KR20210027694A - A method of manufacturing gravure roll and a gravure roll manufactured by the same - Google Patents

A method of manufacturing gravure roll and a gravure roll manufactured by the same Download PDF

Info

Publication number
KR20210027694A
KR20210027694A KR1020190108122A KR20190108122A KR20210027694A KR 20210027694 A KR20210027694 A KR 20210027694A KR 1020190108122 A KR1020190108122 A KR 1020190108122A KR 20190108122 A KR20190108122 A KR 20190108122A KR 20210027694 A KR20210027694 A KR 20210027694A
Authority
KR
South Korea
Prior art keywords
layer
metal deposition
copper plating
gravure roll
chromium
Prior art date
Application number
KR1020190108122A
Other languages
Korean (ko)
Other versions
KR102231267B1 (en
Inventor
김성원
김병호
이상진
김진호
Original Assignee
(주)한두패키지
(주)한두첨단소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)한두패키지, (주)한두첨단소재 filed Critical (주)한두패키지
Priority to KR1020190108122A priority Critical patent/KR102231267B1/en
Publication of KR20210027694A publication Critical patent/KR20210027694A/en
Application granted granted Critical
Publication of KR102231267B1 publication Critical patent/KR102231267B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F9/00Rotary intaglio printing presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/06Printing plates or foils; Materials therefor metallic for relief printing or intaglio printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • B41N1/20Curved printing plates, especially cylinders made of metal or similar inorganic compounds, e.g. plasma coated ceramics, carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

The present invention relates to a method for manufacturing a gravure roll used for gravure printing, and a gravure roll manufactured thereby. According to the present invention, the method comprises a metal deposition layer forming step of forming a metal deposition layer formed by a sputtering method on a surface of a copper plated layer.

Description

그라비어 롤의 제조 방법 및 그 방법으로 제조된 그라비어 롤{A method of manufacturing gravure roll and a gravure roll manufactured by the same}A method of manufacturing a gravure roll and a gravure roll manufactured by the method {A method of manufacturing gravure roll and a gravure roll manufactured by the same}

본 발명은 그라비어(gravure) 인쇄에 사용되는 그라비어 롤의 제조 방법 및 그에 의해 제조된 그라비어 롤에 관한 것으로, 더욱 상세하게는 인쇄 패턴이 형성되는 구리도금층 표면에 스퍼터링 방법에 의해 형성되는 금속증착층을 형성하여 표면을 강화한 구조의 그라비어 롤 제조 방법 및 그 방법에 의해 제조된 그라비어 롤에 관한 것이다.The present invention relates to a method of manufacturing a gravure roll used for gravure printing and a gravure roll manufactured thereby, and more particularly, to a metal deposition layer formed by a sputtering method on the surface of a copper plating layer on which a printing pattern is formed. It relates to a method for manufacturing a gravure roll having a structure in which the surface is reinforced by forming and a gravure roll manufactured by the method.

그라비어 인쇄는 원통 형태의 롤 표면에 음각으로 패턴을 형성하고 그 패턴에 잉크를 주입한 후 롤 형태로 감겨 있는 연속된 인쇄 대상물의 표면에 패턴을 전사하여 인쇄하는 방법을 말한다. 그라비어 인쇄는 속도가 빠르고 품질이 우수하여 사진, 포장재, 직물 분야 뿐만 아니라 전자소재 분야까지 다양하게 활용되고 있다.Gravure printing refers to a method of forming a pattern on the surface of a cylindrical roll in an intaglio shape, injecting ink into the pattern, and then transferring the pattern onto the surface of a continuous print object wound in a roll shape for printing. Gravure printing is widely used not only in photography, packaging, textiles, but also in electronic materials due to its high speed and high quality.

종래 그라비어 인쇄에 사용되는 그라비어 롤은 원통형의 코어 표면에 판면 형성용의 구리도금층을 형성한 후, 구리도금층에 인쇄패턴을 형성하고, 그 위에 다시 크롬도금층을 형성하여 내마모성을 갖도록 하였다.In the gravure roll used for conventional gravure printing, a copper plating layer for plate surface formation is formed on the cylindrical core surface, a printing pattern is formed on the copper plating layer, and a chromium plating layer is formed thereon to have abrasion resistance.

그런데 구리도금층을 보호하기 위한 크롬도금층의 경우 통상적으로 6가 크롬을 함유하는 도금욕(plating bath)을 사용하는 점에서 작업자에게 피부 질환 또는 호흡기 질환을 일으킬 수 있어 위험하고, 가스 및 폐수를 발생시켜 자연 환경을 오염시키는 요인이 되었다. 6가 크롬 화합물은 크롬산염 및 중크롬산염이 주류를 이루고 있는데, 화학적으로 활성이 높고, 독성이 강하며 인체에 매우 유해하다. 유럽, 미국, 일본 등 주요 선진국에서는 6가 크롬의 사용을 엄격히 규제하고 있다.However, in the case of the chromium plating layer to protect the copper plating layer, since a plating bath containing hexavalent chromium is used, it is dangerous because it can cause skin disease or respiratory disease to the worker, and it generates gas and wastewater. It has become a factor that pollutes the natural environment. The hexavalent chromium compound is mainly composed of chromate and dichromate, which are chemically active, highly toxic, and very harmful to the human body. The use of hexavalent chromium is strictly regulated in major developed countries such as Europe, the United States, and Japan.

또한, 종래 그라비어 롤은 구리도금층 표면을 패터닝한 후 크롬도금층을 약 5 내지 7㎛ 두께로 적용하여 표면경도와 내마모성을 향상시키고 있으나 이 경우 내부 잔류응력 밀도도 함께 증가되어 크롬도금층에 상당량의 미세균열(micro crack)을 유발 시키게 된다. 이러한 미세 균열은 크롬도금층 표면에서 칩핑(chipping) 현상을 유발하게 되어 인쇄 불량 요인으로 작용하는 문제가 있었다.In addition, conventional gravure rolls have improved surface hardness and abrasion resistance by patterning the surface of the copper plating layer and then applying the chromium plating layer to a thickness of about 5 to 7 μm. It causes (micro crack). These microcracks cause a chipping phenomenon on the surface of the chromium plating layer, and thus there is a problem that acts as a factor of printing defects.

대한민국 특허 등록 공보 제10-1520415호Korean Patent Registration Publication No. 10-1520415 대한민국 특허 공개 공보 제10-2019-0064102호Korean Patent Publication No. 10-2019-0064102

본 발명은 전술한 문제점을 해결 하기 위한 것으로, 6가 크롬을 이용하는 크롬 도금 공정 없이 그라비어 롤을 제조할 수 있는 방법 및 그 방법에 의해 제조된 그라비어 롤을 제공하는 것을 목적으로 한다. .The present invention is to solve the above-described problem, and an object of the present invention is to provide a method capable of manufacturing a gravure roll without a chromium plating process using hexavalent chromium, and a gravure roll manufactured by the method. .

또한, 본 발명은 그라비어 롤의 표면을 이루는 크롬도금층에 발생하던 미세균열 및 그에 따른 칩핑 현상을 방지할 수 있는 그라비어 롤의 제조 방법 및 그 방법에 의해 제조된 그라비어 롤을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method of manufacturing a gravure roll capable of preventing microcracks occurring in the chromium plating layer forming the surface of the gravure roll and the resulting chipping phenomenon, and a gravure roll manufactured by the method.

또한, 본 발명은 작업장의 안전성이 높고 환경 오염을 방지할 수 있는 그라비어 롤의 제조 방법 및 그 방법에 의해 제조된 그라비어 롤을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method of manufacturing a gravure roll capable of high safety in a workplace and preventing environmental pollution, and a gravure roll manufactured by the method.

전술한 목적을 달성하기 위한 본 발명에 따른 그라비어 롤의 제조 방법은 원통형의 금속 코어 표면에 50 ~ 200 ㎛(마이크로미터) 두께의 구리도금층을 형성하는 구리도금층 형성 단계와, 상기 구리도금층의 표면에 포토레지스트를 도포하는 포토레지스트 코팅 단계와, 상기 구리도금층 상에 형성할 인쇄 패턴에 대응되는 패턴을 갖도록 상기 포토레지스트의 일부를 제거하여 상기 포토레지스트 상에 소정의 패턴을 형성하는 노광 및 현상 단계와, 상기 노광 및 현상 단계에서 형성된 패턴이 형성된 포토레지스트를 마스크로 하여 상기 구리도금층을 식각하여 소정의 인쇄 패턴을 성형하는 에칭 단계와, 인쇄 패턴이 성형된 상기 구리도금층 표면에 남아 있는 포토레지스트를 제거하는 박리 단계와, 포토레지스트가 제거된 상태의 상기 구리도금층 표면의 경도 및 내마모성을 강화하기 위한 표면강화층을 형성하는 표면강화층 형성 단계를 포함하고, 상기 표면강화층 형성 단계는 구리도금층 표면을 플라즈마로 에칭하는 플라즈마 표면처리 단계와, 상기 플라즈마 표면 처리 단계에서 처리된 구리도금층 표면에 스퍼터링 공정에 의해 3 ~ 7 ㎛(마이크로미터) 두께의 금속증착층을 형성하는 금속증착층 형성 단계를 포함한다.The method of manufacturing a gravure roll according to the present invention for achieving the above object includes a copper plating layer forming step of forming a copper plating layer having a thickness of 50 to 200 μm (micrometer) on the surface of a cylindrical metal core, and on the surface of the copper plating layer. A photoresist coating step of applying a photoresist, an exposure and development step of forming a predetermined pattern on the photoresist by removing a part of the photoresist so as to have a pattern corresponding to a print pattern to be formed on the copper plating layer; , An etching step of forming a predetermined print pattern by etching the copper plating layer using the photoresist with the pattern formed in the exposure and development steps as a mask, and removing the photoresist remaining on the surface of the copper plating layer on which the print pattern is formed. And a peeling step of forming a surface reinforcing layer for enhancing hardness and abrasion resistance of the surface of the copper plating layer in a state in which the photoresist is removed, and the step of forming the surface reinforcing layer comprises forming a surface of the copper plating layer. A plasma surface treatment step of etching with plasma, and a metal deposition layer forming step of forming a metal deposition layer having a thickness of 3 to 7 µm (micrometer) by a sputtering process on the surface of the copper plating layer treated in the plasma surface treatment step. .

또한, 상기 금속증착층 형성 단계에서 형성되는 금속증착층은 크롬(Cr), 질화크롬(CrN), 탄화크롬(CrC), 탄화텅스텐(WC)중 어느 하나일 수 있다.In addition, the metal deposition layer formed in the metal deposition layer forming step may be any one of chromium (Cr), chromium nitride (CrN), chromium carbide (CrC), and tungsten carbide (WC).

또한, 상기 금속증착층이 크롬(Cr)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스를 소정 유량으로 주입하면서 바이어스 전압을 인가하여 수행될 수 있다.In addition, when the metal deposition layer is chromium (Cr), the metal deposition layer forming step is a sputtering process using a chromium target, and may be performed by injecting argon (Ar) gas into the chamber at a predetermined flow rate and applying a bias voltage. .

또한, 상기 금속증착층이 질화크롬(CrN)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 질소(N2) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행될 수 있다.In addition, when the metal deposition layer is chromium nitride (CrN), the metal deposition layer forming step is a sputtering process using a chromium target, in which argon (Ar) gas and nitrogen (N 2 ) gas are added to the chamber 2: 1 to 9: It can be performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio of 1.

또한, 상기 금속증착층이 탄화크롬(CrC)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 메탄(CH4) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행될 수 있다.In addition, when the metal deposition layer is chromium carbide (CrC), the metal deposition layer forming step is a sputtering process using a chromium target, in which argon (Ar) gas and methane (CH 4 ) gas are added to the chamber 2: 1 to 9: It can be performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio of 1.

또한, 상기 금속증착층이 탄화텅스텐(WC)인 경우, 상기 금속증착층 형성 단계는 텅스텐 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 메탄(CH4) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행될 수 있다.In addition, when the metal deposition layer is tungsten carbide (WC), the metal deposition layer forming step is a sputtering process using a tungsten target, in which argon (Ar) gas and methane (CH 4 ) gas are added to the chamber from 2: 1 to 9: It can be performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio of 1.

또한, 상기 표면강화층 형성 단계는 상기 금속증착층 형성 단계에서 형성된 금속증착층 표면에 다이아몬드상 카본층을 형성하는 단계를 더 포함할 수 있다.In addition, the step of forming the surface reinforcement layer may further include forming a diamond-like carbon layer on the surface of the metal deposition layer formed in the step of forming the metal deposition layer.

이러한 본 발명에 따른 그라비어 롤 제조 방법은 종래 6가 크롬도금 공정이 없이도 내마모성이 우수한 그라비어 롤의 제조 방법을 제공한다. 본 발명에 따른 그라비어 롤 제조 방법은 인쇄 패턴이 형성된 구리도금층 표면에 스퍼터링 공정에 의한 금속증착층을 형성하여 경도 및 내마모성이 우수한 그라비어 롤을 제조할 수 있는 방법을 제공한다. 따라서 종래 크롬 도금 공정시 발생될 수 있는 6가 크롬에 의한 환경오염을 방지할 수 있고, 작업 환경의 안전성을 높일 수 있다. 또한, 스퍼터링 공정에 의해 형성되는 금속증착층은 치밀한 조성 구조를 가지며 경도 및 내마모성이 우수하여 종래 그라비어 롤의 크롬 도금을 대체할 수 있다. 따라서 크롬도금층에 수반되던 마이크로 크랙 및 칩핑 불량을 해소할 수 있다.The method of manufacturing a gravure roll according to the present invention provides a method of manufacturing a gravure roll having excellent wear resistance even without a conventional hexavalent chromium plating process. The method for manufacturing a gravure roll according to the present invention provides a method for manufacturing a gravure roll having excellent hardness and abrasion resistance by forming a metal deposition layer by a sputtering process on the surface of a copper plating layer on which a printing pattern is formed. Therefore, it is possible to prevent environmental pollution due to hexavalent chromium, which may occur during the conventional chromium plating process, and increase the safety of the working environment. In addition, the metal deposition layer formed by the sputtering process has a dense composition structure and has excellent hardness and abrasion resistance, so that it can replace the chromium plating of the conventional gravure roll. Therefore, micro-cracks and chipping defects accompanying the chromium plating layer can be eliminated.

도1은 본 발명의 바람직한 일 실시예에 따른 그라비어 롤의 제조 방법을 도시한 순서도.
도2는 본 발명의 바람직한 일 실시예에 따른 그라비어 롤의 제조 방법에 따라 제조되는 그라비어 롤 각 층의 단면 구성을 개략적으로 도시한 도면.
1 is a flow chart showing a method of manufacturing a gravure roll according to an embodiment of the present invention.
2 is a view schematically showing a cross-sectional configuration of each layer of a gravure roll manufactured according to a method of manufacturing a gravure roll according to a preferred embodiment of the present invention.

이하에서는 본 발명의 바람직한 일 실시예를 도면을 참조하여 상세히 설명한다. 이하에서 설명되는 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형이 가해질 수 있다. 이하에서 설명되는 실시예는 본 발명을 해당 실시예로 한정하기 위해 기술되는 것이 아니다. 본 발명은 이하의 실시예 뿐만 아니라 본 명세서 전체로부터 이해되는 기술 사상의 범위 내에서 다양한 변형물, 대체물, 균등물을 포함하는 것으로 이해되어야 한다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. Various modifications may be made to the embodiments described below by those of ordinary skill in the art to which the present invention pertains. The embodiments described below are not described to limit the present invention to the corresponding embodiments. It should be understood that the present invention includes various modifications, substitutes, and equivalents within the scope of the technical idea understood from the entire specification as well as the following examples.

이하에서 사용될 수 있는 “포함한다”, “구성된다”, “가진다” 등의 표현은 추가적인 구성 요소나 기능을 배제하지는 않은 것으로 이해되어야 한다. 이하에서 용어의 사용에 있어서 단수의 표현은 명시적으로 언급되지 않는 한 복수의 표현을 배제하지 않은 것으로 이해되어야 한다.
It should be understood that expressions such as "include", "consist of" and "have" that may be used hereinafter do not exclude additional elements or functions. Hereinafter, in the use of terms, the singular expression should be understood as not excluding the plural expression unless explicitly stated.

도1은 본 발명의 바람직한 일 실시예에 따른 그라비어 롤의 제조 방법을 도시한 순서도이며, 도2는 본 발명의 바람직한 일 실시예에 따른 그라비어 롤의 제조 방법에 의해 제조되는 그라비어 롤 각 층의 단면 구성을 개략적으로 도시한 도면이다.1 is a flowchart showing a method of manufacturing a gravure roll according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional view of each layer of a gravure roll manufactured by a method of manufacturing a gravure roll according to a preferred embodiment of the present invention. It is a diagram schematically showing the configuration.

이들을 참조하면, 본 발명에 따른 그라비어 롤의 제조 방법은 코어 준비 단계(S10)를 포함한다(도2 (a) 참조). 코어(1)는 중공의 원통 형태를 갖는다. 코어(1)는 소정의 기계적 강성과 내구성을 갖는 금속으로 제조될 수 있으며, 예를 들어 스틸, 알루미늄으로 제조될 수 있다.Referring to these, the method of manufacturing a gravure roll according to the present invention includes a core preparation step (S10) (see Fig. 2 (a)). The core 1 has a hollow cylindrical shape. The core 1 may be made of a metal having a predetermined mechanical stiffness and durability, and may be made of, for example, steel or aluminum.

다음으로 준비된 코어(1)의 표면에 인쇄를 위한 패턴을 형성하기 위한 구리도금층을 형성하는 구리도금층 형성단계(S20)가 수행된다(도2 (b) 참조). 코어(1) 표면에 형성되는 구리도금층(2)은 인쇄를 위한 요철 패턴이 성형되는 층이다. 인쇄 패턴은 후술할 에칭 공정으로 성형될 수 있다. 구리도금층(2)은 패턴 성형이 용이한 금속으로써, 코어의 표면에 전해 도금 방식에 의해 형성될 수 있다. 구리도금층(2)은 소정의 두께를 갖는 것이 바람직하며, 예를 들어 50 ~ 200㎛(마이크로미터)일 수 있다. 두께가 50㎛(마이크로미터)이하인 경우는 인쇄 패턴을 형성할 충분한 두께를 확보할 수 없으며, 두께가 200㎛(마이크로미터)를 초과하는 경우는 연질인 구리도금층(2)이 너무 두꺼워져 기계적 강도 측면에서 불리할 수 있다. 또한 구리도금층 형성단계(S20)은 구리도금층(2) 표면에 이물질을 제거하고, 표면을 평탄화하기 위한 폴리싱(polishing) 단계를 포함할 수 있다. 본 실시예에 있어서는 인쇄 패턴을 형성하기 위해 구리도금층이 사용되는 경우를 예로 들었으나, 경우에 따라서는 구리도금층 대신에 금, 은, 아연, 카드뮴, 주석, 납 등으로 이루어진 금속층이 구성될 수 도 있다.Next, a copper plating layer forming step S20 of forming a copper plating layer for forming a pattern for printing on the prepared surface of the core 1 is performed (see FIG. 2(b)). The copper plating layer 2 formed on the surface of the core 1 is a layer on which an uneven pattern for printing is formed. The printed pattern may be formed by an etching process to be described later. The copper plating layer 2 is a metal that is easily patterned and may be formed on the surface of the core by electroplating. It is preferable that the copper plating layer 2 has a predetermined thickness, and may be, for example, 50 to 200 μm (micrometer). If the thickness is less than 50㎛ (micrometer), sufficient thickness to form a print pattern cannot be secured. If the thickness exceeds 200㎛ (micrometer), the soft copper plating layer (2) becomes too thick and mechanical strength It can be disadvantageous on the side. In addition, the copper plating layer forming step S20 may include a polishing step to remove foreign substances from the surface of the copper plating layer 2 and planarize the surface. In this embodiment, a case where a copper plating layer is used to form a printing pattern is exemplified, but in some cases, a metal layer made of gold, silver, zinc, cadmium, tin, lead, etc. may be formed instead of the copper plating layer. have.

다음으로 구리도금층 위에 포토레지스트(Photo Resist)를 도포하는 포토레지스트 코팅 단계(S30)가 수행된다(도2 (c) 참조). 포토레지스트(3)는 후출할 에칭 공정에서 마스크(Mask)로 기능하기 위한 것이다. 포토레지스트(3)는 포지티브(Positive) 포토레지스트이거나 네거티브(Negative) 포토레지스트일 수 있다.Next, a photoresist coating step (S30) of applying a photoresist on the copper plating layer is performed (see FIG. 2(c)). The photoresist 3 is for functioning as a mask in an etching process to be carried out later. The photoresist 3 may be a positive photoresist or a negative photoresist.

다음으로 도포된 포토레지스트에 소정의 패턴을 형성하기 위한 노광(Exposure) 및 현상(Develop) 단계(S40)가 수행된다(도2 (d) 참조). 노광 및 현상 단계(40)에서 구리도금층(2)에 형성될 인쇄 패턴에 대응 되는 위치의 포토레지스트(3)가 제거된다. 예를 들어 포지티브 포토레지스트가 사용된 경우 인쇄 패턴이 형성될 위치에 대응되는 포토레지스트 상에 광이 조사되고, 광이 조사된 부분의 포토레지스트가 제거된다. 반대로 네거티브 포토레지스트가 사용된 경우는 인쇄 패턴이 형성되지 않는 위치에 대응되는 포토레지스트 상에 광이 조사되고, 광이 조사된 부분을 제외한 나머지 부분의 포토레지스트가 제거된다. 노광 및 현상 단계(S40)에 의해 일부가 제거되어 패턴화 된 포토레지스트(3p)가 남게 된다.Next, exposure and development steps (S40) for forming a predetermined pattern on the applied photoresist are performed (see FIG. 2(d)). In the exposure and development step 40, the photoresist 3 at a position corresponding to the print pattern to be formed on the copper plating layer 2 is removed. For example, when a positive photoresist is used, light is irradiated onto the photoresist corresponding to the position where the print pattern is to be formed, and the photoresist at the portion irradiated with light is removed. Conversely, when a negative photoresist is used, light is irradiated onto the photoresist corresponding to a position where a print pattern is not formed, and the photoresist in the rest of the photoresist is removed except for the irradiated portion. Part of the photoresist 3p is removed by the exposure and development step S40, leaving the patterned photoresist 3p.

다음으로 구리도금층에 인쇄 패턴을 형성하기 위한 에칭 단계(S50)가 수행된다(도2 (e) 참조). 노광 및 현상 단계(S40)를 통해 패턴화 된 포토레지스트(3p)를 에칭 마스크로 하여 구리도금층(2)이 식각된다. 구리도금층(2)에는 소정 깊이의 인쇄 패턴이 형성되어 패턴화 된 구리도금층(2p)이 만들어진다.Next, an etching step (S50) for forming a print pattern on the copper plating layer is performed (see Fig. 2(e)). The copper plating layer 2 is etched using the photoresist 3p patterned through the exposure and development step S40 as an etching mask. A printed pattern of a predetermined depth is formed on the copper plating layer 2 to form a patterned copper plating layer 2p.

다음으로 에칭 마스크로 사용된 포토레지스트를 제거하는 박리(stripping) 단계(S60)가 수행된다(도2 (f) 참조). 박리 단계(S60)에서는 인쇄 패턴이 형성된 구리도금층(2p) 표면에 부착되어 있던 포토레지스트(3p)가 모두 제거된다.Next, a stripping step (S60) of removing the photoresist used as an etching mask is performed (see Fig. 2(f)). In the peeling step (S60), all of the photoresist 3p attached to the surface of the copper plating layer 2p on which the printed pattern is formed is removed.

다음으로 인쇄 패턴이 형성된 구리도금층 표면에 소정의 경도 및 내마모성을 부여하기 위한 표면강화층 형성 단계(S70)가 수행된다. 표면강화층 형성 단계(S70)에서는 물리적 기상 증착(PVD, Physical Vapor Deposition) 방법에 의한 금속증착층(4A)이 패턴화 된 구리도금층(2p) 표면 위에 형성된다.Next, a surface reinforcing layer forming step (S70) for imparting predetermined hardness and abrasion resistance to the surface of the copper plating layer on which the printed pattern is formed is performed. In the surface enhancement layer forming step (S70), a metal deposition layer 4A by a physical vapor deposition (PVD) method is formed on the patterned surface of the copper plating layer 2p.

금속증착층(4A)은 크롬(Cr), 질화크롬(CrN), 탄화크롬(CrC) 중 어느 하나로 구성될 수 있다. 또는 금속증착층(4A)은 탄화텅스텐(WC) 으로 구성될 수 있다.The metal deposition layer 4A may be formed of any one of chromium (Cr), chromium nitride (CrN), and chromium carbide (CrC). Alternatively, the metal deposition layer 4A may be made of tungsten carbide (WC).

표면강화층 형성 단계(S70)는 금속증착층(4A)을 형성하기에 앞서 인쇄 패턴이 형성된 구리도금층(2p) 표면에 접착력을 향상시키기 위한 플라즈마 표면 처리 단계(S71)를 포함할 수 있다. 플라즈마 표면 처리 단계(S71)에서는 인쇄 패턴이 형성된 구리도금층(2p) 표면에 소정의 조건에 따른 플라즈마 처리가 수행된다. 예를 들어 플라즈마 표면 처리 단계(S71)는 5 X 10-5 Torr 진공 조건하의 플라즈마 챔버에 아르곤(Ar) 가스를 주입하면서 1500V(볼트), 0.35A(암페어), 500W(와트)의 바이어스(Bias)로 1 ~ 2 시간 동안 수행될 수 있다.The surface reinforcement layer forming step S70 may include a plasma surface treatment step S71 for improving adhesion to the surface of the copper plating layer 2p on which the printed pattern is formed prior to forming the metal deposition layer 4A. In the plasma surface treatment step S71, plasma treatment according to predetermined conditions is performed on the surface of the copper plating layer 2p on which the printed pattern is formed. For example, in the plasma surface treatment step (S71), while injecting argon (Ar) gas into the plasma chamber under a 5 X 10 -5 Torr vacuum condition, a bias of 1500 V (volt), 0.35 A (ampere), and 500 W (watt). ) Can be performed for 1 to 2 hours.

플라즈마 표면 처리된 구리도금층(2p) 위에 금속증착층(4A)을 형성하기 위한 금속증착층 형성 단계(S72)는 물리적 기상 증착(PVD) 방식의 일종인 스퍼터링(sputtering) 공정에 의해 수행될 수 있다(도 2 (g) 참조).The metal deposition layer forming step (S72) for forming the metal deposition layer 4A on the plasma surface-treated copper plating layer 2p may be performed by a sputtering process, which is a kind of physical vapor deposition (PVD) method. (See Fig. 2(g)).

금속증착층(4A)이 크롬(Cr)인 경우 고순도(예, 99.9% 내지 99.95%) 크롬 타겟을 이용한 스퍼터링(sputtering) 공정에 의해 금속증착층(4A)이 형성될 수 있다. 스퍼터링 공정은 챔버에 고순도(예, 99.999%)의 아르곤(Ar) 가스를 소정의 유량(예, 70 sccm)으로 주입하면서, 소정의 바이어스(예, 70 ~ 100V(볼트)) 전압을 인가하는 조건에서 수행될 수 있다. 금속증착층(4A)의 두께는 3 ~ 7 ㎛(마이크로미터)인 것이 바람직하다.When the metal deposition layer 4A is chromium (Cr), the metal deposition layer 4A may be formed by a sputtering process using a high purity (eg, 99.9% to 99.95%) chromium target. The sputtering process is a condition of injecting high purity (eg, 99.999%) argon (Ar) gas into the chamber at a predetermined flow rate (eg, 70 sccm) while applying a predetermined bias (eg, 70 ~ 100V (volt)) voltage to the chamber. Can be done in It is preferable that the thickness of the metal deposition layer 4A is 3 to 7 µm (micrometer).

금속증착층(4A)이 질화크롬(CrN)인 경우에도 고순도 크롬 타겟을 이용한 스퍼터링 공정에 의해 금속증착층(4A)이 형성될 수 있으며, 이 때는 고순도의 아르곤(Ar) 가스와 고순도의 질소(N2) 가스를 혼합한 가스를 소정 유량(예, 70 sccm)으로 주입하면서 소정의 바이어스(예, 70 ~ 100V(볼트)) 전압을 인가하여 질화크롬(CrN)층을 형성할 수 있다. 아르곤 가스와 질소 가스의 혼합비는 2 : 1 ~ 9 : 1 범위인 것이 바람직하다. 한편, 질화크롬(CrN)층 증착 시작 단계에서는 일정 시간(예, 10분 이내) 동안 아르곤(Ar)가스만 주입하여 스퍼터링을 실시함으로써 구리도금층(2p) 표면에 접하는 가장 아래부분에는 순수한 크롬(Cr)층이 형성되도록 하여 구리도금층(2p)과의 접착력을 높일 수 있다. 금속증착층(4A)의 두께는 3 ~ 7 ㎛(마이크로미터)인 것이 바람직하다.Even when the metal deposition layer 4A is chromium nitride (CrN), the metal deposition layer 4A may be formed by a sputtering process using a high purity chromium target. In this case, high purity argon (Ar) gas and high purity nitrogen ( N 2 ) A chromium nitride (CrN) layer can be formed by injecting a gas mixed with a gas at a predetermined flow rate (eg, 70 sccm) and applying a predetermined bias (eg, 70 to 100 V (volt)) voltage. The mixing ratio of argon gas and nitrogen gas is preferably in the range of 2:1 to 9:1. On the other hand, in the starting step of depositing the chromium nitride (CrN) layer, only argon (Ar) gas is injected for a certain period of time (for example, within 10 minutes) and sputtering is performed. ) Layer can be formed to increase the adhesion to the copper plating layer (2p). It is preferable that the thickness of the metal deposition layer 4A is 3 to 7 µm (micrometer).

금속증착층(4A)이 탄화크롬(CrC)인 경우에도 고순도 크롬 타겟을 이용한 스퍼터링 공정에 의해 금속증착층(4A)이 형성될 수 있다. 이 때는 고순도의 아르곤(Ar) 가스와 메탄(CH4) 가스를 혼합한 가스를 소정 유량(예, 70 sccm)으로 주입하면서 챔버에 소정의 바이어스(예, 70 ~ 100V(볼트)) 전압을 가하여 탄화크롬(CrC)층을 형성할 수 있다. 아르곤 가스와 메탄 가스의 혼합비는 2 : 1 ~ 9 : 1 범위인 것이 바람직하다. 탄화크롬(CrC)층 증착 시작 단계에서는 일정 시간(예, 10분 이내) 동안 아르곤(Ar) 가스만 주입하여 스퍼터링을 실시함으로써 구리도금층 표면에 접하는 가장 아래 부분에는 순수한 크롬(Cr)층이 형성되도록 하여 구리도금층과의 접착력을 높일 수 있다. 금속증착층(4A)의 두께는 3 ~ 7 ㎛(마이크로미터)인 것이 바람직하다.Even when the metal deposition layer 4A is chromium carbide (CrC), the metal deposition layer 4A may be formed by a sputtering process using a high-purity chromium target. In this case, by injecting a mixture of high-purity argon (Ar) gas and methane (CH 4 ) gas at a predetermined flow rate (e.g., 70 sccm) and applying a predetermined bias (e.g., 70 ~ 100V (volts)) voltage to the chamber. A chromium carbide (CrC) layer may be formed. The mixing ratio of argon gas and methane gas is preferably in the range of 2:1 to 9:1. At the start of depositing the chromium carbide (CrC) layer, sputtering is performed by injecting only argon (Ar) gas for a certain period of time (e.g., within 10 minutes) so that a pure chromium (Cr) layer is formed at the bottom of the surface of the copper plating layer Thus, it is possible to increase the adhesion to the copper plating layer. It is preferable that the thickness of the metal deposition layer 4A is 3 to 7 µm (micrometer).

한편, 금속증착층(4A)이 탄화텅스텐(WC)인 경우는 고순도(예, 99.95%)의 텅스텐(W) 타겟을 이용한 스퍼터링 공정에 의해 금속증착층(4A)이 형성될 수 있다. 이 스퍼터링 공정에서는 고순도의 아르곤(Ar) 가스와 메탄(CH4) 가스를 혼합한 가스를 소정 유량(예, 70 sccm)으로 주입하면서 챔버에 소정의 바이어스(예, 70 ~ 100V(볼트)) 전압을 가하여 탄화텅스텐(WC)층을 형성할 수 있다. 아르곤 가스와 메탄 가스의 혼합비는 2 : 1 ~ 9 : 1 범위인 것이 바람직하다. 탄화텅스텐(WC)층 증착 시작 단계에서는 일정 시간(예, 10분 이내) 동안 아르곤(Ar) 가스만 주입하여 스퍼터링을 실시함으로써 구리도금층 표면에 접하는 가장 아래 부분에는 순수한 텅스텐(W)층이 형성되도록 하여 구리도금층과의 접착력을 높일 수 있다. 금속증착층(4A)의 두께는 3 ~ 7 ㎛(마이크로미터)인 것이 바람직하다. 그리고 탄화텅스텐(WC)층을 형성하기 위한 스퍼터링 공정에 있어서 텅스텐(W) 타겟 대신에 탄화텅스텐(WC) 타겟이 사용될 수도 있다.Meanwhile, when the metal deposition layer 4A is tungsten carbide (WC), the metal deposition layer 4A may be formed by a sputtering process using a high purity (eg, 99.95%) tungsten (W) target. In this sputtering process, a gas that is a mixture of high-purity argon (Ar) gas and methane (CH 4 ) gas is injected at a predetermined flow rate (e.g., 70 sccm) and a predetermined bias (e.g., 70 ~ 100V (volt)) voltage is injected into the chamber. By adding a tungsten carbide (WC) layer may be formed. The mixing ratio of argon gas and methane gas is preferably in the range of 2:1 to 9:1. At the start of deposition of the tungsten carbide (WC) layer, sputtering is performed by injecting only argon (Ar) gas for a certain period of time (e.g., within 10 minutes) so that a pure tungsten (W) layer is formed at the bottom of the surface of the copper plating layer. Thus, it is possible to increase the adhesion to the copper plating layer. It is preferable that the thickness of the metal deposition layer 4A is 3 to 7 µm (micrometer). In addition, in a sputtering process for forming a tungsten carbide (WC) layer, a tungsten carbide (WC) target may be used instead of the tungsten (W) target.

스퍼터링 공정에 의해 형성된 금속증착층(4A)은 구리도금층(2p) 표면에 소정의 경도 및 내마모성을 제공한다. 스퍼터링 공정에 의해 형성된 금속증착층(4A)은 치밀한 조직을 가지며 종래 도금 방식에 의해 형성된 크롬도금 표면에 수반되던 마이크로 크랙 현상이 발생되지 않는다.The metal deposition layer 4A formed by the sputtering process provides a predetermined hardness and abrasion resistance to the surface of the copper plating layer 2p. The metal deposition layer 4A formed by the sputtering process has a dense structure and does not cause micro-cracks associated with the chromium plating surface formed by the conventional plating method.

이러한 본 발명에 따른 스퍼터링 공정에 의해 형성된 금속증착층(4A)은 종래 기술에 따른 6가크롬도금면 대비하여 우수한 경도 및 내마모성을 제공한다. 아래 <표1>은 종래의 6가크롬도금면 대비 본 발명의 그라비어 롤의 제조 방법에 의해 형성된 금속증착층(4A), 즉 크롬(Cr), 질화크롬(CrN), 탄화크롬(CrC)의 내마모성을 실험한 결과를 정리한 것이다. 내마모성실험은 공구용합금강(예, SK11)을 마모재로하여 시편 표면을 왕복운동하며 마찰시킨 후 마찰 전과 후의 시편 무게를 비교하여 마모율을 확인하는 방식으로 수행되었다. 마찰운동 조건은 속도 60 rpm, 하중 1Kg중, 마찰횟수 5,000회, 마찰거리 30±1㎜, 실험온도 23±2℃, 실험습도 50±5%이었다.The metal deposition layer 4A formed by the sputtering process according to the present invention provides excellent hardness and wear resistance compared to the hexavalent chromium plated surface according to the prior art. Table 1 below shows the metal deposition layer 4A formed by the method of manufacturing a gravure roll of the present invention, that is, chromium (Cr), chromium nitride (CrN), and chromium carbide (CrC) compared to the conventional hexavalent chromium plated surface. This is a summary of the results of the abrasion resistance test. The abrasion resistance test was conducted by using alloy steel for tool (e.g. SK11) as a wear material to reciprocate and rub the surface of the specimen, and then compare the weight of the specimen before and after the friction to check the wear rate. Frictional motion conditions were speed 60 rpm, load 1kg, friction frequency 5,000 times, friction distance 30±1mm, experiment temperature 23±2℃, experiment humidity 50±5%.

시편Psalter 마찰 전 무게(g)Weight before friction (g) 마찰 후 무게(g)Weight after rubbing (g) 감소된 무게(g)Reduced weight (g) 무게감소율(%)Weight reduction rate (%) 6가크롬도금Hexavalent chromium plating 4.55624.5562 4.53754.5375 0.01870.0187 0.4100.410 크롬(Cr)Chromium (Cr) 4.70944.7094 4.70894.7089 0.00050.0005 0.0110.011 질화크롬(CrN)Chromium nitride (CrN) 4.41454.4145 4.41394.4139 0.00060.0006 0.0110.011 탄화크롬(CrC)Chromium carbide (CrC) 4.80614.8061 4.80584.8058 0.00030.0003 0.0060.006

<표1>을 참조하면 6가크롬도금면에 대비하여 본 발명에 따른 금속증착층면(크롬, 질화크롬, 탄화크롬)에서 무게감소율이 현저히 적게 나타나는 것을 알 수 있다. 즉, 내마모성이 6가크롬도금면 대비하여 월등히 우수하다는 점이 확인된다.Referring to Table 1, it can be seen that the weight reduction rate is significantly lower in the metal deposition layer surface (chromium, chromium nitride, chromium carbide) according to the present invention compared to the hexavalent chromium plated surface. That is, it is confirmed that the abrasion resistance is far superior to that of hexavalent chromium plated surface.

또한, 표면 강화층 형성 단계(S70)는 형성된 금속증착층(4A) 표면에 다이아몬드상 카본(DLC, Diamond Like Carbon)층을 형성하는 DLC층 형성 단계(S73)를 더 포함할 수 있다(도 2 (h) 참조). 다이아몬드상 카본(DLC)층은 금속증착층(4A)과 함께 표면강화층(4)을 구성할 수 있다. 다이아몬드상 카본층은 비정질(Amorphous)의 카본(Carbon) 증착에 의해 형성된 층으로 내산화성이 우수하고, 경도가 높으며, 마찰계수가 낮은 특성을 갖는다. DLC층 형성 단계(S73)는 필요에 따라 선택적으로 수행될 수 있다.In addition, the step of forming a surface enhancement layer (S70) may further include a step of forming a DLC layer (S73) of forming a diamond-like carbon (DLC) layer on the surface of the formed metal deposition layer 4A (FIG. 2) (h)). The diamond-like carbon (DLC) layer may constitute the surface reinforcement layer 4 together with the metal deposition layer 4A. The diamond-shaped carbon layer is a layer formed by deposition of amorphous carbon and has excellent oxidation resistance, high hardness, and low coefficient of friction. The DLC layer forming step (S73) may be selectively performed as necessary.

이상에서 상세히 설명한 본 발명에 따른 그라비어 롤 제조 방법은 종래 6가 크롬도금 공정이 없이도 내마모성이 우수한 그라비어 롤의 제조 방법을 제공한다. 본 발명에 따른 그라비어 롤 제조 방법은 인쇄 패턴이 형성된 구리도금층 표면에 스퍼터링 공정에 의한 금속증착층(4A)을 형성하여 경도 및 내마모성이 우수한 그라비어 롤을 제조할 수 있는 방법을 제공한다. 따라서 종래 크롬 도금 공정시 발생될 수 있는 6가 크롬에 의한 환경오염을 방지할 수 있고, 작업 환경의 안전성을 높일 수 있다. 또한, 스퍼터링 공정에 의해 형성되는 금속증착층(4A)은 치밀한 조성 구조를 가지며 경도 및 내마모성이 우수하여 종래 그라비어 롤의 크롬 도금을 대체할 수 있다. 따라서 크롬도금층에 수반되던 마이크로 크랙 및 칩핑 불량을 해소할 수 있다.The method of manufacturing a gravure roll according to the present invention described in detail above provides a method of manufacturing a gravure roll having excellent wear resistance even without a conventional hexavalent chromium plating process. The method for manufacturing a gravure roll according to the present invention provides a method for manufacturing a gravure roll having excellent hardness and abrasion resistance by forming a metal deposition layer 4A by a sputtering process on the surface of a copper plating layer on which a printing pattern is formed. Therefore, it is possible to prevent environmental pollution due to hexavalent chromium, which may occur during the conventional chromium plating process, and increase the safety of the working environment. In addition, the metal deposition layer 4A formed by the sputtering process has a dense composition structure, has excellent hardness and abrasion resistance, and thus can replace the chromium plating of the conventional gravure roll. Therefore, micro-cracks and chipping defects accompanying the chromium plating layer can be eliminated.

1 : 코어
2, 2p : 구리도금층
3, 3p : 포토레지스트
4A : 금속증착층
4B : 다이아몬드상 카본층
S10 : 코어 준비 단계
S20 : 구리도금층 형성 단계
S30 : 포토레지스트 코팅 단계
S40 : 노광 및 현상 단계
S50 : 에칭 단계
S60 : 박리 단계
S70 : 표면강화층 형성 단계
1: core
2, 2p: copper plating layer
3, 3p: photoresist
4A: metal deposition layer
4B: diamond-shaped carbon layer
S10: core preparation stage
S20: copper plating layer formation step
S30: Photoresist coating step
S40: Exposure and development stage
S50: etching step
S60: peeling step
S70: Surface reinforcement layer formation step

Claims (8)

원통형의 금속 코어 표면에 50 ~ 200 ㎛(마이크로미터) 두께의 구리도금층을 형성하는 구리도금층 형성 단계와,
상기 구리도금층의 표면에 포토레지스트를 도포하는 포토레지스트 코팅 단계와,
상기 구리도금층 상에 형성할 인쇄 패턴에 대응되는 패턴을 갖도록 상기 포토레지스트의 일부를 제거하여 상기 포토레지스트 상에 소정의 패턴을 형성하는 노광 및 현상 단계와,
상기 노광 및 현상 단계에서 형성된 패턴이 형성된 포토레지스트를 마스크로 하여 상기 구리도금층을 식각하여 소정의 인쇄 패턴을 성형하는 에칭 단계와,
인쇄 패턴이 성형된 상기 구리도금층 표면에 남아 있는 포토레지스트를 제거하는 박리 단계와,
포토레지스트가 제거된 상태의 상기 구리도금층 표면의 경도 및 내마모성을 강화하기 위한 표면강화층을 형성하는 표면강화층 형성 단계를 포함하고,
상기 표면강화층 형성 단계는 구리도금층 표면을 플라즈마로 에칭하는 플라즈마 표면처리 단계와, 상기 플라즈마 표면 처리 단계에서 처리된 구리도금층 표면에 스퍼터링 공정에 의해 3 ~ 7 ㎛(마이크로미터) 두께의 금속증착층을 형성하는 금속증착층 형성 단계를 포함하는 그라비어 롤의 제조 방법.
A copper plating layer forming step of forming a copper plating layer having a thickness of 50 to 200 μm (micrometer) on the surface of the cylindrical metal core, and
A photoresist coating step of applying a photoresist to the surface of the copper plating layer,
An exposure and development step of forming a predetermined pattern on the photoresist by removing a part of the photoresist so as to have a pattern corresponding to the printing pattern to be formed on the copper plating layer;
An etching step of forming a predetermined print pattern by etching the copper plating layer using the photoresist on which the pattern formed in the exposure and development steps is formed as a mask,
A peeling step of removing the photoresist remaining on the surface of the copper plating layer on which the printed pattern is formed,
A surface reinforcement layer forming step of forming a surface reinforcement layer for enhancing hardness and abrasion resistance of the surface of the copper plating layer in a state in which the photoresist is removed,
The surface reinforcement layer forming step includes a plasma surface treatment step of etching the surface of the copper plating layer with plasma, and a metal deposition layer having a thickness of 3 to 7 µm (micrometer) by a sputtering process on the surface of the copper plating layer treated in the plasma surface treatment step. Method of manufacturing a gravure roll comprising the step of forming a metal deposition layer to form a.
제1항에 있어서,
상기 금속증착층 형성 단계에서 형성되는 금속증착층은 크롬(Cr), 질화크롬(CrN), 탄화크롬(CrC), 탄화텅스텐(WC)중 어느 하나인 그라비어 롤의 제조 방법.
The method of claim 1,
The metal deposition layer formed in the metal deposition layer forming step is any one of chromium (Cr), chromium nitride (CrN), chromium carbide (CrC), and tungsten carbide (WC).
제2항에 있어서,
상기 금속증착층이 크롬(Cr)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스를 소정 유량으로 주입하면서 바이어스 전압을 인가하여 수행되는 그라비어 롤의 제조 방법.
The method of claim 2,
When the metal deposition layer is chromium (Cr), the metal deposition layer forming step is a sputtering process using a chromium target, and manufacture of a gravure roll performed by injecting argon (Ar) gas into the chamber at a predetermined flow rate and applying a bias voltage. Way.
제2항에 있어서,
상기 금속증착층이 질화크롬(CrN)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 질소(N2) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행되는 그라비어 롤의 제조 방법.
The method of claim 2,
1: the metallized layer is a case of chromium nitride (CrN), the metallized layer forming step is argon to the chamber by a sputtering process using a chromium target (Ar) gas and nitrogen (N 2) gas 2: 1-9 A method of manufacturing a gravure roll performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio.
제2항에 있어서,
상기 금속증착층이 탄화크롬(CrC)인 경우, 상기 금속증착층 형성 단계는 크롬 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 메탄(CH4) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행되는 그라비어 롤의 제조 방법.
The method of claim 2,
When the metal deposition layer is chromium carbide (CrC), the metal deposition layer forming step is a sputtering process using a chromium target. Argon (Ar) gas and methane (CH 4 ) gas are added to the chamber in a ratio of 2:1 to 9:1. A method of manufacturing a gravure roll performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio.
제2항에 있어서,
상기 금속증착층이 탄화텅스텐(WC)인 경우, 상기 금속증착층 형성 단계는 텅스텐 타겟을 이용한 스퍼터링 공정으로써 챔버에 아르곤(Ar) 가스와 메탄(CH4) 가스를 2 : 1 ~ 9 : 1의 혼합비로 소정 유량 주입하면서 바이어스 전압을 인가하여 수행되는 그라비어 롤의 제조 방법.
The method of claim 2,
When the metal deposition layer is tungsten carbide (WC), the metal deposition layer forming step is a sputtering process using a tungsten target. Argon (Ar) gas and methane (CH 4 ) gas are added to the chamber from 2:1 to 9:1. A method of manufacturing a gravure roll performed by applying a bias voltage while injecting a predetermined flow rate at a mixing ratio.
제2항에 있어서,
상기 표면강화층 형성 단계는 상기 금속증착층 형성 단계에서 형성된 금속증착층 표면에 다이아몬드상 카본층을 형성하는 단계를 더 포함하는 그라비어 롤의 제조 방법.
The method of claim 2,
The step of forming the surface reinforcement layer further comprises forming a diamond-like carbon layer on the surface of the metal deposition layer formed in the metal deposition layer forming step.
제1항 내지 제7항 중 어느 한 항의 그라비어 롤의 제조 방법에 의해 제조된 그라비어 롤.
A gravure roll manufactured by the method for manufacturing a gravure roll according to any one of claims 1 to 7.
KR1020190108122A 2019-09-02 2019-09-02 A method of manufacturing gravure roll KR102231267B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190108122A KR102231267B1 (en) 2019-09-02 2019-09-02 A method of manufacturing gravure roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190108122A KR102231267B1 (en) 2019-09-02 2019-09-02 A method of manufacturing gravure roll

Publications (2)

Publication Number Publication Date
KR20210027694A true KR20210027694A (en) 2021-03-11
KR102231267B1 KR102231267B1 (en) 2021-03-24

Family

ID=75143195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190108122A KR102231267B1 (en) 2019-09-02 2019-09-02 A method of manufacturing gravure roll

Country Status (1)

Country Link
KR (1) KR102231267B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427732B1 (en) * 2022-01-25 2022-08-01 한국진공주식회사 Wc/c coating film structure for extending lifetime of press roll for producing facility of secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118593A (en) * 2005-09-30 2007-05-17 Think Laboratory Co Ltd Photogravure reproduction roll with cushion layer and its manufacturing method
JP2009090661A (en) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd Gravure platemaking roll and its manufacturing method
JP2012154964A (en) * 2011-01-21 2012-08-16 Think Laboratory Co Ltd Roll with pattern and method for manufacturing the same
JP2014081489A (en) * 2012-10-16 2014-05-08 Think Laboratory Co Ltd Platemaking roll for gravure printing and method for manufacturing the same
KR101520415B1 (en) 2012-12-28 2015-05-15 (주) 파루 Roll to roll gravure stop and go circuit printing machine
KR20190064102A (en) 2017-11-30 2019-06-10 (주)프로템 Micro gravure roll coating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118593A (en) * 2005-09-30 2007-05-17 Think Laboratory Co Ltd Photogravure reproduction roll with cushion layer and its manufacturing method
JP2009090661A (en) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd Gravure platemaking roll and its manufacturing method
JP2012154964A (en) * 2011-01-21 2012-08-16 Think Laboratory Co Ltd Roll with pattern and method for manufacturing the same
JP2014081489A (en) * 2012-10-16 2014-05-08 Think Laboratory Co Ltd Platemaking roll for gravure printing and method for manufacturing the same
KR101520415B1 (en) 2012-12-28 2015-05-15 (주) 파루 Roll to roll gravure stop and go circuit printing machine
KR20190064102A (en) 2017-11-30 2019-06-10 (주)프로템 Micro gravure roll coating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427732B1 (en) * 2022-01-25 2022-08-01 한국진공주식회사 Wc/c coating film structure for extending lifetime of press roll for producing facility of secondary battery

Also Published As

Publication number Publication date
KR102231267B1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
KR101328314B1 (en) Gravure Printing Engraving Roll and Manufacturing Method thereof
EP0177666B1 (en) Ink metering roller for lithographic printing and process for producing same
US9976209B2 (en) Sliding member and method for manufacturing the same
CN107765508B (en) Method for producing halftone phase shift mask blank, halftone phase shift mask, and thin film forming apparatus
TW201001057A (en) Photomask blank, photomask, and methods of manufacturing the same
KR102231267B1 (en) A method of manufacturing gravure roll
JP2004169137A (en) Sliding member
JP2022103274A (en) Printing stencil and manufacturing method thereof
JP2006205716A (en) Metal mask
JP6474484B2 (en) Gravure cylinder and manufacturing method thereof
US4986181A (en) Rollers for a lithographic ink supplying system
KR20120087044A (en) Gravure roll and manufacturing the same
JP2010137543A (en) Roll for printer, and method for manufacturing the same
ES2961568T3 (en) Coated intaglio printing plate
KR100529064B1 (en) Manufacturing method of wear resistant process roll in cold rolling plant
EP0520022A1 (en) Screen roller with a pattern layer in an electroplated top layer, and roller body for such a roller.
JP2740865B2 (en) Printing roller
KR100535113B1 (en) A Photosensitive Polymer-based Relief Printing Plate Having Vapor Deposition Layer Thereon and A Method for Preparing the Same
JP2902542B2 (en) Roll bearing
JP2007084884A (en) Roll manufacturing method, and roll manufactured by using the same
JP3960227B2 (en) Surface treatment method for ornaments, ornaments and watches
JP4426134B2 (en) Components for molten metal plating equipment
JP2011218673A (en) Mesh for screen printing
JP2017202610A (en) Printing stencil with screen mesh conjugated
JP2001198766A (en) Member for moving and positioning device and manufacturing method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant