt_lsb 각각의 값은 코딩된 화상의 모든 슬라이스 헤더에서 동일해야 한다. ... slice_type는 표 7-3에 따라 슬라이스의 코딩 유형을 지정한다.
표 7-3 - slice_type에 대한 이름 연관
Figure pct00007
nal_unit_type이 IRAP_NUT과 같은 경우, 즉, 화상이 IRAP 화상인 경우, slice_type는 2와 같아야 한다. ... slice_pic_order_cnt_lsb는 현재 화상에 대해 화상 순서 카운트 모듈로(modulo) MaxPicOrderCntLsb를 지정한다. slice_pic_order_cnt_lsb 신택스 엘리먼트의 길이는 log2_max_pic_order_cnt_lsb_minus4 + 4 비트이다. slice_pic_order_cnt_lsb의 값은 0 내지 MaxPicOrderCntLsb - 1의 범위(포함)에 있어야 한다. slice_pic_order_cnt_lsb가 없는 경우, slice_pic_order_cnt_lsb는 0과 같은 것으로 추론된다. 1과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 활성 SPS에서 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조 중 하나에 기초하여 유도됨을 지정한다. 0과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 현재 화상의 슬라이스 헤더에 직접 포함되는 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에 기초하여 유도됨을 지정한다. num_ref_pic_lists_in_sps[ i ]이 0과 같은 경우, ref_pic_list_sps_flag[ i ]의 값은 0과 같아야 한다. ref_pic_list_idx[ i ]는, 활성 SPS에 포함되는 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조의 목록에 대한, 현재 화상의 참조 화상 목록 i의 유도에 사용되는 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조의 인덱스를 지정한다. 신택스 엘리먼트 ref_pic_list_idx[ i ]는 Ceil( Log2( num_ref_pic_lists_in_sps[ i ] ) ) 비트에 의해 표현된다. 존재하지 않는 경우, ref_pic_list_idx[ i ]의 값은 0과 같은 것으로 추론된다. ref_pic_list_idx[ i ]의 값은 0 내지 num_ref_pic_lists_in_sps[ i ] - 1의 범위(포함)에 있어야 한다. 1과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ]가 P 및 B 슬라이스에 ?? 존재함 및 신택스 엘리먼트 num_ref_idx_active_minus1[ 1 ]가 B 슬라이스에 대해 존재함을 지정한다. 0과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ] 및 num_ref_idx_active_minus1[ 1 ]가 존재하지 않음을 지정한다. num_ref_idx_active_minus1[ i ]는, 존재하는 경우, 변수 NumRefIdxActive[ i ]의 값을 다음과 같이 지정한다: NumRefIdxActive[ i ] = num_ref_idx_active_minus1[ i ] + 1. num_ref_idx_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다.
NumRefIdxActive[ i ] - 1의 값은 디코드 슬라이스를 디코딩하는데 사용될 수 있는 참조 화상 목록 i에 대한 최대 참조 인덱스를 지정한다. NumRefIdxActive[ i ]의 값이 0과 같은 경우, 참조 화상 목록 i에 대한 참조 인덱스는 슬라이스를 디코딩하는데 사용될 수 없다. i가 0 또는 1과 같은 경우, 현재 슬라이스가 B 슬라이스이고 num_ref_idx_active_override_flag가 0과 같으면, NumRefIdxActive[ i ]는 num_ref_idx_default_active_minus1[ i ] + 1와 같은 것으로 추론된다. 현재 슬라이스가 P 슬라이스이고 num_ref_idx_active_override_flag가 0과 같은 경우, NumRefIdxActive[ 0 ]는 num_ref_idx_default_active_minus1[ 0 ] + 1와 같은 것으로 추론된다. 현재 슬라이스이 P 슬라이스인 경우, NumRefIdxActive[ 1 ]는 0과 같은 것으로 추론된다. 현재 슬라이스이 I 슬라이스인 경우, NumRefIdxActive[ 0 ] 및 NumRefIdxActive[ 1 ] 모두 0과 같은 것으로 추론된다.
대안적으로, i가 0 또는 1과 같은 경우, 위의 이후에 다음이 적용된다: rplsIdx1를 ref_pic_list_sps_flag[ i ] ? ref_pic_list_idx[ i ] : num_ref_pic_lists_in_sps[ i ]과 같도록 설정하고, numRpEntries[ i ]를 num_strp_entries[ i ][ rplsIdx1 ] + num_ltrp_entries[ i ][ rplsIdx1 ]과 같도록 설정한다. NumRefIdxActive[ i ]이 numRpEntries[ i ]보다 큰 경우, NumRefIdxActive[ i ]의 값은 numRpEntries[ i ]과 같도록 설정된다.
참조 화상 목록 구조 시맨틱.
ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조는 SPS에 또는 슬라이스 헤더에 존재할 수 있다. 신택스 구조가 슬라이스 헤더 또는 SPS에 포함되는지 여부에 따라, 다음이 적용된다: 슬라이스 헤더에 존재하는 경우, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 참조 화상 목록 listIdx를 지정한다. 그렇지 않으면(SPS에 존재), ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조는 참조 화상 목록 listIdx에 대한 후보를 지정하고, 이 섹션의 나머지 부분에서 지정되는 시맨틱에서 "현재 화상"이라는 용어는, 1) SPS에 포함되는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조의 목록에 대한 인덱스와 같은 ref_pic_list_idx[ listIdx ]를 포함하는 하나 이상의 슬라이스를 가지고, 2) 활성 SPS로서 SPS를 가지는 CVS에 있는, 각각의 화상을 참조한다. num_strp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다. num_ltrp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. 존재하지 않는 경우, num_ltrp_entries[ listIdx ][ rplsIdx ]의 값은 0과 같은 것으로 추론된다. 변수 NumEntriesInList[ listIdx ][ rplsIdx ]는 다음과 같이 유도된다: NumEntriesInList[ listIdx ][ rplsIdx ] = num_strp_entries[ listIdx ][ rplsIdx ] + num_ltrp_entries[ listIdx ] [ rplsIdx ]. NumEntriesInList[ listIdx ][ rplsIdx ]의 값은 0 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다. 1과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 LTRP 엔트리임을 지정한다. 0과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 STRP 엔트리임을 지정한다. 존재하지 않는 경우, lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 값은 0과 같은 것으로 추론된다. 0 내지 NumEntriesInList[ listIdx ][ rplsIdx ] - 1의 범위(포함)에 있는 i의 모든 값에 대한 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 합이 num_ltrp_entries[ listIdx ][ rplsIdx ]와 같아야 하는 것이 비트스트림 적합성의 요구 사항이다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]는, i-번째 엔트리가 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리인 경우, 현재 화상과 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정하거나, i-번째 엔트리가 STRP 엔트리이나 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리가 아닌 경우, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 이전의 STRP 엔트리에 의해 그리고 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정한다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]의 값은 -215 내지 215 - 1의 범위(포함)에 있어야 한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ]는, 화상 순서 카운트의, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다.
디코딩 프로세스에 대해 설명한다. 현재 화상 CurrPic에 대해 디코딩 프로세스는 다음과 같이 동작한다. NAL 유닛의 디코딩은 아래에 지정되어 있다. 아래의 프로세스는 슬라이스 헤더 레이어 및 위의 신택스 엘리먼트를 사용하여 다음의 디코딩 프로세스를 지정한다. 화상 순서 카운트와 관련된 변수 및 함수가 유도된다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 구성에 대한 디코딩 프로세스는 참조 화상 목록 0(RefPicList[ 0 ]) 및 참조 화상 목록 1(RefPicList[ 1 ])의 유도를 위해 호출된다. 참조 화상 마킹을 위한 디코딩 프로세스가 호출되며, 여기서 참조 화상은 "참조용으로 사용되지 않음" 또는 "장기 참조용으로 사용됨"으로 마킹될 수 있다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 코딩 트리 유닛, 스케일링, 변환, 인-루프(in-loop) 필터링, 등을 위한 디코딩 프로세스가 호출된다. 현재 화상의 모든 슬라이스가 디코딩된 후, 현재 디코딩된 화상은 "단기 참조용으로 사용됨"으로 마킹된다.
NAL 유닛 디코딩 프로세스가 설명된다. 이 프로세스에 대한 입력은 현재 화상의 NAL 유닛 및 이와 연관된 비-VCL NAL 유닛이다. 이 프로세스의 출력은 NAL 유닛 내에 캡슐화된(encapsulated) 파싱된 RBSP 신택스 구조이다. 각각의 NAL 유닛에 대한 디코딩 프로세스는 NAL 유닛로부터 RBSP 신택스 구조를 추출한 후 RBSP 신택스 구조를 파싱한다.
화상 순서 카운트를 위한 디코딩 프로세스를 포함하여, 슬라이스 디코딩 프로세스가 설명된다. 이 프로세스의 출력은 PicOrderCntVal, 즉 현재 화상의 화상 순서 카운트이다. 화상 순서 카운트는, 병합 모드 및 모션 벡터 예측에서 모션 파라미터를 도출하기 위해, 그리고 디코더 적합성 검사를 위해, 화상을 식별하는데 사용된다. 각각의 코딩된 화상은 PicOrderCntVal로 표시되는 화상 순서 카운트 변수와 연관된다. 현재 화상이 비 IRAP 화상인 경우, 변수 prevPicOrderCntLsb 및 prevPicOrderCntMsb은 다음과 같이 유도된다: prevTid0Pic를 0과 같은 TemporalId를 가지는 디코딩 순서에서 이전의 화상으로 가정한다. 변수 prevPicOrderCntLsb는 prevTid0Pic의 slice_pic_order_cnt_lsb과 같도록 설정된다. 변수 prevPicOrderCntMsb는 prevTid0Pic의 PicOrderCntMsb과 같도록 설정된다.
현재 화상의 변수 PicOrderCntMsb는 다음과 같이 유도된다: 현재 화상이 IRAP 화상인 경우, PicOrderCntMsb는 0과 같도록 설정된다. 그렇지 않으면, PicOrderCntMsb는 다음과 같이 유도된다:
Figure pct00008
PicOrderCntVal는 다음과 같이 유도된다: PicOrderCntVal = PicOrderCntMsb + slice_pic_order_cnt_lsb.
slice_pic_order_cnt_lsb는 IRAP 화상에 대해 0으로 추론되고 prevPicOrderCntLsb 및 prevPicOrderCntMsb는 모두 0과 같도록 설정되기 때문에, 모든 IRAP 화상은 0과 같은 PicOrderCntVal를 가질 것이다. PicOrderCntVal의 값은 -231 내지 231 - 1의 범위(포함)에 있어야 한다. 하나의 CVS에서, 임의의 2개의 코딩된 화상에 대한 PicOrderCntVal 값은 동일하지 않아야 한다.
디코딩 프로세스 중 언제든지, DPB에서 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다. 함수 PicOrderCnt( picX )은 다음과 같이 지정된다: PicOrderCnt( picX ) = 화상 picX의 PicOrderCntVal. 함수 DiffPicOrderCnt( picA, picB )은 다음과 같이 지정된다: DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) - PicOrderCnt( picB ). 비트스트림은 디코딩 프로세스에서 사용되는 DiffPicOrderCnt( picA, picB )의 값이 -215 내지 215 - 1의 범위(포함)에 있지 않게 하는 데이터를 포함하지 않아야 한다. X를 현재 화상으로, 그리고 Y 및 Z를 동일한 코딩된 비디오 시퀀스(coded video sequence; CVS)에서 2개의 다른 화상으로 가정하면, DiffPicOrderCnt( X, Y ) 및 DiffPicOrderCnt( X, Z )가 모두 양이거나 모두 음인 경우, Y 및 Z는 X로부터 동일한 출력 순서 방향에 있는 것으로 간주된다.
참조 화상 목록 구성을 위한 디코딩 프로세스가 설명된다. 이 프로세스는 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작 부분에서 호출된다. 참조 화상은 참조 인덱스를 통해 어드레싱된다. 참조 인덱스는 참조 화상 목록에 대한 인덱스이다. I 슬라이스를 디코딩하는 경우, 참조 화상 목록은 슬라이스 데이터의 디코딩에 사용되지 않는다. P 슬라이스를 디코딩하는 경우, 참조 화상 목록 0(즉, RefPicList[ 0 ])만이 슬라이스 데이터의 디코딩에 사용된다. B 슬라이스를 디코딩하는 경우, 참조 화상 목록 0 및 참조 화상 목록 1(즉, RefPicList[ 1 ])이 모두 슬라이스 데이터의 디코딩에 사용된다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]가 유도된다. 참조 화상 목록은 참조 화상의 마킹 또는 슬라이스 데이터의 디코딩에 사용된다. 화상의 첫 번째 슬라이스가 아닌 비-IRAP 화상의 I 슬라이스의 경우, RefPicList[ 0 ] 및 RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 화상의 첫 번째 슬라이스가 아닌 P 슬라이스의 경우, RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00009
0 또는 1과 같은 각각의 i에 대해, 다음이 적용된다: RefPicList[ i ]에서 첫 번째 NumRefIdxActive[ i ] 엔트리는 RefPicList[ i ]에서 활성 엔트리로 지칭되고, RefPicList[ i ]에서 다른 엔트리는 RefPicList[ i ]에서 비활성 엔트리로 지칭된다. 0 내지 NumEntriesInList[ i ][ RplsIdx[ i ] ] - 1의 범위(포함)에 있는 j에 대한 RefPicList[ i ][ j ]에서 각각의 엔트리는, lt_ref_pic_flag[ i ][ RplsIdx[ i ] ][ j ]이 0과 같은 경우 STRP 엔트리로 지칭되고, 그렇지 않은 경우에는 LTRP 엔트리로 지칭된다. 특정 화상이 RefPicList[ 0 ]의 엔트리 및 RefPicList[ 1 ]의 엔트리 모두에 의해 참조되는 것이 가능하다. 특정 화상이 RefPicList[ 0 ]의 둘 이상의 엔트리에 의해 또는 RefPicList[ 1 ]의 둘 이상의 엔트리에 의해 참조되는 것도 또한 가능하다. RefPicList[ 0 ]의 활성 엔트리 및 RefPicList[ 1 ]의 활성 엔트리는 현재 화상 및 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ]의 비활성 엔트리 및 RefPicList[ 1 ]의 비활성 엔트리는 현재 화상의 인터 예측에는 사용되지 않으나 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에는 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에는 해당 화상이 DPB에 존재하지 않기 때문에 "참조 화상 없음"과 동일한 하나 이상의 엔트리가 있을 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 0 ]에서 "참조 화상 없음"과 같은 각각의 비활성 엔트리는 무시되어야 한다. 의도하지 않은 화상 손실은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 활성 엔트리에 대해 추론되어야 한다.
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ][ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
참조 화상 마킹을 위한 디코딩 프로세스.
이 프로세스는, 슬라이스 헤더의 디코딩 및 슬라이스에 대한 참조 화상 목록 구성을 위한 디코딩 프로세스 이후에, 그러나 슬라이스 데이터의 디코딩 이전에, 화상마다 한번씩 호출된다. 이 프로세스는 DPB에서 하나 이상의 참조 화상이 "참조용으로 사용되지 않음" 또는 "장기 참조용으로 사용됨"으로 마킹되게 할 수 있다. DPB의 디코딩된 화상은 "참조용으로 사용되지 않음", "단기 참조용으로 사용됨", 또는 "장기 참조용으로 사용됨"으로 마킹될 수 있으나, 디코딩 프로세스의 동작 중에 임의의 주어진 순간에서 이들 3개 중 하나만으로 마킹될 수 있다. 화상에 이러한 마킹 중 하나를 할당하는 것은, 해당하는 경우, 이들 마킹 중 다른 것을 제거한다는 것을 암시한다. 화상이 "참조용으로 사용됨"으로 마킹된 것으로 지칭되는 경우, 이는 화상이 "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨"으로 마킹된 것을 통칭한다(둘 다는 아님). 현재 화상이 IRAP 화상인 경우, 현재 DPB에 있는 (있는 경우) 모든 참조 화상이 "참조용으로 사용되지 않음"으로 마킹된다. STRP는 그 PicOrderCntVal 값에 의해 식별된다. LTRP는 그 PicOrderCntVal 값의 Log2( MaxLtPicOrderCntLsb ) LSB에 의해 식별된다. 다음이 적용된다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 각각의 LTRP 엔트리에 대해, 참조된 화상이 STRP인 경우, 화상은 "장기 참조용으로 사용됨"으로 마킹된다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않는 DPB 내의 각각의 참조 화상은 "참조용으로 사용되지 않음"으로 마킹된다.
본 개시의 제2 실시예에 대한 상세한 설명이 제공된다. 이 섹션은 위에서 기술한 개시의 제2 실시예를 문서화한다. 설명은 최신 VVC WD를 기준으로 한다. 이 실시예에서, 참조 화상 목록 구조의 하나의 세트는 참조 화상 목록 0 및 참조 화상 목록 1에 의해 공유되는 SPS에서 시그널링된다.
시퀀스 파라미터 세트 RBSP 신택스.
Figure pct00010
화상 파라미터 세트 RBSP 신택스.
Figure pct00011
슬라이스 헤더 신택스.
Figure pct00012
참조 화상 목록 구조 신택스.
Figure pct00013
NAL 유닛 헤더 시맨틱이 논의된다.
시퀀스 파라미터 세트 RBSP 시맨틱.
log2_max_pic_order_cnt_lsb_minus4는 화상 순서 카운트를 위해 디코딩 프로세스에서 사용되는 변수 MaxPicOrderCntLsb의 값을 다음과 같이 지정한다: MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 ). log2_max_pic_order_cnt_lsb_minus4의 값은 0 내지 12의 범위(포함)에 있어야 한다. sps_max_dec_pic_buffering_minus1 플러스 1은 CVS에 대한 디코딩된 화상 버퍼의 최대 요구되는 크기를 화상 저장 버퍼의 단위로 지정한다. sps_max_dec_pic_buffering_minus1의 값은 0 내지 MaxDpbSize - 1의 범위(포함)에 있어야 하며, 여기서 MaxDpbSize는 다른 곳에서 지정된 것과 같다. num_ref_pic_lists_in_sps는 SPS에 포함된 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조의 개수를 지정한다. num_ref_pic_lists_in_sps의 값은 0 내지 128의 범위(포함)에 있어야 한다. 현재 화상의 슬라이스 헤더에서 직접 시그널링되는 2개의 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조가 있을 수 있으므로, 디코더는 총 num_short_term_ref_pic_sets + 2 ref_pic_list_struct( rplsIdx, ltrpFlag ) 개의 신택스 구조에 대한 메모리를 할당해야 한다. 0과 같은 long_term_ref_pics_flag는 CVS에서 임의의 코딩된 화상의 인터 예측에 LTRP가 사용되지 않음을 지정한다. 1과 같은 long_term_ref_pics_flag는 CVS에서 하나 이상의 코딩된 화상의 인터 예측에 LTRP가 사용될 수 있음을 지정한다. additional_lt_poc_lsb는 참조 화상 목록을 위해 디코딩 프로세스에서 사용되는 변수 MaxLtPicOrderCntLsb의 값을 다음과 같이 지정한다: MaxLtPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_lt_poc_lsb )) additional_lt_poc_lsb의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4의 범위(포함)에 있어야 한다. 존재하지 않는 경우, additional_lt_poc_lsb의 값은 0과 같은 것으로 추론된다.
화상 파라미터 세트 RBSP 시맨틱에 대해 설명한다.
슬라이스 헤더 시맨틱.
존재하는 경우, 슬라이스 헤더 신택스 엘리먼트 slice_pic_parameter_set_id 및 slice_pic_order_cnt_lsb 각각의 값은 코딩된 화상의 모든 슬라이스 헤더에서 동일해야 한다. slice_type는 표 7-3에 따라 슬라이스의 코딩 유형을 지정한다.
표 7-3 - slice_type에 대한 이름 연관
Figure pct00014
nal_unit_type이 IRAP_NUT과 같은 경우, 즉, 화상이 IRAP 화상인 경우, slice_type는 2와 같아야 한다. ... slice_pic_order_cnt_lsb는 현재 화상에 대해 화상 순서 카운트 모듈로 MaxPicOrderCntLsb를 지정한다. slice_pic_order_cnt_lsb 신택스 엘리먼트의 길이는 log2_max_pic_order_cnt_lsb_minus4 + 4 비트이다. slice_pic_order_cnt_lsb의 값은 0 내지 MaxPicOrderCntLsb - 1의 범위(포함)에 있어야 한다. slice_pic_order_cnt_lsb가 없는 경우, slice_pic_order_cnt_lsb는 0과 같은 것으로 추론된다. 1과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 활성 SPS에서 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조 중 하나에 기초하여 유도됨을 지정한다. 0과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 현재 화상의 슬라이스 헤더에 직접 포함되는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에 기초하여 유도됨을 지정한다. num_ref_pic_lists_in_sps이 0과 같은 경우, ref_pic_list_sps_flag[ i ]의 값은 0과 같아야 한다. ref_pic_list_idx[ i ]는, 활성 SPS에 포함되는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조의 목록에 대해, 현재 화상의 참조 화상 목록 i의 유도에 사용되는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조의 인덱스를 지정한다. 신택스 엘리먼트 ref_pic_list_idx[ i ]는 Ceil( Log2( num_ref_pic_lists_in_sps ) ) 비트에 의해 표현된다. 존재하지 않는 경우, ref_pic_list_idx[ i ]의 값은 0과 같은 것으로 추론된다. ref_pic_list_idx[ i ]의 값은 0 내지 num_ref_pic_lists_in_sps - 1의 범위(포함)에 있어야 한다. 1과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ]가 P 및 B 슬라이스에 ?? 존재함 및 신택스 엘리먼트 num_ref_idx_active_minus1[ 1 ]가 B 슬라이스에 대해 존재함을 지정한다. 0과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ] 및 num_ref_idx_active_minus1[ 1 ]가 존재하지 않음을 지정한다.
num_ref_idx_active_minus1[ i ]는, 존재하는 경우, 변수 NumRefIdxActive[ i ]의 값을 다음과 같이 지정한다: NumRefIdxActive[ i ] = num_ref_idx_active_minus1[ i ] + 1. num_ref_idx_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다. NumRefIdxActive[ i ] - 1의 값은 디코드 슬라이스를 디코딩하는데 사용될 수 있는 참조 화상 목록 i에 대한 최대 참조 인덱스를 지정한다. NumRefIdxActive[ i ]의 값이 0과 같은 경우, 참조 화상 목록 i에 대한 참조 인덱스는 슬라이스를 디코딩하는데 사용될 수 없다. i가 0 또는 1과 같은 경우, 현재 슬라이스가 B 슬라이스이고 num_ref_idx_active_override_flag가 0과 같으면, NumRefIdxActive[ i ]는 num_ref_idx_default_active_minus1[ i ] + 1와 같은 것으로 추론된다. 현재 슬라이스가 P 슬라이스이고 num_ref_idx_active_override_flag가 0과 같은 경우, NumRefIdxActive[ 0 ]는 num_ref_idx_default_active_minus1[ 0 ] + 1와 같은 것으로 추론된다. 현재 슬라이스이 P 슬라이스인 경우, NumRefIdxActive[ 1 ]는 0과 같은 것으로 추론된다. 현재 슬라이스이 I 슬라이스인 경우, NumRefIdxActive[ 0 ] 및 NumRefIdxActive[ 1 ] 모두 0과 같은 것으로 추론된다.
대안적으로, i가 0 또는 1과 같은 경우, 위의 이후에 다음이 적용된다: rplsIdx1를 ref_pic_list_sps_flag[ i ] ? ref_pic_list_idx[ i ] : num_ref_pic_lists_in_sps[ i ]과 같도록 설정하고, numRpEntries[ i ]를 num_strp_entries[ i ][ rplsIdx1 ] + num_ltrp_entries[ i ][ rplsIdx1 ]과 같도록 설정한다. NumRefIdxActive[ i ]이 numRpEntries[ i ]보다 큰 경우, NumRefIdxActive[ i ]의 값은 numRpEntries[ i ]과 같도록 설정된다.
참조 화상 목록 구조 시맨틱.
ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조는 SPS에 또는 슬라이스 헤더에 존재할 수 있다. 신택스 구조가 슬라이스 헤더 또는 SPS에 포함되는지 여부에 따라, 다음이 적용된다: 슬라이스 헤더에 존재하는 경우, ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 참조 화상 목록을 지정한다. 그렇지 않으면(SPS에 존재), ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조는 후보 참조 화상 목록을 지정하고, 이 섹션의 나머지 부분에서 지정되는 시맨틱에서 "현재 화상"이라는 용어는, 1) SPS에 포함되는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조의 목록에 대한 인덱스와 같은 ref_pic_list_idx[ i ]를 포함하는 하나 이상의 슬라이스를 가지고, 2) 활성 SPS로서 SPS를 가지는 CVS에 있는, 각각의 화상을 참조한다. num_strp_entries[ rplsIdx ]는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다. num_ltrp_entries[ rplsIdx ]는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. 존재하지 않는 경우, num_ltrp_entries[ rplsIdx ]의 값은 0과 같은 것으로 추론된다.
변수 NumEntriesInList[ rplsIdx ]는 다음과 같이 유도된다: NumEntriesInList[ rplsIdx ] = num_strp_entries[ rplsIdx ] + num_ltrp_entries[ rplsIdx ]. NumEntriesInList[ rplsIdx ]의 값은 0 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다. 1과 같은 lt_ref_pic_flag[ rplsIdx ][ i ]는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 LTRP 엔트리임을 지정한다. 0과 같은 lt_ref_pic_flag[ rplsIdx ][ i ]는 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 STRP 엔트리임을 지정한다. 존재하지 않는 경우, lt_ref_pic_flag[ rplsIdx ][ i ]의 값은 0과 같은 것으로 추론된다. 0 내지 NumEntriesInList[ rplsIdx ] - 1의 범위(포함)에 있는 i의 모든 값에 대한 lt_ref_pic_flag[ rplsIdx ][ i ]의 합이 num_ltrp_entries[ rplsIdx ]와 같아야 하는 것이 비트스트림 적합성의 요구 사항이다. delta_poc_st[ rplsIdx ][ i ]는, i-번째 엔트리가 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리인 경우, 현재 화상과 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정하거나, i-번째 엔트리가 STRP 엔트리이나 ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리가 아닌 경우, ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 이전의 STRP 엔트리에 의해 그리고 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정한다. delta_poc_st[ rplsIdx ][ i ]의 값은 0 내지 215 - 1의 범위(포함)에 있어야 한다. poc_lsb_lt[ rplsIdx ][ i ]는, 화상 순서 카운트의, ref_pic_list_struct( rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다.
본 개시의 제1 실시예의 상세한 설명의 일부로서 구체화된 일반적인 디코딩 프로세스가 적용된다. NAL 유닛 디코딩 프로세스가 설명된다. 본 개시의 제1 실시예의 상세한 설명의 일부로서 구체화된 NAL 유닛 디코딩 프로세스가 적용된다.
슬라이스 디코딩 프로세스가 제공된다.
화상 순서 카운트에 대한 디코딩 프로세스.
본 개시의 제1 실시예의 상세한 설명의 일부로서 구체화된 화상 순서 카운트에 대한 디코딩 프로세스가 적용된다.
참조 화상 목록 구성을 위한 디코딩 프로세스.
이 프로세스는 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작 부분에서 호출된다. 참조 화상은 참조 인덱스를 통해 어드레싱된다. 참조 인덱스는 참조 화상 목록에 대한 인덱스이다. I 슬라이스를 디코딩하는 경우, 참조 화상 목록은 슬라이스 데이터의 디코딩에 사용되지 않는다. P 슬라이스를 디코딩하는 경우, 참조 화상 목록 0(즉, RefPicList[ 0 ])만이 슬라이스 데이터의 디코딩에 사용된다. B 슬라이스를 디코딩하는 경우, 참조 화상 목록 0 및 참조 화상 목록 1(즉, RefPicList[ 1 ])이 모두 슬라이스 데이터의 디코딩에 사용된다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]가 유도된다. 참조 화상 목록은 참조 화상의 마킹 또는 슬라이스 데이터의 디코딩에 사용된다. 화상의 첫 번째 슬라이스가 아닌 비-IRAP 화상의 I 슬라이스의 경우, RefPicList[ 0 ] 및 RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 화상의 첫 번째 슬라이스가 아닌 P 슬라이스의 경우, RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00015
0 또는 1과 같은 각각의 i에 대해, 다음이 적용된다: RefPicList[ i ]에서 첫 번째 NumRefIdxActive[ i ] 엔트리는 RefPicList[ i ]에서 활성 엔트리로 지칭되고, RefPicList[ i ]에서 다른 엔트리는 RefPicList[ i ]에서 비활성 엔트리로 지칭된다. 0 내지 NumEntriesInList[ RplsIdx[ i ] ] - 1의 범위(포함)에 있는 j에 대한 각각의 엔트리 RefPicList[ i ][ j ]는, lt_ref_pic_flag[ RplsIdx[ i ] ][ j ]이 0과 같은 경우 STRP 엔트리로 지칭되고, 그렇지 않은 경우에는 LTRP 엔트리로 지칭된다. 특정 화상이 RefPicList[ 0 ]의 엔트리 및 RefPicList[ 1 ]의 엔트리 모두에 의해 참조되는 것이 가능하다. 특정 화상이 RefPicList[ 0 ]의 둘 이상의 엔트리에 의해 또는 RefPicList[ 1 ]의 둘 이상의 엔트리에 의해 참조되는 것도 또한 가능하다. RefPicList[ 0 ]의 활성 엔트리 및 RefPicList[ 1 ]의 활성 엔트리는 현재 화상 및 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ]의 비활성 엔트리 및 RefPicList[ 1 ]의 비활성 엔트리는 현재 화상의 인터 예측에는 사용되지 않으나 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에는 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에는 해당 화상이 DPB에 존재하지 않기 때문에 "참조 화상 없음"과 동일한 하나 이상의 엔트리가 있을 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 비활성 엔트리는 무시되어야 한다. 의도하지 않은 화상 손실은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 활성 엔트리에 대해 추론되어야 한다.
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
참조 화상 마킹을 위한 디코딩 프로세스가 설명된다.
이 프로세스는, 슬라이스 헤더의 디코딩 및 슬라이스에 대한 참조 화상 목록 구성을 위한 디코딩 프로세스 이후에, 그러나 슬라이스 데이터의 디코딩 이전에, 화상마다 한번씩 호출된다. 이 프로세스는 DPB에서 하나 이상의 참조 화상이 "참조용으로 사용되지 않음" 또는 "장기 참조용으로 사용됨"으로 마킹되게 할 수 있다. DPB의 디코딩된 화상은 "참조용으로 사용되지 않음", "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨"으로 마킹될 수 있으나, 디코딩 프로세스의 동작 중에 임의의 주어진 순간에서 이들 3개 중 하나만으로 마킹될 수 있다. 화상에 이러한 마킹 중 하나를 할당하는 것은, 해당하는 경우, 이들 마킹 중 다른 것을 제거한다는 것을 암시한다. 화상이 "참조용으로 사용됨"으로 마킹된 것으로 지칭되는 경우, 이는 화상이 "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨"으로 마킹된 것을 통칭한다(둘 다는 아님). 현재 화상이 IRAP 화상인 경우, 현재 DPB에 있는 (있는 경우) 모든 참조 화상이 "참조용으로 사용되지 않음"으로 마킹된다. STRP는 그 PicOrderCntVal 값에 의해 식별된다. LTRP는 그 PicOrderCntVal 값의 Log2( MaxLtPicOrderCntLsb ) LSB에 의해 식별된다.
다음이 적용된다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 각각의 LTRP 엔트리에 대해, 참조된 화상이 STRP인 경우, 화상은 "장기 참조용으로 사용됨"으로 마킹된다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않는 DPB 내의 각각의 참조 화상은 "참조용으로 사용되지 않음"으로 마킹된다.
도 5는 비디오 디코더(예컨대, 비디오 디코더(30))에 의해 구현되는 코딩된 비디오 비트스트림을 디코딩하는 방법(500)의 실시예이다. 방법(500)은 디코딩된 비트스트림을 비디오 인코더(예컨대, 비디오 인코더(20))로부터 직접으로 또는 간접으로 수신한 후에 수행될 수 있다. 방법(500)은 디코딩 프로세스를 개선(예컨대, make 디코딩 프로세스를 기존 디코딩 프로세스보다 더 효율적이게, 더 빠르게, 하는 등)하기 위해 수행될 수 있다. 따라서, 실제적으로 코덱의 성능을 향상시켜 더 나은 사용자 경험을 제공할 수 있다.
블록(502)에서, 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더가 파싱된다. 일 실시예에서, 슬라이스 헤더는 참조 화상 목록 구조를 포함한다. 일 실시예로서, 참조 화상 목록 구조에서 엔트리의 순서는 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일하다. 일 실시예로서, 순서는 0부터 표시된 값까지이다. 일 실시예로서, 표시된 값은 0부터 sps_max_dec_pic_buffering_minus1에 의해 표시되는 값까지이다.
블록 504에서, 현재 슬라이스의 참조 화상 목록이 참조 화상 목록 구조에 기초하여 유도된다. 일 실시예로서, 참조 화상 목록은 RefPictList[0] 또는 RefPictList[1]로 지정된다.
블록 506에서, 현재 슬라이스의 적어도 하나의 재구성된 블록이 참조 화상 목록에 기초하여 획득된다. 일 실시예로서, 적어도 하나의 재구성된 블록은 전자 장치의 디스플레이 상에 디스플레이되는 이미지를 생성하는데 사용된다.
일 실시예로서, 참조 화상 목록은 인터 예측에 사용되는 참조 화상의 목록을 포함한다. 일 실시예로서, 인터 예측은 P 슬라이스 또는 B 슬라이스에 대한 것이다.
일 실시예로서, 슬라이스 헤더는 ref_pic_list_sps_flag[ i ]로 지정되는 참조 화상 목록 시퀀스 파라미터 세트(SPS) 플래그를 포함한다. 이 플래그가 1과 같은 경우, i-번째 참조 화상 목록, 즉, RefPictList[ i ]는 슬라이스 헤더에서 직접 시그널링되지 않고, SPS로부터 참조된다. 이 플래그가 0과 같은 경우, i-번째 참조 화상 목록, 즉, RefPictList[ i ]는 슬라이스 헤더에서 직접 시그널링되고, SPS로부터 참조되지 않는다. 일 실시예로서, 슬라이스 헤더는 num_ref_idx_active_override_flag로 지정되는 번호 참조 인덱스 활성 오버라이드 플래그를 포함한다. 이 플래그가 1과 같은 경우, 각각의 참조 화상 목록에서 활성 엔트리의 개수는 PPS에서 시그널링되는 디폴트 값이다. 이 플래그가 0과 같은 경우, 각각의 참조 화상 목록에서 활성 엔트리의 개수는 슬라이스 헤더에서 명시적으로 시그널링된다.
일 실시예로서, 참조 화상 목록은 RefPictList[0] 또는 RefPictList[1]로 지정되고, 참조 화상 목록 구조에서 엔트리의 순서는 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일하다.
제1 및 제2 실시예에 기초한 대안적인 실시예의 요약이 제공된다.
이 섹션은 본 개시 내용의 다른 대안적인 실시예들의 간략한 요약을 제공한다. 요약은 제1 실시예의 설명과 관련된다. 그러나, 다음의 대안적인 실시예에 대한 개시의 기본 개념은 제2 실시예에 대한 개시 상에서 구현예에도 적용될 수 있다. 이러한 구현예는 제1 실시예 위에서 양태가 구현되는 방식과 동일한 사상에 있다.
단기 참조 화상 엔트리의 델타 POC의 시맨틱.
본 개시의 하나의 대안적인 실시예에서, 참조 화상 목록 구조 ref_pic_list_struct( )의 i-번째 엔트리의 델타 POC를 규정하는 신택스 엘리먼트의 시맨틱은 현재 화상과 해당 i-번째 엔트리와 연관된 참조 화상 사이의 POC 차이로서 규정된다. 여기에 사용된 설명 중 일부는 델타만 표시되거나 설명된 현재 표준 초안(예컨대, VVC 작업 초안)과 관련된다. 제거된 텍스트는 밑줄 또는 취소선으로 표시되고 추가된 텍스트는 강조 표시된다.
delta_poc_st[ listIdx ][ rplsIdx ][ i ]의 시맨틱은 다음과 같이 규정된다: delta_poc_st[ listIdx ][ rplsIdx ][ i ]는 현재 화상과 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정한다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]의 값은 -215 내지 215 - 1의 범위(포함)에 있어야 한다.
참조 화상 목록 구성 프로세스의 수학식을 업데이트해야 한다. 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00016
장기 참조 화상 엔트리의 시그널링.
본 개시의 하나의 대안적인 실시예에서, 장기 참조 화상 엔트리는 단기 참조 화상 엔트리를 포함하는 동일한 참조 화상 목록 구조에서 시그널링되지 않는다. 장기 참조 화상 엔트리는 별도의 구조에서 시그널링 되고, 구조 내의 각각의 엔트리에 대해 최종 참조 화상 목록에서 해당 엔트리 인덱스의 유도를 위해 장기 참조 화상 엔트리의 의도된 위치를 기술하는 신택스 엘리먼트가 있다.
시퀀스 파라미터 세트 RBSP 신택스.
Figure pct00017
슬라이스 헤더 신택스.
Figure pct00018
참조 화상 목록 구조 신택스.
Figure pct00019
장기 참조 화상 목록 구조 신택스.
Figure pct00020
시퀀스 파라미터 세트 RBSP 시맨틱.
num_ref_pic_lists_lt_in_sps는 SPS에 포함된 ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조의 개수를 지정한다. num_ref_pic_lists_lt_in_sps의 값은 0 내지 64의 범위(포함)에 있어야 한다. 존재하지 않는 경우, num_ref_pic_lists_lt_in_sps의 값은 0과 같은 것으로 추론된다.
슬라이스 헤더 시맨틱.
ref_pic_list_lt_idx[ i ]는 현재 화상의 참조 화상 목록 i의 유도에 사용되는 활성 SPS에 포함되는 ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조의 목록에 대해 인덱스를 지정한다. 신택스 엘리먼트 ref_pic_list_lt_idx[ i ]는 Ceil( Log2( num_ref_pic_lists_lt_in_sps ) ) 비트에 의해 표현된다. ref_pic_list_lt_idx의 값은 0 내지 num_ref_pic_lists_lt_in_sps - 1의 범위(포함)에 있어야 한다.
참조 화상 목록 구조 시맨틱.
ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조는 SPS에 또는 슬라이스 헤더에 존재할 수 있다. 신택스 구조가 슬라이스 헤더 또는 SPS에 포함되는지 여부에 따라, 다음이 적용된다: 슬라이스 헤더에 존재하는 경우, ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 단기 참조 화상 목록 listIdx를 지정한다. 그렇지 않으면(SPS에 존재), ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조는 단기 참조 화상 목록 listIdx에 대한 후보를 지정하고, 이 섹션의 나머지 부분에서 지정되는 시맨틱에서 "현재 화상"이라는 용어는, 1) SPS에 포함되는 ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조의 목록에 대한 인덱스와 같은 ref_pic_list_idx[ listIdx ]를 포함하는 하나 이상의 슬라이스를 가지고, 2) 활성 SPS로서 SPS를 가지는 CVS에 있는, 각각의 화상을 참조한다. num_strp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다.
num_ltrp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. 존재하지 않는 경우, num_ltrp_entries[ listIdx ][ rplsIdx ]의 값은 0과 같은 것으로 추론된다.
변수 NumEntriesInList[ listIdx ][ rplsIdx ]는 다음과 같이 유도된다:
NumRefPicEntriesInRpl[ listIdx ][ rplsIdx ] = num_strp_entries[ listIdx ][ rplsIdx ] +
num_ltrp_entries[ listIdx ][ rplsIdx ] (7-34)
NumRefPicEntries[ listIdx ][ rplsIdx ]의 값은 0 내지 sps_max_dec_pic_buffing_minus1의 범위(포함)에 있어야 한다.
1과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 LTRP 엔트리임을 지정한다. 0과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 STRP 엔트리임을 지정한다. 존재하지 않는 경우, lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 값은 0과 같은 것으로 추론된다.
0 내지 NumRefPicEntries[ listIdx ][ rplsIdx ] - 1의 범위(포함)에 있는 i의 모든 값에 대한 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 합이, num_ltrp_entries[ listIdx ][ rplsIdx ]과 같아야 하는 것이 비트스트림 적합성의 요구 사항이다.
delta_poc_st[ listIdx ][ rplsIdx ][ i ]는, i-번째 엔트리가 ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조에서 첫 번째 STRP 엔트리인 경우, 현재 화상과 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정하거나, i-번째 엔트리가 STRP 엔트리이나 ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조에서 첫 번째 STRP 엔트리가 아닌 경우, ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조에서 이전의 STRP 엔트리에 의해 그리고 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정한다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]의 값은 -215 내지 215 - 1의 범위(포함)에 있어야 한다.
poc_lsb_lt[ listIdx ][ rplsIdx ][ i ]는, 화상 순서 카운트의, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다.
장기 참조 화상 목록 구조 시맨틱.
ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조는 SPS에 또는 슬라이스 헤더에 존재할 수 있다. 신택스 구조가 슬라이스 헤더 또는 SPS에 포함되는지 여부에 따라, 다음이 적용된다: 슬라이스 헤더에 존재하는 경우, ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 장기 참조 화상 목록를 지정한다. 그렇지 않으면(SPS에 존재), ref_pic_list_struct( listIdx, rplsIdx ) 신택스 구조는 장기 참조 화상 목록에 대한 후보를 지정하고, 이 섹션의 나머지 부분에서 지정되는 시맨틱에서 "현재 화상"이라는 용어는, 1) SPS에 포함되는 ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조의 목록에 대한 인덱스와 같은 ref_pic_list_lt_idx[ i ]를 포함하는 하나 이상의 슬라이스를 가지고, 2) 활성 SPS로서 SPS를 가지는 CVS에 있는, 각각의 화상을 참조한다. num_ltrp_entries[ ltRplsIdx ]는 ref_pic_list_lt_struct( ltRplsIdx ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. poc_lsb_lt[ rplsIdx ][ i ]는, 화상 순서 카운트의, ref_pic_list_lt_struct( rplsIdx ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다. lt_pos_idx[ rplsIdx ][ i ]는 참조 화상 목록 구성 후 참조 화상 목록의 ref_pic_list_lt_struct( rplsIdx ) 신택스 구조에서 i-번째 엔트리의 인덱스를 지정한다. lt_pos_idx[ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( sps_max_dec_pic_buffering_minus1 + 1 ) 비트이다. num_ltrp_entries[ ltRplsIdx ]이 1보다 큰 경우, poc_lsb_lt[ rplsIdx ][ i ] 및 lt_pos_idx[ rplsIdx ][ i ]는 lt_pos_idx[ rplsIdx ][ i ] 값의 내림차순이 된다.
디코딩 프로세스가 설명된다.
참조 화상 목록 구성을 위한 디코딩 프로세스.
이 프로세스는 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작 부분에서 호출된다. 참조 화상은 참조 인덱스를 통해 어드레싱된다. 참조 인덱스는 참조 화상 목록에 대한 인덱스이다. I 슬라이스를 디코딩하는 경우, 참조 화상 목록은 슬라이스 데이터의 디코딩에 사용되지 않는다. P 슬라이스를 디코딩하는 경우, 참조 화상 목록 0(즉, RefPicList[ 0 ])만이 슬라이스 데이터의 디코딩에 사용된다. B 슬라이스를 디코딩하는 경우, 참조 화상 목록 0 및 참조 화상 목록 1(즉, RefPicList[ 1 ])이 모두 슬라이스 데이터의 디코딩에 사용된다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]가 유도된다. 참조 화상 목록은 참조 화상의 마킹 또는 슬라이스 데이터의 디코딩에 사용된다. 화상의 첫 번째 슬라이스가 아닌 비-IRAP 화상의 I 슬라이스의 경우, RefPicList[ 0 ] 및 RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 화상의 첫 번째 슬라이스가 아닌 P 슬라이스의 경우, RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00021
0 또는 1과 같은 각각의 i에 대해, 다음이 적용된다: RefPicList[ i ]에서 첫 번째 NumRefIdxActive[ i ] 엔트리는 RefPicList[ i ]에서 활성 엔트리로 지칭되고, RefPicList[ i ]에서 다른 엔트리는 RefPicList[ i ]에서 비활성 엔트리로 지칭된다. 0 내지 NumEntriesInList[ i ][ RplsIdx[ i ] ] - 1의 범위(포함)에 있는 j에 대한 RefPicList[ i ][ j ]에서 각각의 엔트리는, lt_ref_pic_flag[ i ][ RplsIdx[ i ] ][ j ]이 0과 같은 경우 STRP 엔트리로 지칭되고, 그렇지 않은 경우에는 LTRP 엔트리로 지칭된다. 특정 화상이 RefPicList[ 0 ]의 엔트리 및 RefPicList[ 1 ]의 엔트리 모두에 의해 참조되는 것이 가능하다. 특정 화상이 RefPicList[ 0 ]의 둘 이상의 엔트리에 의해 또는 RefPicList[ 1 ]의 둘 이상의 엔트리에 의해 참조되는 것도 또한 가능하다. RefPicList[ 0 ]의 활성 엔트리 및 RefPicList[ 1 ]의 활성 엔트리는 현재 화상 및 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ]의 비활성 엔트리 및 RefPicList[ 1 ]의 비활성 엔트리는 현재 화상의 인터 예측에는 사용되지 않으나 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에는 사용될 수 있는 모든 참조 화상을 총칭한다. 해당 화상이 DPB에 존재하지 않기 때문에 "참조 화상 없음"과 동일한 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 하나 이상의 엔트리가 있을 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 0 ]에서 "참조 화상 없음"과 같은 각각의 비활성 엔트리는 무시되어야 한다. 의도하지 않은 화상 손실은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 활성 엔트리에 대해 추론되어야 한다.
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, RefPicList[ i ]의 엔트리의 개수는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고 setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
단기 참조 화상 엔트리의 개수의 시그널링에 대해 설명한다.
본 개시의 하나의 대안적인 실시예에서, 참조 화상 목록 구조 ref_pic_list_struct( )에서 단기 참조 화상과 연관된 엔트리의 개수를 지정하는 신택스 엘리먼트는 num_strp_entries[ listIdx ][ rplsIdx ] 대신에 num_strp_entries_minus1[ listIdx ][ rplsIdx ]로 규정된다. 이 변경은 참조 화상 목록의 시그널링에 두 가지 효과가 있다: 엘리먼트가 ue(v)를 사용하여 코딩됨에 따라 참조 화상 목록 구조에서 단기 참조 화상과 연관된 엔트리의 개수를 시그널링하기 위한 비트를 절약할 수 있다. 이는 각각의 참조 화상 목록이 적어도 하나의 단기 참조 화상을 포함하도록 암시 적으로 제약 조건을 부과한다. 이 아이디어를 수용하기 위해 제1 실시예에 대한 일부 변경이 필요하다.
슬라이스 헤더에서의 참조 화상 목록 시그널링의 경우, 슬라이스 유형에 따라, 필요한 참조 화상 목록만이, 즉, I 또는 P 슬라이스에 대한 하나의 참조 화상 목록(즉, 참조 화상 목록 0) 및 B 슬라이스에 대한 2개의 참조 화상 목록(즉, 참조 화상 목록 0 및 참조 화상 목록 1 모두)만이 시그널링된다. 슬라이스 헤더 신택스는 다음과 같이 변경된다:
Figure pct00022
슬라이스 헤더(즉, I 또는 P 슬라이스에 대한 참조 화상 목록 0; B 슬라이스에 대한 참조 화상 0 및 참조 화상 1)에 위의 변경을 적용함으로써, P 슬라이스에 대해 단기 참조 화상이 하나만 존재하는 문제를 피하도록 기획할 수 있다. 그러나, 중복된 단기 참조 화상은 참조 화상 목록 0 및 참조 화상 목록 1에서 시그널링될 수 없으며, 여기서 참조 화상 목록 1의 활성 엔트리의 개수는 0이 되어야 하므로 참조 화상 목록 1의 엔트리는 비활성 엔트리이다. num_strp_entries_minus1[ listIdx ][ rplsIdx ]의 시맨틱은 다음과 같이 변경된다: num_strp_entries_minus1[ listIdx ][ rplsIdx ] 플러스 1는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다. 변수 NumEntriesInList[ listIdx ][ rplsIdx ]는 다음과 같이 유도된다: NumRefPicEntriesInRpl[ listIdx ][ rplsIdx ] = num_strp_entries_minus1[ listIdx ][ rplsIdx ] + 1 +
num_ltrp_entries[ listIdx ][ rplsIdx ]. NumRefPicEntries[ listIdx ][ rplsIdx ]의 값은 1 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다.
참조 화상 목록에 현재 화상을 포함할 수 있다.
본 개시의 하나의 대안적인 실시예에서, 현재 화상은 그의 참조 화상 목록에 포함되는 것이 허용된다. 이 특징을 지원하기 위해, 제1 및 제2 실시예에서의 설명과 관련하여 요구되는 신택스 및 시맨틱 변경은 없다. 그러나, 참조 화상 목록 구성을 위한 디코딩 프로세스에서 기술된 비트스트림 적합성 제약 조건은 다음과 같이 수정되어야 한다: 다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ][ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상이 RefPicList[ i ]의 엔트리에 의해 참조되는 경우, i가 0 또는 1과 같은 경우, 엔트리 인덱스는 NumRefIdxActive[ i ]보다 작아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. 현재 화상이 setOfRefPics에 포함되지 않은 경우, setOfRefPics에 있는 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, 그렇지 않으면, setOfRefPics에 있는 화상의 개수는 sps_max_dec_pic_buffering_minus1 + 1보다 작거나 같아야 한다. setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
참조 화상 목록의 LTRP 항목에 대해 상이한 POC LSB 비트 사용.
본 개시의 하나의 대안적인 실시예에서, 참조 화상 목록 구조에서 장기 참조 화상을 식별하는데 사용되는 비트의 개수는 참조 화상 목록 0 및 참조 화상 목록 1 사이에서 상이한 것이 허용된다. 이 기능을 지원하려면 다음 변경이 필요하다:
Figure pct00023
additional_lt_poc_lsb[ i ]는 i와 같은 참조 화상 목록 listIdx에 대한 디코딩 프로세스에서 사용되는 변수 MaxLtPicOrderCntLsb[ i ]의 값을 다음과 같이 지정한다: MaxLtPicOrderCntLsb[ i ] = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_lt_poc_lsb[ i ] ). additional_lt_poc_lsb[ i ]의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4의 범위(포함)에 있어야 한다. 존재하지 않는 경우, additional_lt_poc_lsb[ i ]의 값은 0과 같은 것으로 추론된다.
poc_lsb_lt[ listIdx ][ rplsIdx ][ i ]는, 화상 순서 카운트의, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb[ listIdx ]에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb[ listIdx ] ) 비트이다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00024
참조 화상 목록 0 및 1에 대해 동일한 ref_pic_list_sps_flag를 사용.
본 개시의 하나의 대안적인 실시예에서, 참조 화상 목록 0 및 참조 화상 목록 1이 활성 SPS에서 ref_pic_list_struct( ) 신택스 구조에 기초하여 유도되는지 여부를 표시하는 2개의 플래그를 사용하는 대신, 하나의 플래그가 두 참조 화상 목록에 사용된다. 이러한 대안은, 두 참조 화상 목록이 활성 SPS의 ref_pic_list_struct( )에 기초하여 유도되거나 현재 화상의 슬라이스 헤더에 직접 포함되는 ref_pic_list_struct( ) 신택스 구조에 기초하여 유도는 것으로 제한한다. 이 기능을 지원하려면 다음 변경이 필요하다:
Figure pct00025
1과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 활성 SPS의 i와 같은 listIdx를 가지는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조 중 하나에 기초하여 유도됨을 지정한다. 0과 같은 ref_pic_list_sps_flag[ i ]는 현재 화상의 참조 화상 목록 i가 현재 화상의 슬라이스 헤더에 직접 포함되는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에 기초하여 유도되는 것을 지정한다. num_ref_pic_lists_in_sps[ 0 ] 또는 num_ref_pic_lists_in_sps[ 1 ]이 0과 같은 경우, ref_pic_list_sps_flag[ i ]의 값은 0과 같아야 한다. pic_lists_in_sps[ 1 ]는 0과 같고, ref_pic_list_sps_flag의 값은 0과 같아야 한다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00026
장기 참조 화상 엔트리에 대한 델타 POC 최상위 비트(Most Significant Bit; MSB)의 시그널링.
본 개시의 하나의 대안적인 실시예에서, ref_pic_list_struct( )에서 장기 참조 화상 엔트리의 POC LSB를 표현하기 위해 추가적인 비트를 사용하는 대신, 장기 참조 화상을 구별하기 위해 POC MSB 사이클이 시그널링된다. 시그널링되면, 장기 참조 화상을 참조하는 ref_pic_list_struct( )에서 각각의 엔트리에 대해 POC MSB 사이클 정보가 시그널링된다. ref_pic_list_struct( ) 신택스 구조는 SPS에서 시그널링되지 않고 슬라이스 헤더에서만 시그널링된다. 이 기능을 지원하려면 다음 변경이 필요하다:
Figure pct00027
Figure pct00028
Figure pct00029
ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조는 슬라이스 헤더에 존재할 수 있다. 슬라이스 헤더에 있는 경우, ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 참조 화상 목록 listIdx를 지정한다. num_strp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다. num_ltrp_entries[ listIdx ][ rplsIdx ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. 존재하지 않는 경우, num_ltrp_entries[ listIdx ][ rplsIdx ]의 값은 0과 같은 것으로 추론된다.
변수 NumEntriesInList[ listIdx ] [ rplsIdx ]는 다음과 같이 유도된다:
NumRefPicEntriesInRpl[ listIdx ] [ rplsIdx ] = num_strp_entries[ listIdx ] [ rplsIdx ] +
num_ltrp_entries[ listIdx ] [ rplsIdx ]
NumRefPicEntries[ listIdx ] [ rplsIdx ]의 값은 0 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다. 1과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 LTRP 엔트리임을 지정한다. 0과 같은 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]는 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 STRP 엔트리임을 지정한다. 존재하지 않는 경우, lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 값은 0과 같은 것으로 추론된다. 0 내지 NumRefPicEntries[ listIdx ][ rplsIdx ] - 1의 범위(포함)에 있는 i의 모든 값에 대한 lt_ref_pic_flag[ listIdx ][ rplsIdx ][ i ]의 합이 num_ltrp_entries[ listIdx ][ rplsIdx ]와 같아야 하는 것이 비트스트림 적합성의 요구 사항이다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]는, i-번째 엔트리가 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리인 경우, 현재 화상과 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정하거나, i-번째 엔트리가 STRP 엔트리이나 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 첫 번째 STRP 엔트리가 아닌 경우, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 이전의 STRP 엔트리에 의해 그리고 i-번째 엔트리에 의해 참조되는 화상의 화상 순서 카운트 값 사이의 차이를 지정한다. delta_poc_st[ listIdx ][ rplsIdx ][ i ]의 값은 -215 내지 215 - 1의 범위(포함)에 있어야 한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ]는 화상 순서 카운트의, 모듈로 ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다. 1과 같은 delta_poc_msb_present_flag[ listIdx ][ i ]는 delta_poc_msb_cycle_lt[ listIdx ][ i ]가 존재함을 지정한다. 0과 같은 delta_poc_msb_present_flag[ listIdx ][ i ]는 delta_poc_msb_cycle_lt[ listIdx ][ i ]가 존재하지 않음을 지정한다. num_ltrp_entries[ listIdx ]가 0보다 크고 이 슬라이스 헤더가 디코딩될 때 PicOrderCntVal 모듈로 MaxPicOrderCntLsb가 poc_lsb_lt[ listIdx ][ i ]와 같은 참조 화상이 DPB에 둘 이상 있는 경우, delta_poc_msb_present_flag[ listIdx ][ i ]은 1과 같아야 한다. 존재하지 않는 경우, delta_poc_msb_cycle_lt[ listIdx ][ i ]의 값은 0과 같은 것으로 추론된다. delta_poc_msb_cycle_lt[ listIdx ][ i ]는 ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리의 화상 순서 카운트 값의 최상위 비트의 값을 결정하는데 사용된다. delta_poc_msb_cycle_lt[ listIdx ][ i ]가 없는 경우, 0과 같은 것으로 추론된다. 화상 순서 카운트에 대한 디코딩 프로세스 변경: 디코딩 프로세스 중 임의의 순간에서, DPB에 있는 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00030
대안적으로, delta_poc_msb_cycle_lt[ listIdx ][ i ]의 시맨틱은, 참조 화상 목록 구성이 다음과 같이 업데이트 되도록, 델타의 델타로 표현될 수 있다: 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00031
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ][ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
각각의 STRP는 그 PicOrderCntVal 값에 의해 식별된다. 각각의 LTRP에 대해, 1과 같은 delta_poc_msb_present_flag[ listIdx ][ i ]를 가지는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 엔트리에 의해 참조되는 경우, 그 PicOrderCntVal 값에 의해 식별되고, 그렇지 않으면, Log2( MaxPicOrderCntLsb ) LSB 또는 그 PicOrderCntVal 값에 의해 식별된다.
장기 참조 화상 엔트리에 대한 델타 POC MSB 시그널링의 대안 1.
이 실시예는 이전 섹션에서 기술된 실시예에 대한 대안을 제공한다. 이전 섹션의 아이디어와 유사하게, ref_pic_list_struct( )에서 장기 참조 화상의 POC LSB를 표현하기 위해 추가적인 비트를 사용하는 대신, 장기 참조 화상을 구별하기 위해 POC MSB 사이클이 시그널링된다. 그러나, 이 대안에서는 시그널링될 때, POC MSB 사이클 정보는 ref_pic_list_struct( ) 내에서 시그널링되지 않고, 대신, POC MSB 사이클 정보가 필요한 경우, 슬라이스 헤더에서 시그널링된다. ref_pic_list_struct( ) 신택스 구조는 SPS에서 및 슬라이스 헤더에서 시그널링될 수 있다.
Figure pct00032
Figure pct00033
1과 같은 delta_poc_msb_present_flag[ i ][ j ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재함을 지정한다. 0과 같은 delta_poc_msb_present_flag[ i ][ j ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재하지 않음을 지정한다. NumLtrpEntries[ i ]가 0보다 크고 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리에 대해 이 슬라이스 헤더가 디코딩될 때 PicOrderCntVal 모듈로 MaxPicOrderCntLsb가 poc_lsb_lt[ i ][ rplsIdx ][ jj ]와 같은 참조 화상이 DPB에 둘 이상 있는 경우(여기서 jj는 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리인 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 엔트리의 엔트리 인덱스임), delta_poc_msb_present_flag[ i ][ j ]은 1과 같아야 한다. 존재하지 않는 경우, delta_poc_msb_cycle_lt[ i ][ j ]의 값은 0과 같은 것으로 추론된다. delta_poc_msb_cycle_lt[ i ][ j ]는 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리의 화상 순서 카운트 값의 최상위 비트의 값을 결정하는데 사용된다. delta_poc_msb_cycle_lt[ i ][ j ]가 없는 경우, 0과 같은 것으로 추론된다.
Figure pct00034
1과 같은 delta_poc_msb_present_flag[ i ][ j ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재함을 지정한다. 0과 같은 delta_poc_msb_present_flag[ i ][ j ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재하지 않음을 지정한다. NumLtrpEntries[ i ]가 0보다 크고 이 슬라이스 헤더가 디코딩될 때 PicOrderCntVal 모듈로 MaxPicOrderCntLsb가 poc_lsb_lt[ i ][ rplsIdx ][ j ]와 같은 참조 화상이 DPB에 둘 이상 있는 경우, delta_poc_msb_present_flag[ i ][ j ]은 1과 같아야 한다. 존재하지 않는 경우, delta_poc_msb_cycle_lt[ i ][ j ]의 값은 0과 같은 것으로 추론된다. delta_poc_msb_cycle_lt[ i ][ j ]는 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 엔트리의 화상 순서 카운트 값의 최상위 비트의 값을 결정하는데 사용된다. delta_poc_msb_cycle_lt[ i ][ j ]가 없는 경우, 0과 같은 것으로 추론된다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ]는 화상 순서 카운트의, ref_pic_list_struct( listIdx, rplsIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb MaxPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ rplsIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb MaxPicOrderCntLsb ) 비트이다.
화상 순서 카운트에 대한 디코딩 프로세스 변경: 디코딩 프로세스 중 임의의 순간에서, DPB에 있는 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
슬라이스 헤더 디자인 1의 경우, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00035
대안적으로, 슬라이스 헤더 설계 1의 경우, delta_poc_msb_cycle_lt[ listIdx ][ i ]의시맨틱은, 참조 화상 목록 구성이 다음과 같이 업데이트되도록, 델타의 델타로 표현될 수 있다: 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00036
슬라이스 헤더 설계 2의 경우, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00037
대안적으로, 슬라이스 헤더 설계 2의 경우, delta_poc_msb_cycle_lt[ listIdx ][ i ]의시맨틱은, 참조 화상 목록 구성이 다음과 같이 업데이트되도록, 델타의 델타로 표현될 수 있다: 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00038
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ][ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
각각의 STRP는 그 PicOrderCntVal 값에 의해 식별된다. 각각의 LTRP에 대해, 1과 같은 delta_poc_msb_present_flag[ i ][ j ]를 가지는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 엔트리에 의해 참조되는 경우, 그 PicOrderCntVal 값에 의해 식별되고, 그렇지 않으면, 그 Log2( MaxPicOrderCntLsb ) LSB 또는 그 PicOrderCntVal 값에 의해 식별된다.
장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링의 대안 2.
본 개시의 하나의 대안적인 실시예에서, 제1 실시예 또는 제2 실시예에서 기술된 개시는 전술한 실시예와 조합될 수 있고 "장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링" 및 "장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링의 대안 1"로 각각 명명된다. 조합될 개시의 측면은 additional_lt_poc_lsb(즉, 제1 실시예 또는 제2 실시예로부터) 및 POC MSB 사이클 정보(즉, 위에서 기술되고 "장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링" 또는 "장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링의 대안 1"로 명명되는 실시예로부터)의 시그널링이다. 제1 실시예 및 위에서 기술되고 "장기 참조 화상 엔트리에 대한 델타 POC MSB의 시그널링의 대안 1"로 명명되는 실시예를 조합하는 것이 가 어떻게 이루어질 수 있는지의 하나의 예시가 다음과 같이 기술된다:
Figure pct00039
1과 같은 delta_poc_msb_present_flag[ i ][ j ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재함을 지정한다. 0과 같은 delta_poc_msb_present_flag[ i ][ i ]는 delta_poc_msb_cycle_lt[ i ][ j ]가 존재하지 않음을 지정한다. NumLtrpEntries[ i ]가 0보다 크고 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리에 대해 이 슬라이스 헤더가 디코딩될 때 PicOrderCntVal 모듈로 MaxPicOrderLtCntLsb가 poc_lsb_lt[ i ][ rplsIdx ][ jj ]와 같은 참조 화상이 DPB에 둘 이상 있는 경우(여기서 jj는 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리인 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 엔트리의 엔트리 인덱스임), delta_poc_msb_present_flag[ i ][ j ]은 1과 같아야 한다. 존재하지 않는 경우, delta_poc_msb_cycle_lt[ i ][ j ]의 값은 0과 같은 것으로 추론된다. delta_poc_msb_cycle_lt[ i ][ j ]는 ref_pic_list_struct( i, rplsIdx, 1 ) 신택스 구조에서 j-번째 LTRP 엔트리의 화상 순서 카운트 값의 최상위 비트의 값을 결정하는데 사용된다. delta_poc_msb_cycle_lt[ i ][ j ]가 없는 경우, 0과 같은 것으로 추론된다.
화상 순서 카운트에 대한 디코딩 프로세스 변경: 디코딩 프로세스 중 임의의 순간에서, DPB에 있는 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00040
대안적으로, delta_poc_msb_cycle_lt[ listIdx ][ i ]의시맨틱은, 참조 화상 목록 구성이 다음과 같이 업데이트되도록, 델타의 델타로 표현될 수 있다: 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00041
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ][ RplsIdx[ i ] ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
각각의 STRP는 그 PicOrderCntVal 값에 의해 식별된다. 각각의 LTRP에 대해, 1과 같은 delta_poc_msb_present_flag[ i ][ j ]를 가지는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 엔트리에 의해 참조되는 경우, 그 PicOrderCntVal 값에 의해 식별되고, 그렇지 않으면, 그 Log2( MaxLtPicOrderCntLsb ) LSB 또는 그 PicOrderCntVal 값에 의해 식별된다.
단기 및 장기 참조 화상를 구분하여 슬라이스 헤더의 참조 화상 목록을 항상 시그널링.
이 섹션은 본 개시의 다른 대안적인 실시예를 설명한다. 설명은 최신 VVC WD를 기준으로 한다 (즉, JVET-K1001-v1의 최신 VVC WD와 관련된 델타만 설명되고, 아래에 언급되지 않은 최신 VVC WD의 텍스트는 그대로 적용된다). 이 대안적인 실시예는 다음과 같이 요약된다: 참조 화상 목록 구조는 슬라이스 헤더에서만 시그널링된다. 단기 참조 화상 및 장기 참조 화상 모두가 POC LSB에 의해 식별되며, 이는 POC 값의 유도를 위해 슬라이스 헤더에서 시그널링되는 POC LSB를 표현하는데 사용되는 비티의 개수와는 상이한 비트의 개수에 의해 표현될 수 있다. 또한, 단기 참조 화상 및 장기 참조 화상을 식별하기 위한 POC LSB를 표현하는데 사용되는 비트의 개수는 상이할 수 있다.
NAL 유닛 헤더 신택스.
Figure pct00042
시퀀스 파라미터 세트 RBSP 신택스.
Figure pct00043
화상 파라미터 세트 RBSP 신택스.
Figure pct00044
슬라이스 헤더 신택스.
Figure pct00045
참조 화상 목록 구조 신택스.
Figure pct00046
NAL 유닛 헤더 시맨틱.
forbidden_zero_bit는 0과 같아야 한다. nal_unit_type는 NAL 유닛에 포함되는 RBSP 데이터 구조의 유형을 지정한다.
표 7-1 - NAL 유닛 유형 코드 및 NAL 유닛 유형 클래스
Figure pct00047
nuh_temporal_id_plus1 마이너스 1은 NAL 유닛에 대한 시간적 식별자를 지정한다. nuh_temporal_id_plus1의 값은 0과 같지 않아야 한다. 변수 TemporalId은 다음과 같이 지정된다: TemporalId = nuh_temporal_id_plus1 - 1.
nal_unit_type이 IRAP_NUT과 같은 경우, 코딩된 슬라이스는 IRAP 화상에 속하고, TemporalId는 0과 같아야 한다. TemporalId의 값은 액세스 유닛의 모든 VCL NAL 유닛에 대해 동일해야 한다. 코딩된 화상 또는 액세스 유닛의 TemporalId의 값은 액세스 유닛 또는 코딩된 화상의 VCL NAL 유닛의 TemporalId의 값이다. 비-VCL NAL 유닛에 대한 TemporalId의 값은 다음과 같이 제한된다: nal_unit_type이 SPS_NUT과 같은 경우, TemporalId은 0과 같아야 하고, NAL 유닛을 포함하는 액세스 유닛의 TemporalId는 0과 같아야 한다. 그렇지 않으면, nal_unit_type가 EOS_NUT 또는 EOB_NUT와 같은 경우, TemporalId는 0과 같아야 한다. 그렇지 않으면, TemporalId은 NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 크거나 같아야 한다. NAL 유닛이 비-VCL NAL 유닛인 경우, TemporalId의 값은 비-VCL NAL 유닛이 적용되는 모든 액세스 유닛의 TemporalId 값의 최소값과 같다. nal_unit_type이 PPS_NUT과 같은 경우, 모든 화상 파라미터 세트(PPS)가 비트스트림의 시작 부분에 포함될 수 있으므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있으며, 여기서 첫 번째 코딩된 화상은 0과 같은 TemporalId을 가진다. nal_unit_type이 PREFIX_SEI_NUT 또는 SUFFIX_SEI_NUT과 같은 경우, SEI(supplemental enhancement information) NAL 유닛은 SEI NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 큰 TemporalId 값을 가지는 액세스 유닛을 포함하는 비트스트림 서브세트에 적용되는 정보를 포함할 수 있으므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있다. nuh_reserved_zero_7bits는 '0000000'와 같아야 한다. nuh_reserved_zero_7bits의 다른 값은 ITU-T | ISO/IEC에 의해 향후에 지정될 수 있다. 디코더는 nuh_reserved_zero_7bits의 값이 '0000000'와 같지 않은 NAL 유닛을 무시(즉, 비트스트림으로부터 제거하고 폐기)해야 한다.
시퀀스 파라미터 세트 RBSP 시맨틱.
log2_max_pic_order_cnt_lsb_minus4는 화상 순서 카운트를 위해 디코딩 프로세스에서 사용되는 변수 MaxPicOrderCntLsb의 값을 다음과 같이 지정한다:
MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 )
log2_max_pic_order_cnt_lsb_minus4의 값은 0 내지 12의 범위(포함)에 있어야 한다. sps_max_dec_pic_buffering_minus1 플러스 1은 CVS에 대한 디코딩된 화상 버퍼의 최대 요구되는 크기를 화상 저장 버퍼의 단위로 지정한다. sps_max_dec_pic_buffering_minus1의 값은 0 내지 MaxDpbSize - 1의 범위(포함)에 있어야 하며, 여기서 MaxDpbSize는 다른 곳에서 지정된 것과 같다. additional_st_poc_lsb는 참조 화상 목록을 위해 디코딩 프로세스에서 사용되는 변수 MaxStPicOrderCntLsb의 값을 다음과 같이 지정한다:
MaxStPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_st_poc_lsb )
additional_st_poc_lsb의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4의 범위(포함)에 있어야 한다. 0과 같은 long_term_ref_pics_flag는 CVS에서 임의의 코딩된 화상의 인터 예측에 LTRP가 사용되지 않음을 지정한다. 1과 같은 long_term_ref_pics_flag는 CVS에서 하나 이상의 코딩된 화상의 인터 예측에 LTRP가 사용될 수 있음을 지정한다. additional_lt_poc_lsb는 참조 화상 목록을 위해 디코딩 프로세스에서 사용되는 변수 MaxLtPicOrderCntLsb의 값을 다음과 같이 지정한다:
MaxLtPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_st_poc_lsb + additional_lt_poc_lsb )
additional_lt_poc_lsb의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4 - additional_st_poc_lsb의 범위(포함)에 있어야 한다. 존재하지 않는 경우, additional_lt_poc_lsb의 값은 0과 같은 것으로 추론된다.
화상 파라미터 세트 RBSP 시맨틱.
i가 0과 같은 경우, num_ref_idx_default_active_minus1[ i ] 플러스 1는 0과 같은 num_ref_idx_active_override_flag를 가지는 P 또는 B 슬라이스에 대한 변수 NumRefIdxActive[ 0 ]의 추론된 값을 지정하고, i이 1과 같은 경우, 0과 같은 num_ref_idx_active_override_flag를 가지는 B 슬라이스에 대한 NumRefIdxActive[ 1 ]의 추론된 값을 지정한다. num_ref_idx_default_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다.
슬라이스 헤더 시맨틱.
존재하는 경우, 슬라이스 헤더 신택스 엘리먼트 slice_pic_parameter_set_id 및 slice_pic_order_cnt_lsb 각각의 값은 코딩된 화상의 모든 슬라이스 헤더에서 동일해야 한다. slice_type는 표 7-3에 따라 슬라이스의 코딩 유형을 지정한다.
표 7-3 - slice_type에 대한 이름 연관
Figure pct00048
nal_unit_type이 IRAP_NUT과 같은 경우, 즉, 화상이 IRAP 화상인 경우, slice_type는 2와 같아야 한다.
slice_pic_order_cnt_lsb는 현재 화상에 대해 화상 순서 카운트 모듈로 MaxPicOrderCntLsb를 지정한다. slice_pic_order_cnt_lsb 신택스 엘리먼트의 길이는 log2_max_pic_order_cnt_lsb_minus4 + 4 비트이다. slice_pic_order_cnt_lsb의 값은 0 내지 MaxPicOrderCntLsb - 1의 범위(포함)에 있어야 한다. slice_pic_order_cnt_lsb가 없는 경우, slice_pic_order_cnt_lsb는 0과 같은 것으로 추론된다. 1과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ]가 P 및 B 슬라이스에 ?? 존재함 및 신택스 엘리먼트 num_ref_idx_active_minus1[ 1 ]가 B 슬라이스에 대해 존재함을 지정한다. 0과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ] 및 num_ref_idx_active_minus1[ 1 ]가 존재하지 않음을 지정한다. num_ref_idx_active_minus1[ i ]는, 존재하는 경우, 변수 NumRefIdxActive[ i ]의 값을 다음과 같이 지정한다:
NumRefIdxActive[ i ] = num_ref_idx_active_minus1[ i ] + 1
num_ref_idx_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다. NumRefIdxActive[ i ] - 1의 값은 디코드 슬라이스를 디코딩하는데 사용될 수 있는 참조 화상 목록 i에 대한 최대 참조 인덱스를 지정한다. NumRefIdxActive[ i ]의 값이 0과 같은 경우, 참조 화상 목록 i에 대한 참조 인덱스는 슬라이스를 디코딩하는데 사용될 수 없다. i가 0 또는 1과 같은 경우, 현재 슬라이스가 B 슬라이스이고 num_ref_idx_active_override_flag가 0과 같으면, NumRefIdxActive[ i ]는 num_ref_idx_default_active_minus1[ i ] + 1와 같은 것으로 추론된다. 현재 슬라이스가 P 슬라이스이고 num_ref_idx_active_override_flag가 0과 같은 경우, NumRefIdxActive[ 0 ]는 num_ref_idx_default_active_minus1[ 0 ] + 1와 같은 것으로 추론된다. 현재 슬라이스이 P 슬라이스인 경우, NumRefIdxActive[ 1 ]는 0과 같은 것으로 추론된다. 현재 슬라이스이 I 슬라이스인 경우, NumRefIdxActive[ 0 ] 및 NumRefIdxActive[ 1 ] 모두 0과 같은 것으로 추론된다. 대안적으로, i가 0 또는 1과 같은 경우, 위의 이후에 다음이 적용된다: rplsIdx1를 ref_pic_list_sps_flag[ i ] ? ref_pic_list_idx[ i ] : num_ref_pic_lists_in_sps[ i ]과 같도록 설정하고, numRpEntries[ i ]를 num_strp_entries[ i ][ rplsIdx1 ] + num_ltrp_entries[ i ][ rplsIdx1 ]과 같도록 설정한다. NumRefIdxActive[ i ]이 numRpEntries[ i ]보다 큰 경우, NumRefIdxActive[ i ]의 값은 numRpEntries[ i ]과 같도록 설정된다.
참조 화상 목록 구조 시맨틱.
ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조는 슬라이스 헤더에 존재할 수 있다. 슬라이스 헤더에 있는 경우, ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 참조 화상 목록 listIdx를 지정한다. num_strp_entries[ listIdx ]는 ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 STRP 엔트리의 개수를 지정한다. num_ltrp_entries[ listIdx ]는 ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 LTRP 엔트리의 개수를 지정한다. 존재하지 않는 경우, num_ltrp_entries[ listIdx ]의 값은 0과 같은 것으로 추론된다. 변수 NumEntriesInList[ listIdx ]는 다음과 같이 유도된다:
NumEntriesInList[ listIdx ] = num_strp_entries[ listIdx ] + num_ltrp_entries[ listIdx ]
NumEntriesInList[ listIdx ]의 값은 0 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다. 1과 같은 lt_ref_pic_flag[ listIdx ][ i ]는 ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 LTRP 엔트리임을 지정한다. 0과 같은 lt_ref_pic_flag[ listIdx ][ i ]는 ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리가 STRP 엔트리임을 지정한다. 존재하지 않는 경우, lt_ref_pic_flag[ listIdx ][ i ]의 값은 0과 같은 것으로 추론된다. 0 내지 NumEntriesInList[ listIdx ] - 1의 범위(포함)에 있는 i의 모든 값에 대한 lt_ref_pic_flag[ listIdx ][ i ]의 합이 num_ltrp_entries[ listIdx ]와 같아야 하는 것이 비트스트림 적합성의 요구 사항이다. poc_lsb_st[ listIdx ][ i ]는, lt_ref_pic_flag[ listIdx ][ i ]이 0과 같은 경우, 화상 순서 카운트의, ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxStPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_st[ listIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxStPicOrderCntLsb ) 비트이다. poc_lsb_lt[ listIdx ][ i ]는, lt_ref_pic_flag[ listIdx ][ i ]이 1과 같은 경우, 화상 순서 카운트의, ref_pic_list_struct( listIdx, ltrpFlag ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxLtPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_lsb_lt[ listIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxLtPicOrderCntLsb ) 비트이다.
디코딩 프로세스가 설명된다.
일반적인 디코딩 프로세스.
디코딩 프로세스는 현재 화상 CurrPic에 대해 다음과 같이 동작한다: NAL 유닛의 디코딩은 아래에 지정되어 있다. 아래의 프로세스는 슬라이스 헤더 레이어 및 위의 신택스 엘리먼트를 사용하여 다음의 디코딩 프로세스를 지정한다: 화상 순서 카운트와 관련된 변수와 함수가 유도된다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 구성에 대한 디코딩 프로세스는 참조 화상 목록 0(RefPicList[ 0 ]) 및 참조 화상 목록 1(RefPicList[ 1 ])의 유도를 위해 호출된다. 참조 화상 마킹을 위한 디코딩 프로세스가 호출되며, 여기서 참조 화상은 "참조용으로 사용되지 않음" 또는 "장기 참조용으로 사용됨"으로 마킹될 수 있다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 코딩 트리 유닛, 스케일링, 변환, 인-루프(in-loop) 필터링, 등을 위한 디코딩 프로세스가 호출된다. 현재 화상의 모든 슬라이스가 디코딩된 후, 현재 디코딩된 화상은 "단기 참조용으로 사용됨"으로 마킹된다.
NAL 유닛 디코딩 프로세스.
이 프로세스에 대한 입력은 현재 화상의 NAL 유닛 및 이와 연관된 비-VCL NAL 유닛이다. 이 프로세스의 출력은 NAL 유닛 내에 캡슐화된(encapsulated) 파싱된 RBSP 신택스 구조이다. 각각의 NAL 유닛에 대한 디코딩 프로세스는 NAL 유닛로부터 RBSP 신택스 구조를 추출한 후 RBSP 신택스 구조를 파싱한다.
슬라이스 디코딩 프로세스.
화상 순서 카운트에 대한 디코딩 프로세스.
이 프로세스의 출력은 PicOrderCntVal, 즉 현재 화상의 화상 순서 카운트이다. 화상 순서 카운트는, 병합 모드 및 모션 벡터 예측에서 모션 파라미터를 도출하기 위해, 그리고 디코더 적합성 검사를 위해, 화상을 식별하는데 사용된다. 각각의 코딩된 화상은 PicOrderCntVal로 표시되는 화상 순서 카운트 변수와 연관된다. 현재 화상이 비 IRAP 화상인 경우, 변수 prevPicOrderCntLsb 및 prevPicOrderCntMsb은 다음과 같이 유도된다: prevTid0Pic를 0과 같은 TemporalId를 가지는 디코딩 순서에서 이전의 화상으로 가정한다. 변수 prevPicOrderCntLsb는 prevTid0Pic의 slice_pic_order_cnt_lsb과 같도록 설정된다. 변수 prevPicOrderCntMsb는 prevTid0Pic의 PicOrderCntMsb과 같도록 설정된다. 현재 화상의 변수 PicOrderCntMsb는 다음과 같이 유도된다: 현재 화상이 IRAP 화상인 경우, PicOrderCntMsb는 0과 같도록 설정된다. 그렇지 않으면, PicOrderCntMsb는 다음과 같이 유도된다:
Figure pct00049
PicOrderCntVal는 다음과 같이 유도된다:
PicOrderCntVal = PicOrderCntMsb + slice_pic_order_cnt_lsb
slice_pic_order_cnt_lsb는 IRAP 화상에 대해 0으로 추론되고 prevPicOrderCntLsb 및 prevPicOrderCntMsb는 모두 0과 같도록 설정되기 때문에, 모든 IRAP 화상은 0과 같은 PicOrderCntVal를 가질 것이다. PicOrderCntVal의 값은 -231 내지 231 - 1의 범위(포함)에 있어야 한다. 하나의 CVS에서, 임의의 2개의 코딩된 화상에 대한 PicOrderCntVal 값은 동일하지 않아야 한다. 디코딩 프로세스 중 언제든지, DPB에서 임의의 2개의 단기 참조 화상에 대한 PicOrderCntVal & ( MaxStPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다. 디코딩 프로세스 중 언제든지, DPB에서 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
함수 PicOrderCnt( picX )는 다음과 같이 지정된다:
PicOrderCnt( picX ) = 화상 picX의 PicOrderCntVal
함수 DiffPicOrderCnt( picA, picB )는 다음과 같이 지정된다:
DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) - PicOrderCnt( picB )
비트스트림은 디코딩 프로세스에서 사용되는 DiffPicOrderCnt( picA, picB )의 값이 -215 내지 215 - 1의 범위(포함)에 있지 않게 하는 데이터를 포함하지 않아야 한다. X를 현재 화상으로, 그리고 Y 및 Z를 동일한 CVS에서 2개의 다른 화상으로 가정하면, DiffPicOrderCnt( X, Y ) 및 DiffPicOrderCnt( X, Z )가 모두 양이거나 모두 음인 경우, Y 및 Z는 X로부터 동일한 출력 순서 방향에 있는 것으로 간주된다.
참조 화상 목록 구성을 위한 디코딩 프로세스.
이 프로세스는 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작 부분에서 호출된다. 참조 화상은 참조 인덱스를 통해 어드레싱된다. 참조 인덱스는 참조 화상 목록에 대한 인덱스이다. I 슬라이스를 디코딩하는 경우, 참조 화상 목록은 슬라이스 데이터의 디코딩에 사용되지 않는다. P 슬라이스를 디코딩하는 경우, 참조 화상 목록 0(즉, RefPicList[ 0 ])만이 슬라이스 데이터의 디코딩에 사용된다. B 슬라이스를 디코딩하는 경우, 참조 화상 목록 0 및 참조 화상 목록 1(즉, RefPicList[ 1 ])이 모두 슬라이스 데이터의 디코딩에 사용된다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]가 유도된다. 참조 화상 목록은 참조 화상의 마킹 또는 슬라이스 데이터의 디코딩에 사용된다. 화상의 첫 번째 슬라이스가 아닌 비-IRAP 화상의 I 슬라이스의 경우, RefPicList[ 0 ] 및 RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 화상의 첫 번째 슬라이스가 아닌 P 슬라이스의 경우, RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다.
참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00050
0 또는 1과 같은 각각의 i에 대해, 다음이 적용된다:
RefPicList[ i ]에서 첫 번째 NumRefIdxActive[ i ] 엔트리는 RefPicList[ i ]에서 활성 엔트리로 지칭되고, RefPicList[ i ]에서 다른 엔트리는 RefPicList[ i ]에서 비활성 엔트리로 지칭된다. 0 내지 NumEntriesInList[ i ] - 1의 범위(포함)에 있는 j에 대한 RefPicList[ i ][ j ]에서 각각의 엔트리는, lt_ref_pic_flag[ i ][ j ]이 0과 같은 경우 STRP 엔트리로 지칭되고, 그렇지 않은 경우에는 LTRP 엔트리로 지칭된다. 특정 화상이 RefPicList[ 0 ]의 엔트리 및 RefPicList[ 1 ]의 엔트리 모두에 의해 참조되는 것이 가능하다. 특정 화상이 RefPicList[ 0 ]의 둘 이상의 엔트리에 의해 또는 RefPicList[ 1 ]의 둘 이상의 엔트리에 의해 참조되는 것도 또한 가능하다. RefPicList[ 0 ]의 활성 엔트리 및 RefPicList[ 1 ]의 활성 엔트리는 현재 화상 및 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ]의 비활성 엔트리 및 RefPicList[ 1 ]의 비활성 엔트리는 현재 화상의 인터 예측에는 사용되지 않으나 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에는 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에는 해당 화상이 DPB에 존재하지 않기 ??문에 "참조 화상 없음"과 동일한 하나 이상의 엔트리가 있을 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 0 ]에서 "참조 화상 없음"과 같은 각각의 비활성 엔트리는 무시되어야 한다. 의도하지 않은 화상 손실은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 활성 엔트리에 대해 추론되어야 한다.
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 화상의 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 STRP 엔트리 및 동일한 화상의 동일한 슬라이스 또는 상이한 슬라이스의 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리는 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 LTRP 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
참조 화상 마킹을 위한 디코딩 프로세스.
이 프로세스는, 슬라이스 헤더의 디코딩 및 슬라이스에 대한 참조 화상 목록 구성을 위한 디코딩 프로세스 이후에, 그러나 슬라이스 데이터의 디코딩 이전에, 화상마다 한번씩 호출된다. 이 프로세스는 DPB에서 하나 이상의 참조 화상이 "참조용으로 사용되지 않음" 또는 "장기 참조용으로 사용됨"으로 마킹되게 할 수 있다. DPB의 디코딩된 화상은 "참조용으로 사용되지 않음", "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨"으로 마킹될 수 있으나, 디코딩 프로세스의 동작 중에 임의의 주어진 순간에서 이들 3개 중 하나만으로 마킹될 수 있다. 화상에 이러한 마킹 중 하나를 할당하는 것은, 해당하는 경우, 이들 마킹 중 다른 것을 제거한다는 것을 암시한다. 화상이 "참조용으로 사용됨"으로 마킹된 것으로 지칭되는 경우, 이는 화상이 "단기 참조용으로 사용됨" 또는 "장기 참조용으로 사용됨"으로 마킹된 것을 통칭한다(둘 다는 아님). 현재 화상이 IRAP 화상인 경우, 현재 DPB에 있는 (있는 경우) 모든 참조 화상이 "참조용으로 사용되지 않음"으로 마킹된다. STRP는 그 PicOrderCntVal 값의 Log2( MaxStPicOrderCntLsb ) LSB에 의해 식별된다. LTRP는 그 PicOrderCntVal 값의 Log2( MaxLtPicOrderCntLsb ) LSB에 의해 식별된다.
다음이 적용된다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 각각의 LTRP 엔트리에 대해, 참조된 화상이 STRP인 경우, 화상은 "장기 참조용으로 사용됨"으로 마킹된다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않는 DPB 내의 각각의 참조 화상은 "참조용으로 사용되지 않음"으로 마킹된다.
단기 참조 화상과 장기 참조 화상을 구분하지 않고 항상 슬라이스 헤더의 참조 화상 목록을 시그널링.
이 섹션은 본 개시의 다른 대안적인 실시예를 설명한다. 설명은 최신 VVC WD를 기준으로 한다 (즉, JVET-K1001-v1의 최신 VVC WD와 관련된 델타만 설명되고, 아래에 언급되지 않은 최신 VVC WD의 텍스트는 그대로 적용된다). 이 대안적인 실시예는 다음과 같이 요약된다: 참조 화상 목록 구조는 슬라이스 헤더에서만 시그널링된다. 단기 및 장기 참조 화상 사이에는 구별이 없다. 모든 참조 화상은 단지 참조 화상으로 명칭된다. 참조 화상은 POC LSB에 의해 식별되며, 이는 POC 값의 유도를 위해 슬라이스 헤더에서 시그널링되는 POC LSB를 표현하는데 사용되는 비트의 개수와는 상이한 여러 개의 비트에 의해 표현된다.
약어. VVC WD 4 항의 텍스트가 적용된다.
NAL 유닛 헤더 신택스.
Figure pct00051
시퀀스 파라미터 세트 RBSP 신택스.
Figure pct00052
화상 파라미터 세트 RBSP 신택스.
Figure pct00053
슬라이스 헤더 신택스.
Figure pct00054
참조 화상 목록 구조 신택스.
Figure pct00055
NAL 유닛 헤더 시맨틱.
forbidden_zero_bit는 0과 같아야 한다. nal_unit_type는 NAL 유닛에 포함되는 RBSP 데이터 구조의 유형을 지정한다.
표 7-1 - NAL 유닛 유형 코드 및 NAL 유닛 유형 클래스
Figure pct00056
nuh_temporal_id_plus1 마이너스 1은 NAL 유닛에 대한 시간적 식별자를 지정한다. nuh_temporal_id_plus1의 값은 0과 같지 않아야 한다. 변수 TemporalId은 다음과 같이 지정된다:
TemporalId = nuh_temporal_id_plus1 - 1
nal_unit_type이 IRAP_NUT과 같은 경우, 코딩된 슬라이스는 IRAP 화상에 속하고, TemporalId는 0과 같아야 한다. TemporalId의 값은 액세스 유닛의 모든 VCL NAL 유닛에 대해 동일해야 한다. 코딩된 화상 또는 액세스 유닛의 TemporalId의 값은 액세스 유닛 또는 코딩된 화상의 VCL NAL 유닛의 TemporalId의 값이다. 비-VCL NAL 유닛에 대한 TemporalId의 값은 다음과 같이 제한된다:
nal_unit_type이 SPS_NUT과 같은 경우, TemporalId은 0과 같아야 하고, NAL 유닛을 포함하는 액세스 유닛의 TemporalId는 0과 같아야 한다. 그렇지 않으면, nal_unit_type가 EOS_NUT 또는 EOB_NUT와 같은 경우, TemporalId는 0과 같아야 한다. 그렇지 않으면, TemporalId은 NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 크거나 같아야 한다. NAL 유닛이 비-VCL NAL 유닛인 경우, TemporalId의 값은 비-VCL NAL 유닛이 적용되는 모든 액세스 유닛의 TemporalId 값의 최소값과 같다. nal_unit_type이 PPS_NUT과 같은 경우, 모든 화상 파라미터 세트(PPS)가 비트스트림의 시작 부분에 포함될 수 있으므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있으며, 여기서 첫 번째 코딩된 화상은 0과 같은 TemporalId을 가진다. nal_unit_type이 PREFIX_SEI_NUT 또는 SUFFIX_SEI_NUT과 같은 경우, SEI NAL 유닛은 SEI NAL 유닛을 포함하는 액세스 유닛의 TemporalId보다 큰 TemporalId 값을 가지는 액세스 유닛을 포함하는 비트스트림 서브세트에 적용되는 정보를 포함하므로, TemporalId은 포함하는 액세스 유닛의 TemporalId보다 크거나 같을 수 있다. nuh_reserved_zero_7bits는 '0000000'와 같아야 한다. nuh_reserved_zero_7bits의 다른 값은 ITU-T | ISO/IEC에 의해 향후에 지정될 수 있다. 디코더는 nuh_reserved_zero_7bits의 값이 '0000000'와 같지 않은 NAL 유닛을 무시(즉, 비트스트림으로부터 제거하고 폐기)해야 한다.
시퀀스 파라미터 세트 RBSP 시맨틱.
log2_max_pic_order_cnt_lsb_minus4는 화상 순서 카운트를 위해 디코딩 프로세스에서 사용되는 변수 MaxPicOrderCntLsb의 값을 다음과 같이 지정한다:
MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 )
log2_max_pic_order_cnt_lsb_minus4의 값은 0 내지 12의 범위(포함)에 있어야 한다. sps_max_dec_pic_buffering_minus1 플러스 1은 CVS에 대한 디코딩된 화상 버퍼의 최대 요구되는 크기를 화상 저장 버퍼의 단위로 지정한다. sps_max_dec_pic_buffering_minus1의 값은 0 내지 MaxDpbSize - 1의 범위(포함)에 있어야 하며, 여기서 MaxDpbSize는 다른 곳에서 지정된 것과 같다. additional_ref_poc_lsb는 참조 화상 목록을 위해 디코딩 프로세스에서 사용되는 변수 MaxRefPicOrderCntLsb의 값을 다음과 같이 지정한다:
MaxRefPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 + additional_ref_poc_lsb )
additional_ref_poc_lsb의 값은 0 내지 32 - log2_max_pic_order_cnt_lsb_minus4 - 4의 범위(포함)에 있어야 한다.
화상 파라미터 세트 RBSP 시맨틱.
i가 0과 같은 경우, num_ref_idx_default_active_minus1[ i ] 플러스 1는 0과 같은 num_ref_idx_active_override_flag를 가지는 P 또는 B 슬라이스에 대한 변수 NumRefIdxActive[ 0 ]의 추론된 값을 지정하고, i이 1과 같은 경우, 0과 같은 num_ref_idx_active_override_flag를 가지는 B 슬라이스에 대한 NumRefIdxActive[ 1 ]의 추론된 값을 지정한다. num_ref_idx_default_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다.
슬라이스 헤더 시맨틱.
존재하는 경우, 슬라이스 헤더 신택스 엘리먼트 slice_pic_parameter_set_id 및 slice_pic_order_cnt_lsb 각각의 값은 코딩된 화상의 모든 슬라이스 헤더에서 동일해야 한다. ... slice_type는 표 7-3에 따라 슬라이스의 코딩 유형을 지정한다.
표 7-3 - slice_type에 대한 이름 연관
Figure pct00057
nal_unit_type이 IRAP_NUT과 같은 경우, 즉, 화상이 IRAP 화상인 경우, slice_type는 2와 같아야 한다. ... slice_pic_order_cnt_lsb는 현재 화상에 대해 화상 순서 카운트 모듈로 MaxPicOrderCntLsb를 지정한다. slice_pic_order_cnt_lsb 신택스 엘리먼트의 길이는 log2_max_pic_order_cnt_lsb_minus4 + 4 비트이다. slice_pic_order_cnt_lsb의 값은 0 내지 MaxPicOrderCntLsb - 1의 범위(포함)에 있어야 한다. slice_pic_order_cnt_lsb가 없는 경우, slice_pic_order_cnt_lsb는 0과 같은 것으로 추론된다. 1과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ]가 P 및 B 슬라이스에 ?? 존재함 및 신택스 엘리먼트 num_ref_idx_active_minus1[ 1 ]가 B 슬라이스에 대해 존재함을 지정한다. 0과 같은 num_ref_idx_active_override_flag는 신택스 엘리먼트 num_ref_idx_active_minus1[ 0 ] 및 num_ref_idx_active_minus1[ 1 ]가 존재하지 않음을 지정한다. num_ref_idx_active_minus1[ i ]는, 존재하는 경우, 변수 NumRefIdxActive[ i ]의 값을 다음과 같이 지정한다:
NumRefIdxActive[ i ] = num_ref_idx_active_minus1[ i ] + 1
num_ref_idx_active_minus1[ i ]의 값은 0 내지 14의 범위(포함)에 있어야 한다. NumRefIdxActive[ i ] - 1의 값은 디코드 슬라이스를 디코딩하는데 사용될 수 있는 참조 화상 목록 i에 대한 최대 참조 인덱스를 지정한다. NumRefIdxActive[ i ]의 값이 0과 같은 경우, 참조 화상 목록 i에 대한 참조 인덱스는 슬라이스를 디코딩하는데 사용될 수 없다. i가 0 또는 1과 같은 경우, 현재 슬라이스가 B 슬라이스이고 num_ref_idx_active_override_flag가 0과 같으면, NumRefIdxActive[ i ]는 num_ref_idx_default_active_minus1[ i ] + 1와 같은 것으로 추론된다. 현재 슬라이스가 P 슬라이스이고 num_ref_idx_active_override_flag가 0과 같은 경우, NumRefIdxActive[ 0 ]는 num_ref_idx_default_active_minus1[ 0 ] + 1와 같은 것으로 추론된다. 현재 슬라이스이 P 슬라이스인 경우, NumRefIdxActive[ 1 ]는 0과 같은 것으로 추론된다. 현재 슬라이스이 I 슬라이스인 경우, NumRefIdxActive[ 0 ] 및 NumRefIdxActive[ 1 ] 모두 0과 같은 것으로 추론된다. 대안적으로, i가 0 또는 1과 같은 경우, 위의 이후에 다음이 적용된다: rplsIdx1를 ref_pic_list_sps_flag[ i ] ? ref_pic_list_idx[ i ] : num_ref_pic_lists_in_sps[ i ]과 같도록 설정하고, numRpEntries[ i ]를 num_strp_entries[ i ][ rplsIdx1 ] + num_ltrp_entries[ i ][ rplsIdx1 ]과 같도록 설정한다. NumRefIdxActive[ i ]이 numRpEntries[ i ]보다 큰 경우, NumRefIdxActive[ i ]의 값은 numRpEntries[ i ]과 같도록 설정된다.
참조 화상 목록 구조 시맨틱.
ref_pic_list_struct( listIdx ) 신택스 구조는 슬라이스 헤더에 존재할 수 있다. 슬라이스 헤더에 있는 경우, ref_pic_list_struct( listIdx ) 신택스 구조는 현재 화상(슬라이스를 포함하는 화상)의 참조 화상 목록 listIdx를 지정한다. num_ref_entries[ listIdx ]는 ref_pic_list_struct( listIdx ) 신택스 구조에서 엔트리의 개수를 지정한다. 변수 NumEntriesInList[ listIdx ]는 다음과 같이 유도된다:
NumRefPicEntriesInRpl[ listIdx ] = num_ref_entries[ listIdx ]
NumRefPicEntries[ listIdx ]의 값은 0 내지 sps_max_dec_pic_buffering_minus1의 범위(포함)에 있어야 한다. poc_ref_lsb[ listIdx ][ i ]는 화상 순서 카운트의, ref_pic_list_struct( listIdx ) 신택스 구조에서 i-번째 엔트리에 의해 참조되는 화상의 MaxRefPicOrderCntLsb에 대한 모듈로 값을 지정한다. poc_ref_lsb[ listIdx ][ i ] 신택스 엘리먼트의 길이는 Log2( MaxRefPicOrderCntLsb ) 비트이다.
디코딩 프로세스가 설명된다.
일반적인 디코딩 프로세스.
디코딩 프로세스는 현재 화상 CurrPic에 대해 다음과 같이 동작한다: NAL 유닛의 디코딩은 아래에 지정되어 있다. 아래의 프로세스는 슬라이스 헤더 레이어 및 위의 신택스 엘리먼트를 사용하여 다음의 디코딩 프로세스를 지정한다: 화상 순서 카운트와 관련된 변수와 함수가 유도된다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 구성에 대한 디코딩 프로세스는 참조 화상 목록 0(RefPicList[ 0 ]) 및 참조 화상 목록 1(RefPicList[ 1 ])의 유도를 위해 호출된다. 참조 화상 마킹을 위한 디코딩 프로세스가 호출되며, 여기서 참조 화상은 "참조용으로 사용되지 않음"으로 마킹될 수 있다. 참조 화상 마킹을 위한 디코딩 프로세스가 호출되며, 여기서 참조 화상은 "참조용으로 사용되지 않음"으로 표시될 수 있다. 이것은 화상의 첫 번째 슬라이스에 대해서만 호출되어야 한다. 코딩 트리 유닛, 스케일링, 변환, 인-루프(in-loop) 필터링, 등을 위한 디코딩 프로세스가 호출된다. 현재 화상의 모든 슬라이스가 디코딩된 후, 현재 디코딩된 화상은 "참조용으로 사용됨"으로 마킹된다.
NAL 유닛 디코딩 프로세스.
이 프로세스에 대한 입력은 현재 화상의 NAL 유닛 및 이와 연관된 비-VCL NAL 유닛이다. 이 프로세스의 출력은 NAL 유닛 내에 캡슐화된(encapsulated) 파싱된 RBSP 신택스 구조이다. 각각의 NAL 유닛에 대한 디코딩 프로세스는 NAL 유닛로부터 RBSP 신택스 구조를 추출한 후 RBSP 신택스 구조를 파싱한다.
슬라이스 디코딩 프로세스.
화상 순서 카운트에 대한 디코딩 프로세스.
이 프로세스의 출력은 PicOrderCntVal, 즉 현재 화상의 화상 순서 카운트이다. 화상 순서 카운트는, 병합 모드 및 모션 벡터 예측에서 모션 파라미터를 도출하기 위해, 그리고 디코더 적합성 검사를 위해, 화상을 식별하는데 사용된다. 각각의 코딩된 화상은 PicOrderCntVal로 표시되는 화상 순서 카운트 변수와 연관된다. 현재 화상이 비 IRAP 화상인 경우, 변수 prevPicOrderCntLsb 및 prevPicOrderCntMsb은 다음과 같이 유도된다: prevTid0Pic를 0과 같은 TemporalId를 가지는 디코딩 순서에서 이전의 화상으로 가정한다. 변수 prevPicOrderCntLsb는 prevTid0Pic의 slice_pic_order_cnt_lsb과 같도록 설정된다. 변수 prevPicOrderCntMsb는 prevTid0Pic의 PicOrderCntMsb과 같도록 설정된다. 현재 화상의 변수 PicOrderCntMsb는 다음과 같이 유도된다: 현재 화상이 IRAP 화상인 경우, PicOrderCntMsb는 0과 같도록 설정된다. 그렇지 않으면, PicOrderCntMsb는 다음과 같이 유도된다:
Figure pct00058
PicOrderCntVal는 다음과 같이 유도된다:
PicOrderCntVal = PicOrderCntMsb + slice_pic_order_cnt_lsb
slice_pic_order_cnt_lsb는 IRAP 화상에 대해 0으로 추론되고 prevPicOrderCntLsb 및 prevPicOrderCntMsb는 모두 0과 같도록 설정되기 때문에, 모든 IRAP 화상은 0과 같은 PicOrderCntVal를 가질 것이다. PicOrderCntVal의 값은 -231 내지 231 - 1의 범위(포함)에 있어야 한다. 하나의 CVS에서, 임의의 2개의 코딩된 화상에 대한 PicOrderCntVal 값은 동일하지 않아야 한다. 디코딩 프로세스 중 언제든지, DPB에서 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxRefPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
함수 PicOrderCnt( picX )는 다음과 같이 지정된다:
PicOrderCnt( picX ) = 화상 picX의 PicOrderCntVal
함수 DiffPicOrderCnt( picA, picB )는 다음과 같이 지정된다:
DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) - PicOrderCnt( picB )
비트스트림은 디코딩 프로세스에서 사용되는 DiffPicOrderCnt( picA, picB )의 값이 -215 내지 215 - 1의 범위(포함)에 있지 않게 하는 데이터를 포함하지 않아야 한다. X를 현재 화상으로, 그리고 Y 및 Z를 동일한 CVS에서 2개의 다른 화상으로 가정하면, DiffPicOrderCnt( X, Y ) 및 DiffPicOrderCnt( X, Z )가 모두 양이거나 모두 음인 경우, Y 및 Z는 X로부터 동일한 출력 순서 방향에 있는 것으로 간주된다.
참조 화상 목록 구성을 위한 디코딩 프로세스.
이 프로세스는 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작 부분에서 호출된다. 참조 화상은 참조 인덱스를 통해 어드레싱된다. 참조 인덱스는 참조 화상 목록에 대한 인덱스이다. I 슬라이스를 디코딩하는 경우, 참조 화상 목록은 슬라이스 데이터의 디코딩에 사용되지 않는다. P 슬라이스를 디코딩하는 경우, 참조 화상 목록 0(즉, RefPicList[ 0 ])만이 슬라이스 데이터의 디코딩에 사용된다. B 슬라이스를 디코딩하는 경우, 참조 화상 목록 0 및 참조 화상 목록 1(즉, RefPicList[ 1 ])이 모두 슬라이스 데이터의 디코딩에 사용된다. 비-IRAP 화상의 각각의 슬라이스에 대한 디코딩 프로세스의 시작에서, 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]가 유도된다. 참조 화상 목록은 참조 화상의 마킹 또는 슬라이스 데이터의 디코딩에 사용된다. 화상의 첫 번째 슬라이스가 아닌 비-IRAP 화상의 I 슬라이스의 경우, RefPicList[ 0 ] 및 RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 화상의 첫 번째 슬라이스가 아닌 P 슬라이스의 경우, RefPicList[ 1 ]는 비트스트림 적합성 검사 목적으로 유도될 수 있으나, 현재 화상 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 디코딩에는 그러한 유도가 필요하지 않다. 참조 화상 목록 RefPicList[ 0 ] 및 RefPicList[ 1 ]는 다음과 같이 구성된다:
Figure pct00059
0 또는 1과 같은 각각의 i에 대해, RefPicList[ i ]에서 첫 번째 NumRefIdxActive[ i ] 엔트리는 RefPicList[ i ]에서 활성 엔트리로 지칭되고, RefPicList[ i ]에서 다른 엔트리는 RefPicList[ i ]에서 비활성 엔트리로 지칭된다. 특정 화상이 RefPicList[ 0 ]의 엔트리 및 RefPicList[ 1 ]의 엔트리 모두에 의해 참조되는 것이 가능하다. 특정 화상이 RefPicList[ 0 ]의 둘 이상의 엔트리에 의해 또는 RefPicList[ 1 ]의 둘 이상의 엔트리에 의해 참조되는 것도 또한 가능하다. RefPicList[ 0 ]의 활성 엔트리 및 RefPicList[ 1 ]의 활성 엔트리는 현재 화상 및 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ]의 비활성 엔트리 및 RefPicList[ 1 ]의 비활성 엔트리는 현재 화상의 인터 예측에는 사용되지 않으나 디코딩 순서에서 현재 화상을 뒤따르는 하나 이상의 화상의 인터 예측에는 사용될 수 있는 모든 참조 화상을 총칭한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에는 해당 화상이 DPB에 존재하지 않기 때문에 "참조 화상 없음"과 동일한 하나 이상의 엔트리가 있을 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 0 ]에서 "참조 화상 없음"과 같은 각각의 비활성 엔트리는 무시되어야 한다. 의도하지 않은 화상 손실은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 "참조 화상 없음"과 같은 각각의 활성 엔트리에 대해 추론되어야 한다.
다음 제약 조건이 적용되는 것은 비트스트림 적합성의 요구 사항이다: 0 또는 1과 같은 각각의 i에 대해, NumEntriesInList[ i ]는 NumRefIdxActive[ i ]보다 작지 않아야 한다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 각각의 활성 엔트리에 의해 참조되는 화상은 DPB에 존재해야 하고, 현재 화상보다 작거나 같은 TemporalId를 가져야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 비활성 엔트리의 엔트리 인덱스는 현재 화상의 디코딩을 위한 참조 인덱스로서 사용되지 않아야 한다. 선택사항으로서, 다음 제약 조건이 추가로 지정될 수 있다: RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 비활성 엔트리는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]에서 임의의 다른 엔트리와 동일한 화상을 참조하지 않아야 한다. 현재 화상 자체는 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않아야 한다. 현재 화상의 PicOrderCntVal과 엔트리에 의해 참조되는 화상의 PicOrderCntVal 사이의 차이가 224보다 크거나 같은 RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 엔트리가 없어야 한다. setOfRefPics를 RefPicList[ 0 ]의 모든 엔트리 및 RefPicList[ 1 ]의 모든 엔트리에 의해 참조되는 고유의 화상의 세트라 가정한다. setOfRefPics의 화상의 개수는 sps_max_dec_pic_buffering_minus1보다 작거나 같아야 하고, setOfRefPics는 화상의 모든 슬라이스에 대해 동일해야 한다.
참조 화상 마킹을 위한 디코딩 프로세스.
이 프로세스는, 슬라이스 헤더의 디코딩 및 슬라이스에 대한 참조 화상 목록 구성을 위한 디코딩 프로세스 이후에, 그러나 슬라이스 데이터의 디코딩 이전에, 화상마다 한번씩 호출된다. 이 프로세스는 DPB에서 하나 이상의 참조 화상이 "참조용으로 사용되지 않음"으로 마킹되게 할 수 있다. DPB의 디코딩된 화상은 "참조용으로 사용되지 않음" 또는 "참조용으로 사용됨"으로 마킹될 수 있으나, 디코딩 프로세스의 동작 중에 임의의 주어진 순간에서 이 둘 중 하나으로 마킹될 수 있다. 화상에 이러한 마킹 중 하나를 할당하는 것은, 해당하는 경우, 이들 마킹 중 다른 것을 제거한다는 것을 암시한다. 현재 화상이 IRAP 화상인 경우, 현재 DPB에 있는 (있는 경우) 모든 참조 화상이 "참조용으로 사용되지 않음"으로 마킹된다. DPB의 참조 화상은 그 PicOrderCntVal 값의 Log2( MaxRefPicOrderCntLsb ) LSB에 의해 식별될 수 있다. RefPicList[ 0 ] 또는 RefPicList[ 1 ]의 임의의 엔트리에 의해 참조되지 않는 DPB 내의 각각의 참조 화상은 "참조용으로 사용되지 않음"으로 마킹된다.
또 다른 대안적인 실시예.
이 섹션은, "단기 및 장기 참조 화상 사이의 구별을 가지는 슬라이스 헤더에서 참조 화상 목록의 항상 시그널링"으로 명명된 전술한 접근 방식에 대한 대안적인 실시예를 설명한다. 이 대안적인 실시예에서, 슬라이스 헤더에서, POC MSB 사이클은 HEVC에서 또는 전술한 접근 방식에서와 유사하게 각각의 LTRP 엔트리에 대해 시그널링될 수 있고, 다음의 제약 조건은 제거된다: 디코딩 프로세스 중 언제든지, DPB에서 임의의 2개의 참조 화상에 대한 PicOrderCntVal & ( MaxLtPicOrderCntLsb - 1 )의 값은 동일하지 않아야 한다.
도 6은 본 개시의 실시예에 따른 비디오 코딩 디바이스(600)(예컨대, 비디오 인코더(20), 비디오 디코더(30), 등)의 개략도이다. 비디오 코딩 디바이스(600)는 여기에 개시된 실시예를 구현하는데 적합하다. 비디오 코딩 디바이스(600)는, 데이터를 수신하기 위한 입구 포트(610) 및 수신기 유닛(Rx)(620); 데이터를 처리하기 위한 프로세서, 논리 유닛, 또는 중앙 처리 장치(CPU)(630); 데이터를 전송하기 위한 송신기 유닛(Tx)(640) 및 출구 포트(650); 및 데이터를 저장하기 위한 메모리(660)를 포함한다. 비디오 코딩 디바이스(600)는 광학적 또는 전기적 신호의 유출 또는 유입을 위해 입구 포트(610), 수신기 유닛(620), 송신기 유닛(640), 및 출구 포트(650)에 연결되는 광-전기(OE; optical-to-electrical) 콤포넌트 및 전기-광(EO; electrical-to-optical) 콤포넌트를 또한 포함할 수 있다.
프로세서(630)는 하드웨어 및 소프트웨어로 구현된다. 프로세서(630)는 하나 이상의 CPU 칩, 코어(예컨대, 멀티 코어 프로세서), FPGA(field-programmable gate array), ASIC(application specific integrated circuits) 및 DSP(digital signal processor)로 구현될 수 있다. 프로세서(630)는 입구 포트(610), 수신기 유닛(620), 송신기 유닛(640), 출구 포트(650), 및 메모리(660)와 통신한다. 프로세서(630)는 코딩 모듈(670)을 포함한다. 코딩 모듈(670)은 위에서 설명된 개시된 실시예들을 구현한다. 예를 들어, 코딩 모듈(670)은 다양한 네트워킹 기능을 구현, 처리, 준비 또는 제공한다. 코딩 모듈(670)을 포함함으로써 비디오 코딩 디바이스(600)의 기능에 상당한 향상이 제공되고 비디오 코딩 디바이스(600)의 상이한 상태로의 변환에 영향을 끼친다. 대안적으로, 코딩 모듈(670)은 메모리(660)에 저장되고 프로세서(630)에 의해 실행되는 명령어로서 구현된다.
비디오 코딩 디바이스(600)는 사용자와 데이터를 통신하기 위한 입력 및/또는 출력(I/O) 디바이스(680)를 또한 포함할 수 있다. I/O 디바이스(680)는 비디오 데이터를 표시하기 위한 디스플레이, 오디오 데이터를 출력하기 위한 스피커 등과 같은 출력 디바이스를 포함할 수 있다. I/O 디바이스(680)는 또한 키보드, 마우스, 트랙볼 등과 같은 입력 디바이스 및/또는 이러한 출력 디바이스와 상호 작용하기 위한 대응하는 인터페이스를 포함할 수 있다.
메모리(660)는 하나 이상의 디스크, 테이프 드라이브, 및 고체 드라이브를 포함하고, 프로그램이 실행을 위해 선택될 때 프로그램을 저장하고, 프로그램 실행 중에 판독되는 명령 및 데이터를 저장하기 위해 오버-플로우 데이터 저장 장치로서 사용될 수 있다. 메모리(660)는 휘발성 및/또는 비휘발성일 수 있으며, ROM(read-only memory), RAM(random-access memory), TCAM(ternary content-addressable memory) 및/또는 SRAM(static random-access memory)일 수 있다.
도 7은 코딩 수단(700)의 실시예의 개략도이다. 실시예로서, 코딩 수단(700)은 비디오 코딩 디바이스(702)(예컨대, 비디오 인코더(20) 또는 비디오 디코더(30))에서 구현된다. 비디오 코딩 디바이스(702)는 수신 수단(701)을 포함한다. 수신 수단(701)는 인코딩할 화상을 수신하거나 또는 디코딩할 비트스트림을 수신하도록 구성된다. 비디오 코딩 디바이스(702)는 수신 수단(701)에 연결된 전송 수단(707)을 포함한다. 전송 수단(707)는 비트스트림을 디코더로 전송하거나 또는 디코딩된 이미지를 디스플레이 수단(예컨대, I/O 디바이스(680) 중 하나)으로 전송하도록 구성된다.
비디오 코딩 디바이스(702)는 저장 수단(703)을 포함한다. 저장 수단(703)은 수신 수단(701) 또는 전송 수단(707) 중 적어도 하나에 연결된다. 저장 수단(703)은 명령을 저장하도록 구성된다. 비디오 코딩 디바이스(702)는 처리 수단(705)을 또한 포함한다. 처리 수단(705)은 저장 수단(703)에 연결된다. 처리 수단(705)은 저장 수단(703)에 저장된 명령을 실행하여 여기에 개시된 방법을 수행하도록 구성된다.
본 명세서에서 여러 실시 예가 제공되었지만, 개시된 시스템 및 방법은 본 명세서의 사상 또는 범위를 벗어나지 않고 많은 다른 특정 형태로 구현될 수 있음을 이해해야 한다. 본 실시 예는 제한적이지 않고 예시적인 것으로 간주되어야 하며, 그 의도는 여기에 제공된 세부 사항에 제한되지 않는다. 예를 들어, 다양한 요소 또는 구성 요소는 다른 시스템에서 결합 또는 통합될 수 있거나, 특정 기능이 생략되거나 구현되지 않을 수 있다.
또한, 다양한 실시예에서 개별적 또는 별개로 설명되고 예시된 기술, 시스템, 서브 시스템 및 방법은 본 개시의 범위를 벗어나지 않고 다른 시스템, 모듈, 기술 또는 방법과 결합되거나 통합될 수 있다. 결합되거나 직접 결합되거나 서로 통신하는 것으로 도시되거나 논의된 다른 항목은 간접적으로 결합되거나 전기적으로, 기계적으로, 또는 다른 방식으로 일부 인터페이스, 장치 또는 중간 구성 요소를 통해 통신할 수 있다. 변경, 대체, 및 변경의 다른 예시들은 통상의 기술자에 의해 확인될 수 있으며 여기에 개시된 사상 및 범위를 벗어나지 않고 이루어질 수 있다.

Claims (18)

  1. 비디오 디코더에 의해 구현되는 코딩된 비디오 비트스트림을 디코딩하는 방법으로서,
    상기 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더를 파싱하는 단계-여기서 상기 슬라이스 헤더는 참조 화상 목록 구조를 포함함-;
    상기 참조 화상 목록 구조에 기초하여, 상기 현재 슬라이스의 참조 화상 목록을 유도하는 단계; 및
    상기 참조 화상 목록에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하는 단계;를 포함하는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  2. 제1항에 있어서,
    상기 참조 화상 목록 구조에서 엔트리의 순서는 상기 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일한, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  3. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 순서는 0부터 표시된 값까지인, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  4. 제3항에 있어서,
    상기 표시된 값은 0부터 sps_max_dec_pic_buffering_minus1에 의해 표시되는 값까지인, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 참조 화상 목록은 RefPictList[0]로 지정되는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 참조 화상 목록은 RefPictList[1]로 지정되는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 적어도 하나의 재구성된 블록은 전자 장치의 디스플레이 상에 디스플레이되는 이미지를 생성하는데 사용되는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 참조 화상 목록은 인터 예측에 사용되는 참조 화상의 목록을 포함하는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 인터 예측은 P 슬라이스 또는 B 슬라이스에 대한 것인, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 슬라이스 헤더는 ref_pic_list_sps_flag[ i ]로 지정되는 참조 화상 목록 시퀀스 파라미터 세트(SPS) 플래그를 포함하는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 슬라이스 헤더는 num_ref_idx_active_override_flag로 지정되는 번호 참조 인덱스 활성 오버라이드 플래그를 포함하는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  12. 제7항 내지 제11항 중 어느 한 항에 있어서,
    상기 참조 화상 목록은 RefPictList[0] 또는 RefPictList[1]로 지정되고, 상기 참조 화상 목록 구조에서 엔트리의 순서는 상기 참조 화상 목록에서 대응하는 참조 화상의 순서와 동일한, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  13. 제1항 내지 제12항 중 어느 한 항에서,
    상기 코딩된 비디오 비트스트림에서 표현되는 파라미터 세트를 파싱하는 단계-여기서, 상기 파라미터 세트는 참조 화상 목록 구조의 세트를 포함하는 신택스 엘리먼트의 세트를 포함함-;
    상기 코딩된 비디오 비트스트림에서 표현되는 참조 화상 목록 구조를 획득하는 단계;
    상기 참조 화상 목록 구조에 기초하여, 현재 슬라이스의 제1 참조 화상 목록을 유도하는 단계-여기서, 상기 제1 참조 화상 목록은 적어도 하나의 활성 엔트리 및 적어도 하나의 비활성 엔트리를 포함하고, 상기 적어도 하나의 비활성 엔트리는 상기 현재 슬라이스의 인터 예측에는 사용되지 않으나 제2 참조 화상 목록에서 활성 엔트리에 의해 참조되는 참조 화상을 참조하고, 상기 제2 참조 화상 목록은 디코딩 순서에서 상기 현재 슬라이스를 뒤따르는 슬라이스의 참조 화상 목록 또는 디코딩 순서에서 현재 화상을 뒤따르는 화상의 참조 화상 목록임-; 및
    상기 제1 참조 화상 목록의 적어도 하나의 활성 엔트리에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하는 단계;를 더 포함하는, 코딩된 비디오 비트스트림을 디코딩하는 방법.
  14. 디코딩 디바이스로서,
    코딩된 비디오 비트스트림을 수신하도록 구성되는 수신기;
    명령을 저장하며, 상기 수신기와 연결되는 메모리; 및
    상기 메모리에 연결되는 프로세서를 포함하되,
    상기 프로세서는, 상기 메모리에 저장된 명령을 실행하여,
    상기 코딩된 비디오 비트스트림에서 표현되는 현재 슬라이스의 슬라이스 헤더를 파싱-여기서, 상기 슬라이스 헤더는 참조 화상 목록 구조를 포함함-하도록;
    상기 참조 화상 목록 구조에 기초하여, 상기 현재 슬라이스의 참조 화상 목록을 유도하도록; 그리고
    상기 참조 화상 목록에 기초하여, 상기 현재 슬라이스의 적어도 하나의 재구성된 블록을 획득하도록; 구성되는, 디코딩 디바이스.
  15. 제14항에 있어서,
    상기 적어도 하나의 재구성된 블록에 기초하여 이미지를 디스플레이하도록 구성되는 디스플레이를 더 포함하는, 디코딩 디바이스.
  16. 코딩 장치로서,
    디코딩할 비트스트림을 수신하도록 구성되는 수신기;
    상기 수신기에 연결되며, 디코딩된 이미지를 디스플레이로 전송하도록 구성되는 송신기;
    상기 수신기 또는 상기 송신기 중 적어도 하나에 연결되며, 명령을 저장하도록 구성되는 메모리; 및
    상기 메모리에 연결되+9며, 상기 메모리에 저장된 명령을 실행하여 제1항 내지 제13항 중 어느 한 항에서의 방법을 수행하도록 구성되는 프로세서;를 포함하는, 코딩 장치.
  17. 인코더; 및
    상기 인코더와 통신하는 디코더를 포함하되,
    상기 디코더는 상기 디코딩 디바이스 또는 제14항 내지 제16항 중 어느 한 항의 코딩 장치를 포함하는, 시스템.
  18. 코딩을 위한 수단으로서,
    디코딩할 비트스트림을 수신하도록 구성되는 수신 수단;
    상기 수신 수단에 연결되며, 디코딩된 이미지를 디스플레이 수단으로 전송하도록 구성되는 전송 수단;
    상기 수신 수단 또는 상기 전송 수단 중 적어도 하나에 연결되며, 명령을 저장하도록 구성되는 저장 수단; 및
    상기 저장 수단에 연결되며, 상기 저장 수단에 저장된 명령을 실행하여 제1항 내지 제13항 중 어느 한 항에서의 방법을 수행하도록 구성되는 처리 수단;을 포함하는, 코딩을 위한 수단.
KR1020217007129A 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리 KR102659936B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247012883A KR20240058947A (ko) 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862719360P 2018-08-17 2018-08-17
US62/719,360 2018-08-17
PCT/US2019/046929 WO2020037274A1 (en) 2018-08-17 2019-08-16 Reference picture management in video coding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247012883A Division KR20240058947A (ko) 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리

Publications (2)

Publication Number Publication Date
KR20210041062A true KR20210041062A (ko) 2021-04-14
KR102659936B1 KR102659936B1 (ko) 2024-04-22

Family

ID=69525847

Family Applications (12)

Application Number Title Priority Date Filing Date
KR1020247012883A KR20240058947A (ko) 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리
KR1020217007234A KR102610093B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020217007129A KR102659936B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리
KR1020237041433A KR20230169439A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020237041409A KR20230169435A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 영상 관리
KR1020237041439A KR20230170122A (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020237041434A KR20230169440A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020217007184A KR102610094B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020237041442A KR20230165889A (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020217007279A KR102610092B1 (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020217007340A KR102609949B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 영상 관리
KR1020217007257A KR102610089B1 (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020247012883A KR20240058947A (ko) 2018-08-17 2019-08-16 비디오 코딩에서 참조 화상 관리
KR1020217007234A KR102610093B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리

Family Applications After (9)

Application Number Title Priority Date Filing Date
KR1020237041433A KR20230169439A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020237041409A KR20230169435A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 영상 관리
KR1020237041439A KR20230170122A (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020237041434A KR20230169440A (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020217007184A KR102610094B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 화상 관리
KR1020237041442A KR20230165889A (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020217007279A KR102610092B1 (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리
KR1020217007340A KR102609949B1 (ko) 2018-08-17 2019-08-16 비디오 코딩에서의 참조 영상 관리
KR1020217007257A KR102610089B1 (ko) 2018-08-17 2019-08-16 비디오 코딩의 참조 픽처 관리

Country Status (18)

Country Link
US (8) US20210168360A1 (ko)
EP (7) EP4336832A3 (ko)
JP (13) JP7223118B2 (ko)
KR (12) KR20240058947A (ko)
CN (12) CN114554196B (ko)
AU (1) AU2019322914B2 (ko)
BR (6) BR112021002832A2 (ko)
CA (1) CA3109799C (ko)
CL (1) CL2021000397A1 (ko)
DK (1) DK3831064T3 (ko)
FI (1) FI3831064T3 (ko)
IL (1) IL280944A (ko)
MX (4) MX2021001745A (ko)
NZ (1) NZ773625A (ko)
PH (1) PH12021550312A1 (ko)
SG (6) SG11202101404WA (ko)
WO (6) WO2020037272A1 (ko)
ZA (1) ZA202100951B (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117294837A (zh) 2018-04-02 2023-12-26 深圳市大疆创新科技有限公司 用于图像处理的方法和图像处理装置
EP4336832A3 (en) * 2018-08-17 2024-05-22 Huawei Technologies Co., Ltd. Reference picture management in video coding
WO2020059687A1 (en) * 2018-09-21 2020-03-26 Sharp Kabushiki Kaisha Systems and methods for signaling reference pictures in video coding
CN113597768A (zh) * 2019-01-28 2021-11-02 Op方案有限责任公司 扩展长期参考图片保留的在线和离线选择
US11395006B2 (en) * 2019-03-06 2022-07-19 Tencent America LLC Network abstraction layer unit header
KR20220156827A (ko) 2020-03-19 2022-11-28 바이트댄스 아이엔씨 레퍼런스 픽처 리스트 엔트리에 대한 제약들
EP3942802A4 (en) * 2020-05-20 2022-10-05 Tencent America Llc TECHNIQUES FOR RANDOM ACCESS POINT INDICATION AND IMAGE OUTPUT IN AN ENCODED VIDEO STREAM
US11558630B2 (en) 2020-05-20 2023-01-17 Tencent America LLC Techniques for random access point indication and picture output in coded video stream
US11533472B2 (en) 2020-05-21 2022-12-20 Alibaba Group Holding Limited Method for reference picture processing in video coding
US11695938B2 (en) * 2021-01-05 2023-07-04 Dish Network Technologies India Private Limited Method and apparatus for thumbnail generation for a video device
CN116781907A (zh) * 2022-03-11 2023-09-19 华为技术有限公司 编解码方法及电子设备
WO2023234133A1 (en) * 2022-05-31 2023-12-07 Sharp Kabushiki Kaisha Systems and methods for signaling reference picture list entry information in video coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066251A (ko) * 2011-09-23 2014-05-30 퀄컴 인코포레이티드 참조 화상 세트의 서브세트들에 의한 비디오 코딩

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022923A2 (en) * 2003-08-26 2005-03-10 Thomson Licensing S.A. Method and apparatus for minimizing number of reference pictures used for inter-coding
FI115589B (fi) * 2003-10-14 2005-05-31 Nokia Corp Redundanttien kuvien koodaaminen ja dekoodaaminen
CN102761744B (zh) * 2006-10-13 2015-10-28 汤姆逊许可公司 用于多视点视频编码的参考图像列表管理语法
WO2010086500A1 (en) 2009-01-28 2010-08-05 Nokia Corporation Method and apparatus for video coding and decoding
JP5574345B2 (ja) 2009-03-26 2014-08-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化方法、エラー検出方法、復号方法、符号化装置、エラー検出装置及び復号装置
US20120050475A1 (en) * 2009-05-01 2012-03-01 Dong Tian Reference picture lists for 3dv
KR101752418B1 (ko) 2010-04-09 2017-06-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
US9008176B2 (en) * 2011-01-22 2015-04-14 Qualcomm Incorporated Combined reference picture list construction for video coding
US8934552B2 (en) 2011-03-31 2015-01-13 Qualcomm Incorporated Combined reference picture list construction and mapping
KR101911012B1 (ko) 2011-04-26 2018-12-19 엘지전자 주식회사 참조 픽쳐 리스트 관리 방법 및 이러한 방법을 사용하는 장치
PT3091744T (pt) * 2011-06-30 2017-08-31 ERICSSON TELEFON AB L M (publ) Sinalização de imagem de referência
US9521418B2 (en) 2011-07-22 2016-12-13 Qualcomm Incorporated Slice header three-dimensional video extension for slice header prediction
EP3754982B1 (en) * 2011-09-29 2024-05-01 SHARP Kabushiki Kaisha Image decoding device, image decoding method, image encoding method and image encoding device for performing bi-prediction to uni-prediction conversion
US9451284B2 (en) * 2011-10-10 2016-09-20 Qualcomm Incorporated Efficient signaling of reference picture sets
US9264717B2 (en) * 2011-10-31 2016-02-16 Qualcomm Incorporated Random access with advanced decoded picture buffer (DPB) management in video coding
JP5768662B2 (ja) * 2011-10-31 2015-08-26 富士通株式会社 動画像復号装置、動画像符号化装置、動画像復号方法、動画像符号化方法、動画像復号プログラム及び動画像符号化プログラム
US10003817B2 (en) * 2011-11-07 2018-06-19 Microsoft Technology Licensing, Llc Signaling of state information for a decoded picture buffer and reference picture lists
EP3576412B1 (en) * 2011-11-08 2021-09-01 Nokia Technologies Oy Reference picture handling
US20130114710A1 (en) * 2011-11-08 2013-05-09 Samsung Electronics Co., Ltd. Method and apparatus for encoding video by prediction using reference picture list, and method and apparatus for decoding video by performing compensation using reference picture list
KR102615301B1 (ko) * 2011-11-11 2023-12-19 엘지전자 주식회사 영상 정보 전송 방법 및 장치와 이를 이용한 복호화 방법 및 장치
US9392235B2 (en) 2011-11-18 2016-07-12 Google Technology Holdings LLC Explicit way for signaling a collocated reference picture for video coding
KR101606661B1 (ko) * 2011-11-18 2016-03-25 모토로라 모빌리티 엘엘씨 고효율 비디오 코딩(hevc)을 위한 병치된 화상을 시그널링하기 위한 명시적 방법
US9485503B2 (en) * 2011-11-18 2016-11-01 Qualcomm Incorporated Inside view motion prediction among texture and depth view components
US9258559B2 (en) * 2011-12-20 2016-02-09 Qualcomm Incorporated Reference picture list construction for multi-view and three-dimensional video coding
CN104054351B (zh) 2012-01-17 2017-07-14 瑞典爱立信有限公司 参考画面列表处理
US8867852B2 (en) * 2012-01-19 2014-10-21 Sharp Kabushiki Kaisha Decoding a picture based on a reference picture set on an electronic device
US20130188709A1 (en) 2012-01-25 2013-07-25 Sachin G. Deshpande Video decoder for tiles with absolute signaling
KR101652928B1 (ko) * 2012-01-31 2016-09-01 브이아이디 스케일, 인크. 스케일러블 고효율 비디오 코딩(hevc)을 위한 참조 픽처 세트(rps) 시그널링
US9369710B2 (en) * 2012-02-06 2016-06-14 Qualcomm Incorporated Reference picture list modification for video coding
US20150071351A1 (en) * 2012-04-15 2015-03-12 Samsung Electronics Co., Ltd. Inter prediction method in which reference picture lists can be changed and apparatus for the same
US9426459B2 (en) * 2012-04-23 2016-08-23 Google Inc. Managing multi-reference picture buffers and identifiers to facilitate video data coding
US20150124877A1 (en) 2012-04-25 2015-05-07 Samsung Electronics Co., Ltd. Multiview video encoding method using reference picture set for multiview video prediction and device therefor, and multiview video decoding method using reference picture set for multiview video prediction and device therefor
US9762903B2 (en) 2012-06-01 2017-09-12 Qualcomm Incorporated External pictures in video coding
US9319679B2 (en) * 2012-06-07 2016-04-19 Qualcomm Incorporated Signaling data for long term reference pictures for video coding
US9591303B2 (en) 2012-06-28 2017-03-07 Qualcomm Incorporated Random access and signaling of long-term reference pictures in video coding
WO2014006854A1 (en) 2012-07-01 2014-01-09 Sharp Kabushiki Kaisha Device for signaling a long-term reference picture in a parameter set
WO2014008402A1 (en) 2012-07-05 2014-01-09 Vid Scale, Inc. Layer dependency and priority signaling design for scalable video coding
US9167248B2 (en) * 2012-07-13 2015-10-20 Qualcomm Incorporated Reference picture list modification for video coding
US9398284B2 (en) * 2012-08-16 2016-07-19 Qualcomm Incorporated Constructing reference picture lists for multi-view or 3DV video coding
US9584825B2 (en) * 2012-09-27 2017-02-28 Qualcomm Incorporated Long-term reference picture signaling in video coding
KR101981712B1 (ko) * 2012-11-21 2019-05-24 엘지전자 주식회사 영상 디코딩 방법 및 이를 이용하는 장치
US9992513B2 (en) 2012-12-21 2018-06-05 Sony Corporation Image processing efficient transmission or reception of encoded information
JPWO2014103529A1 (ja) * 2012-12-28 2017-01-12 シャープ株式会社 画像復号装置、およびデータ構造
CN104919803B (zh) * 2013-01-15 2017-09-12 华为技术有限公司 一种用于解码视频比特流的方法
CN105122816A (zh) * 2013-04-05 2015-12-02 夏普株式会社 层间参考图像集的解码和参考图像列表构建
US9532067B2 (en) * 2013-04-05 2016-12-27 Sharp Kabushiki Kaisha Decoding of inter-layer reference picture set and reference picture list construction
US9860529B2 (en) 2013-07-16 2018-01-02 Qualcomm Incorporated Processing illumination compensation for video coding
WO2015006922A1 (en) * 2013-07-16 2015-01-22 Mediatek Singapore Pte. Ltd. Methods for residual prediction
US9560358B2 (en) * 2013-07-22 2017-01-31 Qualcomm Incorporated Device and method for scalable coding of video information
US9762909B2 (en) * 2013-07-30 2017-09-12 Kt Corporation Image encoding and decoding method supporting plurality of layers and apparatus using same
US9894369B2 (en) 2013-07-30 2018-02-13 Kt Corporation Image encoding and decoding method supporting plurality of layers and apparatus using same
WO2015052939A1 (en) 2013-10-10 2015-04-16 Sharp Kabushiki Kaisha Alignment of picture order count
US9942546B2 (en) * 2013-12-12 2018-04-10 Qualcomm Incorporated POC value design for multi-layer video coding
WO2015101716A1 (en) * 2014-01-03 2015-07-09 Nokia Technologies Oy Parameter set coding
US10110925B2 (en) 2014-01-03 2018-10-23 Hfi Innovation Inc. Method of reference picture selection and signaling in 3D and multi-view video coding
US10432928B2 (en) * 2014-03-21 2019-10-01 Qualcomm Incorporated Using a current picture as a reference for video coding
US9756355B2 (en) * 2014-06-20 2017-09-05 Qualcomm Incorporated Value ranges for syntax elements in video coding
US10412387B2 (en) 2014-08-22 2019-09-10 Qualcomm Incorporated Unified intra-block copy and inter-prediction
CN107005708A (zh) * 2014-09-26 2017-08-01 Vid拓展公司 使用时间块向量预测的块内复制译码
US9918105B2 (en) 2014-10-07 2018-03-13 Qualcomm Incorporated Intra BC and inter unification
GB2531271A (en) * 2014-10-14 2016-04-20 Nokia Technologies Oy An apparatus, a method and a computer program for image sequence coding and decoding
US10511834B2 (en) * 2015-04-29 2019-12-17 Hfi Innovation Inc. Method and apparatus for Intra Block Copy reference list construction
CA2985872C (en) 2015-05-29 2020-04-14 Hfi Innovation Inc. Method of decoded picture buffer management for intra block copy mode
US10638140B2 (en) 2015-05-29 2020-04-28 Qualcomm Incorporated Slice level intra block copy and other video coding improvements
US10516891B2 (en) * 2015-11-20 2019-12-24 Intel Corporation Method and system of reference frame caching for video coding
US10555002B2 (en) 2016-01-21 2020-02-04 Intel Corporation Long term reference picture coding
US10652571B2 (en) 2018-01-25 2020-05-12 Qualcomm Incorporated Advanced motion vector prediction speedups for video coding
EP4336832A3 (en) 2018-08-17 2024-05-22 Huawei Technologies Co., Ltd. Reference picture management in video coding
KR20230145226A (ko) 2018-09-12 2023-10-17 후아웨이 테크놀러지 컴퍼니 리미티드 참조 화상 리스트 구조를 위한 인덱스 시그널링
US11375184B2 (en) 2018-12-10 2022-06-28 Sharp Kabushiki Kaisha Systems and methods for signaling reference pictures in video coding
EP3928511A4 (en) * 2019-03-11 2022-06-22 Huawei Technologies Co., Ltd. STEP-BY-STEP DECODE REFRESH IN VIDEO ENCODING
US10986353B2 (en) * 2019-03-15 2021-04-20 Tencent America LLC Decoded picture buffer management for video coding
JP7273193B2 (ja) 2019-05-12 2023-05-12 北京字節跳動網絡技術有限公司 参照ピクチャ再サンプリングのための信号通知
US11418813B2 (en) 2019-09-20 2022-08-16 Tencent America LLC Signaling of inter layer prediction in video bitstream
CN114600462A (zh) 2019-10-25 2022-06-07 夏普株式会社 用于在视频编码中发送信号通知图片信息的系统和方法
WO2021117644A1 (en) * 2019-12-11 2021-06-17 Sharp Kabushiki Kaisha Systems and methods for signaling output layer set information in video coding
EP4088463A4 (en) * 2020-02-14 2023-05-10 Beijing Bytedance Network Technology Co., Ltd. USING GENERAL STRESS INDICATORS IN VIDEO BITSTREAMS
US11496771B2 (en) * 2020-02-24 2022-11-08 Qualcomm Incorporated Reference picture list and collocated picture signaling in video coding
AR121127A1 (es) * 2020-02-29 2022-04-20 Beijing Bytedance Network Tech Co Ltd Señalización de información de imagen de referencia en un flujo de bits de video
US11743503B2 (en) 2020-05-14 2023-08-29 Qualcomm Incorporated Reference picture list constraints and signaling in video coding
EP4140140A4 (en) * 2020-05-21 2023-07-05 ByteDance Inc. PROGRESSIVE DECODING REFRESH SIGNALING AND REFERENCE PICTURE LISTS
US11533472B2 (en) * 2020-05-21 2022-12-20 Alibaba Group Holding Limited Method for reference picture processing in video coding
WO2021242716A1 (en) * 2020-05-26 2021-12-02 Bytedance Inc. Identification of inter-layer reference pictures in coded video
CN115769586A (zh) * 2020-05-28 2023-03-07 抖音视界有限公司 视频编解码中的参考图片列表信令通知
US11882270B2 (en) * 2020-06-09 2024-01-23 Hfi Innovation Inc. Method and apparatus for video coding with constraints on reference picture lists of a RADL picture
JP2023068781A (ja) 2021-11-04 2023-05-18 株式会社日立製作所 異常検出装置、異常検出システム、及び異常検出方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066251A (ko) * 2011-09-23 2014-05-30 퀄컴 인코포레이티드 참조 화상 세트의 서브세트들에 의한 비디오 코딩

Also Published As

Publication number Publication date
FI3831064T3 (fi) 2024-05-08
JP7223118B2 (ja) 2023-02-15
US20220201284A1 (en) 2022-06-23
JP2023088995A (ja) 2023-06-27
CN114554196B (zh) 2023-04-28
KR102610094B1 (ko) 2023-12-04
KR20230169440A (ko) 2023-12-15
JP2023095887A (ja) 2023-07-06
EP3831054A1 (en) 2021-06-09
CL2021000397A1 (es) 2021-12-10
SG11202101404WA (en) 2021-03-30
KR20210036399A (ko) 2021-04-02
EP3831055A4 (en) 2021-10-13
CN114584775A (zh) 2022-06-03
US11956420B2 (en) 2024-04-09
BR112021002491A2 (pt) 2021-08-10
CN112585974A (zh) 2021-03-30
EP3831064A4 (en) 2021-10-06
US11991349B2 (en) 2024-05-21
EP3831057A1 (en) 2021-06-09
IL280944A (en) 2021-04-29
CA3109799A1 (en) 2020-02-20
CN112567746A (zh) 2021-03-26
JP2023065392A (ja) 2023-05-12
KR102610093B1 (ko) 2023-12-04
US20210168359A1 (en) 2021-06-03
CN114697663A (zh) 2022-07-01
JP2021534668A (ja) 2021-12-09
CN114501018B (zh) 2024-01-09
CN114554196A (zh) 2022-05-27
EP4336832A3 (en) 2024-05-22
PH12021550312A1 (en) 2021-10-11
US11979553B2 (en) 2024-05-07
CN114205590A (zh) 2022-03-18
KR20210036400A (ko) 2021-04-02
WO2020037277A1 (en) 2020-02-20
CN114205590B (zh) 2023-06-06
EP3831057A4 (en) 2021-09-22
EP3831064B1 (en) 2024-02-07
AU2019322914A1 (en) 2021-03-18
EP3831070A4 (en) 2022-02-16
NZ773625A (en) 2022-12-23
JP2023085317A (ja) 2023-06-20
BR112021002501A2 (pt) 2021-07-27
KR20210036398A (ko) 2021-04-02
EP4336832A2 (en) 2024-03-13
ZA202100951B (en) 2023-07-26
US20210168360A1 (en) 2021-06-03
KR20230169439A (ko) 2023-12-15
CN114697663B (zh) 2024-01-30
EP3831070A1 (en) 2021-06-09
US20210258567A1 (en) 2021-08-19
DK3831064T3 (da) 2024-05-13
EP3831064A1 (en) 2021-06-09
KR20230169435A (ko) 2023-12-15
KR20210036401A (ko) 2021-04-02
JP2021534676A (ja) 2021-12-09
US11758123B2 (en) 2023-09-12
MX2021001743A (es) 2021-06-23
JP7278366B2 (ja) 2023-05-19
CN114501018A (zh) 2022-05-13
KR102610089B1 (ko) 2023-12-04
EP3831055A1 (en) 2021-06-09
JP2024032732A (ja) 2024-03-12
KR102610092B1 (ko) 2023-12-04
MX2021001744A (es) 2021-07-16
KR20210036402A (ko) 2021-04-02
KR102659936B1 (ko) 2024-04-22
CN113412620A (zh) 2021-09-17
MX2021001745A (es) 2021-07-16
KR102609949B1 (ko) 2023-12-04
JP2021534670A (ja) 2021-12-09
CN114584774A (zh) 2022-06-03
US11997257B2 (en) 2024-05-28
US20210185308A1 (en) 2021-06-17
JP2023086737A (ja) 2023-06-22
MX2021001838A (es) 2021-05-13
WO2020037276A1 (en) 2020-02-20
US11477438B2 (en) 2022-10-18
US20210176489A1 (en) 2021-06-10
KR20230165889A (ko) 2023-12-05
SG11202101399VA (en) 2021-03-30
SG11202100648RA (en) 2021-02-25
EP3831056A1 (en) 2021-06-09
CN114584775B (zh) 2023-04-11
CN112585973A (zh) 2021-03-30
CN112567744A (zh) 2021-03-26
US20230128843A1 (en) 2023-04-27
SG11202100647TA (en) 2021-02-25
BR112021002483A2 (pt) 2021-07-27
JP2021534677A (ja) 2021-12-09
EP3831056A4 (en) 2021-10-13
JP2021534671A (ja) 2021-12-09
AU2019322914B2 (en) 2023-06-29
WO2020037278A1 (en) 2020-02-20
SG11202101407QA (en) 2021-03-30
BR112021002486A2 (pt) 2021-07-27
WO2020037274A1 (en) 2020-02-20
WO2020037273A1 (en) 2020-02-20
CN114584774B (zh) 2023-05-09
CN113141784A (zh) 2021-07-20
BR112021002832A2 (pt) 2021-05-04
KR20240058947A (ko) 2024-05-03
CA3109799C (en) 2024-04-23
SG11202101406PA (en) 2021-03-30
US20210258568A1 (en) 2021-08-19
BR112021002499A2 (pt) 2021-07-27
WO2020037272A1 (en) 2020-02-20
KR20230170122A (ko) 2023-12-18
JP2023095886A (ja) 2023-07-06
JP2021534673A (ja) 2021-12-09
EP3831054A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
KR102659936B1 (ko) 비디오 코딩에서 참조 화상 관리
KR102643058B1 (ko) 참조 화상 목록 구조에 대한 후보 시그널링
US20240130835A1 (en) Reference Picture Management in Video Coding

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant