KR20210021941A - 이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법 - Google Patents

이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법 Download PDF

Info

Publication number
KR20210021941A
KR20210021941A KR1020207029198A KR20207029198A KR20210021941A KR 20210021941 A KR20210021941 A KR 20210021941A KR 1020207029198 A KR1020207029198 A KR 1020207029198A KR 20207029198 A KR20207029198 A KR 20207029198A KR 20210021941 A KR20210021941 A KR 20210021941A
Authority
KR
South Korea
Prior art keywords
molding
nozzle
dimensional
materials
temperature
Prior art date
Application number
KR1020207029198A
Other languages
English (en)
Inventor
요시오 구니히로
유야 이시마루
Original Assignee
케이제이 케미칼즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이제이 케미칼즈 가부시키가이샤 filed Critical 케이제이 케미칼즈 가부시키가이샤
Publication of KR20210021941A publication Critical patent/KR20210021941A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Clinical Laboratory Science (AREA)

Abstract

(과제) 2 종 이상의 이종 재료를 적층 조형할 수 있는 3 차원 조형 장치, 이종 재료의 3 차원 조형 방법 및, 이종 재료로 이루어지는 3 차원 조형물을 제공하는 것.
(해결 수단) 2 종 이상의 이종 재료의 각종 재료에 대응하는 각각의 저류부와, 노즐부와, 송액 장치와, 온도 제어 장치와, 조형용 스테이지와, 스테이지나 노즐부를 이동시키는 상대 이동 기구와, 제어 컴퓨터를 구비한 3 차원 조형 장치. 그 장치를 사용함으로써 2 종 이상의 이종 재료를 공업적으로 양호한 정밀도로 적층 조형하는 것을 실현할 수 있고, 이종 재료를 임의로 조합한 고정세한 조형물을 제작할 수 있다.

Description

이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법
본 발명은, 이종 재료를 사용한 3 차원 조형 장치, 3 차원 조형 방법 및 3 차원 조형물에 관한 것이다.
3D-CAD 데이터를 사용하여 3 차원 조형물을 제조하는 수법은 3D 프린터로서 일반적으로 보급되어 있다. 금속, 플라스틱, 식품 등 다양한 재료를 3 차원으로 조형하는 3 차원 조형 장치가 다양한 분야에서 활용되기 시작하고 있다.
한편, 실제 공업 제품은, 단일 재료가 아니라, 복수의 기계적 특성을 가지는 이종 재료의 조합으로 제작되는 것이 많다. 그러나, 종래의 3D 프린터에서는 복수의 기계적 특성을 가지는 이종 재료를 조합하여 조형하는 것은 곤란하였다.
예를 들어, 열 용융 적층 방식에서는, 복수의 조형 재료를 동시에 토출하는 것이 가능하지만, 어느 재료도 융점 온도 이상으로 가열한 노즐로부터 토출해야 하고, 조형 재료인 열 가소성 수지의 수축률, 선 팽창률, 융해 온도 등의 차이로 인해, 조형 온도가 낮은 경우, 적층시에 층간 접착이 나쁘고, 조형품의 강도가 불충분해지기 때문에, 통상 200 ℃ 이상의 온도에서 조형된다. 그 때문에, 이 방식의 조형은 저융점 재료나 유연한 재료 등이 사용 곤란하였다.
또, 광 조형법의 하나인 UV 잉크젯 3D 프린터에서는, 형상 지지용 서포트재에 사용되는 재료나 형상 구성용 모델재에 사용되는 재료 등, 복수의 특성이 상이한 재료를 하나의 조형물에 동시에 사용하는 것이 가능하다. 그러나, 잉크젯법의 최대 특장은 잉크와 같은 미세한 상태로부터 물체를 조형하기 때문에, 모델재나 서포트재에 사용되는 광 경화성 수지 그 자체를 잉크젯으로서 분무하고, 자외선을 조사하여 고형화해야 한다. 그 때문에, 잉크의 저점도화 (통상은 20 mPa·s 미만) 는 종래부터 요구되어 온 중요한 과제로, 고점도 광 경화성 수지의 사용은 곤란하였다. 또한, 저점도의 광 경화성 수지는 분자량이 낮고, 얻어지는 조형물의 기계적 강도나 내충격성 등은 실용적인 수치를 얻는 것이 매우 곤란하기 때문에, 예를 들어 ABS 등 엔지니어링 플라스틱의 성능을 모두 재현할 수는 없다.
특허문헌 1 에서는, 상이한 종류의 조형 재료로서 포토폴리머 재료와 열 가소성 재료를 사용하여, 층마다 2 가지 재료를 퇴적시켜, 3 차원 인쇄물체를 제조하는 방법을 제안하였다. 이 방법에 있어서도, 포토폴리머 재료가 인젝터에 의해 액상으로 토출되기 때문에, 포토폴리머는 경화될 때까지 유동성이 있어, 열 가소성 수지의 주위로 흐르고, 열 가소성 부재 사이에 지나치게 깊게 침투하여, 경화가 곤란해질 우려가 있었다. 당해 특허문헌은 열 가소성 재료로 고정층을 형성시킴으로써 포토폴리머의 진입 방지를 제안하였지만, 조형 가능한 구조나 대응할 수 있는 수지, 재료 등이 제한되어, 정밀한 3 차원 조형에 바람직하게 이용되는 방법이라고는 할 수 없었다. 특히, 고점도의 광 경화성 재료를 취급할 수 없어, 조형물의 기계적 특성을 확보할 수 없는 문제가 있었다.
특허문헌 2 에서는, 조형 스테이지를 액상의 에너지선 경화형 수지의 저류조 중에 설치하고, 에너지선 경화형 수지에 에너지선을 조사하여 경화시키는 3D 조형에 의해 수지형 (型) 을 형성하고, 그 수지형 중에 가열된 제품 수지 재료를 사출함으로써, 모든 열 가소성 수지로부터 원하는 형상의 조형물을 형성할 수 있어, 종래의 금형 사출 성형에 비해, 성형 시간을 단축시킬 수 있고, 저비용화가 가능해졌다. 그러나, 이 방법에 있어서도, 고점도의 광 경화성 수지를 형 재료로서 사용하는 것은 곤란하고, 광 경화되지 않는 재료와의 조합으로 조형물을 제조하는 것은 불가능하기 때문에, 마찬가지로 조형할 수 있는 재료의 품종에는 제한이 있다. 또한, 얻어진 조형물을 형으로부터 꺼내기 위한 이형 공정이 필요하고, 이형 수단으로는, 형에 해머 등으로 충격을 부가하여 파괴시키는 방법, 형과 성형체의 경계부에 고압 공기를 압입하여 분리시키는 방법, 형을 그 구성 수지를 선택적으로 용해시키는 용제에 침지하는 방법을 예시하고 있지만, 어느 쪽이든 조형물의 세정이 필수로, 조형물 파손 리스크가 남아 있다.
특허문헌 3 에서는, 액호상 (液糊狀) 의 광 경화성 수지를 토출 노즐로부터 끈 형상으로 토출한 후, 흘러서 확산되거나 하지 않고, 일정한 형상을 유지한 상태에서 광을 조사하여 경화시킴으로써, 소정의 조형 패턴을 갖는 경화물의 제조 방법을 제안하였다. 이 방법에 사용하는 광 경화성 수지는 틱소성이 우수한 것으로서, 즉, 광 경화성 수지가 노즐로부터 토출되는 순간에는 유동성이 있지만, 토출된 후, 정지 상태가 되어, 점도가 급격하게 상승하고, 토출된 형상인 채로 경화되는 것이 특징이다. 이 방법에서는, 미경화 수지의 필요없는 부분까지의 확산이나 주변에 부착되어 오염시키는 등의 문제를 회피할 수 있지만, 끈 형상 경화물의 두께나 형상을 완전 일치시키는 것이 매우 곤란하고, 가는 끈을 만들기 어렵고, 조형 정밀도가 우수한 것이 얻어지지 않는 문제가 있었다. 또, 이 방법으로 평탄한 조형물을 제작하는 경우, 끈 사이에 간극이나 표면에 요철이 발생하여, 조형물의 강도도 미관도 만족할 수 있는 것은 아니었다. 또한, 상이한 물성을 갖는 복수 재료의 조합 성형이나, 열 가소성 수지 등 이종 재료와 조합하여 조형되는 경우, 이종 재료 사이에 젖음성이나, 밀착성의 문제가 있어, 이종 재료를 사용한 조형에는 그대로 적용할 수 없다.
일본 공개특허공보 2017-200762 일본 공개특허공보 2018-079652 일본 공개특허공보 1990-130132
공업적으로 실용 가능한 이종 재료를 조합한 3 차원 조형물의 조형 장치, 조형 방법 및 조형물을 제공하는 것을 과제로 한다.
본 발명자들은, 상기 과제를 해결하기 위해 성의 검토한 결과, 2 종 이상의 조형 재료를 사용한 3 차원 조형 장치를 알아내어, 본 발명에 이르렀다. 구체적으로는, 20 ∼ 150 ℃ 의 토출 온도에 있어서의 토출 점도가 0.01 ∼ 1000 Pa·s 인 조형 재료 (A) 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐을 갖고, 또 60 ∼ 350 ℃ 의 조형 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 g/10 분 (하중 2.16 Kg) 인 조형 재료 (B) 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐을 갖고, 그 복수의 노즐들로부터 출력되는 스테이지부와, 스테이지부와 노즐부를 3 차원적으로 상대 이동시키기 위한 상대 이동 기구를 구비한 3 차원 조형 장치를 알아냈다.
즉, 본 발명은
(1) 재료 A 와 재료 B 의 2 종 이상의 조형 재료를 사용한 3 차원 조형 장치로서,
각종 조형 재료를 저장하기 위한 저류부와,
각종 조형 재료를 토출하기 위한 노즐부와,
각종 재료를 저류부로부터 노즐부로 수송하기 위한 송액 장치, 온도 제어 장치와,
조형용 스테이지와,
스테이지와 2 개 이상의 노즐부를 3 차원적으로 상대 이동시키기 위한 상대 이동 기구와,
송액 장치, 온도 제어 장치 및 상대 이동 기구를 제어하기 위한 컴퓨터를 구비하는 것을 특징으로 하는 3 차원 조형 장치,
(2) 적어도 1 종 이상의 재료 A 와, 적어도 1 종 이상의 재료 B 를 동시에 토출하며, 또한, 재료 A 의 토출 온도는 20 ℃ ∼ 150 ℃, 토출 점도는 0.01 ∼ 1000 Pa·s 인 것을 특징으로 하는 상기 (1) 에 기재된 3 차원 조형 장치,
(3) 재료 A 의 토출 방식은, 시린지 방식, 용적 계량 방식, 튜빙 방식, 플런저 방식에서 선택되는 하나 이상인 것을 특징으로 하는 상기 (1) 또는 (2) 에 기재된 3 차원 조형 장치,
(4) 재료 A 의 송액 장치는, 정량 시린지 펌프식 송액 장치, 정량 기어 펌프식 송액 장치, 정량 튜브 펌프식 송액 장치, 정량 토출 밸브식 송액 장치에서 선택되는 1 개 이상의 정량 송액 장치인 것을 특징으로 하는 상기 (1) ∼ (3) 중 어느 한 항에 기재된 3 차원 조형 장치,
(5) 재료 B 의 토출 온도는 60 ℃ ∼ 350 ℃, 또한, 토출 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 (g/10 분, 하중 2.16 kg) 인 것을 특징으로 하는 상기 (1) ∼ (4) 중 어느 한 항에 기재된 3 차원 조형 장치,
(6) 광 조사부를 추가로 구비하는 것을 특징으로 하는 상기 (1) ∼ (5) 중 어느 한 항에 기재된 3 차원 조형 장치,
(7) 재료 A 를 토출하기 위한 노즐부에 추가로 노즐 경화 방지부를 형성하는 것을 특징으로 하는 상기 (1) ∼ (6) 중 어느 한 항에 기재된 3 차원 조형 장치,
(8) 노즐 경화 방지부는 광 조사부로부터 조사되는 광의 조사 범위를 제한하며, 또한, 조사 범위가 재료 A 를 토출하기 위한 노즐부의 선단 직경과 동심원의 1 배 이상 ∼ 100 배 미만의 범위 내인 것을 특징으로 하는 상기 (1) ∼ (7) 중 어느 한 항에 기재된 3 차원 조형 장치,
(9) 재료 A 와 재료 B 가 동시에 또는 차례로 스테이지 상에 토출되고, 동일한 층 또는 상이한 층을 형성하면서 적층해 가는 3 차원 조형물의 제조 방법,
(10) 재료 A 및/또는 재료 B 를 토출하기 위한 노즐의 선단이 각각의 노즐로부터 토출된 재료와 접촉하면서 조형하는 것을 특징으로 하는 상기 (9) 에 기재된 3 차원 조형물의 제조 방법,
(11) 2 종 이상의 조형 재료는, 적어도 1 종 이상의 재료 A 와, 적어도 1 종 이상의 재료 B 를 함유하고, 재료 A 는 20 ℃ ∼ 150 ℃ 의 온도 범위에서 조형되며, 또한, 조형 온도에 있어서의 A 의 점도가 0.01 ∼ 1000 Pa·s 인 것을 특징으로 하는 상기 (9) 또는 (10) 에 기재된 3 차원 조형물의 제조 방법,
(12) 재료 B 는 60 ℃ ∼ 350 ℃ 의 온도 범위에서 조형되며, 또한, 조형 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 (g/10 분, 하중 2.16 kg) 인 것을 특징으로 하는 상기 (9) ∼ (11) 중 어느 한 항에 기재된 3 차원 조형물의 제조 방법,
(13) 재료 A 는 광 경화성 성분을 10 질량% 이상 함유하는 수지 조성물인 것을 특징으로 하는 상기 (9) ∼ (12) 중 어느 한 항에 기재된 3 차원 조형물의 제조 방법,
(14) 재료 A 는 20 ℃ 이상의 온도에서 노즐로부터 토출되면서 광 조사에 의해 고형화되는 것을 특징으로 하는 상기 (9) ∼ (13) 중 어느 한 항에 기재된 3 차원 조형물의 제조 방법,
(15) 재료 B 는 60 ℃ 이상의 온도에서 노즐로부터 토출된 후, 냉각에 의해 고형화되는 것을 특징으로 하는 상기 (9) ∼ (14) 중 어느 한 항에 기재된 3 차원 조형물의 제조 방법을 제공하는 것이다.
본 발명에 있어서의 3 차원 조형 장치는, 재료 A 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐을 갖고, 재료 B 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐을 가짐으로써, 복수 종의 조형 재료를 사용하는 것에 의해 복수 종 재료로 구성되는 조형물을 제조하는 것이 가능해진다. 재료 A 와 재료 B 는 목적에 맞추어 유연한 고무 소재부터 고강도의 플라스틱 소재까지 폭넓은 조형 재료군에서 선출하고, 1 대의 3 차원 조형 장치에서 출력하여, 조형할 수 있다. 또, A 는 광 경화성 성분을 함유하는 경우, 광 조사에 의해, 가교된 수지의 조형물을 얻는 것이 가능하고, 추가로 가교에 의해 조형물의 열 안정성, 기계적 특성 등의 물성을 향상시키는 것이 가능하다.
본 발명의 3 차원 조형 장치를 사용한 조형 방법에 있어서, 지지 기능의 재료 (서포트재) 를 사용하지 않고, 조형 후의 조형물을 그대로 사용하는 것이 가능하다.
도 1 은, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 의 출력 기구가 시린지 펌프식인 경우).
도 2 는, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 는 광 경화성 성분을 함유하는 경우).
도 3 은, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 의 저류부 (20) 는 밀폐 용기인 경우).
도 4 는, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 의 출력 기구가 기어 펌프식인 경우).
도 5 는, 노즐 경화 방지부에 의해 제한되는 조사 제한 범위 (직경 ΦN - 직경 ΦM 의 원환) 와 노즐부 직경 (외경) ΦL 의 원의 관계를 나타내고 있다.
도 6 은, 이종 재료를 출력하고, 평활하게 하면서 적층하는 공정을 나타내고 있다.
도 7 은, 이종 재료를 출력하는 노즐부를 상하로 이동시키는 기구를 나타내고 있다 (기어).
도 8 은, 이종 재료를 출력하는 노즐부를 상하로 이동시키는 기구를 나타내고 있다 (회전축).
도 9 는, 이종 재료를 출력하는 노즐부를 회전시키는 기구를 나타내고 있다.
도 10 은, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 는 광 경화성 성분을 함유하며, 또한, 불활성 가스 분사부 (28) 를 설치하는 경우).
도 11 은, 이종 재료를 사용한 3 차원 조형물을 제조하는 장치를 나타내고 있다 (재료 A 는 광 경화성 성분을 함유하며, 또한, 감압 펌프 (29) 를 설치하는 경우).
이하에, 본 발명을 실시하기 위한 형태에 대해 도면을 사용하여 설명한다.
본 발명에 있어서의 3 차원 조형 장치는, 도 1 에 나타내는 바와 같이 조형 온도에 있어서의 점도가 0.01 ∼ 1000 Pa·s 인 재료 A 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐과, 조형 온도에 있어서의 멜트 플로 레이트치가 1 ∼ 400 g/10 분 (하중 2.16 Kg) 인 재료 B 를 출력하는 기구를 구비한 적어도 1 개 이상의 노즐로부터, 조형 스테이지에 각각 조형 재료를 토출하고, 적층하여 조형을 진행시킴으로써 3 차원 조형물을 형성한다. 또, A 는 광 경화성 성분을 함유하는 경우, 도 2 에 나타내는 바와 같이 A 를 토출함과 동시에 광 조사에 의해 경화시키고, 적층하여 조형을 진행시킴으로써 3 차원 조형물을 형성한다. 또한, 재료 A 로부터 얻어지는 조형물은 2M, 재료 B 로부터 얻어지는 조형물은 3M 이라고 칭한다.
(재료 A 의 토출 장치)
재료 A 는, 디스펜서 등의 장치를 사용하여 토출하면서 적층하여, 조형할 수 있다. 조형 온도는 조작성 및 재료 A 의 성질에 따라 바람직하게 조정할 수 있는데, 조형 정밀도와 조형 속도도 고려하여, 20 ∼ 150 ℃ 의 토출 온도인 것이 바람직하다. 이 온도 범위에 있어서, A 의 점도가 0.01 ∼ 1000 Pa·s 이다. 재료 A 는 20 ℃ 에 있어서의 점도가 0.01 Pa·s 이상, 또한, 150 ℃ 에 있어서의 점도가 1000 Pa·s 이하인 경우, 토출용 노즐부 직경 (내경) 의 조정 및/또는 토출 압력의 조정에 의해, 양호한 토출성과 우수한 조형성이 얻어지기 때문에 바람직하다. 또, 조형 온도에 있어서의 A 의 점도가 0.1 ∼ 800 Pa·s 인 것이 보다 바람직하고, 0.2 ∼ 600 Pa·s 인 것이 가장 바람직하다.
재료 A 를 토출하는 장치로서, 정량적으로 송액할 수 있는 것이면 된다. 예를 들어, 정량 시린지 펌프식의 송액 장치나 정량 기어 펌프식의 송액 장치, 정량 튜브 펌프식의 송액 장치, 정량 토출 밸브식의 송액 장치 등을 들 수 있다. 구체적으로는, 에어 펄스에 의해 재료를 압출하는 시린지 방식이나, 공기를 개재하지 않고 용적 계량과 모터 구동에 의해 재료를 압출하는 용적 계량 방식, 재료가 든 튜브 그 자체에 압력을 가하여 튜브 내의 재료를 송출하는 튜빙 방식, 실린더 내에서 재료의 압축을 기계적으로 실시하는 플런저 방식 등을 들 수 있다. 이 중, 범용성이나 메인터넌스의 용이함, 또, 압력의 연속적 설정이 가능하고, 저·중·고점도의 액체를 전반적으로 잘 재현하고 정량 토출 가능한 시린지 방식 디스펜서나, 고정밀도이고 토출 스피드와 장기 안정성이 우수한 용적 계량 방식의 디스펜서가 바람직하다. 본 발명에 있어서의 디스펜서란, 도 1, 도 3, 도 4 에 나타내는 바와 같이, 저류부 (20), 가압부 (21), 가압 컨트롤러부 (22), 노즐부 (23) 를 포함하는 액체의 정량 토출 장치이다.
재료 A 는 저류부 (20) 에 저류되고, 제어 컴퓨터 (41) 가 가압 컨트롤러부 (22) 에 신호를 보냄으로써, 가압부 (21) 가 저류부 (20) 및 재료 A 에 압력을 가하여, 노즐부 (23) 를 통해 스테이지 상에 A 가 토출된다.
가압부 (21) 의 가압 방식은, 전술한 디스펜서의 방식에 따라 적절히 선택되고, 가압 기체 압출, 피스톤 압출, 기어 또는 스크루 압출 등의 단독 또는 조합 방식을 들 수 있다. 순식간에 가압 상황을 변경할 수 있는 점에서, 가압 기체 및 기어 또는 스크루를 조합한 가압 방식이 바람직하다. 또, 기어 또는 스크루에 의한 가압 방법을 선택함으로써 A 의 점도에 영향을 미치는 경우가 없고, 토출량의 미세 조정이 가능하다. 또한, 가열된 A 를 사용하는 경우, 가압 기체에 의한 가압 방식이 광범위한 온도 범위에 대응할 수 있고, 제어하기 쉽기 때문에 바람직하다. 순식간에 또한 정확하게 가압 상황을 변경하기 위해, 가압부 (21) 와 토출부 사이에 밸브를 구비하고 있어도 된다.
또한, 가압부 (21) 는, A 를 토출하지 않는 기간에 있어서, 감압 기체, 기어, 스크루, 피스톤 중 어느 1 개 또는 2 개 이상의 조합에 의해, A 를 저류부 (20) 의 방향으로 빨아올리는 기능을 갖는 기구를 포함하는 것이 바람직하다. A 를 토출과 역방향으로의 빨아올림에 의한 대기 중, 조형 재료의 과잉 출력을 억제할 수 있다.
재료 A 를 가압하는 가압부 (21) 의 가압은, 가압 컨트롤러부 (22) 에 의해 제어되고, 토출구의 형상, 가열 온도나, 필요한 조형 속도와 조형 정밀도에 맞추어 적절히 조정할 수 있다. 가압 컨트롤러부 (22) 는, 제어 컴퓨터 (41) 의 내장 기능에 포함되어 있어도 되고, 제어 컴퓨터 (41) 와 제휴되는 형태로 별도 설치되어도 된다.
저류부 (20) 및 노즐부 (23) 중의 재료 A 를 가열 또는 냉각시키기 위해, 가열·냉각부 (24) 를 설치할 수 있다. 가열 또는 냉각 온도는, 노즐부 (23) 로부터 A 를 원활하게 토출할 수 있으면, A 의 품종에 따라 적절히 설정하는 것이 가능하다. 통상의 조형 온도는 20 ∼ 150 ℃ 이고, 바람직하게는 40 ∼ 100 ℃ 이다. 특히 고분자량이나 고점도의 조형 재료에 있어서는, 60 ℃ 이상으로 가열함으로써 A 의 점도가 저하되기 때문에, 충분한 조형 속도와 조형 정밀도를 확보할 수 있다.
가열·냉각부 (24) 에서 가열·냉각되는 부분은, 저류부 (20) 또는 노즐부 (23) 의 어느 하나, 또는 양방이어도 된다. 또, 가열·냉각되는 온도는, 저류부 (20) 및 노즐부 (23) 에 따라 동일해도 되고, 상이해도 된다. 다양한 가열·냉각 방법을 이용할 수 있고, 예를 들어, 펠티에 소자, 히터, 물이나 유기 용제 등의 액체 열매를 사용하는 방법을 들 수 있다.
재료 A 의 저류부 (20) 는, 탱크, 배럴, 호스 등의 액체를 저류할 수 있는 용기를 단독 또는 조합으로 사용할 수 있다. 또, 조형 재료를 가열·냉각시켜 사용하는 경우에는, 온도 변화에 의해 변형되지 않는 것이 좋다. 예를 들어, PE, PP, PET 등의 플라스틱 용기나 고무로 이루어지는 용기, 구리, 알루미늄, 철, 스테인리스 등의 금속으로 이루어지는 용기를 사용할 수 있다. 저류부 (20) 는 밀폐 용기인 경우, 도 3 에 나타내는 바와 같이 제어 컴퓨터 (41) 가 가압 컨트롤러부 (22) 에 신호를 보냄으로써, 가압부 (21) 가 저류부 (20) 및 재료 A 에 압력을 가하여, 노즐부 (23) 를 통해 스테이지 상에 A 가 토출된다. 또한, A 및 저류부 (20) 를 가열·냉각시키기 위해, 가열·냉각부 (24) 를 설치할 수 있다. 필요에 따라 저류부 (20) 로부터 노즐부 (23) 부로의 송액 배관 등에 가열·냉각 장치 혹은 보온 장치를 부착할 수 있다. 마찬가지로, 필요에 따라 A 의 저류부 (20), 송액 배관과 노즐부 (23) 는 동일한 온도 또는 상이한 온도로 제어될 수 있다.
노즐부 (23) 의 재료는, 용도에 맞추어 다양한 것을 사용할 수 있다. 노즐부 (23) 가 가열·냉각되는 경우나, 재료 A 가 가열·냉각 및/또는 가압·감압되는 경우가 있기 때문에, 변형되지 않는 것이 바람직하다. 예를 들어, 수지제, 금속제 및 수지와 금속의 복합 재료나 조합에 의해 만들어진 것이어도 되고, 추가로 발액성의 코팅이 되어 있어도 된다.
또, 노즐부 (23) 의 내부 형상은, 용도에 맞추어 선택할 수 있다. 토출압 (가압부 (21) 에 의해 가해져, 토출부에 부여된 압력) 에 대한 압력 손실 저감의 관점으로부터, 조형 정밀도를 저해하지 않는 범위 내에서, 내부 구경 (내경) 은 큰 것이 바람직하고, 최소 내경의 관 길이는 짧은 것이 바람직하고, 노즐부 내부는 테이퍼 형상인 것이 보다 바람직하다. 또, 토출구의 선단의 형상은, 압력 손실 저감 및 각 방향으로 균등한 속도로 토출할 수 있는 관점에서, 원 형상인 것이 특히 바람직하다.
본 발명의 조형 장치에 사용하는 노즐부 (23) 의 선단 부분, 즉 토출구는, 토출된 조형 재료와 접촉하면서 조형해 가는 것이 특징이다. 토출구는, 조형 재료에 접함으로써, 조형 재료를 평활하게 하고, 층마다의 두께를 균일하게 할 수 있다. 토출구의 적절한 내경은 조형 재료의 점도, 조형 온도와 압력에 따라 상이한데, 조형 정밀도와 조형 속도의 밸런스를 고려하여, 바람직하게는 내경이 0.01 ∼ 10 mm 이고, 보다 바람직하게는 0.05 ∼ 5.0 mm 이며, 가장 바람직하게는 0.1 ∼ 3.0 mm 이다. 노즐 토출구의 내경이 0.01 mm 이상인 경우, 토출구에 가해지는 압력을 충분히 낮추는 것이 가능하고, 조형 속도가 느려지지 않는다. 또, 내경이 10 mm 이하인 경우, 조형 정밀도를 충분히 확보할 수 있다. 또한, 그 토출부의 내경 및 선단 외경은 원형이고, 내경과 선단 외경의 차는 가능한 한 작은 것이 바람직하다. 예를 들어, 노즐 선단부가 극박 가공된 것 등을 들 수 있다. 외경과 내경의 차가 바람직하게는 2.0 mm 이하, 보다 바람직하게는 1.0 mm 이하, 가장 바람직하게는 0.5 mm 이하이다. 그 차 2.0 mm 이하이면, 양호한 조형 정밀도가 얻어지는 것이 가능하며, 또한, 토출구 주변에 조형 재료의 부착을 방지할 수 있기 때문에 바람직하다.
노즐부 (23) 와 스테이지 또는 조형물의 거리인 적층 두께는, 노즐 내경보다 작은 것이 바람직하다. 노즐 내경보다 작음으로써, 토출된 A 는 노즐과 스테이지 또는 조형물 사이에서 압축되고, 이 압축 상태에서 노즐을 이동시킴으로써 조형면에 평활성이 부여되고, 동시에 적층 조형물의 층간 접착력이 향상된다. 또한, 적층 두께가 노즐 내경의 10 ∼ 80 % 인 것이 보다 바람직하다. 10 % 이상이면 조형 속도를 충분히 확보할 수 있고, 80 % 이하이면 조형면의 평활성 및 층간 접착성을 충분히 확보할 수 있다.
노즐부 (23) 의 외부 형상은, 토출구에서부터 테이퍼 가공되어 있어도 된다. 테이퍼 가공은, 토출액의 액 상승을 억제할 수 있고, 조형 정밀도의 저하를 방지할 수 있다. 또, 테이퍼 가공 이외의 표면 처리, 예를 들어 발액 처리에 의해 노즐부 (23) 에 대한 재료 A 의 부착을 저감시킬 수 있다.
재료 A 는, 노즐부 (23) 로부터 토출되고, 토출 전후의 온도 변화나 토출 후의 광 조사에 의해 고형화 또는 겔화될 수 있는 것이다. 재료 A 로는, 예를 들어, 다당류로 이루어지는 겔화제를 함유하는 재료나 플라스티솔, 열 경화성 수지 재료나 광 경화성 수지 재료를 사용할 수 있고, 또 혼합에 의해 고형화 또는 겔화될 수 있는 2 이상의 액성 재료를 각각 사용할 수 있다.
A 의 토출 전의 처리는, 저류부 (20) 및/또는 노즐부 (23) 에 있어서의 가열, 혼합 등을 들 수 있다. 예를 들어 플라스티솔에 있어서, 저류부 (20) 및 노즐부 (23) 에서 가열되고, 재료 중의 플라스틱을 가소제에 용해시킨 후 토출된다. 그 후 토출된 재료가 냉각에 의해 고형화나 겔화될 수 있다. 또, 예를 들어 2 액성 경화 재료에서는, 노즐부 (23) 에 있어서 혼합함으로써 경화 반응이 개시되고, 스테이지 (42) 에 토출된 후 경화 반응이 진행되어, 고형화나 겔화될 수 있다.
A 의 토출 후의 처리는, 예를 들어 냉각, 가열, 광 조사 등을 실시할 수 있다. 냉각 방법으로는, 외기나 냉각 가스, 가열 방법으로는, 온풍이나 적외선 조사, 광 조사 등을 들 수 있다. 재료 A 가 광에 의해 경화되는 경우, 경화의 바람직한 메커니즘은 라디칼 중합이지만, 광 경화의 다른 메커니즘을 적용해도 된다. 다른 메커니즘으로는, 카티온 중합, 아니온 중합 등을 들 수 있고, 복수의 광 경화 메커니즘을 조합한 하이브리드 경화여도 되고, 열 경화와 광 경화를 조합한 듀얼 경화여도 된다. 이것들은 제한되지 않고, 재료에 따라 적절히 선택할 수 있다. 도 2 에 나타내는 바와 같이, 광 조사부 (25) 에 있어서 각종 광원에 의한 적외선, 가시광선, 자외선 (UV), 레이저 광, 전자선 등을 조사할 수 있다.
(광 조사)
광 조사에 자외선을 사용하는 경우, Hg 계, Xe 계, 메탈 할라이드 등의 광원, LED 광원, 엑시머 광원 등을 사용할 수 있다. 비용 및 장치 형상, 안전성의 면에서 LED 광원의 사용이 바람직하다. 또, 광 조사에 의해 A 를 경화시키는 경우, 경화성과 조형 속도의 관점에서, A 는 광 경화성 성분을 10 질량% 이상 함유하는 것이 바람직하다.
광 조사부 (25) 로부터 광이 조사되는 범위는, 조형 스테이지의 면적으로부터, 노즐부 (23) 의 선단의 직경 (외경) ΦL 보다 큰 직경 ΦM 을 갖는 원의 면적을 빼고, 남겨진 부분이다. 이 범위이면, 광이 노즐부 (23) 의 선단과 접촉하고 있는 A 를 경화시켜 얻어지는 2M 에 닿지 않기 때문에, 노즐의 폐색이나 노즐 선단부에 경화된 수지의 부스러기가 부착되지 않고, 장시간에 걸쳐 고정밀도의 조형 작업이 순조롭게 진행될 수 있다. 또, 광이 조사되는 범위는, 노즐부의 단면의 이미지도 (도 5) 에 나타내는 바와 같이, 직경 ΦN 과 직경 ΦM 의 동심원의 면적의 차 (원륜 (圓輪)) 이다. 광은 직경 (ΦN - ΦM) 원륜 (도너츠 형상) 형상으로 조사되는 경우, A 가 균일하게 경화될 수 있어 바람직하다. 또, 원륜의 직경 ΦN 과 ΦM 은, 모두 ΦL 을 초과하며, 또한, ΦM 은 ΦN 이하인 것이 바람직하고, ΦN 은 ΦL 의 1000 배 이하인 것이 보다 바람직하고, ΦN 은 ΦL 의 500 배 이하인 것이 특히 바람직하다. 노즐 선단의 사이즈에 따라 다르기도 하지만, ΦN 이 ΦL 의 1000 배를 초과하지 않는 경우, A 가 균일하게 또한 신속하게 경화되므로, 보다 바람직하다.
광이 상기 소정의 조사 범위 내에 조사되는 것을 제어할 수 있으면, 조사부나 노즐부, 노즐의 선단 부근 등, 장치의 구조는 한정되지 않아도 된다. 예를 들어, 광 조사부 (25) 와 노즐부 (23) 사이에 노즐 경화 방지부 (27) 를 구비하는 것을 들 수 있다. 도 5 에 나타내는 바와 같이, 조사부 (25) 로부터 조사되는 광이 노즐 경화 방지부 (27) 에 의해 일부가 차단되어, 노즐부 (23) 의 선단에 접촉하고 있는 A 가 조사되지 않기 때문에, 노즐 선단의 폐색이나 토출 불량 등의 트러블 발생을 억제할 수 있다.
노즐 경화 방지부 (27) 의 형상과 설정 위치는, 노즐 경화 방지의 효과를 달성할 수 있으면, 특별히 한정하는 경우는 없다. 또, 노즐 경화 방지부 (27) 는 노즐부 (23) 에 고정되는 경우, 노즐부와 일체적으로 이동할 수 있어, 조형시에 노즐부가 좌우, 전후로 신속히 이동해도 노즐 경화 방지의 효과를 유지할 수 있어 보다 바람직하다. 또한, 노즐부 (23) 와 노즐 경화 방지부 (27) 의 일체 구조는, 노즐부 (23) 의 선단에 접촉하고 있는 재료 A 의 경화를 방지할 수 있으며, 또한 조형한 조형물의 광범위를 조사할 수 있고, A 의 경화율을 전체적으로 향상시킬 수 있다.
또, 노즐 경화 방지부 (27) 의 선단은, 스테이지 (42), 조형면 또는 조형물과는 접촉하지 않고, 노즐부 (23) 의 선단보다 짧으며, 또한, 노즐부 (23) 의 선단 부분과는 접촉하지 않는다. 노즐 경화 방지부 (27) 의 길이, 형상과 설정 위치는, 광 조사부 (25) 의 설정 위치, 개수 및 조사 각도에 따라 적절히 조정할 수 있다. 도 5 에 나타내는 바와 같이, 노즐 경화 방지부 (27) 를 설치함으로써, 직경 ΦM 의 원보다 내측이 조사되지 않게 되고 (이하, 조사 제한 범위라고 칭한다), 즉, 노즐부 (23) 의 선단 (직경 ΦL 의 원) 은 확실하게 조사되지 않아, 노즐 선단의 폐색이나 토출 불량 등의 트러블 발생을 억제할 수 있다. ΦM 은 ΦL 의 1.0 배보다 크며, 또한, ΦL 의 100 배 이하인 경우, 노즐부의 토출 불량을 방지할 수 있음과 동시에 조형물을 충분히 경화시킬 수 있다. 또, 경화성 향상과 조형 속도 향상의 관점에서, ΦM 은 ΦL 의 1.2 배 이상 또한 50 배 이하인 것이 바람직하고, 1.5 배 이상 또한 10 배 이하인 것이 보다 바람직하다.
광의 조사는, 재료 A 의 토출에 맞춰서 실시하는 것이 바람직하다. A 의 토출시에만 광을 조사함으로써, 노즐부 (23) 의 선단에 부착되는 재료 A 의 경화가 억제되어, 노즐의 막힘을 방지할 수 있다.
재료 A 의 경화성으로 인해, A 의 토출 정지 기간에 있어서도 광의 계속 조사가 필요한 경우, 노즐 막힘 방지를 위해, 광 조사부 (25) 로는 가동식 조사부를 사용할 수 있다. 가동식 조사부에는, 회전이나 상하, 좌우로 이동시키는 서보 모터, 스테핑 모터, 브레이크 기구 등을 구비할 수 있다.
광 조사에 의한 재료 A 의 경화는, 불활성 가스 분위기하 또는 감압하에서 실시함으로써, 중합의 저해 인자인 산소가 제거되기 때문에, 반응이 촉진된다. 불활성 가스의 도입이나 감압 작업은, 조형 개시 전, 조형 중, 조형 종료 후의 어느 단계에 있어서도 실시할 수 있다. 또, 불활성 가스로는, 예를 들어, 질소, 아르곤, 이산화탄소 등을 사용할 수 있고, 비용이나 입수 용이성의 관점에서, 질소 및 이산화탄소가 바람직하다.
불활성 가스 분위기는, 예를 들어 조형 스테이지를 둘러싸는 공간 (조형 에어리어 (43)) 을 불활성 가스로 충전해도 되고, 도 10 에 나타내는 바와 같이 불활성 가스 분사부 (28) 로부터 불활성 가스를 조형 부위에 분사하면서 조형해도 된다. 한편, 감압은, 예를 들어 도 11 에 나타내는 바와 같이, 조형 에어리어 (43) 를 감압 펌프 (29) 에 의해 감압부 (48) 보다 감압시킬 수 있다. 또, 조형 스테이지를 둘러싸는 공간에 압력계 또는 산소 농도계를 설치함으로써, 산소 농도를 확인할 수 있다.
(조형 재료 B 의 토출 장치)
조형 재료 B 는, 실온 (25 ℃) 에 있어서 유동성을 가지지 않는 고체로서, 필라멘트 형상이나 펠릿 형상으로 가공되어, 저류할 수 있다. 도 1 에 나타내는 바와 같이, 저류부 (30) 에 저류된 조형 재료 B 는, 제어 컴퓨터 (41) 로부터의 신호에 의해, 가압부 (31) 에 의해 가압되고, 가열부 (34) 에 의해 가열되고, 노즐부 (33) 를 통해 스테이지 (42) 또는 조형물 상에 토출되면서 적층되어, 조형될 수 있다. 필라멘트 형상의 조형 재료 B 를 사용하는 경우에는, 노즐부 (33) 만 가열되어도 되지만 (도 1), 펠릿 형상의 조형 재료 B 를 사용하는 경우에는, 가압부 (31) 와 노즐부 (33) 가 동시에 가열되는 것이 바람직하다 (도 3).
조형 재료 B 의 조형 온도는 조형 재료의 구조, 분자량 등의 성질에 따라 적절히 조정할 수 있는데, 조형 정밀도, 조형 속도 및 얻어지는 조형물의 경도, 강도등의 물성을 고려하여, 60 ∼ 350 ℃ 의 온도 범위에서 조형되는 것이 바람직하다. 또, 조형 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 g/10 분 (하중 2.16 Kg) 이면, 조형 재료 B 가 양호한 유동성을 유지하면서, 원활하게 토출되고, 고정밀도로 조형할 수 있다.
저류부 (30) 에 충전되는 재료 B 의 형상은, 필라멘트 형상이어도 되고 펠릿 형상이어도 된다. 저류부 (30) 의 형상은 충전 재료의 종류에 따라 적절히 선택할 수 있다. 예를 들어, 필라멘트 형상 재료인 경우에는 스풀 등에 필라멘트를 감아 저류할 수 있고, 또, 펠릿 형상 재료인 경우에는 호퍼 등의 용기에 충전하여 저류할 수 있다.
조형 재료 B 의 가압부 (31) 의 동력으로서, 예를 들어 모터를 사용할 수 있다. 모터의 회전에 의해 기어 또는 스크루가 회전하고, 조형 재료 B 가 가압된다. 가압부 (31) 의 가압에 의해 조형 재료 B 가 저류부 (30) 로부터 노즐부 (33) 로 이송된다. 조형 재료 B 가 필라멘트 형상인 경우에는 적극적인 가열은 바람직하지 않지만, 펠릿 형상인 경우에는 가열에 의해 조형 재료 B 를 용융시키면서 가압하는 것이 바람직하다.
조형 재료 B 의 가열부 (34) 의 동력으로서, 예를 들어 전기 히터를 사용할 수 있다. 가열의 제어는 제어 컴퓨터 (41) 에 의해 실시하고, 조형 재료 B 가 소정 온도까지 가열되어, 조형에 사용될 수 있다.
조형 재료 B 를 토출하는 노즐부 (33) 의 재질은, 금속 재료인 것이 바람직하고, 가열 및 재료의 토출에 의해 열화되지 않는 재료가 보다 바람직하다. 예를 들어, 철, 알루미늄, 구리, 스테인리스, 티탄, 텅스텐 카바이드 등을 적절히 선택할 수 있다.
노즐부 (33) 의 선단 부분, 즉 토출구는, 토출된 조형 재료 B 와 접촉하면서 조형해 가는 것을 특징으로 한다. 토출구는 조형 재료에 접함으로써, 조형 재료를 평활하게 하고, 층마다의 두께를 균일하게 할 수 있다. 토출구의 적절한 내경은 조형 재료의 형상이나 용융 점도, 조형 온도와 압력 등에 따라 상이하지만, 조형 정밀도와 조형 속도의 밸런스를 고려하여, 바람직하게는 내경이 0.1 ∼ 2.0 mm 이고, 보다 바람직하게는 0.2 ∼ 1.0 mm 이다. 노즐 토출구의 내경이 0.1 mm 이상인 경우, 토출구에 가해지는 압력을 충분히 낮추는 것이 가능하고, 조형 속도가 느려지지 않는다. 또, 내경이 2.0 mm 이하인 경우, 조형 정밀도를 충분히 확보할 수 있다. 또한, 그 토출부의 내경 및 선단 외경은 원형이고, 내경과 선단 외경의 차는 가능한 한 가까운 것이 바람직하다. 예를 들어, 노즐 선단부가 극박 가공된 것 등을 들 수 있다. 외경과 내경의 차가 바람직하게는 2.0 mm 이하, 보다 바람직하게는 0.8 mm 이하, 가장 바람직하게는 0.5 mm 이하이다. 그 차가 2.0 mm 이하이면, 양호한 조형 정밀도를 얻는 것이 가능하며, 또한, 토출구 주변에 조형 재료의 부착을 방지할 수 있기 때문에 바람직하다.
조형 재료 B 를 토출하는 노즐부 (33) 의 외부 형상은, 테이퍼 가공되어 있어도 된다. 테이퍼 가공은, 토출된 조형 재료 B 의 액 상승에 의한 조형 정밀도 저하를 방지할 수 있기 때문에 바람직하다. 또, 테이퍼 가공 이외의 표면 처리, 예를 들어 발액 처리에 의해 노즐부 (33) 에 대한 조형 재료 B 의 부착을 저감시킬 수 있다.
가압부 (31) 는, 조형 재료 B 를 토출하지 않는 동안 (대기 기간) 에 있어서, 기어 또는 스크루의 역방향 회전에 의한 조형 재료 B 의 빨아올림이 가능한 기구를 포함해도 된다. 이 기구의 설치에 의해, 대기 기간에 과잉의 조형 재료 B 의 출력을 억제할 수 있고, 조형 정밀도를 향상시킬 수 있다.
조형 재료 B 는, 열 가소성 수지 또는 열 가소성 수지 조성물로서, 60 ∼ 350 ℃ 의 온도 범위에 있어서, 양호한 유동성을 갖고, 고정밀도의 조형에 용이하게 사용할 수 있다. 수지의 성형 가공시의 유동성은 통상 멜트 플로 레이트 (MFR) 치로 평가되고, 조형 재료 B 는, 60 ∼ 350 ℃ 의 온도 범위에 있어서의 MFR치 (하중 2.16 kg) 가 1 ∼ 400 g/10 분이다. MFR 치는 이 범위 내이면, 조형 속도와 조형 정밀도의 밸런스를 취하기 쉽다. 또, 바람직하게는 5 ∼ 200 g/10 분이고, 특히 바람직하게는 10 ∼ 100 g/10 분이다.
조형 재료 B 는 60 ℃ 이상의 온도에서 노즐로부터 토출된 후, 냉각에 의해 고형화되고, 조형된다. B 가 직접 스테이지 상에 토출되는 경우에는 스테이지 (42) 를, 다른 경우에는 조형 에어리어 (43) 를 가열 또는 보온하는 것이 고정밀도의 조형물을 취득할 수 있는 관점에서 바람직하다. 42 와 43 의 설정 온도 (환경 온도) 는 B 의 조형 온도 (토출 온도) 에 따라 상이하지만, 40 ∼ 230 ℃ 의 범위 내이면, 조형 온도와 환경 온도의 차가 20 ∼ 200 ℃ 가 되어, 보다 바람직하다. 환경 온도가 40 ℃ 이상인 경우, B 의 조형 온도와 환경 온도의 차가 20 ℃ 이상으로, B 가 노즐로부터 토출 후 신속하게 냉각되어, 충분한 조형 속도를 확보할 수 있다. 또, 환경 온도가 200 ℃ 를 초과하지 않는 경우, 조형 온도와 환경 온도의 차가 200 ℃ 이하로, B 로부터 성형된 조형물의 열 수축으로 인한 변형을 억제할 수 있다. 환경 온도가 20 ∼ 150 ℃ 인 것이 보다 바람직하고, 20 ∼ 100 ℃ 인 것이 가장 바람직하다.
조형 재료 B 는 열 가소성 수지를 함유하고 있으면 되고, 열 가소성 수지로는, 예를 들어, 폴리에틸렌 (PE), 폴리프로필렌 (PP), 염화비닐 수지 (PVC), 폴리스티렌 (PS), 폴리락트산 (PLA), 아크릴로니트릴·부타디엔·스티렌 (ABS), 폴리에틸렌테레프탈레이트 (PET), 폴리카보네이트 (PC), 폴리아미드 (PA), 폴리에테르이미드 (PEI), 폴리아세트산비닐 (PVAC), 폴리우레탄 수지 (PUR), 폴리사불화에틸렌 (PTFE), 아크릴로니트릴 스티렌 수지 (AS), 아크릴 수지, 폴리아세탈 (POM), 폴리페닐렌옥사이드 (PPO), 폴리부틸렌테레프탈레이트 (PBT), 시클로올레핀 폴리머 (COP), 폴리카프로락톤 (PCL), 폴리페닐렌술파이트 (PPS), 폴리술폰 (PSF), 폴리에테르술폰 (PES), 폴리아릴레이트 (PAR), 폴리에테르에테르케톤 (PEEK), 폴리이미드 (PI), 폴리아미드이미드 (PAI), 폴리부타디엔 (BR) 등을 사용할 수 있다.
조형 재료 B 는 열 가소성 수지 이외에, 다른 기능성 재료를 함유하고 있어도 되고, 예를 들어 유리계 파이버, 카본계 파이버, 셀룰로오스계 파이버, 우드 칩, 금속 분말, 카본 블랙, 탄산칼슘, 탤크, 가소제, 안정화제, 착색제 등을 들 수 있다.
(조형 장치 전반)
상이한 재료 A 및 B 의 토출은, 병행하여 실시되어도 되고, 단일 재료마다 실시되어도 된다. 복합 재료를 형성하는 관점에서, 1 층분의 조형 동작에 있어서, 필요한 모든 조형 재료를 출력한 후, 다음의 1 층의 출력으로 옮기는 것이 바람직하다 (도 6).
스테이지 (42) 는, 재료 A 를 토출하는 노즐부 (23) 와, 및 재료 B 를 토출하는 노즐부 (33) 와, 상대적으로 이동 (상대 이동) 할 수 있다. 스테이지 (42) 는, 고강도의 재료로 구성된 것인 것이 바람직하고, 또, 조형 후 스테이지 상의 조형물을 용이하게 박리할 수 있는 것이 보다 바람직하다. 예를 들어, 스테인리스강 등의 각종 금속 재료나 유리, 플라스틱 등의 재료를 단독 또는 복합한 것을 들 수 있다. 상기의 복수의 노즐을 스테이지 (42) 에 대해 상대적으로 가동시키는 기구는, 동일 축 상에 있어도 되고, 별도 축 상에 있어도 된다.
재료 A 를 토출하는 노즐부 (23) 및 재료 B 를 토출하는 노즐부 (33) 는, 장치 본체 (40) 중에 각각 1 개 이상 배치된다. 이들 노즐부는 단독으로 상대 이동 기구를 구비하고 있어도 되고, 동일한 상대 이동 기구 상에 있어도 된다.
상대 이동 기구는, 조형 재료가 적층되는 스테이지 (42) 와 상기 노즐을 3 차원적으로 이동시키기 위한 기구로, 모터를 동력원으로 하여 기어, 스크루, 벨트 등으로 노즐과 스테이지의 위치 관계를 변화시킨다. 당해 기구는, 노즐 및 그것에 부수된 부품을 이동시켜도 되고, 스테이지 (42) 를 이동시켜도 되며, 이것들의 조합이어도 된다.
상대 이동 기구에는, 이동 범위를 제한하기 위한 센서를 구비하고 있는 것이 바람직하다. 센서를 구비하고 있음으로써, 장치의 파손 방지, 절대적인 3 차원 위치의 결정이 가능하다.
본 발명에 있어서의 제조 장치는, 예를 들어, 도 7 ∼ 9 에 나타내는 바와 같은 노즐부 및 그것들을 제어하는 기구를 구비할 수 있다. 또한, 본 발명에 사용되는 노즐부와 그 제어 기구는 이들 예로 한정하는 것은 아니다. 이들 제어 기구는, 예를 들어 복수의 노즐부로부터의 조형 재료를 토출하는 전환이 필요할 때에 가동하고, 비가동 상태의 노즐부를 스테이지 (42) 상의 조형면으로부터 떨어진 위치로 이동시킬 수 있다. 이 이동에 의해, 비가동 상태의 노즐부로부터 조형면에 대한 과잉의 조형 재료의 토출을 방지할 수 있고, 또, 조형면과 노즐부의 접촉을 방지할 수 있어, 조형 정밀도를 향상시킬 수 있다. 이들 기구는, 복수의 노즐부의 스테이지 (42) 에 대한 상대 위치 조정에 사용되어도 된다. 예를 들어 조형 재료의 적층면 높이를 일정하게 하는 것이 가능하여, 조형 정밀도를 향상시킬 수 있다. 또한, 예를 들어 모터 (46) (도 8 과 9), 서보, 기어 (45) (도 7), 스크루 (47) (도 8), 캠 링크, 회전 (도 9) 등에 의해 복수의 노즐부 및 그것들을 제어하는 부위 (44) 를 상하 또는 회전시키는 기구이면 된다.
본 발명에 있어서의 제어 컴퓨터 (41) 는 적어도 복수의 가압부, 가열부, 상대 이동 기구의 동작을 제어할 수 있다. 예를 들어, 오픈 소스인 RepRap 의 시스템을 사용할 수 있고, 공지된 슬라이서 소프트웨어, 프론트엔드에 의해 조형할 수도 있다.
제어 컴퓨터 (41) 는, 광 조사부 (25), 상대 이동 기구에 포함되지 않는 복수의 노즐부 및 그들 제어 기구의 동작을 제어할 수도 있다. 종합적 통일 제어는, 노즐부의 막힘을 억제하거나, 재료 A 의 경화를 촉진시킬 수 있고, 노즐부의 높이를 조정하고, 조형 정밀도를 향상시킬 수 있다.
제어 컴퓨터 (41) 에 대한 데이터 입력은, SD 카드 등의 외부 기록 미디어에 기록된 데이터를 판독함으로써 실시해도 되고, USB 케이블 등의 배선 접속 또는 WiFi 등의 무선 통신 접속에 의해 PC 등에 접속함으로써 실시해도 된다.
이하에 본 발명에 있어서의 실시형태를 도면을 사용하여 설명한다. 또한, 본 발명의 실시형태는 이들 예로 한정하는 것은 아니다.
본 발명의 실시예, 비교예에 기재하는 각종 화합물의 약호는 하기와 같다.
UA-1 : 2 관능의 우레탄 올리고머 (양 말단에 아크릴기를 갖고, 20 ℃ 에 있어서의 점도는 510 Pa·s, 60 ℃ 에 있어서의 점도는 49 Pa·s, 100 ℃ 에 있어서의 점도는 6.8 Pa·s 이다)
UA-2 : 2 관능의 우레탄 올리고머 (양 말단에 아크릴기를 갖고, 85 ℃ 에 있어서의 점도는 20 Pa·s 이다)
UA-3 : 6 관능의 다분기 우레탄 올리고머 (양 말단에 아크릴기를 갖고, 100 ℃ 에 있어서의 점도는 160 Pa·s 이다)
UA-4 : 2 관능의 우레탄 올리고머 (양 말단에 아크릴기를 갖고, 110 ℃ 에 있어서의 점도는 300 Pa·s 이다)
1173 : 광 중합 개시제 Omnirad 1173 (IGM Resins 사 제조)
TPO : 광 중합 개시제 Omnirad TPO (IGM Resins 사 제조)
ACMO : 아크로일모르폴린 (KJ 케미컬즈사 제조 등록상표 「ACMO」, 등록상표 「Kohshylmer」, 점도 0.012 Pa·s (20 ℃))
PEA : 페녹시에틸아크릴레이트 (오사카 유기 화학 공업 주식회사 제조 비스코트 192 점도 0.009 Pa·s (20 ℃))
PLA : PolyPlus PLA (Polymaker 사 제조 MFR 7 ∼ 11 g/10 분 (210 ℃, 하중 2.16 Kg))
PVA : AquaSolve-PVA (FORMFUTURA 사 제조 MFR 14 ∼ 20 g/10 분 (190 ℃, 하중 2.16 Kg))
ABS : ABS 수지 (PolyLite ABS, polymaker 사 제조, MFR 9 ∼ 14 g/10 분 (220 ℃, 하중 2.16 Kg))
PC : PC 수지 (PolyMax PC, polymaker 사 제조, MFR 6 ∼ 8 g/10 분 (260 ℃, 하중 1.2 Kg))
Nylon : 나일론 수지 (Nylon12, Kodak 사 제조, MFR 38 g/10 분 (220 ℃, 하중 10 Kg))
본 발명의 각 실시예와 비교예에서 얻어진 조형물을 사용하여, 하기 방법에 의해 물성 평가 등을 실시하였다.
<인장 강도, 파단 신도>
실시예와 비교예에서 얻어진 조형물을 사용하여, JIS K6251 에 준거한 3 호 덤벨형으로 타발하여, 덤벨형 시험편을 얻고, JIS K7161 에 준하여, 탁상형 정밀 만능 시험기 (주식회사 시마즈 제작소 제조 오토그래프 AGS-X) 에 의해 인장 시험을 실시하였다. 인장 속도 10 mm/분, 척 간 거리 50 mm, 5 장 시험편의 측정치를 평균하여, 인장 강도 (강도) 와 파단 신도 (신도) 로 하였다.
<조형 정밀도>
조형 종료 후, 조형물의 치수를 정밀하게 계측하고, 설정치를 비교하여 조형 정밀도를 평가하였다.
◎ : 적층 조형을 할 수 있고, 조형물의 외형 치수가 설정치의 99 ∼ 101 % 인 경우
○ : 적층 조형을 할 수 있고, 조형물의 외형 치수가 설정치의 95 ∼ 105 % 인 경우
△ : 적층 조형은 할 수 있었지만, 조형물의 변형, 일그러짐 등이 있고, 외형 치수가 설정치의 95 % 를 만족하지 않거나, 또는 105 % 를 초과한 경우
× : 목적으로 하는 조형물이 얻어지지 않은 경우
<품질 평가>
조형 종료 후, 조형물의 외부 및 단면의 관찰을 실시하고, 적층흔이나 기포등의 유무에 의해 조형물의 품질을 평가하였다.
◎ : 적층흔이 거의 확인되지 않고, 기포나 결함도 거의 확인되지 않는 경우
○ : 적층흔이 확인되지만, 기포나 결함이 거의 확인되지 않는 경우
△ : 적층흔이 명확하게 확인되고, 기포나 결함이 명확하게 확인되는 경우
× : 적층의 요철이 전면적으로 존재하고, 기포나 결함이 매우 많은 경우
(실시형태 1)
본 실시형태는, 이종 재료인 재료 A 와 B 를 사용하여, 적층하여 3 차원 조형물을 제조하는 것이다. 도 1 에 나타내는 바와 같이, 재료 A 의 출력 기구가 시린지 펌프식이고, A 를 저류하는 저류부 (20), A 를 가압하는 가압부 (21), 가압 컨트롤러부 (22), A 를 토출시키는 노즐부 (23), 및 저류부 (20) 와 노즐부 (23) 를 가열하는 가열부 (24) 를 갖고,
추가로 재료 B 의 저류부 (30), B 를 토출하는 노즐부 (33), B 관련의 가열부 (34) 와 가압부 (31) 를 갖고,
상기 복수의 노즐부의 토출구로부터 토출되는 상기 조형용 재료가 적층되는 스테이지 (42) 와,
스테이지 (42) 와 상기 노즐부 (23), 노즐부 (33) 를 3 차원적으로 상대 이동시키기 위한 상대 이동 기구와,
상기 복수의 가압부, 가열부, 상대 이동 기구의 동작을 제어하기 위한 제어 컴퓨터 (41) 를 구비하는 3 차원 조형 장치를 사용하였다. 제어 컴퓨터 (41) 는 RepRap 의 시스템을 사용하고, USB 케이블로 41 과 PC 를 접속하고, PC 로부터 조형 조건에 관한 데이터를 41 에 송신한다.
제어 컴퓨터 (41) 는, 송신된 데이터에 따라서, 가열부나 가압부를 제어하여 가열, 가압을 실시하고, 도 6 에 나타내는 바와 같이, 상이한 재료 A 와 B 를 각각의 노즐 (23 과 33) 로부터 스테이지 (42) 상에 토출하여, 고형화하면서 적층해 간다. 이 때, 23 과 33 의 선단 부분은, 토출된 A, B 와 각각 접촉하여, 조형면을 평활하게 시키면서 조형을 실시한다. 이로써, 조형층의 두께가 정밀하게 제어되어, 고정밀도로 조형할 수 있다.
실시예 1
재료 A 로서 코팅용 초콜릿 (쿄리츠 식품사 제조, 점도 42 Pa·s (33 ℃)) 을 사용하고, 저류부 (20) 와 노즐부 (23) (토출구의 내경은 2.0 mm, 외경은 4.0 mm) 를 40 ℃ 로 가열하였다. 한편 형 재료 B 로서 PolyPlus PLA (Polymaker 사 제조 MFR 7 ∼ 11 g/10 분 (210 ℃, 하중 2.16 Kg)) 를 사용하고, 가열부 (34) 와 노즐부 (33) (토출구의 내경은 0.5 mm, 외경은 2.0 mm) 를 210 ℃ 로 가열하였다. 조형 에어리어 (43) 의 환경 온도를 10 ℃ 로 설정하고, A 와 B 의 적층 두께를 각각 0.6 mm 와 0.2 mm 로 하고, 각각의 소정 조형 속도, 압력과 조형 패턴 등에 준하여, 조형을 실시하였다. 스테이지 (42) 에 토출된 A 와 B 가, 토출 후 각각 냉각되어 고형화되었다. 이 조작을 층마다 실시하고, 추가로 적층해 감으로써 외측담은 3M, 내부는 2M 으로 이루어지는 직경 20 mm, 길이 50 mm (외측담의 두께는 5 mm) 의 원기둥 형상 조형물을 양호한 정밀도로 제조할 수 있었다.
(실시형태 2)
A 의 출력 기구를 도 4 에 나타내는 바와 같이, 기어 펌프식으로 하고, A 를 저류하는 저류부 (20), A 를 가압하는 가압부 (21), 가압 컨트롤러부 (22), A 를 토출시키는 노즐부 (23), 및 저류부 (20) 와 노즐부 (23) 를 가열하는 가열부 (24) 를 구비한 장치로 하였다. B 의 출력 기구를 도 4 에 나타내는 바와 같이, 펠릿 형상 재료의 토출 장치를 사용하였다.
실시예 2
실시형태 2 의 3 차원 조형 장치를 사용하여, 재료 A 로서 1-옥타데칸올 (융점은 59 ℃, 도쿄 화성 공업 주식회사 제조, 점도 0.013 Pa·s (60 ℃)) 을 사용하고, 저류부 (20) 와 노즐부 (23) (토출구의 내경은 0.05 mm, 외경은 0.08 mm) 를 60 ℃ 로 가열하였다. 한편, 조형 재료 B 로서 실시예 1 과 동일한 PLA 의 펠릿을 사용하고, 가열부 (34) 와 노즐부 (33) (토출구의 내경은 0.4 mm, 외경은 1 mm) 를 210 ℃ 로 가열하였다. 조형 에어리어 (43) 의 환경 온도를 20 ℃ 로 설정하고, A 와 B 의 적층 두께를 모두 0.2 mm 로 하고, 소정 조건에 준하여 실시예 1 과 동일하게 조형을 실시하고, 2M 과 3M 의 층을 교대로 쌓아올림으로써 성형된 장방형 조형물 (길이 100 mm, 폭 40 mm, 높이 10 mm) 을 양호한 정밀도로 제조할 수 있었다. 얻어진 조형물을 2 등분 (길이 50 mm, 폭 40 mm, 높이 10 mm) 으로 자르고, 육안에 의해 기포나 결함 등이 없고, 2M 과 3M 의 층이 균일하게 밀착되어 적층된 것이 확인되었다. 또, 조형물의 표면에 명확한 적층흔이 확인되지 않았다.
(실시형태 3)
도 2 에 나타내는 바와 같이, 실시형태 1 의 3 차원 조형 장치를 사용하고, 추가로 광 조사부 (25) 를 구비하였다. 재료 A 는 광 경화성 성분을 함유하는 경우, A 가 노즐부 (23) 로부터 토출된 후, 25 로부터 조사되는 광에 의해 경화될 수 있다.
또, 도 10 에 나타내는 바와 같이, 불활성 가스 분출부 (28) 를 설치할 수 있다. 광 조사 범위에 대해 질소 등의 불활성 가스를 분출함으로써, 광 경화성 성분을 갖는 재료 A 의 라디칼 중합에 의한 경화 반응이 신속하게 진행될 수 있어, 조형 속도의 향상과 조형 정밀도의 개선에 유리하다. 불활성 가스의 분출은, 고형화되기 전의 조형물이 변형되지 않을 정도의 압력으로 실시한다. 그 압력은 조형 재료의 품종, 물성에 따라 상이하지만, 통상 50 kPa 이하로 설정된다.
또한, 도 5 에 나타내는 바와 같이, 노즐 경화 방지부 (27) 를 설치할 수 있다. 27 을 설치함으로써, 조사부 (25) 로부터 조사되는 광의 조사 범위를 용이하게 조정하는 것이 가능하기 때문에, 노즐 선단의 폐색이나 토출 불량 등의 트러블 발생이 억제되고, 조형 정밀도도 향상되기 때문에 바람직하다.
실시예 3
도 2 에 나타내는 바와 같이, 광 조사부 (25) 를 구비한 실시형태 3 의 3 차원 조형 장치를 사용하였다. 재료 A 로서, 아크로일모르폴린 (KJ 케미컬즈사 제조 등록상표 「ACMO」, 등록상표 「Kohshylmer」) 49 질량부, 페녹시에틸아크릴레이트 49 질량부와 광 중합 개시제 Omnirad TPO (IGM Resins 사 제조) 2 질량부의 혼합물을 조제하였다. 20 ℃ 에 있어서의 재료 A 의 점도는 0.011 Pa·s 였다. A 의 토출 온도를 20 ℃ 로 설정하고, 토출구 노즐부 (23) 은 내경 0.1 mm, 외경 0.13 mm 의 것을 사용하고, 광 조사부로서 UV-LED (405 ㎚) 의 광원을 사용하였다. 한편, 재료 B 로서 AquaSolve-PVA (FORMFUTURA 사 제조 MFR 14 ∼ 20 g/10 분 (190 ℃, 하중 2.16 Kg)) 를 사용하고, 가열부 (34) 와 노즐부 (33) (토출구의 내경은 1.0 mm, 외경은 2.0 mm) 를 190 ℃ 로 가열하였다. 환경 온도를 20 ℃ 로 설정하고, A 와 B 의 적층 두께를 모두 0.2 mm 로 하고, 각각의 소정 조형 속도, 압력과 조형 패턴 등에 준하여, 조형을 실시하였다. 스테이지 (42) 에 토출된 A 가, 25 로부터 조사되는 광에 의해 경화되고, 한편, B 가 토출 후에 냉각되어 고형화되었다. 이 조작을 층마다 실시하고, 추가로 반복 적층해 가는 것에 의해 2M 과 3M 의 층을 교대로 쌓아올림으로써 성형된 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 양호한 정밀도로 제조할 수 있었다.
실시예 4
재료 A 로서 2 관능의 우레탄 올리고머 (UA-1, 100 ℃ 에 있어서의 점도는 6.8 Pa·s 이다) 98 질량부와 광 중합 개시제 Omnirad 1173 (IGM Resins 사 제조) 2 질량부의 혼합물을 사용하였다. 저류부 (20) 와 노즐부 (23) (토출구의 내경은 0.6 mm, 외경은 0.7 mm) 를 100 ℃ 로 가열하였다. 광원으로서 Hg-Xe 램프를 사용하였다. 한편, 조형 재료 B 로서 실시예 1 과 동일한 PLA 를 사용하고, 노즐부 210 ℃ 로 가열하고, 노즐부 (33) 는 내경 0.4 mm, 외경 2.0 mm 의 것을 사용하였다. A 와 B 의 적층 두께를 모두 0.16 mm 로 하고, 환경 온도 60 ℃ 에서 조형을 실시하였다. 이 때, 노즐부 (23) 에는, 도 5 에 나타내는 바와 같이, 노즐 경화 방지부 (27) 를 장착하였다. 노즐부 (23) 의 선단의 직경 (외경) ΦL 은 0.13 mm, 노즐 경화 방지부 (27) 에 의해 조사되지 않게 된 조사 제한 범위의 원의 직경 ΦM 은 5 mm 였다. 또, 광 조사부 (25) 로부터 조사되는 최대 범위의 원의 직경 ΦN 는 30 mm 으로, 즉 23, 25, 27 의 조합에 의해 조사되는 범위는 직경 25 mm (ΦN - ΦM) 의 원륜이었다. 상기 소정 조건에 준하여, 스테이지 (42) 에 조형 재료 A 가 토출되면서, LED 광원으로부터 조사되는 자외선 (UV) 에 의해 경화되고, 조형 재료 B 인 PLA 수지는 실시예 1 과 동일하게 토출 후 냉각에 의해 고형화되었다.
조형 방법으로는, 본 발명의 조형 장치 재료 A 와 B 를 교대로 층마다 쌓아올리는 조형 방법, A 를 수 층으로 쌓아올리고 나서 B 를 수 층으로 쌓아올리는 조형 방법, 동일한 층 내에 A 와 B 를 모두 사용하여 적층해 가는 조형 방법 등, 본 발명의 조형 장치에 따라 임의로 설정하여 실시할 수 있다. 예를 들어, 실시예 4 의 재료 A 와 B 를 사용하여, 환경 온도 60 ℃ 에서, 이하의 조형을 실시하였다.
도 2 에 나타내는 X 축 방향을 따라 재료 A 를 0.13 ∼ 0.14 mm/층의 두께로 토출, 적층을 실시하고, 길이 (Y 축 방향) 100 mm, 폭 (X 축 방향) 20 mm, 높이 (Z 축 방향) 0.67 ∼ 0.68 mm 의 재료 A 로 이루어지는 조형물 2M 을 얻었다. 얻어진 2M 의 시트 형상 조형물 상에, 재료 B 를 Y 축 방향을 따라 0.22 ∼ 0.23 mm/층의 두께로 토출, 적층을 실시하여, 높이 1.34 ∼ 1.35 mm 의 조형물 2M 과 3M 으로 이루어지는 복합 재료 조형물을 얻었다. 또한, 2M 과 3M 의 복합 재료 조형물 상에 재료 A 를 동일하게 X 축 방향의 조형을 실시하여, 길이 100 mm, 폭 20 mm, 높이 2 mm 의 3 층 구조의 이종 재료 조형물 AxByAx 를 얻었다. 또한, 재료 A 와 B 를 모두 X 축 방향의 조형 및 A 가 X 축, B 가 경사 방향 (X 축에 대해 45°의 방향) 의 조형을 실시하여, 각각 길이 100 mm, 폭 20 mm, 높이 2 mm 의 3 층 구조의 이종 재료 조형물 AxBxAx 와 AxB45Ax 를 얻었다.
비교예 1
재료 A 에 관련되는 출력 기구, 저류부, 송액 장치, 온도 제어 장치, 노즐부와, 광 조사부, 제어 컴퓨터, 스테이지 등을 구비한 3 차원 조형 장치 (P) 를 사용하고, 실시예 4 와 동일한 재료 A 를 사용하여, 실시예 4 와 동일한 조형 조건에 있어서, X 축 방향의 조형을 실시하여, 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 제조하였다.
비교예 2
재료 B 에 관련되는 출력 기구, 저류부, 송액 장치, 온도 제어 장치, 노즐부, 제어 컴퓨터, 스테이지 등을 구비한 3 차원 조형 장치 (Q) 를 사용하고, 실시예 3 과 동일한 재료 B 를 사용하여, 실시예 3 과 동일한 조형 조건에 있어서, X 축, Y 축과 Z 축 방향의 조형을 실시하여, 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 제조하였다.
실시예 4 와 비교예 1, 2 에서 얻어진 각 조형물을 사용하여, 각각을 2 등분 (길이 50 mm, 폭 20 mm, 높이 2 mm) 으로 자르고, 단면을 광학 현미경 (10 배 확대) 에 의해 관찰하여, 조형 품질을 평가하였다. 또, 조형 정밀도를 평가하고, 인장 시험에 의한 강도와 신도의 평가를 실시하였다. 평가 결과를 표 1 에 나타낸다.
실시예 5 ∼ 11
실시예 5 에 있어서, 실시예 4 와 동일한 재료 A 와 B 를 사용하고, 실시예 4 와 동일한 장치와 조형 조건하에, 도 6 에 나타내는 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 제조하였다. 또, 실시예 4 와 동일한 장치를 사용하고, 표 2 에 나타내는 재료, 조건에 의해 실시예 6 ∼ 11 을 실시하여, 길이 100 mm, 폭 20 mm, 높이 2 mm 의 조형물을 얻었다. 실시예 3, 5 ∼ 11 의 이종 재료의 조성, 조형 조건 및 조형물의 평가 결과를 표 2 에 나타낸다. 또한, 실시예 6 ∼ 11 에 있어서, A 와 B 의 조형은 모두 Y 축 방향을 따라 실시하였다.
비교예 3
실시예 3 과 동일한 재료 A 를 사용하고, 실시예 3 과 동일한 조형 조건에 있어서, A 에 관련되는 3 차원 조형 장치 P 에 의해 X 축 방향의 조형을 실시하여, 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 제조하였다. 얻어진 조형물을 층으로서 쌓아올리는 것에 수반하여, 토출 직후의 수지가 확산되기 쉬워져, 조형의 정밀도가 낮았다. 또, 얻어진 조형물의 표면에는 요철이 확인되어, 품질이 낮았다. 그 조형물을 2 등분으로 자를 때에도, 인장 시험용 덤벨형 시험편을 타발할 때에도 균열되어 버렸기 때문에, 내부 관찰과 인장 시험을 실시할 수 없었다.
비교예 4 ∼ 7
표 3 에 나타내는 각종 재료 B 를 사용하고, B 에 관련되는 3 차원 조형 장치 Q 에 의해, 소정 조건하에서 적층하고 조형을 실시하여, 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 제조하였다. 얻어진 조형물의 조성 정밀도, 품질을 평가하고, 인장 시험을 실시하였다. 각종 평가, 시험의 결과를 표 3 에 나타냈다.
비교예 8
비교예 1 과 비교예 2 를 Y 축 방향으로 조형하여 얻어진 2 장의 장방형 조형물 (길이 100 mm, 폭 20 mm, 높이 2 mm) 을 상하로 겹치고, 열 프레스기 (200 ℃) 를 사용하여, 높이 2 mm 로 성형하였다. 냉각 후, 길이 100 mm, 폭 20 mm, 높이 2 mm 로 컷하였다. 동일하게 조성물의 품질을 평가한 결과, A 와 B 의 계면에는 기포나 결함, 밀착되어 있지 않은 지점이 있었다. 인장 시험을 실시하고, 결과를 표 3 에 나타냈다.
실시예 3 ∼ 11 과 비교예 3 ∼ 7 의 결과로부터, 통상의 단일 재료 (A 혹은 B) 를 취급하는 3 차원 조형 장치에서는 고정밀도, 고품질로 조형할 수 없는 재료에 있어서도, 본 발명의 3 차원 조형 장치는, 이종 재료를 사용할 수 있기 때문에 이종 재료 A 와 B 의 조합, 복합 등에 의해 조형 정밀도와 조형물의 품질이 개선되고, 조형물의 기계적 성질도 향상될 수 있었다. 이는, 동일한 층 중 또는 상이한 층 사이에 갖는 이종 재료의 상호 작용에 의한 특이 효과를 발휘한 결과인 것으로 생각하고 있다. 예를 들어, 저점도의 재료 A 는, 이종 재료인 B 로 조형된 층 상에 토출되면, 경화 전의 확산을 억제할 수 있고, 또, 용융 점도가 높은 재료 B 의 주변에, 이종 재료인 A 를 토출, 조형하면, 재료 B 끼리에 의해 형성되는 간극이나 적층흔을 매립할 수 있어, 조형물의 품질 개선, 강도와 신도의 향상, 특히 FDM 재료 특유의 강도 이방성 (적층 방향의 강도가 낮다) 의 문제를 개선할 수 있다.
표 1 ∼ 3 의 결과를 비교하면, 이종 재료인 재료 A 와 재료 B 를 사용하여 얻어진 적층 조형물의 강도가, 단일 재료 A 또는 B 로 이루어지는 조형물보다 높고, 또, 단일 재료 B 의 조형물보다 신도가 높아졌다. 조형 정밀도, 조형물의 품질도, 이종 재료로 이루어지는 조형물 쪽이, 단일 재료 A 또는 B 의 조형물보다 양호한 것을 확인할 수 있다. 단일 재료 A 만을 사용한 경우, 동일한 유연성 재료나 저점도 재료, 활성 에너지 경화성 재료를 적층할 때에는, 고화 또는 경화되기 전에는 유동성이 있기 때문에, 고화 또는 경화 후에 층간의 간극은 남지 않아, 조형물 표면에 적층흔의 잔존을 억제할 수 있지만, 고점도의 재료나, 고화 또는 경화 속도가 빠른 재료를 적층할 때에는, 조형물의 내부에 기포나 결함 등이 잔존하기 쉬워지는 결과가 되었다. 한편, 단일 재료 B 만을 사용한 경우, 동일한 고용융 점도나 고융점의 재료, 고경도, 강도의 재료를, 일정한 유동성을 갖는 온도까지 가열하여, 반융해 상태로 토출하고, 적층함으로써, 조형물 내부의 기포나 결함 등은 억제할 수 있지만, 토출 후, 급속히 유동성을 잃어 버리기 때문에, 고화되었을 때에 층간에 간극이 잔존하고, 조형물 표면 및 내부에 적층흔이 잔존하기 쉬워지는 결과가 되었다. 본 발명의 이종 재료를 사용한 조형은, 각종 재료의 특징을 최대로 발휘시켜, 결점을 극복하고, 그것들의 상호 작용에 의해 밸런스가 좋은 조형을 할 수 있다. 또, 강도도 신도도 양호하고, 우수한 품질의 조형물을 고정밀도로 조형할 수 있다. 또한, 종래의 FDM 식의 조형물, 즉 본 발명의 비교예 3 ∼ 7 의 경우, 적층 방향의 강도가 특히 낮아, 균열되기 쉬운 결점이, 이종 재료의 도입으로 인해 개선되어, 실용성이 향상된 것이 분명하다. 또한, 이와 같은 이종 재료에 의한 조형 성능의 향상은, 본 발명의 조형 장치를 사용하여, 이종 재료를 교대로 조금씩 적층해 가는 경우, 이종 재료가 최대한으로 접근할 수 있어, 그것들의 상승 효과를 최대한으로 발휘할 수 있다. 이 때문에, 각각의 재료로 얻어진 조형물의 첩합 (비교예 8) 보다 강도나 신도 등의 기계적 물성도 우수한 조형물을 얻을 수 있다.
또, 노즐 경화 방지부를 설치함으로써, 재료 A 의 토출용 노즐의 선단에 직접 광이 조사되는 경우가 없어, 노즐부의 폐색이나, 노즐 선단에 경화된 조형 재료 A 의 고착, 대기 기간 중의 실끌림 등이 개선되었다.
Figure pct00001
Figure pct00002
Figure pct00003
산업상 이용가능성
이상 설명해 온 바와 같이, 본 발명에 있어서의 2 종 이상의 이종 재료를 적층 조형할 수 있는 3 차원 조형 장치는 3D 프린터로서 사용하는 것이 가능하고, 광범위한 분야에 있어서, 다종 다양한 재료를 적절히 조합함으로써, 이종 재료로 이루어지는 조형물을 양호한 정밀도로 제조할 수 있다. 또, 본 발명의 3 차원 조형 방법에 의해, 이종 재료로부터 다양한 물성치, 형상을 갖는 3 차원 조형물을, 공업용 물품, 문구, 사무 용품 등의 생활 용품이나 의료 용품 등으로서 공업적으로 용이하게 제조할 수 있다.
A : 토출 온도가 20 ∼ 150 ℃, 토출 점도는 0.01 ∼ 1000 Pa·s 인 조형 재료
20 : 저류부
21 : 가압부
22 : 가압 컨트롤러부
23 : 노즐부
24 : 가열부
25 : 광 조사부
27 : 노즐 경화 방지부
28 : 불활성 가스 분사부
29 : 감압 펌프
B : 토출 온도는 60 ∼ 350 ℃, 토출 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 (g/10 분, 하중 2.16 kg) 인 조형 재료
30 : 저류부
31 : 가압부
33 : 노즐부
34 : 가열부
40 : 장치 본체
41 : 제어 컴퓨터
42 : 스테이지
43 : 조형 에어리어
44 : 노즐 제어부
45 : 기어
46 : 모터
47 : 스크루
48 : 감압부

Claims (15)

  1. 재료 A 와 재료 B 의 2 종 이상의 조형 재료를 사용한 3 차원 조형 장치로서,
    각종 조형 재료를 저장하기 위한 저류부와,
    각종 조형 재료를 토출하기 위한 노즐부와,
    각종 재료를 저류부로부터 노즐부로 수송하기 위한 송액 장치, 온도 제어 장치와,
    조형용 스테이지와,
    스테이지와 2 개 이상의 노즐부를 3 차원적으로 상대 이동시키기 위한 상대 이동 기구와,
    송액 장치, 온도 제어 장치 및 상대 이동 기구를 제어하기 위한 컴퓨터를 구비하는 것을 특징으로 하는 3 차원 조형 장치.
  2. 제 1 항에 있어서,
    적어도 1 종 이상의 재료 A 와, 적어도 1 종 이상의 재료 B 를 동시에 토출하며, 또한, 재료 A 의 토출 온도는 20 ℃ ∼ 150 ℃, 토출 점도는 0.01 ∼ 1000 Pa·s 인 것을 특징으로 하는 3 차원 조형 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    재료 A 의 토출 방식은, 시린지 방식, 용적 계량 방식, 튜빙 방식, 플런저 방식에서 선택되는 하나 이상인 것을 특징으로 하는 3 차원 조형 장치.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    재료 A 의 송액 장치는, 정량 시린지 펌프식 송액 장치, 정량 기어 펌프식 송액 장치, 정량 튜브 펌프식 송액 장치, 정량 토출 밸브식 송액 장치에서 선택되는 1 개 이상의 정량 송액 장치인 것을 특징으로 하는 3 차원 조형 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    재료 B 의 토출 온도는 60 ℃ ∼ 350 ℃, 또한, 토출 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 (g/10 분, 하중 2.16 kg) 인 것을 특징으로 하는 3 차원 조형 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    광 조사부를 추가로 구비하는 것을 특징으로 하는 3 차원 조형 장치.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    재료 A 를 토출하기 위한 노즐부에 추가로 노즐 경화 방지부를 형성하는 것을 특징으로 하는 3 차원 조형 장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    노즐 경화 방지부는 광 조사부로부터 조사되는 광의 조사 범위를 제한하며, 또한, 조사 범위가 재료 A 를 토출하기 위한 노즐부의 선단 직경과 동심원의 1 배 이상 ∼ 100 배 미만의 범위 내인 것을 특징으로 하는 3 차원 조형 장치.
  9. 재료 A 와 재료 B 가 동시에 또는 차례로 스테이지 상에 토출되고, 동일한 층 또는 상이한 층을 형성하면서 적층해 가는 3 차원 조형물의 제조 방법.
  10. 제 9 항에 있어서,
    재료 A 및/또는 재료 B 를 토출하기 위한 노즐의 선단이 각각의 노즐로부터 토출된 재료와 접촉하면서 조형하는 것을 특징으로 하는 3 차원 조형물의 제조 방법.
  11. 제 9 항 또는 제 10 항에 있어서,
    2 종 이상의 조형 재료는, 적어도 1 종 이상의 재료 A 와, 적어도 1 종 이상의 재료 B 를 함유하고, 재료 A 는 20 ℃ ∼ 150 ℃ 의 온도 범위에서 조형되며, 또한, 조형 온도에 있어서의 A 의 점도가 0.01 ∼ 1000 Pa·s 인 것을 특징으로 하는 3 차원 조형물의 제조 방법.
  12. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
    재료 B 는 60 ℃ ∼ 350 ℃ 의 온도 범위에서 조형되며, 또한, 조형 온도에 있어서의 멜트 플로 레이트 (MFR) 치가 1 ∼ 400 (g/10 분, 하중 2.16 kg) 인 것을 특징으로 하는 3 차원 조형물의 제조 방법.
  13. 제 9 항 내지 제 12 항 중 어느 한 항에 있어서,
    재료 A 는 광 경화성 성분을 10 질량% 이상 함유하는 수지 조성물인 것을 특징으로 하는 3 차원 조형물의 제조 방법.
  14. 제 9 항 내지 제 13 항 중 어느 한 항에 있어서,
    재료 A 는 20 ℃ 이상의 온도에서 노즐로부터 토출되면서 광 조사에 의해 고형화되는 것을 특징으로 하는 3 차원 조형물의 제조 방법.
  15. 제 9 항 내지 제 14 항 중 어느 한 항에 있어서,
    재료 B 는 60 ℃ 이상의 온도에서 노즐로부터 토출된 후, 냉각에 의해 고형화되는 것을 특징으로 하는 3 차원 조형물의 제조 방법.
KR1020207029198A 2018-06-25 2019-06-24 이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법 KR20210021941A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018120140 2018-06-25
JPJP-P-2018-120140 2018-06-25
PCT/JP2019/024957 WO2020004328A1 (ja) 2018-06-25 2019-06-24 異種材料を用いた三次元造形装置と三次元造形方法

Publications (1)

Publication Number Publication Date
KR20210021941A true KR20210021941A (ko) 2021-03-02

Family

ID=68987052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207029198A KR20210021941A (ko) 2018-06-25 2019-06-24 이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법

Country Status (6)

Country Link
US (1) US11478982B2 (ko)
EP (1) EP3812133A4 (ko)
JP (1) JP6734517B2 (ko)
KR (1) KR20210021941A (ko)
CN (1) CN112262035B (ko)
WO (1) WO2020004328A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851266A1 (en) * 2020-01-20 2021-07-21 Vito NV A system and method for manufacturing three-dimensional structures
CN113001008B (zh) * 2021-02-08 2022-09-20 昆山万洲特种焊接有限公司 一种大间隙搅拌摩擦焊装置
WO2022232598A1 (en) * 2021-04-29 2022-11-03 Georgia Tech Research Corporation Lightweight cryogenic conductors and methods of making and use thereof
WO2022269575A1 (en) * 2021-06-26 2022-12-29 Indian Institute Of Science System and method for generating molten metal droplets for additive manufacturing
KR102530681B1 (ko) * 2022-04-29 2023-05-10 주식회사 에이엠솔루션즈 적층가공의 이종재료 투입 제어방법 및 그 시스템
CN115122632B (zh) * 2022-08-31 2022-11-15 安徽万宇机械设备科技有限公司 一种增材制造轴心

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130132A (ja) 1988-11-11 1990-05-18 Matsushita Electric Works Ltd 光学的造形物の製造方法
JP2017200762A (ja) 2016-05-03 2017-11-09 ゼロックス コーポレイションXerox Corporation 異なる造形材料によって3次元印刷物体内の一体化界面を形成するシステム及び方法
JP2018079652A (ja) 2016-11-18 2018-05-24 セイコーエプソン株式会社 樹脂成形装置および樹脂成形方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216616A (en) * 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US5134569A (en) * 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5204124A (en) * 1990-10-09 1993-04-20 Stanley Secretan Continuous extruded bead object fabrication apparatus
US5633021A (en) * 1994-10-19 1997-05-27 Bpm Technology, Inc. Apparatus for making a three-dimensional article
US5529471A (en) * 1995-02-03 1996-06-25 University Of Southern California Additive fabrication apparatus and method
US6896839B2 (en) * 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
US7153454B2 (en) * 2003-01-21 2006-12-26 University Of Southern California Multi-nozzle assembly for extrusion of wall
JP4366538B2 (ja) * 2003-09-04 2009-11-18 リコープリンティングシステムズ株式会社 三次元積層造形物用支持体材料、三次元積層造形物の中間体、三次元積層造形物の製造方法、三次元積層造形物の製造装置
US8944799B2 (en) * 2007-11-27 2015-02-03 University Of Southern California Techniques for sensing material flow rate in automated extrusion
US9174388B2 (en) * 2012-08-16 2015-11-03 Stratasys, Inc. Draw control for extrusion-based additive manufacturing systems
US10029415B2 (en) * 2012-08-16 2018-07-24 Stratasys, Inc. Print head nozzle for use with additive manufacturing system
US9527240B2 (en) * 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
JP2014221538A (ja) 2013-05-14 2014-11-27 富士機械製造株式会社 形成方法、および形成装置
JP2015036234A (ja) 2013-08-15 2015-02-23 コニカミノルタ株式会社 三次元造形装置および三次元造形方法
US9950474B2 (en) * 2013-09-13 2018-04-24 Statasys, Inc. Additive manufacturing system and process with precision substractive technique
US9688025B2 (en) * 2014-01-08 2017-06-27 Adobe Systems Incorporated 3D cleaning object for multi-print-head 3D printing
JP2015136915A (ja) 2014-01-24 2015-07-30 コニカミノルタ株式会社 三次元造形装置および三次元造形方法
US9937666B2 (en) * 2014-06-04 2018-04-10 Empire Technology Development Llc Systems and methods for forming three dimensional objects
WO2015193819A2 (en) * 2014-06-16 2015-12-23 Sabic Global Technologies B.V. Method and apparatus for increasing bonding in material extrusion additive manufacturing
US9073366B1 (en) * 2014-07-25 2015-07-07 Xyzprinting, Inc. Rotational printing head module having muti-cartridge
US10737441B2 (en) * 2014-09-15 2020-08-11 Massachusetts Institute Of Technology Methods and apparatus for additive manufacturing along user-specified toolpaths
JP6439338B2 (ja) 2014-09-16 2018-12-19 コニカミノルタ株式会社 三次元造形方法および三次元造形装置
JP2016074178A (ja) 2014-10-08 2016-05-12 コニカミノルタ株式会社 三次元造形装置、三次元造形方法および造形材
US10596726B2 (en) * 2014-10-16 2020-03-24 Dow Global Technologies Llc Method for additive manufacturing
EP3224021B1 (en) * 2014-11-27 2020-06-24 Signify Holding B.V. Printing head, printing apparatus, printing method and printed article
US20160250808A1 (en) * 2015-02-26 2016-09-01 Mitsubishi Electric Research Laboratories, Inc. System and Method for Printing Three Dimensional Objects
RU2017134058A (ru) * 2015-03-03 2019-04-05 Филипс Лайтинг Холдинг Б.В. Сшивание посредством вставки отверждаемых податливых материалов частей, производимых посредством технологии аддитивного изготовления, для улучшенных механических свойств
CN105729796A (zh) * 2015-04-29 2016-07-06 宁夏共享模具有限公司 3d打印设备的加料装置及其使用方法
JP6801173B2 (ja) * 2015-10-29 2020-12-16 セイコーエプソン株式会社 三次元構造物の製造方法、その製造装置及びその制御プログラム
JP6733155B2 (ja) 2015-11-24 2020-07-29 三菱ケミカル株式会社 積層造形用サポート材およびそれを用いた積層造形物の製造方法
US20170251713A1 (en) * 2016-03-07 2017-09-07 Telamens, Inc. 3d printer and method for printing an object using a curable liquid
US9993964B2 (en) * 2016-07-14 2018-06-12 Xerox Corporation Method and system for producing three-dimensional build objects
US20180065317A1 (en) * 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-situ fiber splicing
EP3529307A1 (en) * 2016-10-21 2019-08-28 E. I. du Pont de Nemours and Company Filament compositions for fused filament fabrication and methods of use thereof
WO2018110685A1 (ja) * 2016-12-15 2018-06-21 日本合成化学工業株式会社 造形材料、造形物および造形物の製造方法
US20180169971A1 (en) * 2016-12-21 2018-06-21 The Boeing Company Fused filament fabrication machine
US10974299B2 (en) * 2017-07-17 2021-04-13 Desktop Metal, Inc. Additive fabrication using variable build material feed rates
JP7119643B2 (ja) * 2018-06-27 2022-08-17 セイコーエプソン株式会社 三次元造形物の製造方法および三次元造形装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130132A (ja) 1988-11-11 1990-05-18 Matsushita Electric Works Ltd 光学的造形物の製造方法
JP2017200762A (ja) 2016-05-03 2017-11-09 ゼロックス コーポレイションXerox Corporation 異なる造形材料によって3次元印刷物体内の一体化界面を形成するシステム及び方法
JP2018079652A (ja) 2016-11-18 2018-05-24 セイコーエプソン株式会社 樹脂成形装置および樹脂成形方法

Also Published As

Publication number Publication date
US20200384683A1 (en) 2020-12-10
EP3812133A1 (en) 2021-04-28
JPWO2020004328A1 (ja) 2020-07-09
WO2020004328A1 (ja) 2020-01-02
JP6734517B2 (ja) 2020-08-05
TW202000431A (zh) 2020-01-01
CN112262035A (zh) 2021-01-22
CN112262035B (zh) 2023-05-02
EP3812133A4 (en) 2022-03-02
US11478982B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
KR20210021941A (ko) 이종 재료를 사용한 3 차원 조형 장치와 3 차원 조형 방법
US9707717B2 (en) Thixotropic, thermosetting resins for use in a material extrusion process in additive manufacturing
EP2572037B1 (en) Cutting and or creasing die and method of forming it
US20190337282A1 (en) Method for production of coated filaments for extrusion-based 3d printing processes
CN112714690B (zh) 通过逐层施加材料来制造三维成型对象的方法
US9079356B2 (en) Method and apparatus for producing a three-dimensional object
JP7177932B2 (ja) 3d印刷のための低粘度uv硬化性調合物
KR20200042930A (ko) 하나보다 많은 종류의 실리콘 재료로 제조된 3d 인쇄 성형 부품
KR101407050B1 (ko) 가변형 수조 적층방식을 이용한 3차원 프린터 및 이를 이용한 조형방법
JP2022506320A (ja) 層状の材料塗布によって三次元の成形品を製造するための方法
Godec et al. Introduction to additive manufacturing
KR102291562B1 (ko) 3d 프린팅용 조성물 및 이를 이용한 3d 프린터용 필라멘트
TWI840377B (zh) 使用異質材料之三維造形裝置、三維造形方法以及三維造形物
KR20190098786A (ko) 액상 카트리지 교환형 3d 프린터
JP2017104988A (ja) 射出成形金型におけるシボ模様転写面の製造方法
KR101690149B1 (ko) 서포트 분리가 용이한 3차원 프린터
TWI574829B (zh) 多功能複合列印裝置
KR20190134904A (ko) 와이어를 이용한 전자소자 제조 장치
RU2797378C2 (ru) Способ изготовления трехмерного формованного изделия посредством послойного нанесения материала
RU2783433C1 (ru) Способ изготовления трехмерного фасонного изделия посредством послойного нанесения материала
JP6704261B2 (ja) 繊維強化樹脂成形体の製造方法及び繊維強化樹脂成形体の製造装置
TWI574830B (zh) 多功能複合列印裝置
Kim et al. A Study on Improvement of Strength by using Photopolymer Resin in the 3DP Process