KR20200124323A - 가변 강도 다이오드들을 갖는 공간 광 변조기 - Google Patents

가변 강도 다이오드들을 갖는 공간 광 변조기 Download PDF

Info

Publication number
KR20200124323A
KR20200124323A KR1020207030399A KR20207030399A KR20200124323A KR 20200124323 A KR20200124323 A KR 20200124323A KR 1020207030399 A KR1020207030399 A KR 1020207030399A KR 20207030399 A KR20207030399 A KR 20207030399A KR 20200124323 A KR20200124323 A KR 20200124323A
Authority
KR
South Korea
Prior art keywords
substrate
emitter
emitters
pulsing
arrays
Prior art date
Application number
KR1020207030399A
Other languages
English (en)
Other versions
KR102589768B1 (ko
Inventor
조셉 알. 존슨
크리스토퍼 데니스 벤처
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20200124323A publication Critical patent/KR20200124323A/ko
Application granted granted Critical
Publication of KR102589768B1 publication Critical patent/KR102589768B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 개시내용의 실시예들은 일반적으로, 이미지 투영 시스템에 관한 것이다. 이미지 투영 시스템은 능동 매트릭스 고체 상태 방출기(SSE) 디바이스를 포함한다. 능동 매트릭스 고체 상태 방출기는 기판, 규소 층, 및 방출기 기판을 포함한다. 기판에 형성된 복수의 트랜지스터들을 갖는 기판 위에 규소 층이 증착된다. 방출기 기판은 규소 층과 기판 사이에 위치된다. 방출기 기판은 복수의 방출기 어레이들을 포함한다. 각각의 방출기 어레이는 픽셀을 한정하고, 하나의 픽셀은 복수의 트랜지스터들로부터 하나 이상의 트랜지스터를 포함한다. 각각의 트랜지스터는 가변량의 전류를 수용하도록 구성된다.

Description

가변 강도 다이오드들을 갖는 공간 광 변조기
본 개시내용의 실시예들은 일반적으로, 기판 상에 이미지를 생성하기 위한 장치에 관한 것이고, 더 구체적으로, 개선된 공간 광 변조기에 관한 것이다.
포토리소그래피는 반도체 디바이스들 및 디스플레이 디바이스들, 예컨대, 액정 디스플레이들(LCD들)의 제조에 폭넓게 사용된다. 대면적 기판들이 종종, LCD들의 제조에 활용된다. LCD들, 또는 평면 패널들은 능동 매트릭스 디스플레이들, 예컨대, 컴퓨터들, 터치 패널 디바이스들, 개인 휴대 정보 단말기들(PDA들), 휴대폰들, 텔레비전 모니터들 등에 일반적으로 사용된다. 일반적으로, 평면 패널들은 2개의 판들 사이에 개재된 픽셀들을 형성하는 액정 물질의 층을 포함한다. 전력 공급부로부터 전력이 액정 물질에 걸쳐 인가되면, 이미지들이 생성될 수 있게 하는 픽셀 위치들에서, 액정 물질을 통과하는 광량이 제어될 수 있다.
마이크로리소그래피 기법들은 일반적으로, 픽셀들을 형성하는 액정 물질의 일부로서 통합되는 전기 피쳐들을 생성하는 데 채용된다. 이 기법에 따르면, 감광성 포토레지스트가 전형적으로, 기판의 적어도 하나의 표면에 도포된다. 그 다음, 전기 피쳐들을 생성하기 위해 선택 영역들을 후속 물질 제거 및/또는 물질 추가 프로세스들에 대해 준비시키기 위해서 이러한 선택 영역들에서 포토레지스트에 화학적 변화들을 야기하도록 패턴 생성기가 광을 이용하여 패턴의 일부로서 감광성 포토레지스트의 선택된 영역들을 노광시킨다.
종래의 마이크로리소그래피 시스템은 광을 포토레지스트를 향하여 반사시킴으로써 복수의 광 빔들을 형성하기 위해 디지털 마이크로거울 디바이스(DMD)를 활용한다. DMD는 복수의 거울들을 포함하고 DMD의 각각의 거울은 "작동" 위치 또는 "비작동" 위치에 있으며, 시스템을 이진 방출기들의 이미지 품질로 제약한다. 더 정밀한 이미지 품질을 갖는 디스플레이 디바이스들 및 다른 디바이스들을 계속 제공하기 위해, 기판들, 예컨대, 대면적 기판들 상에 패턴들을 정밀하고 비용 효율적으로 생성하기 위한 새로운 장치들, 접근법들, 및 시스템들이 필요하다.
전술한 내용이 예시하는 바와 같이, 기판 상에 패턴들을 정밀하고 비용 효율적으로 생성하기 위한 개선된 기법에 대한 지속적인 필요성이 존재한다.
하나 이상의 실시예에서, 이미지 투영 시스템이 본원에 개시된다. 이미지 투영 시스템은 능동 매트릭스 고체 상태 방출기(SSE)를 포함한다. 능동 매트릭스 SSE는 기판, 규소 층, 및 방출기 기판을 포함한다. 기판에 형성된 복수의 트랜지스터들을 갖는 기판 위에 규소 층이 증착된다. 방출기 기판은 규소 층과 기판 사이에 위치된다. 방출기 기판은 복수의 방출기 어레이들을 포함한다. 각각의 방출기 어레이는 픽셀을 한정하고, 하나의 픽셀은 복수의 트랜지스터들로부터 하나 이상의 트랜지스터를 포함한다. 각각의 트랜지스터는 가변량의 전류를 수용하도록 구성된다.
다른 실시예들에서, 기판 상에 이미지를 생성하기 위한 방법이 본원에 개시된다. 명령어들이 이미지 투영 시스템으로 송신된다. 이미지 투영 시스템은 복수의 방출기 어레이들을 포함한다. 명령어들은 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함한다. 작동 상태의 방출기들은 기판의 제1 부분을 노광시키기 위해 펄스화된다. 기판은 스텝 크기만큼 병진된다. 작동 상태의 방출기들은 기판의 제2 부분을 노광시키기 위해 펄스화된다. 작동 상태의 방출기들의 펄스화는, 기판이 처리될 때까지 기판의 후속 부분들을 노광시키기 위해 각각의 스텝 크기의 병진 이후에 반복된다.
본 개시내용의 위에서 언급된 특징들이 상세히 이해될 수 있도록, 위에 간략히 요약된 본 개시내용의 더 구체적인 설명이 실시예들을 참조하여 이루어질 수 있으며, 이들 중 일부는 첨부 도면들에 예시되어 있다. 그러나, 본 개시내용은 동등한 효과의 다른 실시예들을 허용할 수 있기 때문에, 첨부 도면들은 본 개시내용의 전형적인 실시예들만을 예시하고 그러므로 본 개시내용의 범위를 제한하는 것으로 간주되어서는 안 된다는 점에 주목해야 한다.
도 1은 하나 이상의 실시예에 따른, 처리 시스템의 사시도를 예시한다.
도 2는 하나 이상의 실시예에 따른, 도 1의 처리 시스템의 측단면도를 예시한다.
도 3은 하나 이상의 실시예에 따른, 복수의 이미지 투영 시스템들의 사시도를 예시한다.
도 4a는 도 3의 복수의 이미지 투영 시스템들 중 하나의 이미지 투영 시스템의 개략적인 사시도를 예시한다.
도 4b는 하나 이상의 실시예에 따른, 다중 DMD 조립체의 사시도를 예시한다.
도 5는 하나 이상의 실시예에 따른, 복수의 개선된 이미지 투영 시스템들의 사시도를 예시한다.
도 6은 도 5의 복수의 이미지 투영 시스템들 중 하나의 개선된 이미지 투영 시스템의 개략적인 사시도를 예시한다.
도 7a는 하나 이상의 실시예에 따른, 능동 매트릭스 방사선 방출기의 개략적인 측면도를 예시한다.
도 7b는 하나 이상의 실시예에 따른, AMSSE에 대한 회로도이다.
도 7c는 하나 이상의 실시예에 따른, AMSSE에 대한 하나의 구성을 예시하는 도면이다.
도 7d는 다른 실시예에 따른, AMSSE에 대한 하나의 구성을 예시하는 도면이다.
도 8은 도 6의 개선된 이미지 투영 시스템을 사용하여 기판 상에 이미지를 생성하는 방법을 예시한다.
도 9는 도 6의 개선된 이미지 투영 시스템을 사용하여 기판 상에 이미지를 생성하는 방법을 예시한다.
도 10은 도 6의 개선된 이미지 투영 시스템을 사용하여 기판 상에 이미지를 생성하는 방법을 예시한다.
이해를 용이하게 하기 위해, 가능한 경우, 도면들에 공통된 동일한 요소들을 지시하는 데에 동일한 참조 번호들이 사용되었다. 일 실시예의 요소들 및 특징들이 추가의 언급 없이 다른 실시예들에 유익하게 통합될 수 있다는 것이 고려된다.
그러나, 본 개시내용은 동등한 효과의 다른 실시예들을 허용할 수 있기 때문에, 첨부 도면들은 본 개시내용의 예시적인 실시예들만을 예시하고 그러므로 본 개시내용의 범위를 제한하는 것으로 간주되어서는 안 된다는 점에 주목해야 한다.
본 개시내용의 실시예들은 일반적으로, 이미지 투영 시스템에 관한 것이다. 하나의 이미지 투영 시스템은 능동 매트릭스 고체 상태 방출기(SSE)를 포함한다. 능동 매트릭스 고체 상태 방출기는 기판, 규소 층, 및 방출기 기판을 포함한다. 기판에/기판 상에 형성된 복수의 트랜지스터들을 갖는 기판 위에 규소 층이 증착된다. 방출기 기판은 규소 층과 기판 사이에 위치된다. 방출기 기판은 복수의 방출기 어레이들을 포함한다. 각각의 방출기 어레이는 픽셀을 한정하고, 하나의 픽셀은 복수의 트랜지스터들로부터 둘 이상의 트랜지스터들을 포함한다. 각각의 트랜지스터는 가변량의 전류를 수용하도록 구성된다. 각각의 방출기의 강도가 제어될 수 있고, 픽셀 주소지정가능 시스템의 그레이 레벨 제어를 제공한다. 실시예들 및 양상들이 아래에서 더 상세히 설명될 것이다.
도 1은 본원에 개시된 실시예들로부터 이익을 얻을 수 있는 시스템(100)의 사시도이다. 시스템(100)은 베이스 프레임(110), 슬래브(120), 하나 이상의 스테이지(130), 및 처리 장치(160)를 포함한다. 베이스 프레임(110)은 제조 설비의 바닥 상에 놓이고 슬래브(120)를 바닥 위에 지지한다. 수동 공기 격리기들(112)이 베이스 프레임(110)과 슬래브(120) 사이에 위치된다. 하나 이상의 실시예에서, 슬래브(120)는 화강암의 단일 조각이고, 스테이지(130)가 슬래브(120) 상에 배치된다. 기판(140)이 스테이지(130)에 의해 지지된다. 복수의 홀들(도시되지 않음)이, 그를 통해 복수의 리프트 핀들(도시되지 않음)이 연장되는 것을 허용하기 위해 스테이지(130)에 형성된다. 일부 실시예들에서, 리프트 핀들은, 예컨대, 하나 이상의 이송 로봇(도시되지 않음)으로부터 기판(140)을 수용하기 위해, 연장된 위치까지 상승한다. 하나 이상의 이송 로봇은 기판(140)을 스테이지(130)에 로딩하고 그로부터 언로딩하는 데 사용된다.
기판(140)은 평면 패널 디스플레이의 일부로서 사용되는 임의의 적합한 물질을 포함한다. 다른 실시예들에서, 기판(140)은 다른 물질들로 만들어진다. 기판(140)은 기판 상에 형성된 포토레지스트 층을 갖는다. 포토레지스트는 전자기 방사선의 적어도 특정 파장들에 민감하고, 그에 노광될 때 반응한다. 포지티브 포토레지스트는, 전자기 방사선에 노광될 때, 전자기 방사선을 사용하여 포토레지스트 내에 패턴이 기입된 후, 포토레지스트에 적용된 포토레지스트 현상제에 대해 각각 가용성이 될, 포토레지스트의 부분들을 포함한다. 네거티브 포토레지스트는, 전자기 방사선에 노광될 때, 포토레지스트 내에 전자기 방사선 패턴이 기입된 후, 포토레지스트에 적용된 포토레지스트 현상제에 대해 각각 불용성이 될, 포토레지스트의 부분들을 포함한다. 포토레지스트의 화학적 조성은, 포토레지스트가 포지티브 포토레지스트인지 또는 네거티브 포토레지스트인지 여부를 결정한다. 포토레지스트들의 예들은, 디아조나프토퀴논, 페놀 포름알데히드 수지, 폴리(메틸 메타크릴레이트), 폴리(메틸 글루타르이미드), 및 SU-8 중 적어도 하나를 포함하지만 이에 제한되지 않는다. 이 방식으로, 전자 회로를 형성하기 위해 기판(140) 상의 포토레지스트 층의 표면 상에 패턴이 생성된다.
시스템(100)은 한 쌍의 지지부들(122) 및 한 쌍의 트랙들(124)을 포함한다. 한 쌍의 지지부들(122)은 슬래브(120) 상에 배치되고, 슬래브(120) 및 한 쌍의 지지부들(122)은 물질의 단일 조각이다. 한 쌍의 트랙들(124)은 한 쌍의 지지부들(122)에 의해 지지되고, 스테이지(130)는 트랙들(124)을 따라 X 방향으로 이동한다. 하나 이상의 실시예에서, 한 쌍의 트랙들(124)은 한 쌍의 평행한 자기 채널들이다. 도시된 바와 같이, 한 쌍의 트랙들(124) 중 각각의 트랙(124)은 직선 경로로 연장된다. 스테이지(130)의 위치 정보를 제어기(도시되지 않음)에 제공하기 위해 인코더(126)가 스테이지(130)에 결합된다.
처리 장치(160)는 지지부(162) 및 처리 유닛(164)을 포함한다. 지지부(162)는 슬래브(120) 상에 배치되고 개구부(166)를 포함하며 개구부를 통해 스테이지(130)가 처리 유닛(164) 아래를 지나간다. 처리 유닛(164)은 지지부(162)에 의해 슬래브(120) 위에 지지된다. 하나 이상의 실시예에서, 처리 유닛(164)은 포토리소그래피 프로세스에서 포토레지스트를 노광시키도록 구성된 패턴 생성기이다. 일부 실시예들에서, 패턴 생성기는 마스크없는 리소그래피 프로세스를 수행하도록 구성된다. 처리 유닛(164)은 복수의 이미지 투영 장치(도 5에 도시됨)를 포함한다. 하나 이상의 실시예에서, 처리 유닛(164)은 무려 84개의 이미지 투영 장치들을 포함한다. 각각의 이미지 투영 장치는 케이스(165)에 배치된다. 처리 장치(160)는 포토레지스트 또는 다른 전자기 방사선 감수성 물질에 마스크없는 직접 패턴 기입을 수행하는 데 유용하다.
작동 동안, 스테이지(130)는, 도 1에 도시된 바와 같이, 로딩 위치로부터 처리 위치로 X 방향으로 이동한다. 처리 위치는 스테이지(130)가 처리 유닛(164) 아래를 지나갈 때의 스테이지(130)의 하나 이상의 위치이다. 작동 동안, 스테이지(130)는 복수의 공기 베어링들(202)(도 2에 도시됨)에 의해 트랙들(124)로부터 들어올려지고 트랙들(124)로부터 상승된 동안 한 쌍의 트랙들(124)을 따라 로딩 위치로부터 처리 위치로 이동한다. 스테이지(130)의 이동을 안정화하기 위해 복수의 수직 안내 공기 베어링들(도시되지 않음)이 스테이지(130)에 결합되고, 각각의 지지부(122)의 내측 벽(128)에 인접하여 위치된다. 스테이지(130)는 또한, 기판(140)을 처리하고/거나 인덱싱하기 위해 트랙(150)을 따라 이동함으로써 Y 방향으로 이동한다. 스테이지(130)는 독립적인 작동이 가능하고, 기판(140)을 한 방향으로 스캐닝하고 다른 방향으로 스테핑할 수 있다.
계측 시스템은 복수의 이미지 투영 장치 각각이, 기입되는 패턴들을 포토레지스트로 덮힌 기판 상의 정확한 위치에 정확하게 위치시킬 수 있도록 스테이지(130)의, 각각의 스테이지의 X 및 Y 측방향 위치 좌표들을 실시간으로 측정한다. 계측 시스템은 또한, 수직 또는 Z 축에 대한 스테이지(130)의 각도 위치의 실시간 측정을 제공한다. 각도 위치 측정은 스캐닝 동안 스테이지(130)의 각도 위치를 서보 메커니즘에 의해 일정하게 유지하는 데 사용될 수 있거나, 도 5에 도시된, 이미지 투영 장치(270)에 의해 기판(140) 상에 기입되는 패턴들의 위치들에 보정들을 적용하는 데 사용될 수 있다. 이러한 기법들은 조합하여 사용될 수 있다.
도 2는 하나 이상의 실시예에 따른, 도 1의 처리 시스템(100)의 측단면도이다. 위에서 논의된 바와 같이, 각각의 스테이지(130)는 스테이지(130)를 들어올리기 위한 복수의 공기 베어링들(202)을 포함한다. 각각의 스테이지(130)는 또한, 스테이지(130)를 트랙들(124)을 따라 이동시키기 위한 액추에이터, 예컨대, 모터를 포함할 수 있다. 2개 이상의 스테이지들(130) 및 처리 장치(160)는 온도 및 압력 제어를 제공하기 위해 인클로저(도시되지 않음)에 의해 에워싸일 수 있다.
시스템(100)은 또한, 제어기(190)를 포함한다. 제어기(190)는 일반적으로, 본원에 설명되는 처리 기법들의 제어 및 자동화를 용이하게 하도록 설계된다. 제어기(190)는 처리 장치(160), 스테이지들(130), 및 인코더(126) 중 하나 이상에 결합되거나 그와 통신할 수 있다. 처리 장치(160) 및 스테이지들(130)은 제어기(190)에 기판 처리 및 기판 정렬에 관한 정보를 제공할 수 있다. 예를 들어, 처리 장치(160)는 기판 처리가 완료되었음을 제어기(190)에 알리기 위해 제어기(190)에 정보를 제공할 수 있다.
제어기(190)는 중앙 처리 유닛(CPU)(192), 메모리(194), 및 지원 회로들(또는 I/O)(196)을 포함할 수 있다. CPU는, 다양한 프로세스들 및 하드웨어(예를 들어, 패턴 생성기들, 모터들, 및 다른 하드웨어)를 제어하고 프로세스들(예를 들어, 처리 시간 및 기판 위치)을 모니터링하기 위해 산업 현장들에서 사용되는 임의의 형태의 컴퓨터 프로세서들 중 하나일 수 있다. 메모리(194)는 CPU(192)에 연결되고, 쉽게 입수가능한 메모리, 예컨대, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 플로피 디스크, 하드 디스크, 또는 임의의 다른 형태의 로컬 또는 원격 디지털 저장소 중 하나 이상일 수 있다. 소프트웨어 명령어들 및 데이터는 CPU(192)에 명령하기 위해 메모리(194) 내에서 코딩되고 저장될 수 있다. 지원 회로들(196)은 또한, 종래의 방식으로 프로세서를 지원하기 위해 CPU에 연결된다. 지원 회로들은 종래의 캐시, 전력 공급부들, 클럭 회로들, 입력/출력 회로, 하위시스템들 등을 포함할 수 있다. 제어기에 의해 판독가능한 프로그램(또는 컴퓨터 명령어들)은 어느 작업들이 기판에 대해 수행가능한지를 결정한다. 프로그램은 제어기에 의해 판독가능한 소프트웨어일 수 있고, 예를 들어, 처리 시간 및 기판 위치를 모니터링하고 제어하기 위한 코드를 포함할 수 있다.
도 3은 하나 이상의 실시예에 따른, 처리 시스템(100)에 사용될 수 있는 복수의 종래의 이미지 투영 시스템들(301)의 사시도이다. 도 3에 도시된 바와 같이, 각각의 이미지 투영 시스템(301)은 기판(140)의 표면(304) 상으로의 복수의 기입 빔들(302)을 생성한다. 기판(140)이 x 방향 및 y 방향으로 이동함에 따라, 전체 표면(304)이 기입 빔들(302)에 의해 패터닝될 수 있다. 이미지 투영 시스템들(301)의 개수는 기판(140)의 크기 및/또는 스테이지(130)의 속도에 기초하여 달라질 수 있다.
도 4a는 하나 이상의 실시예에 따른, 도 3에 예시된 복수의 이미지 투영 시스템들(301) 중 하나의 종래의 이미지 투영 시스템(301)의 개략적인 사시도이다. 이미지 투영 시스템(301)은 하나 이상의 광원(402), 애퍼쳐(404), 렌즈(406), 거울(408), 디지털 마이크로거울 디바이스(DMD)(410), 광 덤프(412), 카메라(414), 및 투영 렌즈(416)를 포함할 수 있다. 광원(402)은 LED 또는 레이저일 수 있다. 광원(402)은 미리 결정된 파장을 갖는 광을 생성할 수 있다. 하나 이상의 실시예에서, 미리 결정된 파장은 청색 또는 근자외선(UV) 범위, 예컨대, 약 450 nm 미만에 있다. 거울(408)은 구체형이거나 다른 적합한 거울일 수 있다. 투영 렌즈(416)는 10X 대물 렌즈일 수 있다. 투영 렌즈(416)는 대안적으로, 다른 배율을 가질 수 있다.
작동 동안, 미리 결정된 파장, 예컨대, 청색 범위의 파장을 갖는 빔(403)이 광원(402)에 의해 생성된다. 빔(403)은 거울(408)에 의해 DMD(410)로 반사된다.
DMD(410)는 개별적으로 제어될 수 있는 복수의 거울들을 포함하고, DMD의 복수의 거울들 중 각각의 거울은, 제어기(도시되지 않음)에 의해 DMD에 제공되는 마스크 데이터에 기초하여, "작동" 위치 또는 "비작동" 위치에 있을 수 있다. 빔(403)이 DMD(410)의 거울들에 도달할 때, "작동" 위치에 있는 거울들은, 예를 들어, 복수의 기입 빔들(302)을 형성하는 빔(403)을 투영 렌즈(416)로 반사시킨다. 그 다음, 투영 렌즈(416)는 기입 빔들(302)을 기판(140)의 표면(304)으로 투영한다. "비작동" 위치에 있는 거울들은 빔(403)을 기판(140)의 표면(304) 대신에 광 덤프(412)로 반사시킨다.
도 4b는 하나 이상의 실시예에 따른, DMD(410)의 2개의 거울들(452, 454)을 예시한다. 도시된 바와 같이, DMD(410)의 각각의 거울(452, 454)은 메모리 셀(458) 상에 배치된 기울임 메커니즘(456) 상에 배치된다. 작동 동안, 각각의 거울(452, 454)은 마스크 데이터를 메모리 셀 내로 로딩함으로써 제어된다. 마스크 데이터는 이진 방식으로 거울(452, 454)의 기울임을 정전기적으로 제어한다. 거울들(452, 454)이 재설정 모드에 있거나 인가되는 전력이 없는 경우, 거울들은 어떤 이진수에도 대응하지 않는 평평한 위치로 설정될 수 있다. 이진법에서 영은 "비작동" 위치에 대응할 수 있고, 이는, 거울이 ―10 도, ―12 도, 또는 다른 적합한 음의 기울임 각도로 기울임됨을 의미한다. 이진법에서 1은 "작동" 위치에 대응할 수 있고, 이는, 거울이 +10 도, +12 도, 또는 다른 적합한 양의 기울임 각도로 기울임됨을 의미한다. 도 4b에 도시된 바와 같이, 거울(452)은 "비작동" 위치에 있고 거울(454)은 "작동" 위치에 있다.
현재의 이미지 투영 시스템들, 예컨대, 이미지 투영 시스템(301)은 여러 제한들을 겪는다. 예를 들어, 종래의 이미지 투영 시스템들은, DMD(410)의 각각의 거울이 오직 "작동" 상태와 "비작동" 상태 사이에서만 구성가능하고, 따라서, 오직 2개의 가능한 노광들만을 제공한다는 측면에서 제한된다. 추가적으로, 종래의 이미지 투영 시스템들은, DMD(410)의 각각의 거울이 "작동" 또는 "비작동" 상태에 있기 위해서 반드시 제자리로 이동해야 한다는 측면에서 제한된다. 예를 들어, 작동 동안, "작동" 위치와 "비작동" 위치 사이에서 어느 한 위치로 전환하기 위해 각각의 거울에 대한 각각의 메모리 셀(458)이 제어기로부터 데이터를 수신하는 준비 시간이 존재한다. 본 출원의 목적들을 위해, 각각의 메모리 셀(458)로 명령어들을 송신하는 데 걸리는 시간은 "데이터 로드" 시간으로 지칭된다. 일부 예들에서, 이는 약 10 마이크로초가 걸릴 수 있다. 데이터 로드 시간 외에도, 각각의 거울을 작동 또는 비작동 위치로 구성하는 데 걸리는 후속 시간, 예를 들어, "플립 시간"이 존재한다. 각각의 거울은 거울의 각각의 메모리 셀(458)로 전송된 명령어들에 기초하여 거울의 정확한 위치로 와야 한다. 일부 예들에서, 이는 약 10-15 마이크로초가 걸린다. 최종적으로, 각각의 거울이 그의 정확한 위치로 온 이후에 각각의 거울이 정착하는 것을 시스템이 대기하는 지속 시간, 예를 들어, "정착 시간"이 또한 존재한다. 이러한 정착 시간은, 기계적 운동의 결과로서 흔들리거나 진동하는 거울이 존재하지 않는 것을 보장한다. 따라서, 각각의 노광을 위해, 데이터 로드 시간에 플립 시간과 정착 시간을 더한 총 준비 시간이 존재한다. 각각의 거울은 주어진 위치로 구성되고 후속하여 정착되어야 하기 때문에, 개선될 수 있는 유일한 변수는 데이터 로드 시간이며, 이는 더 강력한 메모리 셀들(458)로 개선될 수 있다. 그러나, 플립 시간 및 정착 시간은 종래의 이미지 투영 시스템들에게 제약으로 남을 것이다.
도 5는 하나 이상의 실시예에 따른, 처리 시스템(100)에 사용하기 위한 복수의 개선된 이미지 투영 시스템들(500)의 사시도이다. 도 5에 도시된 바와 같이, 각각의 이미지 투영 시스템(500)은 기판(140)의 표면(504) 상으로의 복수의 기입 빔들(502)을 생성한다. 기판(140)이 x 방향 및 y 방향으로 이동함에 따라, 전체 표면(504)이 기입 빔들(502)에 의해 패터닝될 수 있다. 이미지 투영 시스템들(500)의 개수는 기판(140)의 크기 및/또는 스테이지(130)의 속도에 기초하여 달라질 수 있다.
도 6은 하나 이상의 실시예에 따른, 도 5의 복수의 이미지 투영 시스템들(500) 중 하나의 개선된 이미지 투영 시스템(500)의 개략적인 사시도이다. 이미지 투영 시스템(500)은 능동 매트릭스 고체 상태 방출기 디스플레이(AMSSE)(602), 카메라(614), 초점 센서(616), 광학 요소(606), 및 투영 광학계(618)를 포함할 수 있다. AMSSE(602)는 적어도 복수의 방출기 요소들(아래에서 도 7과 함께 논의되고 도시됨)을 포함하고, 각각의 방출기 요소는 방사선(604)을 기판(140)을 향해 방출하도록 구성된다. 방출기 요소는 방사선을 방출할 수 있는 임의의 적합한 요소일 수 있다. 하나 이상의 실시예에서, 각각의 방출기 요소는 마이크로 방출기 요소, 예컨대, 다이오드이다. 이에 따라, 이미지 투영 시스템(500)은 종래의 기계적 구성요소들, 예컨대, 이미지 투영 시스템(301)의 DMD(410)를 포함하지 않을뿐 아니라, 각각의 방출기 요소가 그 자신의 에너지 공급원이기 때문에 이미지 투영 시스템(500)은 별도의 에너지 공급원(402)을 포함하지 않는다. 하나 이상의 실시예에서, 이미지 투영 시스템(500)은, 그렇지 않으면 종래의 이미지 투영 시스템들(301)의 DMD(410)에서 하나의 거울이었을 적어도 하나의 방출기 요소를 포함하도록 구성된다.
도시된 실시예에서, 빔(604)은 카메라(614)를 향해 방출된다. 카메라(614) 및 투영 광학계(618)는, 도 4a 및 4b와 함께 위에서 논의된 카메라(414) 및 투영 렌즈(416)와 유사하다. 하나 이상의 실시예에서, 투영 광학계(618)는 투영 렌즈이다. 광학 요소(606)는 AMSSE(602)와 카메라(614) 사이에 배치된다. 광학 요소(606)는 송신된 이미지의 필드 크기 감소를 기판(140)에 제공한다. 하나 이상의 실시예에서, 광학 요소(606)는 렌즈이다. 초점 센서(616)는 AMSSE(602)와 카메라(614) 사이에 배치될 수 있다. 다른 실시예들에서, 초점 센서(616)는 카메라(614)에 인접하여 배치될 수 있다. 초점 센서(616)는 이미지 투영 시스템(500)의 검사 및 정렬에 대한 피드백을 제공한다. 하나 이상의 실시예에서, 초점 센서(616)는 방사선 공급원들로부터 투영된 빔 스폿들이 포토레지스트의 평면에 초점이 맞는지를 검출하기 위해, 카메라(614)의 렌즈를 통해 지향되고 다시 카메라(614)의 렌즈를 통해 돌아와 센서들 상에 촬상되는 하나 이상의 방사선 공급원을 포함한다.
도 7a는 하나 이상의 실시예에 따른, 도 6의 AMSSE(602)의 부분 단면도이다. AMSSE(602)는 기판(700) 상에 형성될 수 있다. 하나 이상의 실시예에서, 기판(700)은 사파이어로 형성될 수 있다. GaN 층(702)이 기판(700) 위에 증착된다. 규소 층(706)이 GaN 층(702) 상에 증착된다. GaN 층(702)은 p-GaN 층(720), i-GaN 층(722), 및 n-GaN 층(724)을 포함할 수 있다. 하나 이상의 트랜지스터(704)는 GaN 층(702) 내로 연장되는 복수의 콘택들(726)을 통해 규소 층(706)에 형성된다. 복수의 광 수정 요소들이 GaN 층(702)에 위치된다. 집합적으로, 복수의 광 수정 요소들 및 GaN 층(702)은 방출기 기판(711)으로 지칭된다. 예를 들어, 광 수정 요소들은 행들과 열들로 배열된 복수의 방출기들(708)을 포함할 수 있다. 각각의 방출기(708)는 방사선을 방출하도록 구성가능한 임의의 방출기일 수 있다. 하나 이상의 예에서, 각각의 방출기(708)는 마이크로 방출기이다. 어레이로 배열된 하나 이상의 방출기(708)는 픽셀(710)을 한정할 수 있다. 예를 들어, 방출기들(708)은 1920개의 픽셀들 x 1080개의 픽셀들의 어레이로 총계하여 약 2,073,600개의 픽셀들을 포함하는 1080p 디스플레이를 한정할 수 있다. 이 예에서 2,073,600개의 픽셀들 중 각각의 픽셀은 방출기들(708)의 어레이를 이룰 수 있다. 이 예를 계속 들면, 2,073,600개의 픽셀들 중 각각의 픽셀은 규소 층(706)에 형성된 하나 이상의 트랜지스터(704)에 대응할 수 있다. 일부 예들에서, 방출기들(708)은 3840개의 픽셀들 x 2160개의 픽셀들의 어레이로 총계하여 8,294,400개의 픽셀들을 포함하는 초고화질(UHD) 디스플레이를 한정할 수 있다. 일반적으로, 방출기들(708)은 임의의 적합한 디스플레이(예를 들어, UHD, 1080p, 720p 등)를 한정할 수 있다.
각각의 방출기(708)는 "작동" 상태와 "비작동" 상태 사이에서 구성가능하다. "작동" 상태에서, 각각의 방출기(708)는 에너지를 방출할 수 있다. 에너지는 임의의 형태의 전자기 방사선일 수 있다. 예를 들어, 하나 이상의 실시예에서, 약 300 nm 내지 약 800 nm의 스펙트럼 내의 파장을 갖는 전자기 방사선이 사용될 수 있다. 다른 실시예들에서, 이 스펙트럼 밖의 파장들(예를 들어, 적외선, x 선 등)이 또한 사용될 수 있다. 다른 실시예들에서, 복수의 방출기들(708) 중 각각의 방출기(708)는 상이한 파장을 갖는다. 제어기, 예컨대, 제어기(190)는 각각의 방출기(708)가 작동 상태 또는 비작동 상태이도록 구성할 수 있다. 추가적으로, 제어기(190)는 또한, 방출기(708)에 제공되는 전류의 양을 제어할 수 있다. DMD를 사용하는 종래의 이미지 투영 시스템들이 이전에 필요했던 것과 같이 각각의 방출기(708)를 기계적으로 이동시킬 필요가 더이상 없기 때문에, 플립 시간 및 정착 시간이 제거되어서, 전체 준비 시간을 단축하고, 처리량을 개선한다. 추가적으로, 각각의 방출기(708)의 강도는 시간에 따른 노광을 제어하기 위해 변조될 수 있다. 전통적인 이미지 투영 시스템들에서, 각각의 거울은 "작동" 상태 또는 "비작동" 상태에 있고; 그들 사이에는 어떠한 중간 상태들도 존재하지 않는다.
도 7b는 하나 이상의 실시예에 따른, AMSSE(602)에 대한 회로도(701)이다. 도면(701)은 제1 트랜지스터(744a), 제2 트랜지스터(744b), 및 방출기(708)를 포함한다. 방출기(708)는 제1 트랜지스터(744a) 및/또는 제2 트랜지스터(744b)로부터 전류를 수용한다. 일부 예들에서, 어떤 트랜지스터들(744a, 744b)이 작동 상태 또는 비작동 상태인지를 결정하는 것은 픽셀에 대응하는 방출기들의 어레이에 인가되는 전류의 양을 좌우한다. 픽셀은, 방출기에 의해 수용되는 전류에 따라 그레이의 다양한 음영들을 표시하도록 구성가능하다. 하나 이상의 실시예에서, 각각의 트랜지스터는 X 내지 2X 암페어의 전류를 수용하도록 구성된다. 하나 이상의 실시예에서, 픽셀에 대응하는 방출기들(708)의 어레이에 제공되는 전류의 가능한 양들은: 3X 암페어(양쪽 트랜지스터들 모두 작동), 2X 암페어(하나의 트랜지스터가 작동), X (하나의 트랜지스터가 작동), 및 0 암페어(양쪽 트랜지스터들 모두 비작동)이다. 트랜지스터가 수용할 수 있는 전류의 양은 그 트랜지스터 내의 게이트의 폭에 따르므로 게이트의 폭이 더 넓을수록 더 많은 전류가 통과할 수 있다. 하나 이상의 실시예에서, 트랜지스터(744a)는 작동 상태이고, X 암페어의 전류를 수용하도록 구성되며, 트랜지스터(744b)는 작동 상태이고, 2X 암페어의 전류를 수용하도록 구성되며, 총계하여 3X 암페어의 총 전류가 방출기들(708)의 어레이에 인가되고 이는 픽셀의 제1 밝기에 대응한다. 다른 실시예들에서, 트랜지스터(744a)는 비작동 상태가 되고 트랜지스터(744b)는 작동 상태가 되어 2X 암페어의 전류를 수용하며, 총계하여 2X 암페어의 총 전류가 방출기들의 어레이에 인가되고 이는 픽셀의 제2 밝기에 대응한다. 일부 실시예들에서, 트랜지스터(744a)는 작동 상태가 되고 X 암페어의 전류를 수용하는 반면 트랜지스터(744b)는 비작동 상태가 되고, 총계하여 X 암페어의 총 전류가 방출기들의 어레이에 인가되고 이는 픽셀의 제3 밝기에 대응한다. 다른 실시예들에서, 각각의 트랜지스터는 가변량의 전류를 수용하도록 구성될 수 있다. 이전 예들을 일반화하면, 각각의 픽셀은 그레이의 2n + 1개의 음영들을 표시하도록 구성될 수 있으며, 여기서 n은 픽셀에 대응하는 트랜지스터들의 개수를 나타낸다. 따라서, AMSSE(602)는 픽셀 주소지정가능한 포토리소그래피 시스템의 그레이 레벨 제어를 제공하는 픽셀당 그레이 스케일을 획득할 수 있다. 다른 실시예들에서, 각각의 방출기는, 그레이 레벨 스케일 대신에 컬러 스케일이 생성되도록, 상이한 파장을 방출할 수 있다.
도 7c는 하나 이상의 실시예에 따른, AMSSE(602)에 대한 하나의 구성을 예시하는 도면(750)이다. 도시된 바와 같이, p-GaN 층(720)에 형성된, 방출기(708)와 전기적으로 연통하는 단일 금속 콘택(740)이 존재한다. 도면(750)은 3개의 트랜지스터들(752a, 752b, 및 752c)을 포함한다. 트랜지스터(752a)는 연결선(754a)을 통해 금속 콘택(740)에 결합된다. 트랜지스터(752b)는 연결선(754b)을 통해 금속 콘택(740)에 결합된다. 트랜지스터(752c)는 연결선(754c)을 통해 금속 콘택(740)에 결합된다. 모든 트랜지스터들(752a-752c)은 금속 콘택(740)과 전기 접촉한다. 이에 따라, 각각의 트랜지스터(752a-752c)는 가변량의 신호를 금속 콘택(740)에 제공할 수 있다. 예를 들어, 금속 콘택(740)에 제공되는 가변량의 신호는 가변량의 전압, 가변량의 전류, 또는 고/저 전기선에서의 가변량일 수 있다. 예를 들어, 트랜지스터(752a)는 100 mA의 전류를 제공하도록 구성되고; 트랜지스터(752b)는 200 mA의 전류를 제공하도록 구성되고; 트랜지스터(752c)는 400 mA의 전류를 제공하도록 구성된다.
제어기(190)는 각각의 트랜지스터(752a-752c)를 선택적으로 작동/비작동 상태로 만든다. 하나 이상의 예에서, 제어기(190)는 전류가 금속 콘택으로 흐를 수 있도록 트랜지스터(752a)만 작동 상태로 만든다. 위의 예를 계속 들면, 오직 트랜지스터(752a)만 작동 위치에 있는 경우, 금속 콘택(740)은 100 mA의 전류를 수용한다. 일부 예들에서, 제어기(190)는, 전류가 트랜지스터(752b)로부터 금속 콘택(740)으로 그리고 트랜지스터(752c)로부터 금속 콘택(740)으로 흐르도록, 트랜지스터(752b 및 752c)를 작동 상태로 만든다. 이에 따라, 트랜지스터들(752b 및 752c)은 500 mA의 총 전류를 금속 콘택(740)에 제공한다.
도 7d는 하나 이상의 실시예에 따른, AMSSE(602)에 대한 하나의 구성을 예시하는 도면(760)이다. 도시된 바와 같이, p-GaN 층(720)에 한정된 금속 콘택 영역(770)이 존재한다. 복수의 금속 콘택들(772a-772c)이 금속 콘택 영역(770)에 형성된다. 예를 들어, 금속 콘택(772a, 772b, 및 772c)이 금속 콘택 영역(770)에 위치된다. 도면(760)은 3개의 트랜지스터들(762a, 762b, 및 762c)을 더 포함한다. 트랜지스터(762a)는 연결선(764a)을 통해 금속 콘택(772a)에 결합된다. 트랜지스터(762b)는 연결선(764b)을 통해 금속 콘택(772b)에 결합된다. 트랜지스터(762c)는 연결선(764c)을 통해 금속 콘택(772c)에 결합된다. 모든 트랜지스터들(762a-762c)은 금속 콘택(740)과 전기 접촉한다. 이에 따라, 각각의 트랜지스터(762a-762c)는 가변량의 신호를 그의 각각의 금속 콘택(772a-772c)에 제공할 수 있다. 예를 들어, 트랜지스터(762a)는 100 mA의 전류를 금속 콘택(772a)에 제공하도록 구성되고; 트랜지스터(762b)는 200 mA의 전류를 금속 콘택(772b)에 제공하도록 구성되고; 트랜지스터(762c)는 400 mA의 전류를 금속 콘택(772c)에 제공하도록 구성된다. 금속 콘택 영역(770)은 복수의 금속 콘택들(772a-772c)을 포함하지만, 금속 콘택들(772a-772c)은 광학적으로, 단일 방출기로 보이고, 따라서, 가변 전류를 허용한다.
제어기(190)는 각각의 트랜지스터(762a-762c)를 선택적으로 작동/비작동 상태로 만든다. 하나 이상의 예에서, 제어기(190)는 전류가 금속 콘택(772a)으로 흐를 수 있도록 트랜지스터(762a)만 작동 상태로 만든다. 위의 예를 계속 들면, 오직 트랜지스터(762a)만 작동 위치에 있는 경우, 금속 콘택(772a)은 100 mA의 전류를 수용한다. 일부 예들에서, 제어기(190)는, 전류가 트랜지스터(762b)로부터 금속 콘택(772b)으로 그리고 트랜지스터(762c)로부터 금속 콘택(772c)으로 흐르도록, 트랜지스터(762b 및 762c)를 작동 상태로 만든다. 이에 따라, 트랜지스터들(762b 및 762c)은 500 mA의 총 전류를 금속 콘택 영역(770)에 제공한다.
도 8은 하나 이상의 실시예에 따른, 개선된 이미지 투영 시스템, 예컨대, 위의 도 5-7b에 개시된 이미지 투영 시스템을 이용해 기판을 노광시키는 방법(800)이다. 방법은 블록(802)에서 시작한다. 블록(802)에서, AMSSE(602)는 노광 패턴을 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 제어기(190)는 어느 방출기들이 "작동" 위치에 있어야 하는지에 관하여 AMSSE(602)에 지시하는데, 예를 들어, 제어기(190)는 수신된 노광 패턴에 기초하여 어느 방출기들(708)이 작동 또는 비작동 상태일지에 관하여 AMSSE(602)에 지시한다. 예를 들어, 제어기(190)는, 어느 방출기들(708)이 작동 또는 비작동 상태일 수 있는지를 선택적으로 선택함으로써 방출기들(708)의 형상을 생성할 수 있다. 방출기들(708)의 형상은 노광 프로세스들을 위해 방출기들(708)이 "작동" 상태로 되는 패턴을 의미한다. 이 예를 계속 들면, n x m 방출기 배열을 가정하면, 제어기(190)는 세장형 직사각형을 획득하기 위해 n x m 방출기들(708)의 100 x 20 하위세트를 선택적으로 작동 상태로 만들 수 있다. 다른 예에서, 제어기는 원형 패턴 또는 다른 원하는 패턴을 획득하기 위해 방출기들(708)을 선택적으로 작동 상태로 만들 수 있다. 본질적으로, 사용자는 AMSSE(602)의 방출기들(708)의 배열을 바꿀 필요 없이, AMSSE(602)로부터 방출되는 방사선의 형상을 바꿀 수 있다.
블록(804)에서, 기판(140)의 제1 부분이 노광된다. 기판(140)을 노광시키는 것은, 기판(140) 상의 포토레지스트를 노광시키기 위해 기판(140) 상에 패턴을 형성할 수 있다. 각각의 노광은 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 75 마이크로초 범위의 지속시간 동안 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기를 펄스화할 수 있다. 펄스는 시작점 및 종료점을 갖는 것으로 한정될 수 있고, 여기서 시작점 및 종료점은 그들 사이의 지속시간을 갖는다. 예를 들어, 지속시간은 수 마이크로초 이하로 짧은 것 내지 수 일 이상의 기간으로 길 수 있다.
블록(806)에서, 기판(140)은 스텝 크기만큼 병진되고, 기판(140)의 제2 부분이 노광된다. 각각의 노광은 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 75 마이크로초 범위의 지속시간 동안 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기(708)를 펄스화할 수 있다. 일부 실시예들에서, 기판(140)이 스텝 크기만큼 병진되는 것 대신에, AMSSE(602)이 스텝 크기만큼 병진될 수 있으며, 그 동안 기판(140)은 고정된 상태로 유지된다.
블록(808)에서, 기판을 스텝 크기만큼 병진시키고 전자기 방사선의 제2 방출에 제2 부분을 노광시키는 프로세스는 기판이 완전히 처리될 때까지 반복된다. 각각의 노광은 기판(140) 상에 패터닝되는 그래픽 객체들에 관한 데이터 세트를 생성할 수 있다. 각각의 데이터 세트는 제어기의 메모리에 저장될 수 있다. 각각의 데이터 세트는 기판(140) 상에 이미지 패턴을 형성하기 위해 조합될 수 있다. 각각의 노광은 기판(140)의 부분의 공간 이미지를 형성할 수 있다.
도 9는 하나 이상의 실시예에 따른, 개선된 이미지 투영 시스템, 예컨대, 위의 도 5-7b에 개시된 이미지 투영 시스템을 이용해 기판을 노광시키는 방법(900)이다. 방법은 블록(902)에서 시작한다. 블록(902)에서, AMSSE(602)는 노광 패턴을 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 제어기(190)는 어느 방출기들(708)이 "작동" 위치에 있을지에 관하여 AMSSE(602)에 지시하는데, 예를 들어, 제어기(190)는 수신된 노광 패턴에 기초하여 어느 방출기들(708)이 작동 또는 비작동 상태일지에 관하여 AMSSE(602)에 지시한다. 예를 들어, 제어기(190)는, 어느 방출기들(708)이 작동 또는 비작동 상태일 수 있는지를 선택적으로 선택함으로써 방출기들(708)의 형상을 생성할 수 있다. 방출기들의 형상은 노광 프로세스들을 위해 방출기들(708)이 "작동" 상태로 되는 패턴을 의미한다. 이 예를 계속 들면, n x m 방출기(708) 배열을 가정하면, 제어기(190)는 세장형 직사각형을 획득하기 위해 n x m 방출기들(708)의 100 x 20 하위세트를 선택적으로 작동 상태로 만들 수 있다. 다른 예에서, 제어기는 원형 패턴 또는 다른 원하는 패턴을 획득하기 위해 방출기들(708)을 선택적으로 작동 상태로 만들 수 있다. 본질적으로, 사용자는 AMSSE(602)의 방출기들(708)의 배열을 바꿀 필요 없이, AMSSE(602)로부터 방출되는 방사선의 형상을 바꿀 수 있다.
블록(904)에서, AMSSE(602)는 방출기들(708)의 각각의 어레이에 대한 트랜지스터 정보를 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 제1 픽셀을 한정하는 방출기들(708)의 제1 어레이에 대한 트랜지스터들의 제1 세트를 가정하면, AMSSE(602)는 어느 트랜지스터들이 작동 상태로 되고 어느 트랜지스터들이 비작동 상태로 되는지에 관한 명령어들을 수신한다. 특정 예를 사용하여, 제1 픽셀을 한정하는 방출기들(708)의 제1 어레이와 연관된 3개의 트랜지스터들의 세트에 대해, 3개의 트랜지스터 모두가 작동 상태로 될 것이라는 명령어들이 전송되었다고 가정하면, 제1 픽셀은 그레이의 23 = 8개의 음영들을 표시할 수 있을 것이다.
블록(906)에서, 기판(140)의 제1 부분이 노광된다. 기판(140)을 노광시키는 것은, 기판(140) 상의 포토레지스트를 노광시키기 위해 기판(140) 상에 패턴을 형성할 수 있다. 각각의 노광은 대략적으로 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 75 마이크로초 동안 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기(708)를 펄스화할 수 있다.
블록(908)에서, 기판(140)은 스텝 크기만큼 병진되고, 기판(140)의 제2 부분이 노광된다. 각각의 노광은 대략적으로 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 75 마이크로초 동안 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기(708)를 펄스화할 수 있다. 일부 실시예들에서, 기판(140)이 스텝 크기만큼 병진되는 것 대신에, AMSSE(602)이 스텝 크기만큼 병진될 수 있으며, 그 동안 기판(140)은 고정된 상태로 유지된다.
블록(910)에서, 기판을 스텝 크기만큼 병진시키고 전자기 방사선의 제2 방출에 제2 부분을 노광시키는 프로세스는 기판이 완전히 처리될 때까지 반복된다. 각각의 노광은 기판(140) 상에 패터닝되는 그래픽 객체들에 관한 데이터 세트를 생성할 수 있다. 각각의 데이터 세트는 제어기의 메모리에 저장될 수 있다. 각각의 데이터 세트는 기판(140) 상에 이미지 패턴을 형성하기 위해 조합될 수 있다. 각각의 노광은 기판(140)의 부분의 공간 이미지를 형성할 수 있다.
도 10은 하나 이상의 실시예에 따른, 개선된 이미지 투영 시스템, 예컨대, 위의 도 5-7b에 개시된 이미지 투영 시스템을 이용해 기판을 노광시키는 방법(1000)이다. 방법은 블록(1002)에서 시작한다. 블록(1002)에서, AMSSE(602)는 노광 패턴을 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 제어기(190)는 어느 방출기들(708)이 "작동" 위치에 있을지에 관하여 AMSSE(602)에 지시하는데, 예를 들어, 제어기(190)는 수신된 노광 패턴에 기초하여 어느 방출기들(708)이 작동 또는 비작동 상태일지에 관하여 AMSSE(602)에 지시한다. 예를 들어, 제어기(190)는, 어느 방출기들(708)이 작동 또는 비작동 상태일 수 있는지를 선택적으로 선택함으로써 방출기들(708)의 형상을 생성할 수 있다. 방출기들의 형상은 노광 프로세스들을 위해 방출기들(708)이 "작동" 상태로 되는 패턴을 의미한다. 이 예를 계속 들면, n x m 방출기(708) 배열을 가정하면, 제어기(190)는 세장형 직사각형을 획득하기 위해 n x m 방출기들(708)의 100 x 20 하위세트를 선택적으로 작동 상태로 만들 수 있다. 다른 예에서, 제어기는 원형 패턴 또는 다른 원하는 패턴을 획득하기 위해 방출기들(708)을 선택적으로 작동 상태로 만들 수 있다. 본질적으로, 사용자는 AMSSE(602)의 방출기들(708)의 배열을 바꿀 필요 없이, AMSSE(602)로부터 방출되는 방사선의 형상을 바꿀 수 있다.
블록(1004)에서, AMSSE(602)는 방출기들(708)의 각각의 어레이에 대한 트랜지스터 정보를 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 제1 픽셀을 한정하는 방출기들(708)의 제1 어레이에 대한 트랜지스터들의 제1 세트를 가정하면, AMSSE(602)는 어느 트랜지스터들이 작동 상태로 되고 어느 트랜지스터들이 비작동 상태로 되는지에 관한 명령어들을 수신한다. 특정 예를 사용하여, 제1 픽셀을 한정하는 방출기들(708)의 제1 어레이와 연관된 3개의 트랜지스터들의 세트에 대해, 3개의 트랜지스터 모두가 작동 상태로 될 것이라는 명령어들이 전송되었다고 가정하면, 제1 픽셀은 그레이의 23 = 8개의 음영들을 표시할 수 있을 것이다.
블록(1006)에서, AMSSE(602)는 블록(1004)에서의 각각의 트랜지스터에 대한 신호 정보를 포함하는 명령어들을 제어기(190)로부터 수신한다. 예를 들어, 신호 정보는 각각의 트랜지스터에 또는 각각의 트랜지스터를 통해 공급될, 전류의 양, 전압 또는 가변 "작동" 상태 정보를 포함할 수 있다. 일 실시예에서, 각각의 방출기의 가변 강도는 베이스 전류(x)의 배수로 선택된다. 다른 실시예에서, 각각의 방출기의 가변 강도는 x, 2x, 또는 3x로부터 선택된다. 특정 예를 사용하면, 블록(1004)에서 논의되는 3개의 트랜지스터들의 세트의 경우, 명령어들은 방출기에 의해 풀링되는 450 mA의 전류, 동일한 방출기에 의해 풀링되는 300 mA의 전류, 및 동일한 방출기에 의해 풀링되는 0 mA의 전류를 포함할 수 있다. 이 방식으로, 방출기는 그레이의 상이한 음영들을 갖도록 변조될 수 있다. 이에 따라, 각각의 픽셀은 가변 밝기를 전달하도록 구동될 수 있다.
블록(1008)에서, 기판(140)의 제1 부분이 노광된다. 기판(140)을 노광시키는 것은, 기판(140) 상의 포토레지스트를 노광시키기 위해 기판(140) 상에 패턴을 형성할 수 있다. 각각의 노광은 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 50 마이크로초 범위의 지속시간 동안 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기를 펄스화할 수 있다.
블록(1010)에서, 기판(140)은 스텝 크기만큼 병진되고, 기판(140)의 제2 부분이 노광된다. 각각의 노광은 대략적으로 약 2 마이크로초 내지 약 85 마이크로초, 예를 들어, 약 5 마이크로초 내지 약 75 마이크로초 범위에서 지속될 수 있다. 예를 들어, 제어기는 기판(140)의 제1 부분을 노광시키기 위해 작동 상태의 각각의 방출기를 펄스화할 수 있다. 일 실시예에서, 각각의 방출기는 기판의 제1 부분을 노광시키기 위해 작동 상태에서 약 1 나노초 내지 약 50 마이크로초 범위의 지속시간 동안 펄스화된다.
일부 실시예들에서, 기판(140)이 5 mm 이하의 스텝 크기만큼 병진되는 것 대신에, AMSSE(602)이 스텝 크기만큼 병진될 수 있으며, 그 동안 기판(140)은 고정된 상태로 유지된다.
블록(1012)에서, 기판을 스텝 크기만큼 병진시키고 전자기 방사선의 제2 방출에 제2 부분을 노광시키는 프로세스는 기판이 완전히 처리될 때까지 반복된다. 각각의 노광은 기판(140) 상에 패터닝되는 그래픽 객체들에 관한 데이터 세트를 생성할 수 있다. 각각의 데이터 세트는 제어기의 메모리에 저장될 수 있다. 각각의 데이터 세트는 기판(140) 상에 이미지 패턴을 형성하기 위해 조합될 수 있다. 각각의 노광은 기판(140)의 부분의 공간 이미지를 형성할 수 있다.
픽셀당 가변 밝기를 허용함으로써, 개선된 이미지 투영 시스템은 이전에 사용된 DMD 기반 툴들에 비해 개선된 리소그래피 제어에 사용될 수 있다. 예를 들어, 픽셀들의 선택적 밝기를 사용함으로써, 개선된 이미지 투영 시스템은 노광될 기판에 걸친 균일성을 더 양호하게 제어할 수 있다. 특정 실시예에서, 최종 사용자는 기판에 걸친 임의의 길이 범위의 밝기 변화를 보정하기 위해 가변 밝기를 갖도록 컬럼들의 구동 신호를 교정할 수 있다.
일부 예들에서, 개선된 이미지 투영 시스템은 그레이 스케일 효과를 생성하기 위해 상이한 신호를 각각의 픽셀에 제공함으로써 최종 사용자가 픽셀당 레벨 제어를 갖는 것을 허용한다. 이는 리소그래피 피쳐 에지 배치를 제어하는 것을 보조할 수 있다. 추가적으로, 그러한 능력들은 직교 어드레스 그리드가 기판에 걸쳐 대각선들로 계단현상이 일어나는 것을 방지하는 것을 보조한다. 픽셀당 밝기 제어를 이용하여, 최종 사용자는, 각각의 픽셀로부터 방출되는 방사선의 양을 변화시키는 것에 의해 기판이 노광될 때 계단현상 선들을 방지하는 것과 같은 방식으로 "선량"을 제어할 수 있다.
일부 예들에서, 레지스트 현상 이후에, 레지스트가 2개의 상이한 깊이들로 패터닝되도록, 상이한 선량들이 기판의 상이한 영역들에 전달될 수 있다. 기판이, 상이한 깊이들로 식각되는 특정 예에서, 2개의 상이한 선량들을 전달하는 것은, 픽셀 선량들을 2개의 상이한 수준들로 구동함으로써 단일 리소그래피 단계에서 듀얼 다마신 패턴을 초래할 수 있다.
일부 예들에서, 개선된 이미지 투영 시스템은 스와스들을 출력하는 데 사용될 수 있는데, 여기서 최종 사용자는 연속된 스와스들 사이의 봉합이 조화된 것을 확인해야 한다. 이는, 픽셀의 선량을 100%에서 0%로 페이딩함으로써 사용될 수 있다.
전술한 내용은 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 다른 그리고 추가적인 실시예들은 그의 기본 범위로부터 벗어나지 않고 안출될 수 있으며, 그의 범위는 후속하는 청구항들에 의해 결정된다.

Claims (15)

  1. 기판 상에 이미지를 생성하기 위한 방법으로서,
    복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ―;
    작동 상태의 상기 방출기들을 기판의 제1 부분을 노광시키기 위해 펄스화하는 단계;
    상기 기판을 스텝 크기만큼 병진시키고 상기 작동 상태의 상기 방출기들을 상기 기판의 제2 부분을 노광시키기 위해 펄스화하는 단계; 및
    상기 기판이 처리될 때까지 상기 기판의 후속 부분들을 노광시키기 위해 상기 작동 상태의 상기 방출기들을 펄스화하는 단계를 반복하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 방법.
  2. 제1항에 있어서,
    상기 기판을 스텝 크기만큼 병진시키는 단계는 5 mm 이하로 이동하는 스캐닝 모드로 작동하는, 기판 상에 이미지를 생성하기 위한 방법.
  3. 제1항에 있어서,
    상기 복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ― 는:
    노광을 위한 픽셀들의 개수를 결정하는 단계; 및
    상기 노광을 위한 픽셀들의 개수에 대응하는 방출기들의 하나 이상의 어레이의 각각의 방출기를 구성하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 방법.
  4. 제3항에 있어서,
    상기 노광을 위한 픽셀들의 개수에 대응하는 방출기들의 하나 이상의 어레이의 각각의 방출기를 구성하는 단계는:
    각각의 방출기에서 가변 강도를 생성하기 위해 방출기들의 적어도 하나의 어레이의 각각의 방출기에 적어도 하나의 트랜지스터로의 입력을 선택적으로 제공하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 방법.
  5. 제4항에 있어서,
    각각의 방출기의 상기 가변 강도는 베이스 전류(x)의 배수로부터 선택되는, 기판 상에 이미지를 생성하기 위한 방법.
  6. 제1항에 있어서,
    상기 복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ― 는:
    상기 방출기들을 선택적으로 작동 상태로 만드는 것에 의해 상기 방출기 어레이들의 패턴을 생성하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 방법.
  7. 제6항에 있어서,
    제1 양의 신호가 상기 방출기들의 제1 어레이에 전달되고 제2 양의 전류가 상기 방출기들의 제2 어레이에 전달되는, 기판 상에 이미지를 생성하기 위한 방법.
  8. 제1항에 있어서,
    상기 작동 상태의 상기 방출기들을 상기 기판의 제1 부분을 노광시키기 위해 펄스화하는 단계는:
    각각의 방출기를 약 1 나노초 내지 약 50 마이크로초 범위의 지속시간 동안 펄스화하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 방법.
  9. 기판 상에 이미지를 생성하기 위한 시스템으로서,
    시스템과 통신하는 제어기를 포함하고, 상기 제어기는 프로세서 및 메모리를 갖고, 상기 메모리는 상기 메모리에 저장된 명령어들을 가지며, 상기 명령어들은, 상기 프로세서에 의해 실행될 때, 기판 상에 이미지를 생성하는 작동을 수행하고, 상기 작동은:
    복수의 방출기 어레이들을 포함하는 상기 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ―;
    작동 상태의 상기 방출기들을 상기 기판의 제1 부분을 노광시키기 위해 펄스화하는 단계;
    상기 기판을 스텝 크기만큼 병진시키고 상기 작동 상태의 상기 방출기들을 상기 기판의 제2 부분을 노광시키기 위해 펄스화하는 단계; 및
    상기 기판이 처리될 때까지 상기 기판의 후속 부분들을 노광시키기 위해 상기 작동 상태의 상기 방출기들을 펄스화하는 단계를 반복하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 시스템.
  10. 제9항에 있어서,
    상기 복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ― 는:
    노광을 위한 픽셀들의 개수를 결정하는 단계; 및
    상기 노광을 위한 픽셀들의 개수에 대응하는 방출기들의 하나 이상의 어레이의 각각의 방출기를 구성하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 시스템.
  11. 제9항에 있어서,
    상기 복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ― 는:
    상기 방출기들을 선택적으로 작동 상태로 만드는 것에 의해 상기 방출기 어레이들의 패턴을 생성하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 시스템.
  12. 제9항에 있어서,
    상기 작동 상태의 상기 방출기들을 상기 기판의 제1 부분을 노광시키기 위해 펄스화하는 단계는:
    각각의 방출기를 약 10 나노초 내지 약 50 마이크로초 범위의 지속시간 동안 펄스화하는 단계를 포함하는, 기판 상에 이미지를 생성하기 위한 시스템.
  13. 제9항에 있어서,
    상기 작동 상태의 상기 방출기들을 상기 기판의 제2 부분을 노광시키기 위해 펄스화하는 단계는:
    각각의 방출기를 약 1 나노초 내지 약 50 마이크로초 범위의 지속시간 동안 펄스화하는 단계를 포함하고, 제1 양의 신호가 상기 방출기들의 제1 어레이에 전달되고 제2 양의 전류가 상기 방출기들의 제2 어레이에 전달되는, 기판 상에 이미지를 생성하기 위한 시스템.
  14. 제9항에 있어서,
    상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함하고 상기 방출기들의 각각의 어레이에 대한 선량 정보를 포함하며, 상기 선량 정보는 상기 방출기들의 각각의 어레이에 전달되는 신호의 양을 포함하는, 기판 상에 이미지를 생성하기 위한 시스템.
  15. 저장된 명령어들을 포함하는 비일시적 컴퓨터 판독가능 매체로서,
    상기 명령어들은 프로세서에 의해 실행될 때 상기 프로세서로 하여금, 기판 상에 이미지를 생성하는 방법을 수행하게 하고, 상기 방법은:
    복수의 방출기 어레이들을 포함하는 이미지 투영 시스템에 명령어들을 송신하는 단계 ― 상기 명령어들은 상기 복수의 방출기 어레이들의 각각의 방출기에 대한 상태 정보를 포함함 ―;
    작동 상태의 상기 방출기들을 기판의 제1 부분을 노광시키기 위해 펄스화하는 단계;
    상기 기판을 스텝 크기만큼 병진시키고 상기 작동 상태의 상기 방출기들을 상기 기판의 제2 부분을 노광시키기 위해 펄스화하는 단계; 및
    상기 기판이 처리될 때까지 상기 기판의 후속 부분들을 노광시키기 위해 상기 작동 상태의 상기 방출기들을 펄스화하는 단계를 반복하는 단계를 포함하는, 비일시적 컴퓨터 판독가능 매체.
KR1020207030399A 2018-03-22 2019-02-05 가변 강도 다이오드들을 갖는 공간 광 변조기 KR102589768B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/933,147 US10684555B2 (en) 2018-03-22 2018-03-22 Spatial light modulator with variable intensity diodes
US15/933,147 2018-03-22
PCT/US2019/016601 WO2019182689A1 (en) 2018-03-22 2019-02-05 Spatial light modulator with variable intensity diodes

Publications (2)

Publication Number Publication Date
KR20200124323A true KR20200124323A (ko) 2020-11-02
KR102589768B1 KR102589768B1 (ko) 2023-10-17

Family

ID=67983224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207030399A KR102589768B1 (ko) 2018-03-22 2019-02-05 가변 강도 다이오드들을 갖는 공간 광 변조기

Country Status (7)

Country Link
US (1) US10684555B2 (ko)
EP (1) EP3769155A4 (ko)
JP (1) JP2023098934A (ko)
KR (1) KR102589768B1 (ko)
CN (1) CN111886543B (ko)
TW (1) TWI784135B (ko)
WO (1) WO2019182689A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190876A1 (en) * 2019-07-11 2021-01-12 Visitech As Real time Registration Lithography system
CN111770244B (zh) * 2020-07-30 2022-10-04 哈尔滨方聚科技发展有限公司 一种非调制式dmd空间光调制器成像方法
US11880139B2 (en) * 2021-09-23 2024-01-23 Honeywell Federal Manufacturing & Technologies, Llc Photolithography system including selective light array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526002A (ja) * 2010-02-09 2013-06-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
KR20130137713A (ko) * 2011-04-08 2013-12-17 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 프로그래밍 가능한 패터닝 디바이스 및 리소그래피 방법
KR20140036028A (ko) * 2011-08-16 2014-03-24 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 프로그램가능한 패터닝 디바이스 및 리소그래피 방법
KR20170038891A (ko) * 2014-08-01 2017-04-07 어플라이드 머티어리얼스, 인코포레이티드 3d 패턴 형성을 위한 디지털 그레이 톤 리소그래피
WO2017114653A1 (en) * 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
KR20170093168A (ko) * 2014-11-27 2017-08-14 칼 짜이스 에스엠티 게엠베하 복수의 개별적으로 제어가능한 기록 헤드를 포함하는 리소그래피 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043631A (en) * 1988-08-23 1991-08-27 Westinghouse Electric Corp. Thin film electroluminescent edge emitter structure on a silicon substrate
DE10330135A1 (de) * 2002-07-10 2004-01-22 LumiLeds Lighting, U.S., LLC, San Jose Schaltungsanordnung
US6894292B2 (en) 2002-08-02 2005-05-17 Massachusetts Institute Of Technology System and method for maskless lithography using an array of sources and an array of focusing elements
DE10242142A1 (de) 2002-09-03 2004-03-25 Kleo Halbleitertechnik Gmbh & Co Kg Verfahren und Vorrichtung zum Herstellen von belichteten Strukturen
US7256867B2 (en) 2004-12-22 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025136B2 (en) 2008-09-23 2015-05-05 Applied Materials, Inc. System and method for manufacturing three dimensional integrated circuits
JP5744861B2 (ja) * 2009-06-17 2015-07-08 ザ、リージェンツ、オブ、ザ、ユニバーシティー、オブ、ミシガン フラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造、並びに薄膜電子工学を利用したフラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造のトポロジー均一性の改善方法
JP5294489B2 (ja) 2009-12-14 2013-09-18 株式会社ブイ・テクノロジー 露光方法及び露光装置
US9420653B2 (en) * 2010-11-19 2016-08-16 Semiconductor Components Industries, Llc LED driver circuit and method
US9490239B2 (en) * 2011-08-31 2016-11-08 Micron Technology, Inc. Solid state transducers with state detection, and associated systems and methods
US9001305B2 (en) 2011-10-11 2015-04-07 Wenhui Mei Ultra-large size flat panel display maskless photolithography system and method
JP2016541009A (ja) 2013-10-25 2016-12-28 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、パターニングデバイス、およびリソグラフィ方法
WO2015158444A1 (en) * 2014-04-14 2015-10-22 Asml Netherlands B.V. Flows of optimization for lithographic processes
TWM550415U (zh) * 2016-01-28 2017-10-11 應用材料股份有限公司 圖像投影裝置及系統
JP6655753B2 (ja) * 2016-07-13 2020-02-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 照明源としてのマイクロledアレイ
US10908507B2 (en) 2016-07-13 2021-02-02 Applied Materials, Inc. Micro LED array illumination source
US11606889B2 (en) * 2020-03-31 2023-03-14 Mazda Motor Corporation Carbon material filler for electromagnetic shield, electromagnetic shield material, and carbon-material-containing molded body for electromagnetic shield

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526002A (ja) * 2010-02-09 2013-06-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
KR20130137713A (ko) * 2011-04-08 2013-12-17 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 프로그래밍 가능한 패터닝 디바이스 및 리소그래피 방법
KR20140036028A (ko) * 2011-08-16 2014-03-24 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 프로그램가능한 패터닝 디바이스 및 리소그래피 방법
KR20170038891A (ko) * 2014-08-01 2017-04-07 어플라이드 머티어리얼스, 인코포레이티드 3d 패턴 형성을 위한 디지털 그레이 톤 리소그래피
KR20170093168A (ko) * 2014-11-27 2017-08-14 칼 짜이스 에스엠티 게엠베하 복수의 개별적으로 제어가능한 기록 헤드를 포함하는 리소그래피 장치
WO2017114653A1 (en) * 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography

Also Published As

Publication number Publication date
CN111886543B (zh) 2024-03-22
US20190294051A1 (en) 2019-09-26
TW201945838A (zh) 2019-12-01
CN111886543A (zh) 2020-11-03
JP2021518577A (ja) 2021-08-02
JP2023098934A (ja) 2023-07-11
TWI784135B (zh) 2022-11-21
EP3769155A4 (en) 2021-12-15
US10684555B2 (en) 2020-06-16
KR102589768B1 (ko) 2023-10-17
EP3769155A1 (en) 2021-01-27
WO2019182689A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP2023098934A (ja) 強度が可変的なダイオードを備えた空間光変調器
JP7271655B2 (ja) フィールドの不均一性に対処するために空間光変調器セクションを予備として保持すること
JP7511474B2 (ja) 強度が可変的なダイオードを備えた空間光変調器
KR200492661Y1 (ko) 스캔의 방향에 대해 실질적으로 수직인 장축을 갖는 dmd
KR20210013767A (ko) 라인 파상을 감소시키기 위한 패턴들의 이동
US20180034240A1 (en) Failure detection of laser diodes
KR20220048040A (ko) 마스크리스 리소그래피를 위한 다중 톤 방식
JP2004128272A (ja) パターン描画装置およびパターン描画方法
KR102523863B1 (ko) 공간 광 변조기에 대한 데이터 스트림을 감소시키기 위한 방법
KR102504109B1 (ko) 고체 상태 방출기 어레이들을 사용하는 시스템들 및 방법들
KR20200136046A (ko) 기판 처리 동안의 선량 맵들 및 피쳐 크기 맵들의 제조 및 사용

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant