KR20200075356A - Manufacturing method for high density Ni-Co-Mn composite precursor - Google Patents

Manufacturing method for high density Ni-Co-Mn composite precursor Download PDF

Info

Publication number
KR20200075356A
KR20200075356A KR1020180163941A KR20180163941A KR20200075356A KR 20200075356 A KR20200075356 A KR 20200075356A KR 1020180163941 A KR1020180163941 A KR 1020180163941A KR 20180163941 A KR20180163941 A KR 20180163941A KR 20200075356 A KR20200075356 A KR 20200075356A
Authority
KR
South Korea
Prior art keywords
composite precursor
cobalt
precursor
nickel
density
Prior art date
Application number
KR1020180163941A
Other languages
Korean (ko)
Other versions
KR102182289B1 (en
Inventor
권순모
우대중
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to KR1020180163941A priority Critical patent/KR102182289B1/en
Priority to PCT/KR2018/016226 priority patent/WO2020130181A1/en
Publication of KR20200075356A publication Critical patent/KR20200075356A/en
Application granted granted Critical
Publication of KR102182289B1 publication Critical patent/KR102182289B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a technique for doping a composite precursor seed with a solution containing a nano-sized transition metal in an initial stage of a coprecipitation reaction, in order to address an issue that density decreases due to generation of pores in a nickel-cobalt-manganese composite precursor, [Ni_xCo_yMn_1-x-y(OH)_2, where 0 < x < 1, 0 < y < 1, 0 < x + y < 1].

Description

고밀도 니켈―코발트―망간 복합전구체의 제조 방법{Manufacturing method for high density Ni-Co-Mn composite precursor }Manufacturing method for high density nickel-cobalt-manganese composite precursors {Manufacturing method for high density Ni-Co-Mn composite precursor}

본 발명은 니켈―코발트―망간의 3성분계 복합전구체(NixCoyMn1-x-y(OH)2)의 제조 방법에 관한 기술이다. 더욱 구체적으로는 리튬이차전지용 양극 활물질로 사용되는 니켈―코발트―망간의 3성분계 복합전구체의 제조 방법에 있어서, 복합전구체의 밀도를 높이는 기술에 관한 것이다.The present invention relates to a method for manufacturing a three-component composite precursor (Ni x Co y Mn 1-xy (OH) 2 ) of nickel-cobalt-manganese. More specifically, in a method for producing a three-component composite precursor of nickel-cobalt-manganese used as a cathode active material for a lithium secondary battery, it relates to a technique for increasing the density of the composite precursor.

특히, 본 발명은 복합전구체의 제조 시 복합전구체 입자들간의 혼합이 잘 이루어지게 함으로써 밀도가 증가하는 방식이 아닌, 개별 복합전구체 자체 내의 공극이 발생하지 않도록 함으로써, 개별 복합전구체 자체의 밀도가 증가하게 하는 기술에 관한 것이다.In particular, the present invention does not increase the density by mixing well between the composite precursor particles when manufacturing the composite precursor, but by preventing the voids in the individual composite precursor itself, the density of the individual composite precursor itself increases It is about technology.

휴대용의 소형 전기ㆍ전자기기의 보급이 확산에 따라 니켈수소전지나 리튬 이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 또한 이차전지는 하이브리드자동차(HEV), 전기자동차(EV) 등에 사용되는 등, 적용분야가 확대되면서 이차전지에 대한 연구와 개발이 활발히 이루어지고 있다. With the proliferation of portable small-sized electric and electronic devices, development of new secondary batteries such as nickel-metal hydride batteries and lithium secondary batteries is actively progressing. In addition, secondary batteries are used in hybrid vehicles (HEVs), electric vehicles (EVs), etc., and research and development of secondary batteries have been actively conducted as the field of application has expanded.

이차전지 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬이차전지에 사용되는 양극 활물질로는 리튬 단독이 아닌 니켈, 코발트, 망간 등을 혼합하여 양극 활물질로 제조함으로써 에너지밀도 및 전기전도성 등의 양극 물성을 만족시키고 있다. Among the secondary batteries, the lithium secondary battery is a battery that uses carbon such as graphite as a negative electrode active material, uses a metal oxide containing lithium as a positive electrode active material, and uses a non-aqueous solvent as an electrolyte. As a positive electrode active material used in a lithium secondary battery, nickel, cobalt, manganese, etc., not lithium alone, are mixed and manufactured as a positive electrode active material to satisfy positive electrode properties such as energy density and electrical conductivity.

예를 들어, Li2CO3와 니켈-코발트-망간 전구체(NixCoyMn1-x-y)를 혼합 소성 가공하여 양극 활물질로 사용하고 있다. 통상 상기 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제) 및 NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 상기 전구체의 침전이 일어난다.For example, Li 2 CO 3 and a nickel-cobalt-manganese precursor (Ni x Co y Mn 1-xy ) are mixed and calcined to be used as a positive electrode active material. Usually, the precursor is prepared using a co-precipitation method. After dissolving nickel salts, manganese salts, and cobalt salts in distilled water, the precursors are precipitated by adding them to the reactor together with an aqueous ammonia solution (chelating agent) and an aqueous NaOH solution (basic aqueous solution). This happens.

입자분포가 균일한 니켈-코발트-망간 복합전구체를 제조하는 것도 관련 기술분야에서의 하나의 연구 테마이지만, 또한 복합전구체 입자 내 공극이 발생하는 문제점을 해결하는 것도 연구 테마가 되고 있다. 이러한 복합전구체 입자 내의 공극으로 인해 전구체의 밀도가 저하되며, 양극활물질 단계에서의 입자 강도가 저하되며, 이차전지 전력 효율을 떨어뜨리는 이유가 되기도 한다.Producing a nickel-cobalt-manganese composite precursor having a uniform particle distribution is one research theme in the related art, but also solving the problem of voids in the composite precursor particles is becoming a research theme. Due to the voids in the composite precursor particles, the density of the precursor is lowered, the particle strength in the positive electrode active material stage is lowered, and this may be a reason to decrease the power efficiency of the secondary battery.

이러한 복합전구체의 밀도 제어와 관련한 종래 기술로서 특허공개 제10-2015-0059820호에서는, 금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계, 상기 공침 화합물을 건조 또는 열처리하여 활물질 전구체를 제조하는 단계, 및 상기 활물질 전구체와 리튬염을 혼합하여 소성하여 리튬 복합금속 산화물을 제조하는 단계를 포함하는 공침법에 의한 리튬 이차전지용 양극활물질 전구체의 제조 방법에 있어서, 상기 금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계에서 공침 화합물의 입경 증가에 따라 상기 금속염 수용액을 반응기에 공급하는 속도를 증가시키는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조 방법을 공개하고 있다. 즉, 특허공개 제10-2015-0059820호에서는 공침 반응 시 입경의 증가에 따라 금속염의 공급 속도를 조절함으로써 입자 전체에서 높은 탭밀도를 나타내고 이에 따라 전지 특성이 향상되는 기술을 공개하고 있다. In the prior art related to density control of such a composite precursor, in Patent Publication No. 10-2015-0059820, a metal salt aqueous solution, a chelating agent, and a basic aqueous solution are supplied to a reactor to coprecipitate to prepare a coprecipitation compound. In the manufacturing method of the positive electrode active material precursor for a lithium secondary battery by a co-precipitation method comprising the step of preparing an active material precursor by drying or heat treatment, and mixing and firing the active material precursor and a lithium salt to produce a lithium composite metal oxide, Lithium secondary characterized in that by increasing the particle size of the coprecipitation compound in the step of preparing the coprecipitation compound by supplying the metal salt aqueous solution, the chelating agent, and the basic aqueous solution to the reactor to coprecipitate A method of manufacturing a positive electrode active material for a battery has been disclosed. That is, Patent Publication No. 10-2015-0059820 discloses a technique that exhibits a high tap density across the particles by controlling the supply speed of the metal salt according to an increase in particle size during the co-precipitation reaction, thereby improving battery characteristics.

또한, 특허공개 제10-2014-0098347호에서는 양극 활물질, 도전재 및 바인더를 포함하는 양극 합제가 집전체 상에 도포되어 있는 양극으로서, 상기 양극 활물질은 평균 입경이 서로 다른 소립자와 대립자로 이루어진 바이모달(bimodal) 형태의 고밀도 양극활물질을 공개하고 있다.In addition, in Patent Publication No. 10-2014-0098347, the positive electrode mixture comprising a positive electrode active material, a conductive material and a binder is a positive electrode coated on a current collector, wherein the positive electrode active material is made of small particles and opposite particles having different average particle diameters. A high-density positive electrode active material in a bimodal form is disclosed.

상기 특허공개 제10-2015-0059820호에서는 금속염의 공급 속도를 조절함으로써 탭밀도를 조절하였으나, 금속염의 공급 속도를 조절하는 것 자체가 실질적으로 쉽지 않을 뿐만 아니라, 위 특허의 방법대로 하더라도 충분한 고밀도의 복합전구체의 제조가 어렵다는 문제점이 있다. 또한, 특허공개 제10-2014-0098347호에서는 복합전구체 자체의 공극을 줄임으로써 밀도를 증가시키는 방법이 아닌 소립자와 대립자의 혼합을 통해 밀도를 제어하는 점에서 본 발명과는 차이점이 있다.In the patent publication No. 10-2015-0059820, the tap density was adjusted by adjusting the supply speed of the metal salt, but it is not practically easy to control the supply speed of the metal salt, and it is of sufficient high density even if the method of the above patent is applied. There is a problem that it is difficult to manufacture a composite precursor. In addition, Patent Publication No. 10-2014-0098347 differs from the present invention in that it controls density through mixing of small particles and alleles rather than a method of increasing density by reducing the voids of the composite precursor itself.

특허공개 제10-2015-0059820호Patent Publication No. 10-2015-0059820 특허공개 제10-2014-0098347호Patent Publication No. 10-2014-0098347 특허등록 제10-1275845호Patent registration No. 10-1275845 특허공개 제10-2013-0111413호Patent Publication No. 10-2013-0111413 특허공개 제10-2013-0123910호Patent Publication No. 10-2013-0123910

본 발명은 니켈-코발트-망간 복합전구체 내의 공극을 최소화하여 고밀도 전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for manufacturing a high-density precursor by minimizing voids in a nickel-cobalt-manganese composite precursor.

특히, 본 발명은 종래 기술에서 대립자와 소립자 복합전구체의 혼합에 의해 고밀도를 구현하는 것이 아닌 복합전구체 자체의 고밀도를 통해 전체 복합전구체 전체의 고밀도를 구현하는 방법을 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a method of realizing high density of the entire composite precursor through high density of the composite precursor itself, rather than realizing high density by mixing the large-particle and small-particle composite precursors in the prior art.

특히, 본 발명은 고밀도의 소립자 전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.In particular, the present invention aims to provide a method for producing a high-density small particle precursor.

본 발명은 니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2 ,여기서, 0<x<1, 0<y<1, 0<x+y<1]를 제조하는 방법에 있어서, 공침반응기 내에 황산니켈, 황산코발트 및 황산망간의 금속 수용액을 준비하는 단계; 나노크기 입자를 포함하는 용액을 준비하는 단계; 및 공침 반응을 통해 복합전구체를 제조하는 단계를 포함하되, 상기 복합전구체를 제조하는 단계에서, 나노크기 입자를 포함하는 용액을 공침 반응 중 일부 반응에만 첨가함으로써 내부에 공극이 적은 고밀도의 니켈-코발트-망간 복합전구체를 제조하는 방법을 제공한다.The present invention is a nickel-cobalt-manganese composite precursor [Ni x Co y Mn 1-xy (OH) 2, wherein, A method for preparing 0<x<1, 0<y<1, 0<x+y<1], the method comprising: preparing a metal aqueous solution of nickel sulfate, cobalt sulfate, and manganese sulfate in a coprecipitation reactor; Preparing a solution containing nano-sized particles; And preparing a composite precursor through a co-precipitation reaction, in the step of preparing the composite precursor, a solution containing nano-sized particles is added to only some of the reactions during the co-precipitation reaction, thereby providing a high density nickel-cobalt with less voids therein. -Provides a method of manufacturing a manganese composite precursor.

특히, 상기 나노크기의 입자는 전이금속 입자인 것이 바람직하다.In particular, the nano-sized particles are preferably transition metal particles.

특히, 상기 전이금속 입자는 ZrO2, WO2 및 TiO2 중 어느 하나일 수 있다.In particular, the transition metal particles may be any one of ZrO 2 , WO 2 and TiO 2 .

특히, 상기 나노크기 입자를 포함하는 용액은 전구체의 초기 시드 형성 과정에서만 첨가할 수 있다.In particular, the solution containing the nano-sized particles can be added only during the initial seed formation process of the precursor.

본 발명의 방법을 통해서 복합전구체 입자 내 공극을 줄임으로써, 고밀도의 복합전구체를 제조할 수 있다. 예를 들어, 종래 기술에 의한 복합전구체는 탭밀도가 1.44 g/cm3이나, 본 발명에 의해 제조된 복합전구체는 탭밀도가 1.53 g/cm3으로 0.9 g/cm3의 탭밀도 향상 효과를 실험으로 확인할 수 있었다. By reducing the voids in the composite precursor particles through the method of the present invention, a high-density composite precursor can be produced. For example, the composite precursor according to the prior art has a tap density of 1.44 g/cm 3 , but the composite precursor produced by the present invention has a tap density of 1.53 g/cm 3 to improve the tap density of 0.9 g/cm 3 . It was confirmed by experiment.

특히, 본 발명에서는 공침 반응의 초기, 예를 들어, 공침 반응 초기 10분간만 나노크기 전이금속 입자로 복합전구체의 시드 입자에 코팅이 이루어지기만 해도 탭밀도 향상 효과를 얻을 수 있다. In particular, in the present invention, it is possible to obtain an effect of improving tap density even if the seed particles of the composite precursor are coated with nano-sized transition metal particles only in the initial 10 minutes of the co-precipitation reaction, for example, in the initial 10 minutes of the co-precipitation reaction.

도 1 및 2는 비교예에 의해 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 3은 비교예에 의해 제조된 복합전구체의 단면에 대한 SEM 측정 사진이다.
도 4 및 5는 본 발명에 의해해 제조된 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 6은 본 발명에 의해 제조된 복합전구체의 단면에 대한 SEM 측정 사진이다.
1 and 2 are SEM measurement pictures of different magnifications of the composite precursor according to the comparative example.
Figure 3 is a SEM measurement of the cross section of the composite precursor prepared by the comparative example.
4 and 5 are SEM measurement pictures of different magnifications of the composite precursor prepared by the present invention.
Figure 6 is a SEM measurement of the cross section of the composite precursor prepared by the present invention.

본 발명은 니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2 ,여기서, 0<x<1, 0<y<1, 0<x+y<1]를 제조함에 있어서, 복합전구체 내 공극의 발생을 줄임으로써, 전체 복합전구체의 밀도를 증가시키는 방법에 관한 것이다. 특히, 본 발명은 종래 대립자 전구체와 소립자 전구체의 조합을 통해 밀도를 높이는 기술과는 달리, 복합전구체 입자 자체 내의 공극을 줄여 복합전구체 입자 자체의 밀도를 높임으로써, 전체 복합전구체의 밀도를 높일 수 있는 기술에 관한 것이다. The present invention is a nickel-cobalt-manganese composite precursor [Ni x Co y Mn 1-xy (OH) 2, wherein, In manufacturing 0<x<1, 0<y<1, 0<x+y<1], it relates to a method of increasing the density of the entire composite precursor by reducing the occurrence of voids in the composite precursor. In particular, the present invention, unlike the conventional technique of increasing the density through the combination of allelic precursors and small particle precursors, by increasing the density of the composite precursor particles themselves by reducing the voids in the composite precursor particles themselves, it is possible to increase the density of the entire composite precursor. It is about technology.

상기 목적을 달성하기 위하여, 본 발명에서는 공침액의 공침 반응에 나노 입자 용액을 도핑하는 것을 특징으로 한다. 이러한 나노 입자 용액의 도핑은 공침 과정 중 매우 짧은 단계, 즉, 초기 복합전구체의 생성 과정에만 관여해도 최종적으로 제조되는 복합전구체의 밀도를 크게 향상시킬 수 있다. 예를 들어, 복합전구체의 총 공침 과정이 12시간인 경우, 초기 10분만 나노 입자 용액의 도핑을 해도 최종적으로 제조되는 복합전구체의 밀도가 크게 향상된다. In order to achieve the above object, the present invention is characterized in that the nanoparticle solution is doped in the coprecipitation reaction of the coprecipitation solution. The doping of the nanoparticle solution can greatly improve the density of the composite precursor that is finally produced even if it is involved only in a very short step of the co-precipitation process, that is, the process of generating the initial composite precursor. For example, when the total co-precipitation process of the composite precursor is 12 hours, even if the nanoparticle solution is doped for only the initial 10 minutes, the density of the composite precursor finally produced is greatly improved.

또한, 다단계의 공침 반응을 하는 경우, 처음 1단계에서만 전이금속이 나노 입자 용액으로 복합전구체 시드에 도핑을 해주어도, 최종적으로 제조되는 복합전구체의 밀도 향상 효과를 얻을 수 있다. 종래 기술에서도 전이금속의 도핑이 있었으나, 이는 복합전구체의 완성 후에 별도로 전이금속을 도핑하거나, 복합전구체 제조 과정 전체에서 도핑을 하던 것과는 달리, 본 발명에서는 복합전구체의 공극을 줄이기 위한 목적으로 공침 초기에만 짧은 시간 도핑을 한다는 점에서 차이가 있다.In addition, in the case of performing a multi-step coprecipitation reaction, even if the transition metal is doped with the seed of the complex precursor with a nanoparticle solution only in the first step, it is possible to obtain a density improvement effect of the finally produced complex precursor. In the prior art, there was doping of a transition metal, but this is different from doping the transition metal separately after completion of the complex precursor, or doping in the entire process of manufacturing the complex precursor, in the present invention, the purpose of reducing voids in the complex precursor is only at the initial stage of coprecipitation. The difference is that it has a short time doping.

본 발명에서 바람직한 나노크기의 입자는 전이금속산화물의 나노 입자, 예를 들어, ZrO2, WO2 및 TiO2 등을 사용할 수 있다.The nano-sized particles preferred in the present invention may be nano-particles of a transition metal oxide, for example, ZrO 2 , WO 2 and TiO 2 .

이하에서는 실험예를 통해 본 발명에 대해 설명하기로 한다.Hereinafter, the present invention will be described through experimental examples.

비교예Comparative example

먼저 비교예로서, 종래와 같이 황산니켈, 황산코발, 황산망간의 공침용액으로 공침반응을 통해 제조된 니켈-코발트-망간 복합전구체를 제조하여, 탭밀도 및 표면과 단면의 SEM 측정을 하였다.First, as a comparative example, a nickel-cobalt-manganese composite precursor prepared through a co-precipitation reaction with a co-precipitation solution of nickel sulfate, cobalt sulfate, and manganese sulfate was prepared, and the tap density and SEM of the surface and cross section were measured.

황산니켈, 황산코발트, 황산망간을 0.6 : 0.2 : 0.2의 비율(몰비)로 혼합하여 2.5 M 농도의 공침용액을 준비하였고, 50% 농도의 수산화나트륨 수용액을 준비하였다. 상기 공침용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 공급하였고, 공침 반응기 내부의 pH가 10.5 ~ 11.0이 유지되도록 상기 수산화나트륨 수용액을 가하였다.Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a ratio of 0.6:0.2:0.2 (molar ratio) to prepare a 2.5 M concentration coprecipitation solution, and an aqueous 50% sodium hydroxide solution was prepared. The coprecipitation solution was supplied at a rate of 6.5 to 7.0 L/hr to a 100 L coprecipitation reactor, which is a double water tank structure containing deionized water maintained at 50 to 60°C, and the pH inside the coprecipitation reactor was maintained at 10.5 to 11.0. Aqueous sodium hydroxide solution was added.

첨가제로서 28% 농도의 암모니아 수용액은 전이금속 수용액을 투입하기 전 3 L를 공급하였다. 공침반응은 3시간 기준으로 니켈-코발트-망간 복합수산화물을 가라앉히고, 상등액을 제거하는 방법으로 12시간 반응을 진행하였다.As an additive, an aqueous ammonia solution at a concentration of 28% was supplied with 3 L before the transition metal solution was added. The co-precipitation reaction was performed for 12 hours by sinking the nickel-cobalt-manganese composite hydroxide on a 3 hour basis and removing the supernatant.

그 결과 제조된 복합전구체의 SEM 측정 사진은 도 1 및 2이다. 입자크기는 4.41 ㎛, 표면적은 18.82 m2/g, 탭밀도(tap density)가 1.44 g/cm3이었다. As a result, SEM photographs of the prepared composite precursors are shown in FIGS. 1 and 2. The particle size was 4.41 μm, the surface area was 18.82 m 2 /g, and the tap density was 1.44 g/cm 3 .

또한, 도 3은 비교에에서 제조된 복합전구체의 단면에 대한 SEM 측정 사진으로서, 내부에 공극이 많이 형성되었음을 확인할 수 있었다. In addition, Figure 3 is a SEM measurement of the cross section of the composite precursor prepared in the comparison, it was confirmed that a lot of voids were formed inside.

이하에서는 본 발명의 방법으로 제조된 실시예의 복합전구체가 비교예의 복합전구체에 비해 밀도가 증가함을 확인하였다.Hereinafter, it was confirmed that the composite precursor of the example prepared by the method of the present invention has an increased density compared to the composite precursor of the comparative example.

실시예 Example

상기 비교예와는 달리 본 발명에서는 복합전구체의 공침반응 초기에 나노크기의 전이금속 입자를 첨가하여 복합전구체의 시드에 전이금속이 도핑되도록 하였다. 본 발명에서는 종래 전이금속 도핑과는 달리 복합전구체의 완성 후 전이금속을 도핑하는 것이 아닌, 복합전구체의 공침 초기에 소량의 나노크기의 전이금속을 도핑함으로써, 복합전구체의 최종 밀도를 증가시키고 공극을 줄인다는 점에 차이점이 있다.Unlike the comparative example, in the present invention, nano-sized transition metal particles were added at the initial stage of the co-precipitation reaction of the complex precursor, so that the seed of the complex precursor was doped with the transition metal. In the present invention, unlike the conventional transition metal doping, rather than doping the transition metal after completion of the composite precursor, doping a small amount of nano-sized transition metal at the initial stage of co-precipitation of the composite precursor increases the final density of the composite precursor and the voids. The difference is that it reduces.

황산니켈, 황산코발트, 황산망간을 0.6 : 0.2 : 0.2의 비율(몰비)로 혼합하여 2.5 M 농도의 공침용액을 준비하였고, 50% 농도의 수산화나트륨 수용액을 준비하였다. 상기 전이금속 수용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 공급하였고, 공침 반응기 내부의 pH가 10.5 ~ 11.0이 유지되도록 상기 수산화나트륨 수용액을 가하였다. 한편, 상기 공침용액에 나노크기 입자 용액으로서 ZrO2 용액을 1.0M 농도로 공침 반응기에 1.0~1.5 L.hr의 속도로 10분간만 동시 공급하였다. Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a ratio of 0.6:0.2:0.2 (molar ratio) to prepare a 2.5 M concentration coprecipitation solution, and an aqueous 50% sodium hydroxide solution was prepared. The transition metal aqueous solution was supplied at a rate of 6.5 to 7.0 L/hr to a 100 L coprecipitation reactor, which is a double water tank structure containing deionized water maintained at 50 to 60°C, so that the pH inside the coprecipitation reactor is maintained at 10.5 to 11.0 The aqueous sodium hydroxide solution was added. Meanwhile, a ZrO 2 solution as a nano-sized particle solution in the co-precipitation solution was simultaneously supplied to the co-precipitation reactor at a concentration of 1.0M at a rate of 1.0 to 1.5 L.hr for only 10 minutes.

첨가제로서 28% 농도의 암모니아 수용액은 전이금속 수용액을 투입하기 전 3 L를 공급하였다. 공침반응은 3시간 기준으로 니켈-코발트-망간 복합수산화물을 가라앉히고, 상등액을 제거하는 방법으로 12시간 반응을 진행하였다. As an additive, an aqueous ammonia solution at a concentration of 28% was supplied with 3 L before the transition metal solution was added. The co-precipitation reaction was performed for 12 hours by sinking the nickel-cobalt-manganese composite hydroxide on a 3 hour basis and removing the supernatant.

그 결과 제조된 복합전구체의 SEM 측정 사진은 도 4 및 5이다. 입자크기는 4.45 ㎛, 표면적은 17.94 m2/g, 탭밀도(tap density)가 1.53 g/cm3이었다. As a result, SEM photographs of the prepared composite precursors are shown in FIGS. 4 and 5. The particle size was 4.45 μm, the surface area was 17.94 m 2 /g, and the tap density was 1.53 g/cm 3 .

입자크기는 비교예와 유의미한 차이는 없었으며, 표면적은 다소 감소하였으나 이 역시 제조 과정에서 발생하는 차이일 뿐 유의미하지 않은 결과이다. 탭밀도를 비교하면 1.44 g/cm3 ->1.53 g/cm3이으로 실시예의 복합전구체의 경우 탭밀도가 크게 향상됨을 확인할 수 있었다. 특히, 탭밀도의 경우 다른 지표와는 달리 위와 같은 정도의 향상은 매우 유의미한 증가라고 해석할 수 있다.The particle size was not significantly different from the comparative example, and the surface area was slightly reduced, but this is also a difference that occurs in the manufacturing process and is not a significant result. When the tap density was compared, it was confirmed that the tap density was greatly improved in the case of the composite precursor of the example, since 1.44 g/cm 3 ->1.53 g/cm 3 . In particular, in the case of tap density, unlike other indicators, it can be interpreted that the improvement of the above degree is a very significant increase.

도 6은 실시예에서 제조된 복합전구체의 단면에 대한 SEM 측정 사진으로서, 도 3의 비교예에 비해서 내부에 공극이 많이 줄어들었음을 확인할 수 있다. 특히, 초기 공침 과정에서의 10분의 짧은 시간 동안 전이금속의 도핑을 통해, 복합전구체 내부 공극이 급격히 줄어듬으로써, 물리적 물성이 좋아지고, 전력밀도가 높아질 수 있는 장점이 있다.Figure 6 is a SEM measurement of the cross section of the composite precursor prepared in Example, it can be seen that the pores are much reduced inside compared to the comparative example of FIG. In particular, through the doping of the transition metal for a short time of 10 minutes in the initial coprecipitation process, the pores inside the composite precursor are rapidly reduced, thereby improving physical properties and increasing power density.

또한, 본 명세서에서는 실험 결과를 기재하지 않았으나, WO2 및 TiO2 도를 복합전구체 초기에 도핑하는 경우, ZrO2의 경우와 동일하게 탭밀도의 증가 효과를 확인할 수 있었다.In addition, although the experimental results are not described in this specification, the effect of increasing the tap density in the same manner as in the case of ZrO 2 can be confirmed when WO 2 and TiO 2 are doped at the beginning of the composite precursor.

Claims (4)

니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2 ,여기서, 0<x<1, 0<y<1, 0<x+y<1]를 제조하는 방법에 있어서,
공침반응기 내에 황산니켈, 황산코발트 및 황산망간의 금속 수용액을 준비하는 단계;
나노크기 입자를 포함하는 용액을 준비하는 단계; 및
공침 반응을 통해 복합전구체를 제조하는 단계를 포함하되,
상기 복합전구체를 제조하는 단계에서, 나노크기 입자를 포함하는 용액을 공침 반응 중 일부 반응에만 첨가함으로써 내부에 공극이 적은 고밀도의 니켈-코발트-망간 복합전구체를 제조하는 방법.
Nickel-cobalt-manganese composite precursor [Ni x Co y Mn 1-xy (OH) 2, where In the method for producing 0 <x <1, 0 <y <1, 0 <x + y <1],
Preparing a metal aqueous solution of nickel sulfate, cobalt sulfate, and manganese sulfate in a co-precipitation reactor;
Preparing a solution containing nano-sized particles; And
Comprising the step of preparing a complex precursor through a co-precipitation reaction,
In the step of preparing the composite precursor, a method of manufacturing a high density nickel-cobalt-manganese composite precursor with a small void therein by adding a solution containing nano-sized particles to only some of the reactions during the coprecipitation reaction.
제1항에서, 상기 나노크기의 입자는 전이금속 입자인, 고밀도의 니켈-코발트-망간 복합전구체를 제조하는 방법.
The method of claim 1, wherein the nano-sized particles are transition metal particles, and a high-density nickel-cobalt-manganese composite precursor is produced.
제2항에서, 상기 전이금속 입자는 ZrO2, WO2 및 TiO2 중 어느 하나인, 고밀도의 니켈-코발트-망간 복합전구체를 제조하는 방법.
The method of claim 2 , wherein the transition metal particles are any one of ZrO 2 , WO 2 and TiO 2 , and a high density nickel-cobalt-manganese composite precursor is produced.
제1항에서, 상기 나노크기 입자를 포함하는 용액은 니켈-코발트-망간 복합전구체의 초기 시드 형성 과정에서만 첨가되는, 고밀도의 니켈-코발트-망간 복합전구체를 제조하는 방법.
The method of claim 1, wherein the solution containing the nano-sized particles is added only during the initial seed formation process of the nickel-cobalt-manganese composite precursor, a method for preparing a high density nickel-cobalt-manganese composite precursor.
KR1020180163941A 2018-12-18 2018-12-18 Manufacturing method for high density Ni-Co-Mn composite precursor KR102182289B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180163941A KR102182289B1 (en) 2018-12-18 2018-12-18 Manufacturing method for high density Ni-Co-Mn composite precursor
PCT/KR2018/016226 WO2020130181A1 (en) 2018-12-18 2018-12-19 Method for manufacturing high density nickel-cobalt-manganese composite precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180163941A KR102182289B1 (en) 2018-12-18 2018-12-18 Manufacturing method for high density Ni-Co-Mn composite precursor

Publications (2)

Publication Number Publication Date
KR20200075356A true KR20200075356A (en) 2020-06-26
KR102182289B1 KR102182289B1 (en) 2020-11-24

Family

ID=71102205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180163941A KR102182289B1 (en) 2018-12-18 2018-12-18 Manufacturing method for high density Ni-Co-Mn composite precursor

Country Status (2)

Country Link
KR (1) KR102182289B1 (en)
WO (1) WO2020130181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279310A (en) * 2020-10-26 2021-01-29 合肥国轩高科动力能源有限公司 Preparation method of ternary cathode material precursor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366308B (en) * 2020-11-11 2021-12-07 江西普瑞美新材料科技有限公司 Method for rapidly synthesizing nickel-cobalt-manganese positive electrode material precursor
CN112952085B (en) * 2021-03-15 2023-01-17 沁新集团(天津)新能源技术研究院有限公司 Gradient high-nickel single crystal ternary material, preparation method thereof and battery using material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057518A (en) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
KR101275845B1 (en) 2011-09-21 2013-06-17 에스케이씨 주식회사 Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
KR20130111413A (en) 2012-03-31 2013-10-10 한양대학교 산학협력단 Manufacturing method of positive active material precursor and positive active material precursor made by the same, and lithium metal composite oxides including the same
KR20130123910A (en) 2012-05-04 2013-11-13 주식회사 엘지화학 Precursor for preparation of lithium composite transition metal oxide and method for preparation of the same
KR20140098347A (en) 2013-01-31 2014-08-08 주식회사 엘지화학 Cathode for Secondary Battery Having High Energy Density and Lithium Secondary Battery Comprising the Same
KR20150015141A (en) * 2013-07-31 2015-02-10 전자부품연구원 Positive composition for Lithium secondary battery using spherical cobalt oxide with nano-titanate and manufacturing method thereof
KR20150059820A (en) 2013-11-23 2015-06-03 주식회사 에너세라믹 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
JP2018090431A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, method for producing nickel cobalt manganese composite hydroxide, and lithium metal composite oxide particle
KR20180099542A (en) * 2017-02-28 2018-09-05 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841114B1 (en) * 2014-12-02 2018-03-22 주식회사 엘지화학 Method for Preparing Cathode Active Material for Secondary Battery and Cathode Active Material Using the Same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057518A (en) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
KR101275845B1 (en) 2011-09-21 2013-06-17 에스케이씨 주식회사 Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
KR20130111413A (en) 2012-03-31 2013-10-10 한양대학교 산학협력단 Manufacturing method of positive active material precursor and positive active material precursor made by the same, and lithium metal composite oxides including the same
KR20130123910A (en) 2012-05-04 2013-11-13 주식회사 엘지화학 Precursor for preparation of lithium composite transition metal oxide and method for preparation of the same
KR20140098347A (en) 2013-01-31 2014-08-08 주식회사 엘지화학 Cathode for Secondary Battery Having High Energy Density and Lithium Secondary Battery Comprising the Same
KR20150015141A (en) * 2013-07-31 2015-02-10 전자부품연구원 Positive composition for Lithium secondary battery using spherical cobalt oxide with nano-titanate and manufacturing method thereof
KR20150059820A (en) 2013-11-23 2015-06-03 주식회사 에너세라믹 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
JP2018090431A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Nickel cobalt manganese composite hydroxide, method for producing nickel cobalt manganese composite hydroxide, and lithium metal composite oxide particle
KR20180099542A (en) * 2017-02-28 2018-09-05 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279310A (en) * 2020-10-26 2021-01-29 合肥国轩高科动力能源有限公司 Preparation method of ternary cathode material precursor

Also Published As

Publication number Publication date
WO2020130181A1 (en) 2020-06-25
KR102182289B1 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
WO2021238152A1 (en) Composite positive electrode material for lithium ion battery, preparation method therefor, and use thereof
Zhu et al. Precise preparation of high performance spherical hierarchical LiNi 0.5 Mn 1.5 O 4 for 5 V lithium ion secondary batteries
US20090252668A1 (en) Methods For Preparing Iron Source Material And Ferrous Oxalate for Lithium Ferrous Phosphate
JP5765798B2 (en) Cathode active material for Li-ion battery and method for producing the same
KR101547972B1 (en) Manufacturing method for Ni-Co-Mn composite precursor
CN109994726B (en) Positive electrode material precursor, preparation method thereof, positive electrode material and lithium ion battery
KR102182289B1 (en) Manufacturing method for high density Ni-Co-Mn composite precursor
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
CN112751006B (en) Cobalt-free lithium ion battery layered positive electrode material and preparation method and application thereof
KR101497190B1 (en) Lithium metal oxide composite for lithium secondary battery, method for preparing thereof, and lithium secondary battery including the same
KR20160099876A (en) Manufacturing method for Ni-Co-Mn composite precursor
CN111564612A (en) High-thermal-conductivity and high-electrical-conductivity lithium battery positive electrode material and preparation method thereof
KR101738545B1 (en) Synthesis of Metal hydroxide Hexagonal Nanoplates and their Application
CN114583123A (en) Phosphorus-doped carbon-coated ultrathin lithium iron phosphate lamellar material and preparation method thereof
CN117105283A (en) Core-shell structured positive electrode precursor material and preparation method and application thereof
WO2023185548A1 (en) Modified lithium manganese iron phosphate positive electrode material, and preparation method and application thereof
CN108023079B (en) Mixed transition metal borate anode material and preparation method thereof
CN115286052A (en) Cerium-doped and magnesium-coated nickel-cobalt-manganese precursor and preparation method and application thereof
KR20190070458A (en) Precursor for secondary battery cathode active material, preparing method thereof and preparing method of cathode active materials for secondary battery using the same
CN109037607B (en) Preparation method of coated lithium manganate composite material
JP6910594B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
KR101794454B1 (en) Method of manufacturing a cobalt having a hierarchical flower shape
JP2017021999A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN115036509B (en) Positive electrode material for solid-state battery and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant