KR20210013331A - 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치 - Google Patents

히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치 Download PDF

Info

Publication number
KR20210013331A
KR20210013331A KR1020217002652A KR20217002652A KR20210013331A KR 20210013331 A KR20210013331 A KR 20210013331A KR 1020217002652 A KR1020217002652 A KR 1020217002652A KR 20217002652 A KR20217002652 A KR 20217002652A KR 20210013331 A KR20210013331 A KR 20210013331A
Authority
KR
South Korea
Prior art keywords
sensor
pedestal
sensor wafer
center point
wafer
Prior art date
Application number
KR1020217002652A
Other languages
English (en)
Other versions
KR102466391B1 (ko
Inventor
찰스 쥐. 포터
앤서니 디. 본
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Priority to KR1020227038977A priority Critical patent/KR102622898B1/ko
Publication of KR20210013331A publication Critical patent/KR20210013331A/ko
Application granted granted Critical
Publication of KR102466391B1 publication Critical patent/KR102466391B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/086Proximity sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본원에서 개시된 실시예들은, 페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법을 포함한다. 실시예에서, 방법은, 페데스탈 상에 센서 웨이퍼를 배치하는 단계를 포함하고, 센서 웨이퍼는 페데스탈에 의해 지지되는 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면을 제2 표면에 연결하는 에지 표면을 포함하고, 복수의 센서 구역들이 에지 표면 상에 형성되며, 페데스탈은 센서 웨이퍼를 둘러싸는 환형 벽 및 주 표면을 포함한다. 실시예에서, 방법은, 복수의 센서 구역들 각각과 환형 벽 사이의 갭 거리를 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 갭 거리들로부터 환형 벽의 중심점에 대한 센서 웨이퍼의 중심점의 중심점 오프셋을 결정하는 단계를 더 포함할 수 있다.

Description

히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치
본 출원은, 2018년 9월 4일자로 출원된 미국 가출원 번호 제62/726,887호를 우선권으로 주장하는, 2019년 8월 20일자로 출원된 미국 정규 출원 번호 제16/545,824호를 우선권으로 주장하며, 이들의 전체 내용은 이로써 인용에 의해 본원에 포함된다.
실시예들은 반도체 제조 분야에 관한 것으로, 특히, 가열 페데스탈 상의 웨이퍼들을 센터링(centering)하기 위한 방법들 및 장치들에 관한 것이다.
반도체 웨이퍼들과 같은 기판들의 프로세싱에서, 기판은 다양한 제조 동작들을 위해 가열 페데스탈 상에 배치될 수 있다. 통상적으로, 가열 페데스탈은 평탄한 표면 ―이 평탄한 표면 상에 기판이 놓임―, 및 기판을 둘러싸는 환형 링(포켓으로 또한 지칭됨)을 포함한다. 환형 링은 일반적으로, 프로세싱되는 기판보다 더 두껍다.
이상적으로, 기판에 걸쳐 균일한 프로세싱을 제공하기 위하여 기판은 환형 링과 센터링되어야 한다. 즉, 기판의 중심점이 환형 링의 중심점과 일치해야 한다. 현재, 환형 링에 대한 기판의 정렬은 눈으로 행해지고, 이는 균일한 프로세싱을 보장하는 데 필요한 정확도를 제공하지 않는다. 기판 배치가 적절함을 확인하기 위하여, 웨이퍼 상의 균일성 시험(on-wafer uniformity test)들이 실행될 수 있다. 그러한 시험들은 수행하는 데 몇 시간을 필요로 하고, 시험 웨이퍼들의 비용에 기인하여 값비싸다.
본원에서 개시된 실시예들은, 페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법을 포함한다. 실시예에서, 방법은, 페데스탈 상에 센서 웨이퍼를 배치하는 단계를 포함하고, 센서 웨이퍼는 페데스탈에 의해 지지되는 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면을 제2 표면에 연결하는 에지 표면을 포함하고, 복수의 센서 구역들이 에지 표면 상에 형성되며, 페데스탈은 센서 웨이퍼를 둘러싸는 환형 벽 및 주 표면을 포함한다. 실시예에서, 방법은, 복수의 센서 구역들 각각과 환형 벽 사이의 갭 거리를 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 갭 거리들로부터 환형 벽의 중심점에 대한 센서 웨이퍼의 중심점의 중심점 오프셋을 결정하는 단계를 더 포함할 수 있다.
본원에서 개시된 실시예들은 배치 제어기를 포함한다. 실시예에서, 배치 제어기는 센서 인터페이스를 포함하고, 센서 인터페이스는 센서 웨이퍼로부터 센서 정보를 수신하며, 센서 웨이퍼는 센서 웨이퍼의 에지 표면을 따라 복수의 외향 센서들을 포함한다. 실시예에서, 배치 제어기는 중심점 모듈을 더 포함하고, 중심점 모듈은 가열 페데스탈 ―가열 페데스탈 상에 센서 웨이퍼가 놓임― 의 중심점에 대한 센서 웨이퍼의 중심점을 결정하기 위해 센서 정보를 활용하며, 배치 제어기는 페데스탈 상에 센서 웨이퍼를 배치하는 포지셔닝 로봇을 제어한다.
본원에서 개시된 실시예들은, 페데스탈 상에 웨이퍼를 배치하기 위한 웨이퍼 포지셔닝 로봇을 교정하는 방법을 포함한다. 실시예에서, 방법은, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈 상의 제1 포지션에 센서 웨이퍼를 배치하는 단계를 포함하고, 센서 웨이퍼는 페데스탈에 의해 지지되는 제1 표면, 제1 표면에 대향하는 제2 표면, 및 제1 표면을 제2 표면에 연결하는 에지 표면을 포함하고, 복수의 센서 구역들이 에지 표면 상에 형성되며, 페데스탈은 센서 웨이퍼를 둘러싸는 환형 벽 및 주 표면을 포함한다. 실시예에서, 방법은, 복수의 센서 구역들 각각과 환형 벽 사이의 갭 거리를 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 갭 거리들로부터 환형 벽의 중심점에 대한 센서 웨이퍼의 중심점의 중심점 오프셋을 결정하는 단계를 더 포함한다. 실시예에서, 방법은, 중심점 오프셋만큼 제1 포지션을 수정함으로써, 제 2 포지션을 생성하는 단계를 더 포함한다. 실시예에서, 방법은, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈로부터 센서 웨이퍼를 제거하는 단계를 더 포함한다. 실시예에서, 방법은, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈 상의 제2 포지션에 웨이퍼를 배치하는 단계를 더 포함한다.
도 1a는 실시예에 따른, 가열 페데스탈 상의 센서 웨이퍼의 평면도 예시이다.
도 1b는 실시예에 따른, 도 1a의 가열 페데스탈 및 센서 웨이퍼의 단면 예시이다.
도 2는 실시예에 따른, 에지 센서들을 갖는 센서 웨이퍼의 평면도 예시이다.
도 3은 실시예에 따른, 에지 센서들을 갖는 센서 웨이퍼의 사시도 예시이다.
도 4a는 실시예에 따른, 에지 센서를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 4b는 실시예에 따른, 에지 센서 및 전기장 가드를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 4c는 실시예에 따른, 에지 센서 및 최상부 표면 함몰부를 갖는 센서 웨이퍼의 부분 단면 예시이다.
도 5는 실시예에 따른, 페데스탈에 대한 센서 웨이퍼의 오프셋을 결정하기 위한 배치 제어기 및 프로세싱 툴의 개략도이다.
도 6은 실시예에 따른, 페데스탈에 대한 센서 웨이퍼의 오프셋을 결정하기 위한 프로세스의 흐름도이다.
도 7은 실시예에 따른, 센서 웨이퍼를 이용하여 웨이퍼 포지셔닝 로봇을 교정하기 위한 프로세스의 흐름도이다.
도 8은 실시예에 따른, 페데스탈에 대한 센서 웨이퍼의 오프셋을 결정하는 것을 포함하는 프로세스들과 함께 사용될 수 있는 예시적인 컴퓨터 시스템의 블록도를 예시한다.
에지 센서들을 갖는 센서 웨이퍼들을 포함하는 시스템들, 및 페데스탈에 대한 센서 웨이퍼의 오프셋을 측정하기 위해 그러한 센서 웨이퍼들을 사용하는 방법들이 다양한 실시예들에 따라 설명된다. 다음의 상세한 설명에서는, 실시예들의 완전한 이해를 제공하기 위하여 많은 특정 세부사항들이 제시된다. 이들 특정 세부사항들 없이, 실시예들이 실시될 수 있다는 것이 당업자에게 자명할 것이다. 다른 사례들에서, 실시예들을 불필요하게 모호하게 하지 않기 위하여, 잘 알려진 양상들은 상세히 설명되지 않는다. 또한, 첨부된 도면들에 도시된 다양한 실시예들은 예시적인 표현들이며 반드시 실척대로 그려지지는 않는다는 것이 이해되어야 한다.
위에서 주목된 바와 같이, 히터 페데스탈 상의 웨이퍼들의 정렬은 현재, 눈으로 확인된다. 많은 시험 웨이퍼들이 프로세싱된 후에만, 프로세스 키트가 페데스탈의 환형 링에 대하여 적절하게 센터링되어 있음을 확인하는 것이 가능할 것이다. 이 프로세스는 프로세싱 툴에 대한 몇 시간의 다운 타임(down time)을 필요로 하고, 비용이 많이 든다.
이에 따라서, 본원에서 개시된 실시예들은 센서 웨이퍼를 포함하고, 센서 웨이퍼는, 페데스탈에 대한 센서 웨이퍼의 오프셋을 직접적으로 측정할 수 있다. 따라서, 센서 웨이퍼가 원하는 공차 내에서 센터링되어 있음을 확인하기 위해 단일 시험 절차가 구현될 수 있다. 센서 웨이퍼 배치가 원하는 공차를 벗어난 것으로 확인되는 경우, 페데스탈 상에 센서 웨이퍼를 배치하기 위해 사용되는 포지셔닝 로봇에는, 광범위한 시험에 대한 필요 없이 후속 배치되는 웨이퍼들이 적절하게 정렬될 수 있게 하는 오프셋이 제공될 수 있다. 그러므로, 본원에서 개시된 실시예들은, 웨이퍼들의 센터링 정확도가 개선될 수 있기 때문에, 프로세싱 툴들의 감소된 다운 타임을 제공하고 프로세싱 툴에 의해 구현되는 프로세스들의 균일성을 개선시킨다.
이제 도 1a를 참조하면, 실시예에 따라, 페데스탈(100) 상에서 지지되는 센서 웨이퍼(110)의 평면도 예시가 도시된다. 실시예에서, 페데스탈(100)은, 프로세싱을 위해 웨이퍼들이 배치되는 임의의 표면일 수 있다. 예컨대, 페데스탈(100)은 가열 페데스탈일 수 있다. 실시예에서, 페데스탈(100)은, 웨이퍼들이 배치되는 주 표면(151), 및 웨이퍼를 둘러싸는 환형 링(152)을 포함할 수 있다.
실시예에서, 센서 웨이퍼(110)는 페데스탈(100)에 대한 센서 웨이퍼(110)의 오프셋을 결정하기 위해 사용되는 복수의 외향 센서들을 포함할 수 있다. 도 1a에 도시된 바와 같이, 센서 웨이퍼(110)의 직경은 환형 링(152)의 내경 미만일 수 있다. 실시예에서, 센서 웨이퍼(110)는 생산 웨이퍼와 실질적으로 동일한 치수들을 가질 수 있다. 예컨대, 센서 웨이퍼(110)는 표준 웨이퍼 직경(예컨대, 300 mm 등)인 직경을 가질 수 있다. 이에 따라서, 센서 웨이퍼(110)가 환형 링(152)과 오정렬되는 것이 가능하다. 예컨대, 센서 웨이퍼(110)의 중심점(114)은 환형 링(152)의 중심점(154)과 일치하지 않을 수 있다.
이제 도 1b를 참조하면, 센서 웨이퍼(110)의 오정렬을 더욱 명확하게 예시하기 위하여, 페데스탈(100) 및 센서 웨이퍼(110)의 단면 예시가 도시된다. 예시된 바와 같이, 센서 웨이퍼(110)의 제1(즉, 최하부) 표면(113)은 페데스탈(100)의 주 표면(151) 상에 놓인다. 환형 링의 내부 표면(153)이 센서 웨이퍼(110)의 에지 표면(112)을 향하도록, 환형 링(152)은 센서 웨이퍼(110)를 에워싼다. 실시예에서, 내부 표면(153)의 높이는 센서 웨이퍼(110)의 두께를 초과할 수 있다. 즉, 센서 웨이퍼(110)의 제2(즉, 최상부) 표면(111)은 환형 링(152)의 최상부 표면 아래에 있을 수 있다.
도 1b에 도시된 바와 같이, 환형 링(152)의 내부 표면(153)은 제1 갭(G1) 및 제2 갭(G2)만큼 센서 웨이퍼의 에지 표면(112)으로부터 이격된다. 제1 갭(G1)과 제2 갭(G2)이 동일하지 않을 때, 센서 웨이퍼(110)는 오정렬된다. 예컨대, 센서 웨이퍼(110)의 중심점(114)은 환형 링(152)의 중심점(154)으로부터 거리(D)만큼 오프셋된다.
실시예에서, 오프셋 거리(D)는, 복수의 위치들에서 센서 웨이퍼(110)의 에지(112)와 환형 링(152)의 내부 표면(153) 사이의 갭(G)을 측정함으로써 결정될 수 있다. 특정 실시예에서, 갭(G)은, 센서 웨이퍼(110)의 에지들 상에 형성된 복수의 센서 구역들을 이용하여 측정된다. 도 2-도 4c는 다양한 실시예들에 따라, 에지 센서 구역들을 갖는 센서 웨이퍼들(110)의 예시적인 예시들을 제공한다.
이제 도 2를 참조하면, 실시예에 따라, 복수의 에지 센서 구역들(2351-235n)을 갖는 센서 웨이퍼(210)의 평면도 예시가 도시된다. 실시예에서, 에지 센서 구역들(235)은 센서 웨이퍼(210)의 둘레 주위에 분포된다. 각각의 센서 구역(235)은, 센서 웨이퍼(210)의 에지와, 센서 웨이퍼(210)를 에워싸는 페데스탈의 환형 링 사이의 갭을 측정하기 위해 사용되는 하나 이상의 센서들을 포함한다. 에지 센서 구역들(235)에 있는 하나 이상의 센서들은 용량성 센서들일 수 있다. 특정 실시예에서, 에지 센서 구역들(235)은 셀프-레퍼런싱 용량성 센서들을 포함할 수 있다.
예시된 실시예에서, 90 도 간격들로 포지셔닝된 4 개의 에지 센서 구역들(235)이 도시된다. 그러나, 센서 웨이퍼(210)의 중심에 대한 프로세스 키트의 중심의 오프셋을 측정하기 위해 3 개 이상의 에지 센서 구역들(235)이 사용될 수 있다는 것이 인식되어야 한다. 당업자들은, 더 많은 에지 센서 구역들(235)을 제공하는 것이 더욱 정확한 측정들을 제공할 것임을 인식할 것이다. 실시예에서, 센서 웨이퍼(210)는 또한, 노치(216)를 포함할 수 있다. 센서 구역들(235)에 대한 노치(216)의 포지션은 센서 웨이퍼(210)에 의해 알려질 수 있다. 이에 따라서, 센서 웨이퍼(210)의 회전 배향도 또한 결정될 수 있다.
실시예에서, 에지 센서 구역들(235) 각각은 트레이스들(237)을 이용하여 센서 웨이퍼(210) 상의 컴퓨팅 모듈(238)에 통신가능하게 커플링될 수 있다. 실시예에서, 컴퓨팅 모듈(238)은 전력원(232)(예컨대, 배터리), 프로세서/메모리(234)(예컨대, 에지 센서 구역들(235)을 이용하여 만들어지는 측정들을 구현 및/또는 저장하기 위한 회로, 메모리 등) 및 무선 통신 모듈(233)(예컨대, 블루투스, WiFi 등) 중 하나 이상을 포함할 수 있다. 실시예에서, 컴퓨팅 모듈(238)은 센서 웨이퍼(210)에 내장될 수 있다. 부가적으로, 컴퓨팅 모듈(238)이 센서 웨이퍼(210)의 중심에 도시되지만, 컴퓨팅 모듈(238)은 센서 웨이퍼(210)에서 임의의 편리한 위치에 위치될 수 있다는 것이 인식되어야 한다.
이제 도 3을 참조하면, 실시예에 따라, 예시적인 에지 센서 구역(335)의 세부사항들을 강조하는, 센서 웨이퍼(310)의 사시도 예시가 도시된다. 실시예에서, 센서 웨이퍼(310)는 제1 표면(313)(예컨대, 최하부 표면), 제2 표면(311)(예컨대, 최상부 표면), 및 제1 표면(313)을 제2 표면(311)에 연결하는 에지 표면(312)을 포함할 수 있다. 실시예에서, 노치(316)가 센서 웨이퍼(310) 안으로 형성될 수 있다.
실시예에서, 에지 센서 구역들(335)은 제1 표면(313)을 제2 표면(311)에 연결하는 에지 표면(312)을 따라 형성될 수 있다. 특정 실시예에서, 각각의 에지 센서 구역(315)은 프로브(341)를 포함할 수 있다. 프로브들(341)(즉, 각각의 에지 센서 구역에 있는 프로브)은 셀프-레퍼런싱 용량성 프로브들일 수 있다. 즉, 제1 에지 센서 구역(335)에 있는 제1 프로브(341)에 공급되는 전류의 출력 위상은, 이웃하는 제2 에지 센서 구역(335)에 있는 제2 프로브(341)에 공급되는 전류의 출력 위상으로부터 180 도 오프셋될 수 있다. 따라서, 페데스탈이 접지될 필요 없이, 에지 표면(312)으로부터 환형 링(미도시)의 내부 표면까지의 거리 측정이 행해질 수 있다. 예시된 실시예에서, 에지 센서 구역(335)은 단일 프로브를 갖는 것으로서 도시된다. 그러나, 일부 실시예들에서, 각각의 에지 센서 구역(335)은 하나 초과의 프로브(341)를 포함할 수 있다. 본원에서 셀프-레퍼런싱 용량성 센서들에 대한 특정 참조가 행해지지만, 본원에서 개시된 실시예들이 임의의 적절한 센서 기술(예컨대, 레이저 센서들, 광학 센서들 등)을 포함한다는 것이 인식되어야 한다.
이제 도 4a-도 4c를 참조하면, 다양한 실시예들에 따라, 센서 웨이퍼들(410)의 예시적인 부분 단면 예시들이 도시된다. 도 4a에서, 부분 단면 예시는 에지 표면(412)과 실질적으로 동일 평면인 센서 구역(435)을 도시한다. 실시예에서, 센서 구역(435)은, 센서들이 에지 표면(412)과 프로세스 키트의 표면 사이의 갭을 측정할 수 있도록, 에지 표면(412)으로부터 전기장(449)을 방출한다.
이제 도 4b를 참조하면, 실시예에 따라, 전기장 가드(447)를 갖는 센서 웨이퍼(410)의 부분 단면 예시가 도시된다. 실시예에서, 전기장 가드(447)는 센서 웨이퍼(410)의 최하부 표면(413)과 에지 센서 구역(435) 사이에 형성된 전도성 층일 수 있다. 에지 센서 구역(435)의 전기장(449)은 전기장 가드(447)에 의해 변화될 수 있다. 특히, 전기장 가드(447)는, 에지 센서 구역(435)의 전기장(449)이 에지 표면(412)으로부터 환형 링의 내부 표면을 향해 측방향으로 연장되도록, 이러한 에지 센서 구역(435)의 전기장(449)을 변화시킬 수 있다. 이에 따라서, 전기장 가드(447)는, 에지 센서 구역(435)에 있는 센서들이 페데스탈의 주 표면 ―이러한 페데스탈의 주 표면 상에서 센서 웨이퍼(410)가 지지됨― 을 검출하는 것을 방지하고, 잘못된 판독들이 제거된다.
이제 도 4c를 참조하면, 실시예에 따라, 최상부 표면 함몰부(448)를 갖는 센서 웨이퍼(410)의 부분 단면 예시가 도시된다. 실시예에서, 최상부 표면 함몰부(448)는 센서 구역(435)에 바로 인접한 제2 표면(411) 안으로 형성될 수 있다. 최상부 표면 함몰부(448)는, 센서 구역(435)의 센서들이 최상부 표면(411)을 감지하여 잘못된 판독들을 제공하는 것을 방지하기 위해 만들어질 수 있다. 실시예에서, 최상부 표면 함몰부(448)는 거리(R)만큼 뒤로 연장될 수 있다. 예컨대, 거리(R)는 에지 감지 구역(435)의 최대 감지 거리와 거의 동일할 수 있다. 예컨대, R은 대략 5 mm 이하일 수 있다.
이제 도 5를 참조하면, 실시예에 따라, 페데스탈 상의 센서 웨이퍼의 오프셋을 측정하기 위한 프로세스를 구현하기 위한 배치 제어기(570)와 프로세싱 툴(590)의 개략적인 블록도가 도시된다. 실시예에서, 페데스탈(500)이 프로세싱 툴(590)에 위치될 수 있다. 페데스탈은 주 표면(551) ―이러한 주 표면(551) 상에서 웨이퍼가 지지됨―, 및 웨이퍼를 둘러싸는 환형 링(552)을 포함할 수 있다.
실시예에서, 배치 제어기(570)는, 페데스탈(500)의 주 표면(551) 상에 센서 웨이퍼(510)를 배치하도록 포지셔닝 로봇(576)에 명령들을 제공할 수 있다. 센서 웨이퍼(510)는 위에서 설명된 센서 웨이퍼들과 유사한 센서 웨이퍼일 수 있다. 예컨대, 센서 웨이퍼(510)는 센서 웨이퍼(510)의 에지와 환형 링(552)의 내부 표면(553) 사이의 갭들(G1-Gn)을 측정하기 위한 복수의 에지 센서 구역들을 포함할 수 있다.
실시예에서, 센서 웨이퍼(510)로부터의 센서 정보는 배치 제어기(570)의 센서 인터페이스(571)에 의해 획득될 수 있다. 예컨대, 센서 인터페이스(571)는 센서 웨이퍼(510)로부터 (예컨대, 무선 통신 모듈을 이용하여 무선으로) 센서 정보를 수신할 수 있다. 배치 제어기(570)는 환형 링(552)의 중심점에 대한 센서 웨이퍼(510)의 중심점을 결정하기 위해 웨이퍼 중심점 모듈(572)에 있는 센서 정보(예컨대, 갭들(G1-Gn))를 활용할 수 있다. 배치 제어기(570)는 웨이퍼 중심점 모듈(572)로부터의 결과들을 사용하여 오프셋 값(574)을 생성할 수 있고, 이 오프셋 값(574)은 데이터베이스(575)에 전달된다. 실시예에서, 총 오프셋 값(574)이 미리 결정된 임계치를 초과할 때, 포지셔닝 로봇이 페데스탈(500) 상에 기판들을 배치하는 곳을 수정하기 위해, 오프셋 값(574)이 배치 제어기(570)에 의해 사용될 수 있다. 실시예에서, 임계 값은 +/- 200 미크론의 오프셋일 수 있다.
이제 도 6을 참조하면, 실시예에 따라, 페데스탈의 환형 링의 중심점에 대한 센서 웨이퍼의 중심점 오프셋을 결정하기 위한 프로세스(680)의 프로세스 흐름도가 도시된다.
실시예에서, 프로세스(680)는, 페데스탈 상에 복수의 에지 센서 구역들을 갖는 센서 웨이퍼를 배치하는 것을 포함하는 동작(681)(예컨대, 포지셔닝 로봇(576)에 의해 수행됨)으로 시작한다. 센서 웨이퍼는 본원에서 개시된 실시예들에 따라 설명된 임의의 센서 웨이퍼일 수 있다. 실시예에서, 도 5와 관련하여 설명된 실시예와 유사하게, 센서 웨이퍼는, 배치 제어기에 의해 제어되는 포지셔닝 로봇을 이용하여 지지 표면 상에 배치될 수 있다.
실시예에서, 프로세스(680)는, 복수의 에지 센서 구역들 각각을 이용하여 센서 웨이퍼의 에지와 페데스탈의 환형 링의 내부 표면 사이의 갭 거리를 결정하는 것을 포함하는 동작(682)(예컨대, 배치 제어기(570)의 센서 인터페이스(571)에 의해 수행됨)으로 계속될 수 있다. 예컨대, 에지 센서 구역들은 셀프-레퍼런싱 용량성 센서들을 포함할 수 있다. 에지 센서 구역들은, 용량성 센서가 주 표면 ―이러한 주 표면 상에서 센서 웨이퍼가 지지됨― 을 판독하는 것을 방지하도록, 용량성 센서들의 전기장을 변화시키기 위해 이 에지 센서 구역들 아래에 전기장 가드들을 가질 수 있다. 부가적인 실시예들은, 센서 웨이퍼의 최상부 표면의 잘못된 측정들을 없애기 위해 에지 센서 구역들에 근접한 최상부 표면 함몰부를 포함할 수 있다.
실시예에서, 프로세스(680)는, 복수의 에지 센서 구역들로부터의 갭 거리들을 사용하여 환형 링의 중심점에 대한 센서 웨이퍼의 중심점 오프셋을 결정하는 것을 포함하는 동작(683)(예컨대, 배치 제어기(570)의 웨이퍼 중심점 모듈(572)에 의해 수행됨)으로 계속될 수 있다. 실시예에서, 중심점 오프셋은 포지셔닝 제어기에 의해 결정되고 데이터베이스에 저장될 수 있다.
이제 도 7을 참조하면, 실시예에 따라, 센서 웨이퍼를 이용하여 웨이퍼 포지셔닝 로봇을 교정하기 위한 프로세스(780)의 프로세스 흐름도가 도시된다.
실시예에서, 프로세스(780)는, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈 표면 상의 제1 포지션에 센서 웨이퍼를 배치하는 것을 포함하는 동작(781)(예컨대, 포지셔닝 로봇(576)에 의해 수행됨)으로 시작할 수 있다. 실시예에서, 센서 웨이퍼는 본원에서 설명된 것들과 같은 외향 센서들을 갖는 임의의 센서 웨이퍼일 수 있다. 실시예에서, 페데스탈은 주 표면 ―이러한 주 표면 상에 센서 웨이퍼가 놓임―, 및 센서 웨이퍼 주위의 환형 링을 포함할 수 있다.
실시예에서, 프로세스(780)는, 복수의 에지 센서 구역들을 이용하여 센서 웨이퍼와 페데스탈의 환형 링의 내부 표면 사이의 복수의 갭 거리들을 결정하는 것을 포함하는 동작(782)(예컨대, 배치 제어기(570)의 센서 인터페이스(571)에 의해 수행됨)으로 계속될 수 있다. 예컨대, 센서 웨이퍼의 에지 센서 구역들은 셀프-레퍼런싱 용량성 센서들을 포함할 수 있다. 에지 센서 구역들은, 용량성 센서들이 주 표면 ―이러한 주 표면 상에서 센서 웨이퍼가 지지됨― 을 판독하는 것을 방지하도록, 용량성 센서들의 전기장을 변화시키기 위해 이 에지 센서 구역들 아래에 전기장 가드들을 가질 수 있다. 부가적인 실시예들은, 센서 웨이퍼의 최상부 표면의 잘못된 측정들을 없애기 위해 에지 센서 구역들에 근접한 최상부 표면 함몰부를 포함할 수 있다.
실시예에서, 프로세스(780)는, 복수의 에지 센서 구역들로부터의 갭 거리들을 사용하여 환형 링의 중심점에 대한 센서 웨이퍼의 중심점 오프셋을 결정하는 것을 포함하는 동작(783)(예컨대, 배치 제어기(570)의 웨이퍼 중심점 모듈(572)에 의해 수행됨)으로 계속될 수 있다.
실시예에서, 프로세스(780)는 중심점 오프셋(예컨대, 오프셋 값(574))만큼 제1 포지션을 수정함으로써 제2 포지션을 생성하는 것을 포함하는 동작(784)(예컨대, 배치 제어기(570)에 의해 수행됨)으로 계속될 수 있다. 실시예에서, 동작(784)은 페데스탈 상에 후속 배치되는 웨이퍼들의 중심점 오프셋을 감소시키도록 구현될 수 있다. 일부 실시예들에서, 중심점 오프셋이 미리 결정된 임계치를 초과할 때, 제2 포지션이 생성된다. 예컨대, 중심점 오프셋이 200 미크론 미만인 경우, 웨이퍼 포지셔닝 로봇을 추가로 교정할 필요가 없을 수 있다. 실시예에서, 오프셋 값(574)은 미래 사용을 위해 데이터베이스(575)에 저장될 수 있다.
실시예에서, 프로세스(780)는, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈로부터 센서 웨이퍼를 제거하는 것을 포함하는 동작(785)(예컨대, 포지셔닝 로봇(576)에 의해 수행됨)으로 계속될 수 있다.
그런 다음, 실시예에서, 프로세스(780)는, 웨이퍼 포지셔닝 로봇을 이용하여 페데스탈 상의 제2 포지션에 웨이퍼를 배치하는 것을 포함하는 동작(786)(예컨대, 포지셔닝 로봇(576)에 의해 수행됨)으로 계속될 수 있다. 실시예에서, 웨이퍼는 생산 웨이퍼(즉, 디바이스들이 제조되고 있는 웨이퍼)일 수 있다. 웨이퍼 포지셔닝 로봇이 교정되었기 때문에, 제2 포지션에의 웨이퍼의 결과적 배치가 높은 정도의 정확도를 갖는다고 추정될 수 있다. 예컨대, 후속 배치되는 디바이스 웨이퍼들은 +/- 200 미크론인 정확도로 배치될 수 있다.
이제 도 8을 참조하면, 실시예에 따라, 프로세싱 툴의 예시적인 컴퓨터 시스템(860)의 블록도가 예시된다. 실시예에서, 컴퓨터 시스템(860)은 배치 제어기로서 사용될 수 있다. 실시예에서, 컴퓨터 시스템(860)은 프로세싱 툴에 커플링되어 프로세싱 툴에서의 프로세싱을 제어한다. 컴퓨터 시스템(860)은 네트워크(861)(예컨대, LAN(Local Area Network), 인트라넷, 엑스트라넷 또는 인터넷)에 있는 다른 머신들에 연결(예컨대, 네트워킹)될 수 있다. 컴퓨터 시스템(860)은 클라이언트-서버 네트워크 환경에서 서버 또는 클라이언트 머신으로서, 또는 피어-투-피어(또는 분산) 네트워크 환경에서 피어 머신으로서 동작할 수 있다. 컴퓨터 시스템(860)은 PC(personal computer), 태블릿 PC, STB(set-top box), PDA(Personal Digital Assistant), 셀룰러 전화, 웹 어플라이언스, 서버, 네트워크 라우터, 스위치 또는 브리지, 또는 자신이 행할 액션들을 특정하는 한 세트의 명령들을 (순차적으로 또는 다른 방식으로) 실행할 수 있는 임의의 머신일 수 있다. 추가로, 컴퓨터 시스템(860)에 대해 단일 머신만이 예시되지만, "머신"이라는 용어는 또한, 본원에서 설명된 방법론들 중 임의의 하나 이상의 방법론을 수행하기 위한 한 세트(또는 다수의 세트들)의 명령들을 개별적으로 또는 공동으로 실행하는 머신들(예컨대, 컴퓨터들)의 임의의 집합을 포함하는 것으로 간주될 것이다.
컴퓨터 시스템(860)은, 실시예들에 따른 프로세스를 수행하도록 컴퓨터 시스템(860)(또는 다른 전자 디바이스들)을 프로그램하기 위해 사용될 수 있는 명령들이 저장되어 있는 비-일시적인 머신-판독가능 매체를 갖는, 컴퓨터 프로그램 제품 또는 소프트웨어(822)를 포함할 수 있다. 머신-판독가능 매체는 머신(예컨대, 컴퓨터)에 의해 판독가능한 형태로 정보를 저장하거나 또는 송신하기 위한 임의의 메커니즘을 포함한다. 예컨대, 머신-판독가능(예컨대, 컴퓨터-판독가능) 매체는 머신(예컨대, 컴퓨터) 판독가능 저장 매체(예컨대, "ROM(read only memory)", "RAM(random access memory)", 자기 디스크 저장 매체, 광학 저장 매체, 플래시 메모리 디바이스들 등), 머신(예컨대, 컴퓨터) 판독가능 송신 매체(전기, 광학, 음향 또는 다른 형태의 전파 신호들(예컨대, 적외선 신호들, 디지털 신호들 등)) 등을 포함한다.
실시예에서, 컴퓨터 시스템(860)은 버스(830)를 통해 서로 통신하는, 시스템 프로세서(802), 메인 메모리(804)(예컨대, ROM(read-only memory), 플래시 메모리, DRAM(dynamic random access memory), 이를테면, SDRAM(synchronous DRAM) 또는 RDRAM(Rambus DRAM) 등), 정적 메모리(806)(예컨대, 플래시 메모리, SRAM(static random access memory) 등) 및 보조 메모리(818)(예컨대, 데이터 저장 디바이스)를 포함한다.
시스템 프로세서(802)는 마이크로시스템 프로세서, 중앙 프로세싱 유닛 등과 같은 하나 이상의 범용 프로세싱 디바이스들을 표현한다. 더욱 구체적으로, 시스템 프로세서는 CISC(complex instruction set computing) 마이크로시스템 프로세서, RISC(reduced instruction set computing) 마이크로시스템 프로세서, VLIW(very long instruction word) 마이크로시스템 프로세서, 다른 명령 세트들을 구현하는 시스템 프로세서, 또는 명령 세트들의 조합을 구현하는 시스템 프로세서들일 수 있다. 시스템 프로세서(802)는 또한, ASIC(application specific integrated circuit), FPGA(field programmable gate array), DSP(digital signal system processor), 네트워크 시스템 프로세서 등과 같은 하나 이상의 특수-목적 프로세싱 디바이스들일 수 있다. 시스템 프로세서(802)는, 본원에서 설명된 동작들을 수행하기 위한 프로세싱 로직(826)을 실행하도록 구성된다.
컴퓨터 시스템(860)은 다른 디바이스들 또는 머신들과 통신하기 위한 시스템 네트워크 인터페이스 디바이스(808)를 더 포함할 수 있다. 컴퓨터 시스템(860)은 또한, 비디오 디스플레이 유닛(810)(예컨대, LCD(liquid crystal display), LED(light emitting diode display) 또는 CRT(cathode ray tube)), 영숫자 입력 디바이스(812)(예컨대, 키보드), 커서 제어 디바이스(814)(예컨대, 마우스) 및 신호 생성 디바이스(816)(예컨대, 스피커)를 포함할 수 있다.
보조 메모리(818)는 본원에서 설명된 방법론들 또는 기능들 중 임의의 하나 이상을 구현하는 하나 이상의 세트들의 명령들(예컨대, 소프트웨어(822))이 저장된 머신-액세스가능 저장 매체(831)(또는 더욱 구체적으로는, 컴퓨터-판독가능 저장 매체)를 포함할 수 있다. 소프트웨어(822)는 또한, 컴퓨터 시스템(860)에 의한 그 소프트웨어(822)의 실행 동안 시스템 프로세서(802) 내에 그리고/또는 메인 메모리(804) 내에 완전히 또는 적어도 부분적으로 상주할 수 있으며, 메인 메모리(804) 및 시스템 프로세서(802)는 머신-판독가능 저장 매체를 또한 구성한다. 소프트웨어(822)는 추가로, 시스템 네트워크 인터페이스 디바이스(808)를 통해 네트워크(861)를 통하여 송신되거나 또는 수신될 수 있다.
머신-액세스가능 저장 매체(831)가 예시적인 실시예에서 단일 매체인 것으로 도시되지만, "머신-판독가능 저장 매체"란 용어는 하나 이상의 세트들의 명령들을 저장하는, 단일 매체 또는 다중 매체(예컨대, 중앙집중 또는 분산 데이터베이스, 및/또는 연관된 캐시들 및 서버들)를 포함하는 것으로 간주되어야 한다. "머신-판독가능 저장 매체"란 용어는 또한, 머신에 의한 실행을 위한 한 세트의 명령들을 저장하거나 또는 인코딩할 수 있고 머신으로 하여금 방법론들 중 임의의 하나 이상의 방법론들을 수행하게 하는 임의의 매체를 포함하는 것으로 간주될 것이다. 이에 따라서, "머신-판독가능 저장 매체"란 용어는 솔리드-스테이트 메모리들 그리고 광학 및 자기 매체를 포함(그러나, 이에 제한되지 않음)하는 것으로 간주될 것이다.
전술된 명세서에서는, 특정 예시적인 실시예들이 설명되었다. 다음의 청구항들의 범위를 벗어나지 않고, 다양한 수정들이 이러한 실시예들에 대해 행해질 수 있다는 것이 자명할 것이다. 이에 따라서, 본 명세서 및 도면들은 제한적인 의미가 아닌 예시적인 의미로 간주되어야 한다.

Claims (15)

  1. 페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법으로서,
    상기 페데스탈 상에 상기 센서 웨이퍼를 배치하는 단계 ―상기 센서 웨이퍼는 상기 페데스탈에 의해 지지되는 제1 표면, 상기 제1 표면에 대향하는 제2 표면, 및 상기 제1 표면을 상기 제2 표면에 연결하는 에지 표면을 포함하고, 복수의 센서 구역들이 상기 에지 표면 상에 형성되며, 상기 페데스탈은 상기 센서 웨이퍼를 둘러싸는 환형 벽 및 주 표면을 포함함―;
    상기 복수의 센서 구역들 각각과 상기 환형 벽 사이의 갭 거리를 결정하는 단계; 및
    갭 거리들로부터 상기 환형 벽의 중심점에 대한 상기 센서 웨이퍼의 중심점의 중심점 오프셋을 결정하는 단계
    를 포함하는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  2. 제1 항에 있어서,
    상기 복수의 센서 구역들은 셀프-레퍼런싱 용량성 센서(self-referencing capacitive sensor)들을 포함하는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  3. 제2 항에 있어서,
    상기 셀프-레퍼런싱 용량성 센서들은 제1 프로브 및 제2 프로브를 포함하고, 상기 제1 프로브에 공급되는 전류의 출력 위상은 상기 제2 프로브에 공급되는 전류의 출력 위상으로부터 180 도 오프셋되는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  4. 제1 항에 있어서,
    상기 센서 웨이퍼는 상기 센서 구역들 각각 아래의 전기장 가드를 더 포함하는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  5. 제1 항에 있어서,
    상기 센서 구역들 각각에 근접한, 상기 센서 웨이퍼의 상기 제2 표면 안으로 함몰부가 형성되는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  6. 제1 항에 있어서,
    최대 측정 갭 거리는 1 mm 미만인,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  7. 제1 항에 있어서,
    상기 페데스탈 상에 후속 웨이퍼들을 배치하기 위해 상기 중심점 오프셋을 사용하는 단계를 더 포함하는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  8. 제7 항에 있어서,
    상기 후속 배치된 웨이퍼들은 상기 환형 벽의 중심점의 200 ㎛ 내에 있는 중심점을 갖는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  9. 제1 항에 있어서,
    상기 복수의 센서 구역들은 적어도 3 개의 센서 구역들을 포함하는,
    페데스탈에 대한 센서 웨이퍼의 포지션을 결정하는 방법.
  10. 배치 제어기로서,
    센서 인터페이스 ―상기 센서 인터페이스는 센서 웨이퍼로부터 센서 정보를 수신하고, 상기 센서 웨이퍼는 상기 센서 웨이퍼의 에지 표면을 따라 복수의 외향 센서들을 포함함―; 및
    중심점 모듈
    을 포함하고,
    상기 중심점 모듈은 가열 페데스탈 ―상기 가열 페데스탈 상에 상기 센서 웨이퍼가 놓임― 의 중심점에 대한 상기 센서 웨이퍼의 중심점을 결정하기 위해 상기 센서 정보를 활용하며, 상기 배치 제어기는 상기 페데스탈 상에 상기 센서 웨이퍼를 배치하는 포지셔닝 로봇을 제어하는,
    배치 제어기.
  11. 제10 항에 있어서,
    상기 배치 제어기는 데이터베이스에 저장되는 포지션 오프셋 값을 생성하는,
    배치 제어기.
  12. 제11 항에 있어서,
    상기 포지션 오프셋은, 상기 포지셔닝 로봇이 상기 페데스탈 상에 웨이퍼들을 배치할 때 상기 포지셔닝 로봇을 제어하기 위해 사용되는,
    배치 제어기.
  13. 제10 항에 있어서,
    상기 페데스탈은 히터 페데스탈인,
    배치 제어기.
  14. 제10 항에 있어서,
    상기 센서 웨이퍼의 상기 센서들은 셀프-레퍼런싱 용량성 센서들인,
    배치 제어기.
  15. 제10 항에 있어서,
    상기 복수의 외향 센서들은 적어도 3 개의 외향 센서들을 포함하는,
    배치 제어기.
KR1020217002652A 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치 KR102466391B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227038977A KR102622898B1 (ko) 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862726887P 2018-09-04 2018-09-04
US62/726,887 2018-09-04
US16/545,824 2019-08-20
US16/545,824 US11404296B2 (en) 2018-09-04 2019-08-20 Method and apparatus for measuring placement of a substrate on a heater pedestal
PCT/US2019/047752 WO2020050989A1 (en) 2018-09-04 2019-08-22 Method and apparatus for measuring placement of a substrate on a heater pedestal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227038977A Division KR102622898B1 (ko) 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20210013331A true KR20210013331A (ko) 2021-02-03
KR102466391B1 KR102466391B1 (ko) 2022-11-10

Family

ID=69640050

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227038977A KR102622898B1 (ko) 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치
KR1020217002652A KR102466391B1 (ko) 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020227038977A KR102622898B1 (ko) 2018-09-04 2019-08-22 히터 페데스탈 상의 기판의 배치를 측정하기 위한 방법 및 장치

Country Status (6)

Country Link
US (2) US11404296B2 (ko)
JP (2) JP7284248B2 (ko)
KR (2) KR102622898B1 (ko)
CN (1) CN112470264A (ko)
TW (2) TWI771609B (ko)
WO (1) WO2020050989A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
CN111916365B (zh) * 2020-07-03 2022-10-04 华虹半导体(无锡)有限公司 晶圆的位置检测方法、装置、设备、系统和存储介质
KR20240012756A (ko) * 2022-07-21 2024-01-30 삼성전자주식회사 웨이퍼형 센서, 웨이퍼형 센서를 이용한 웨이퍼 정렬 방법 및 웨이퍼형 센서의 보정 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065559A (ko) * 2004-12-10 2006-06-14 에이에스엠엘 네델란즈 비.브이. 침지 리소그래피에서의 기판 배치
KR20140136533A (ko) * 2009-12-31 2014-11-28 마퍼 리쏘그라피 아이피 비.브이. 용량성 감지 시스템
KR20160146574A (ko) * 2015-06-11 2016-12-21 도쿄엘렉트론가부시키가이샤 정전 용량 측정용의 센서 칩 및 센서 칩을 구비한 측정기

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468056B2 (ja) 1997-09-23 2003-11-17 東京エレクトロン株式会社 基板検出装置
US7135852B2 (en) 2002-12-03 2006-11-14 Sensarray Corporation Integrated process condition sensing wafer and data analysis system
JP4067053B2 (ja) 2003-03-13 2008-03-26 キヤノン株式会社 静電容量センサ式計測装置
US7893697B2 (en) 2006-02-21 2011-02-22 Cyberoptics Semiconductor, Inc. Capacitive distance sensing in semiconductor processing tools
CN101410690B (zh) 2006-02-21 2011-11-23 赛博光学半导体公司 半导体加工工具中的电容性距离感测
DE112007002309T5 (de) 2006-09-29 2009-07-30 Cyberoptics Semiconductor, Inc., Beaverton Substratähnlicher Teilchensensor
WO2008103700A2 (en) * 2007-02-23 2008-08-28 Kla-Tencor Corporation Process condition measuring device
US7778793B2 (en) 2007-03-12 2010-08-17 Cyberoptics Semiconductor, Inc. Wireless sensor for semiconductor processing systems
JP5160802B2 (ja) * 2007-03-27 2013-03-13 東京エレクトロン株式会社 プラズマ処理装置
TW200849444A (en) 2007-04-05 2008-12-16 Cyberoptics Semiconductor Inc Semiconductor processing system with integrated showerhead distance measuring device
JP4956328B2 (ja) 2007-08-24 2012-06-20 東京エレクトロン株式会社 搬送アームの移動位置の調整方法及び位置検出用治具
US8314371B2 (en) * 2008-11-06 2012-11-20 Applied Materials, Inc. Rapid thermal processing chamber with micro-positioning system
US20110074341A1 (en) 2009-09-25 2011-03-31 Kla- Tencor Corporation Non-contact interface system
JP5659493B2 (ja) * 2010-01-18 2015-01-28 信越半導体株式会社 気相成長方法
US8889021B2 (en) * 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
WO2011143071A2 (en) 2010-05-08 2011-11-17 The Regents Of The University Of California Sem scanner sensing apparatus, system and methodology for early detection of ulcers
US9245786B2 (en) 2011-06-02 2016-01-26 Applied Materials, Inc. Apparatus and methods for positioning a substrate using capacitive sensors
CN103208449A (zh) * 2012-01-13 2013-07-17 旺宏电子股份有限公司 晶圆在支撑座上对准的装置、方法及系统
JP5811355B2 (ja) * 2012-04-24 2015-11-11 信越半導体株式会社 エピタキシャルウェーハ製造装置およびそれを用いたエピタキシャルウェーハの製造方法
US9685362B2 (en) * 2014-02-19 2017-06-20 International Business Machines Corporation Apparatus and method for centering substrates on a chuck
US10522380B2 (en) * 2014-06-20 2019-12-31 Applied Materials, Inc. Method and apparatus for determining substrate placement in a process chamber
JP6383647B2 (ja) * 2014-11-19 2018-08-29 東京エレクトロン株式会社 測定システムおよび測定方法
US10658222B2 (en) * 2015-01-16 2020-05-19 Lam Research Corporation Moveable edge coupling ring for edge process control during semiconductor wafer processing
JP6537433B2 (ja) 2015-06-11 2019-07-03 東京エレクトロン株式会社 静電容量測定用のセンサチップ及び同センサチップを備えた測定器
KR20170014384A (ko) 2015-07-30 2017-02-08 삼성전자주식회사 건식 식각장치
JP6432742B2 (ja) * 2015-09-30 2018-12-05 信越半導体株式会社 エピタキシャル成長装置及びエピタキシャルウェーハの製造方法
US10067070B2 (en) 2015-11-06 2018-09-04 Applied Materials, Inc. Particle monitoring device
JP6712939B2 (ja) 2016-06-20 2020-06-24 東京エレクトロン株式会社 静電容量測定用の測定器、及び、測定器を用いて処理システムにおける搬送位置データを較正する方法
KR101841607B1 (ko) 2017-02-03 2018-03-26 (주)제이디 전원제어기능을 가지는 회로 임베디드 웨이퍼
US10509052B2 (en) * 2017-02-06 2019-12-17 Lam Research Corporation Smart vibration wafer with optional integration with semiconductor processing tool
JP2019096757A (ja) * 2017-11-24 2019-06-20 東京エレクトロン株式会社 測定器のずれ量を求める方法、及び、処理システムにおける搬送位置データを較正する方法
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US10794681B2 (en) * 2018-09-04 2020-10-06 Applied Materials, Inc. Long range capacitive gap measurement in a wafer form sensor system
US11054317B2 (en) * 2018-09-28 2021-07-06 Applied Materials, Inc. Method and apparatus for direct measurement of chucking force on an electrostatic chuck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065559A (ko) * 2004-12-10 2006-06-14 에이에스엠엘 네델란즈 비.브이. 침지 리소그래피에서의 기판 배치
KR20140136533A (ko) * 2009-12-31 2014-11-28 마퍼 리쏘그라피 아이피 비.브이. 용량성 감지 시스템
KR20160146574A (ko) * 2015-06-11 2016-12-21 도쿄엘렉트론가부시키가이샤 정전 용량 측정용의 센서 칩 및 센서 칩을 구비한 측정기

Also Published As

Publication number Publication date
JP2023120187A (ja) 2023-08-29
KR102622898B1 (ko) 2024-01-08
TWI771609B (zh) 2022-07-21
TWI784325B (zh) 2022-11-21
TW202011509A (zh) 2020-03-16
KR102466391B1 (ko) 2022-11-10
JP7284248B2 (ja) 2023-05-30
US11908724B2 (en) 2024-02-20
US20200075370A1 (en) 2020-03-05
TW202119536A (zh) 2021-05-16
CN112470264A (zh) 2021-03-09
US11404296B2 (en) 2022-08-02
WO2020050989A1 (en) 2020-03-12
KR20220154254A (ko) 2022-11-21
JP2021535586A (ja) 2021-12-16
US20220319887A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR102639660B1 (ko) 프로세스 키트 센터링을 측정하기 위한 방법 및 장치
US11908724B2 (en) Method and apparatus for measuring placement of a substrate on a heater pedestal
US11978647B2 (en) Method and apparatus for measuring erosion and calibrating position for a moving process kit
US11342210B2 (en) Method and apparatus for measuring wafer movement and placement using vibration data
CN112470262B (zh) 用于测量工艺配件中心的方法和设备

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant