KR101950202B1 - Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area - Google Patents

Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area Download PDF

Info

Publication number
KR101950202B1
KR101950202B1 KR1020170025205A KR20170025205A KR101950202B1 KR 101950202 B1 KR101950202 B1 KR 101950202B1 KR 1020170025205 A KR1020170025205 A KR 1020170025205A KR 20170025205 A KR20170025205 A KR 20170025205A KR 101950202 B1 KR101950202 B1 KR 101950202B1
Authority
KR
South Korea
Prior art keywords
cobalt
coprecipitation
nickel
precursor
composite precursor
Prior art date
Application number
KR1020170025205A
Other languages
Korean (ko)
Other versions
KR20180098735A (en
Inventor
한태희
권순모
권오상
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to KR1020170025205A priority Critical patent/KR101950202B1/en
Priority to PCT/KR2017/002120 priority patent/WO2018155746A1/en
Publication of KR20180098735A publication Critical patent/KR20180098735A/en
Application granted granted Critical
Publication of KR101950202B1 publication Critical patent/KR101950202B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈-코발트-망간의 3성분계 복합전구체(NixCoyMn1-x-y)의 제조 방법에 관한 기술로서, 더욱 구체적으로는 pH가 다른 조건에서 2번의 공침을 통해 비표면적이 높은 니켈-코발트-망간 3성분계 복합전구체를 제조하는 기술에 관한 것이다.The present invention relates to a method for producing a three-component complex precursor of nickel-cobalt-manganese (Ni x Co y Mn 1-xy ), and more specifically, -Cobalt-manganese three-component complex precursor.

Description

고비표면적의 니켈―코발트―망간 복합전구체의 제조 방법{Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area}[0001] The present invention relates to a nickel-cobalt-manganese composite precursor having a high specific surface area,

본 발명은 니켈―코발트―망간의 3성분계 복합전구체[NixCoyMn1-x-y(OH)2]의 제조 방법에 관한 기술로서, 더욱 구체적으로는 리튬이차전지용 양극 활물질에 적합한 비표면적이 높은 니켈-코발트-망간 3성분계 복합전구체의 제조 방법에 관한 기술이다.TECHNICAL FIELD The present invention relates to a process for producing a three-component complex precursor of nickel-cobalt-manganese [Ni x Co y Mn 1-xy (OH) 2 ], and more specifically to a process for producing a lithium- Nickel-cobalt-manganese three-component complex precursor.

휴대용의 소형 전기ㆍ전자기기의 보급이 확산에 따라 니켈수소전지나 리튬 이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 2. Description of the Related Art [0002] With the spread of portable small-sized electric and electronic devices, development of new secondary batteries such as nickel-metal hydride batteries and lithium secondary batteries is actively under way. Among them, the lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte.

리튬이차전지에 사용되는 양극 활물질로는 리튬 단독이 아닌 니켈, 코발트, 망간 등을 혼합하여 양극 활물질로 제조함으로써 에너지밀도 및 전기전도성 등의 양극 물성을 만족시키고 있다. 예를 들어, Li2CO3와 니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2]를 혼합 소성 가공하여 양극 활물질로 사용하고 있다. 통상 상기 복합전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제) 및 NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 상기 전구체의 침전이 일어난다.As a cathode active material used for a lithium secondary battery, nickel, cobalt, and manganese are mixed with lithium rather than lithium alone to prepare a cathode active material, thereby satisfying the anode properties such as energy density and electrical conductivity. For example, Li 2 CO 3 and a nickel-cobalt-manganese composite precursor Ni x Co y Mn 1-xy (OH) 2 are mixed and calcined to be used as a cathode active material. Generally, the complex precursor is prepared by coprecipitation. When a nickel salt, a manganese salt and a cobalt salt are dissolved in distilled water and then added to a reactor together with an aqueous ammonia solution (chelating agent) and an aqueous NaOH solution (basic aqueous solution) Precipitation occurs.

종래 기술에서는 니켈-코발트-망간 전구체의 비표면적을 향상시키는 방법이 제시된 바가 없으며, 주로 니켈-코발트-망간 복합전구체의 크기 제어에 관한 기술이 종래 기술의 대부분을 차지하고 있다.In the prior art, a method for improving the specific surface area of a nickel-cobalt-manganese precursor has not been proposed, and a technique for controlling the size of a nickel-cobalt-manganese composite precursor mainly occupies most of the prior art.

특허등록 제10-1275845호Patent Registration No. 10-1275845 특허공개 제10-2013-0111413호Patent Publication No. 10-2013-0111413 특허공개 제10-2013-0123910호Patent Publication No. 10-2013-0123910

본 발명은 충방전 효율이 우수한 니켈-코발트-망간의 3성분계 복합전구체의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a process for producing a three-component complex precursor of nickel-cobalt-manganese which is excellent in charging / discharging efficiency.

특히, 본 발명은 니켈-코발트-망간의 3성분계 복합전구체의 제조를 위한 공침 반응시, 비표면적이 큰 복합전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a method for preparing a complex precursor having a large specific surface area during a coprecipitation reaction for preparing a three-component complex precursor of nickel-cobalt-manganese.

특히, 본 발명은 간단한 공정 조건의 변화만으로 비표면적이 큰 니켈-코발트-망간의 3성분계 복합전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a method for producing a three-component complex precursor of nickel-cobalt-manganese having a large specific surface area by simply changing process conditions.

본 발명은 니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1]를 동시공침에 의해 제조하는 방법에 있어서, pH 9.0 ~ 9.5 조건의 반응기 내에 황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침법에 의하여 복합전구체를 제조하는 제1공침단계; 및 pH 10.5 ~ 11.0으로 pH를 상승한 후 공침을 더 진행하는 제2공침단계를 포함하여 이루어지는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법을 제공한다.The present invention relates to a nickel-cobalt-manganese composite precursor Ni x Co y Mn 1-xy (OH) 2 wherein 0 <x <1, 0 <y <1, 0 <x + y < A first coprecipitation step of preparing a complex precursor by coprecipitation of a transition metal aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate in a reactor having a pH of 9.0 to 9.5; And a second coprecipitation step of further increasing coprecipitation after the pH is raised to a pH of 10.5 to 11.0. The present invention also provides a method for preparing a high specific surface area nickel-cobalt-manganese composite precursor.

특히, 상기 pH를 맞추기 위하여 염기성 수용액으로 NaOH 수용액을 사용하는 것이 바람직하다.Particularly, it is preferable to use an aqueous NaOH solution as a basic aqueous solution to adjust the pH.

특히, 상기 제2공침단계에서 황산니켈, 황산코발트 및 황산망간을 포함하는 전이금속 수용액의 농도가 제1단계에서의 전이금속 수용액의 농도보다 높게 할 수 있다.In particular, in the second coprecipitation step, the concentration of the transition metal aqueous solution containing nickel sulfate, cobalt sulfate and manganese sulfate may be higher than the concentration of the transition metal aqueous solution in the first step.

특히, 상기 제1공침단계 및 제2공침단계는 배치식 반응기 또는 쿠에트 테일러 반응기 내에서 이루어질 수 있다.In particular, the first coprecipitation step and the second coprecipitation step may be performed in a batch reactor or a Quattro Taylor reactor.

본 발명의 방법에 의해 제조된 니켈-코발트-망간 복합전구체는 종래 기술과 같이 단일 pH 조건에서 한 번의 공침 단계로 제조된 복합전구체에 비해 비표면적이 증가할 뿐만 아니라, 니켈과 소성하여 양극재로 제조하여 충방전 테스트를 한 결과 충방전 효율 역시 종래 기술에 비해 우수함을 알 수 있다.The nickel-cobalt-manganese composite precursor produced by the method of the present invention has a specific surface area that is increased as compared with the complex precursor prepared by one coprecipitation step under a single pH condition as in the prior art, Discharging test was conducted. As a result, it was found that the charging and discharging efficiency was also superior to that of the prior art.

도 1은 본 발명의 제1공침단계에 의해 제조된 니켈-코발트-망간 복합전구체의 SEM 사진이다.
도 2는 본 발명의 제2공침단계에 의해 제조된 니켈-코발트-망간 복합전구체의 SEM 사진이다.
도 3은 단일 공침을 통해 제조된 비교예의 복합전구체의 SEM 사진이다.
도 4는 실시예의 복합전구체의 TEM 측정 이미지이며, 도 5는 비교예의 복합전구체의 TEM 측정 이미지이다.
도 6 및 7은 실험예와 비교예의 양극재의 충방전 테스트 결과이다.
1 is a SEM photograph of a nickel-cobalt-manganese composite precursor produced by the first coprecipitation step of the present invention.
2 is a SEM photograph of the nickel-cobalt-manganese composite precursor produced by the second coprecipitation step of the present invention.
3 is a SEM photograph of a composite precursor of Comparative Example prepared through a single coprecipitation.
4 is a TEM measurement image of a composite precursor of the embodiment, and Fig. 5 is an TEM measurement image of a composite precursor of a comparative example.
6 and 7 are the charge / discharge test results of the cathode material of the experimental example and the comparative example.

본 발명은 비표면적이 높은 니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2,여기서, 0<x<1, 0<y<1, 0<x+y<1]를 제조하기 위한 방법으로서, pH가 다른 조건에서 총 2번의 공침을 통해 니켈-코발트-망간 복합전구체를 제조하는 것을 특징으로 한다.The present invention relates to a nickel-cobalt-manganese composite precursor having a high specific surface area [Ni x Co y Mn 1-xy (OH) 2 , where 0 <x <1, 0 <y < Characterized in that a nickel-cobalt-manganese composite precursor is produced through a total of two coprecipitations under different pH conditions.

본 발명은 상기 목적을 구현하기 위하여, 본 발명은 니켈-코발트-망간 복합전구체를 동시공침에 의해 제조하는 방법에 있어서, pH 9.0 ~ 9.5 조건의 반응기 내에 황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침법에 의하여 복합전구체를 제조하는 제1공침단계; 및 pH 10.5 ~ 11.0으로 pH를 상승한 후 공침을 더 진행하는 제2공침단계를 포함하여 이루어지는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법을 제공한다. In order to accomplish the above object, the present invention provides a method for preparing a nickel-cobalt-manganese composite precursor by coextrusion, comprising the steps of: transferring nickel sulfate, cobalt sulfate and manganese sulfate into a reactor at a pH of 9.0 to 9.5; A first coprecipitation step of preparing a complex precursor by coprecipitation with a metal aqueous solution; And a second coprecipitation step of further increasing coprecipitation after the pH is raised to a pH of 10.5 to 11.0. The present invention also provides a method for preparing a high specific surface area nickel-cobalt-manganese composite precursor.

상기 제1공침단계에서는 pH 9.0 ~ 9.5로 상대적으로 낮은 pH 조건에서 공침을 진행한다. 이러한 pH가 낮은 조건에서는 상대적으로 표면적이 큰 전구체가 형성된다. 대신 비표면적이 큰 입자가 생성되지만 입자 크기는 작기 때문에 입자 크기를 키우기 위해서 후술하는 제2공침단계를 더 거쳐야 한다. 예를 들어, 제1공침단계에 의해 제조되는 복합전구체의 평균입경은 1 ㎛ 내외로 제조될 수 있다.In the first coprecipitation step, coprecipitation proceeds at a relatively low pH of 9.0 to 9.5. Under these low pH conditions, a relatively large surface area precursor is formed. Instead, particles having a large specific surface area are produced, but since the particle size is small, a second coprecipitation step described later is required in order to increase the particle size. For example, the average particle diameter of the composite precursor produced by the first coprecipitation step may be about 1 탆 or less.

제2공침단계에서는 pH 10.5 ~ 11.0으로 상대적으로 제1공침단계보다 높은 pH 조건에서 공침을 하며, 제1공침단계에서의 전구체를 시드(seed)로 하여 전구체의 크기를 키운다. 예를 들어, 제2공침단계를 통해 복합전구체의 평균입경을 8 ㎛ 이상으로 성장시킬 수 있다. 이때 제2공침단계에서는 상기 전이금속 수용액의 농도를 더 증가시킴으로써 생성되는 복합전구체를 짧은 시간 안에 크게 키울 수 있다. In the second coprecipitation step, coprecipitation is performed at a pH of 10.5-11.0 relative to the first coprecipitation step, and the size of the precursor is increased using the precursor in the first coprecipitation step as a seed. For example, the average particle diameter of the composite precursor can be increased to 8 탆 or more through the second coprecipitation step. At this time, in the second coprecipitation step, the complex precursor produced by further increasing the concentration of the transition metal aqueous solution can be raised in a short time.

본 발명에서는 pH의 범위가 다른 2번의 공침 단계를 통해 원하는 사이즈의 전구체 입자를 제조하되, 비표면적이 큰 전구체를 제조할 수 있는 것을 기술적 특징으로 한다. In the present invention, a precursor having a large specific surface area can be produced by preparing precursor particles of desired size through two co-precipitation steps having different pH ranges.

이하에서는 실험예를 통해 본 발명에 대해 설명하기로 한다.Hereinafter, the present invention will be described with reference to experimental examples.

실시예Example

pH 9.0 ~ 9.5로 맞춘 후 통상의 방법과 같이 황산니켈, 황산코발트, 황산망간을 0.8 : 0.1 : 0.1의 몰비로 혼합하여, 1.0 M과 2.5 M 농도의 전이금속 수용액을 준비하였다. 염기성 수용액으로서 50% 농도의 NaOH 수용액을 준비하였다. After the pH was adjusted to 9.0 to 9.5, nickel sulfate, cobalt sulfate and manganese sulfate were mixed in a molar ratio of 0.8: 0.1: 0.1 as a conventional method to prepare a 1.0 M and 2.5 M transition metal aqueous solution. A 50% NaOH aqueous solution was prepared as a basic aqueous solution.

상기 1.0 M 전이금속 수용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조 구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 20분간 공급하였고, 공침반응기 내부의 pH가 9.0 ~ 9.5이 유지되도록 NaOH 수용액을 가하였다. 첨가제로서 28% 농도의 암모니아 수용액(킬레이팅제)은 상기 1.0 M 전이금속 수용액을 투입하기 전에 3 L를 공급하였다.The 1.0 M transition metal aqueous solution was supplied to a 100 L coprecipitated reactor having a dual tank structure containing ion-removing water maintained at 50 to 60 ° C at a rate of 6.5 to 7.0 L / hr for 20 minutes, NaOH aqueous solution was added so that 9.5 was maintained. An aqueous ammonia solution (chelating agent) having a concentration of 28% as an additive was supplied with 3 L before the 1.0 M transition metal aqueous solution was introduced.

도 1은 상기 반응에 의해 제조된 니켈-코발트-망간 복합전구체의 SEM 사진으로, 전구체의 평균입경이 약 1.0 ㎛였다.FIG. 1 is a SEM photograph of a nickel-cobalt-manganese composite precursor produced by the above reaction, and the average particle size of the precursor was about 1.0 μm.

상기 제1공침단계가 완료되면, 2.5 M 농도의 전이금속 수용액을 6.5 ~ 7.0 L/hr의 속도로 상기 공침반응기에 공급하였다. 배치식 타입의 공침법으로 12시간 반응을 진행하였다. When the first coprecipitation step was completed, a 2.5 M concentration transition metal aqueous solution was supplied to the coprecipitation reactor at a rate of 6.5 to 7.0 L / hr. The reaction was carried out for 12 hours by the batch type coprecipitation method.

반응이 완료된 후, 12시간 동안 반응하여 제조된 니켈-코발트-망간 복합전구체를 이온제거수로 여러 번 세척하고, 120℃ 항온건조기에서 24시간 건조하여, 니켈-코발트-망간 복합전구체를 수득하였다. 도 2는 제2공침단계를 통해 제조된 본 발명의 복합전구체의 SEM 측정사진으로서, 전구체의 평균입경이 약 8.2 ㎛였다.After completion of the reaction, the nickel-cobalt-manganese composite precursor prepared by reacting for 12 hours was washed several times with deionized water and dried in a constant temperature drier at 120 ° C for 24 hours to obtain a nickel-cobalt-manganese composite precursor. 2 is a SEM photograph of the composite precursor of the present invention prepared through the second coprecipitation step, wherein the average particle size of the precursor was about 8.2 탆.

비교예 Comparative Example

다른 조건은 상기 실시예와 동일하게 하되, 본 발명과 같이 pH를 2단계로 조정하지 않고, pH 10.5 ~ 11.0, 전이금속 수용액의 농도 1.0 M의 조건에서 복합전구체를 제조하였으며, 도 3은 비교예의 복합전구체의 SEM 측정사진으로서, 전구체의 평균입경이 약 8.7 ㎛였다. Other conditions were the same as those of the above example except that the pH was adjusted to 2 steps and the pH was 10.5 to 11.0 and the concentration of the transition metal aqueous solution was 1.0 M as in the present invention. As an SEM photograph of the composite precursor, the average particle size of the precursor was about 8.7 탆.

실험예 1 : 실시예 및 비교예의 복합전구체 샘플의 단면 측정 실험EXPERIMENTAL EXAMPLE 1 Cross-sectional Experiment of Composite Precursor Samples of Examples and Comparative Examples

상기에서 제조한 실시예 및 비교예의 복합전구체 샘플에 대하여 단면을 확인하기 위하여 TEM 측정을 하였으며, 도 4는 실시예의 복합전구체의 TEM 측정 이미지이며, 도 5는 비교예의 복합전구체의 TEM 측정 이미지이다. The TEM images of the composite precursor samples of the Examples and Comparative Examples prepared above are shown in FIG. 4, and TEM images of the composite precursors of Comparative Examples are shown in FIG.

도 4 및 도 5를 참고하면, 실시예의 복합전구체 샘플에서는 표면 및 내부에 공극들이 더 많이 존재함을 확인할 수 있으며, 이를 통해 비교예의 복합전구체에 비해 본 발명의 방법으로 제조된 복합전구체의 비표면적이 증가하였음을 확인할 수 있었다.Referring to FIGS. 4 and 5, it can be seen that the composite precursor sample of the present embodiment has more voids on the surface and inside thereof, and thus the specific surface area of the composite precursor produced by the method of the present invention Which is the number of cases.

실험예 2 : 양극재의 물성 실험Experimental Example 2: Physical property test of cathode material

실시예와 비교예에서 제조한 니켈-코발트-망간 복합전구체 수산화물을 전이금속에 대한 리튬이온의 비가 1.02가 되도록 건식 혼합하여 산소 분위기의 소성로에서 800℃의 온도로 24시간 소성하여 양극재료를 제조하였다. The nickel-cobalt-manganese composite precursor hydroxide prepared in Examples and Comparative Examples was dry-mixed so as to have a lithium ion ratio of 1.02 to the transition metal and fired at 800 ° C for 24 hours in an oxygen atmosphere furnace to prepare a cathode material .

제조된 양극재료는 도전재인 카본블랙과 결착제인 PVdF를 95 : 2 : 3 wt.%의 비율로 N-methyl-2-pyrrolidone를 용매로 하여 슬러리를 제조하였다. 이 슬러리를 두께가 10 ㎛인 알루미늄 호일에 도포하여 건조 후 프레스로 압밀화시켜, 120℃로 10시간 건조하여 직경이 14 mm인 전극을 제조하였다.The prepared cathode material was prepared by slurrying carbon black as a conductive material and PVdF as a binder in a ratio of 95: 2: 3 wt.% With N-methyl-2-pyrrolidone as a solvent. This slurry was applied to an aluminum foil having a thickness of 10 탆, dried, and compacted by a press, followed by drying at 120 캜 for 10 hours to prepare an electrode having a diameter of 14 mm.

제조된 전극은 상대극을 리튬금속박을 사용하여 코인셀로 하여 평가하였다. 도 6 및 7은 실험예와 비교예의 양극재의 충방전 테스트 결과이다. 본 발명의 방법으로 제조한 전구체를 적용한 양극재의 경우 초기용량(mAh/g)이 215.2이었으나, 기존의 공침법을 통해 제조한 전구체를 적용한 양극재에서는 초기용량이 210.1로서 본 발명의 양극재가 우수함을 알 수 있었다. 또한, 출력효율(2C/0.1C)을 비교하면, 본 발명의 양극재는 83.0이고 비교예의 양극재의 경우 81.3로 본 발명의 양극재가 우수함을 알 수 있었다.The prepared electrode was evaluated as a coin cell using a lithium metal foil as a counter electrode. 6 and 7 are the charge / discharge test results of the cathode material of the experimental example and the comparative example. The initial capacity (mAh / g) of the cathode material applied with the precursor prepared by the method of the present invention was 215.2, but the initial capacity of the cathode material using the precursor prepared by the conventional coprecipitation method was 210.1, Could know. Further, when the output efficiency (2C / 0.1C) was compared, it was found that the cathode material of the present invention was 83.0, and the cathode material of the comparative example was 81.3.

Claims (4)

니켈-코발트-망간 복합전구체[NixCoyMn1-x-y(OH)2 ,여기서, 0<x<1, 0<y<1, 0<x+y<1]를 동시공침에 의해 제조하는 방법에 있어서,
pH 9.0 ~ 9.5 조건의 공침반응기 내에 황산니켈, 황산코발트 및 황산망간의 전이금속 수용액을 공침에 의해 복합전구체로 제조하는 제1공침단계; 및
pH 10.5 ~ 11.0으로 pH를 상승한 후 공침을 더 진행하는 제2공침단계를 포함하여 이루어지는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법.
Nickel-cobalt-manganese composite precursor [Ni x Co y Mn 1-xy (OH) 2 , Wherein 0 <x <1, 0 <y <1, 0 <x + y <1]
a first coprecipitation step of preparing a complex precursor by coprecipitation of a transition metal aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate in a coprecipitation reactor under the conditions of pH 9.0 to 9.5; And
and a second coprecipitation step of raising the pH to pH 10.5 to 11.0 and then further coprecipitating the nickel-cobalt-manganese composite precursor.
제1항에서, 상기 pH를 맞추기 위한 염기성 수용액으로서 NaOH 수용액을 사용하는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법.
The method for producing a nickel-cobalt-manganese composite precursor according to claim 1, wherein an aqueous NaOH solution is used as a basic aqueous solution for adjusting the pH.
제1항에서, 상기 제2공침단계에서 황산니켈, 황산코발트 및 황산망간을 포함하는 전이금속 수용액의 농도가 제1공침단계에서의 전이금속 수용액의 농도보다 높게 하는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법.
The method according to claim 1, wherein the concentration of the transition metal aqueous solution containing nickel sulfate, cobalt sulfate and manganese sulfate in the second coprecipitation step is higher than the concentration of the transition metal aqueous solution in the first coprecipitation step - cobalt-manganese composite precursor.
제1항에서, 상기 제1공침 및 제2공침은 배치식 반응기 또는 쿠에트 테일러 반응기에서 이루어지는 것을 특징으로 하는 고비표면적의 니켈-코발트-망간 복합전구체의 제조방법.
2. The method of claim 1, wherein the first coprecipitation and the second coprecipitation are in a batch reactor or a Quattro Taylor reactor.
KR1020170025205A 2017-02-27 2017-02-27 Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area KR101950202B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170025205A KR101950202B1 (en) 2017-02-27 2017-02-27 Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
PCT/KR2017/002120 WO2018155746A1 (en) 2017-02-27 2017-02-27 Method for producing nickel-cobalt-manganese complex precursor with high specific surface area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170025205A KR101950202B1 (en) 2017-02-27 2017-02-27 Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area

Publications (2)

Publication Number Publication Date
KR20180098735A KR20180098735A (en) 2018-09-05
KR101950202B1 true KR101950202B1 (en) 2019-02-21

Family

ID=63254436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170025205A KR101950202B1 (en) 2017-02-27 2017-02-27 Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area

Country Status (2)

Country Link
KR (1) KR101950202B1 (en)
WO (1) WO2018155746A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244454B (en) * 2018-11-06 2021-04-02 北京理工大学 NCM ternary cathode material with hierarchical structure
KR102304738B1 (en) * 2018-11-30 2021-09-24 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery
KR102304739B1 (en) * 2018-11-30 2021-09-28 주식회사 엘지화학 Method for preparing positive electrode active material precursor for lithium secondary battery
CN110422891A (en) * 2019-08-08 2019-11-08 中国科学院青海盐湖研究所 A kind of method preparing nickel-cobalt-manganese ternary presoma, system and application
CN114180650A (en) * 2021-12-20 2022-03-15 宜宾光原锂电材料有限公司 Method and equipment for automatically preparing ternary precursor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201764A (en) 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd Nickel cobalt compound hydroxide and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery obtained by using the compound hydroxide
JP2013246983A (en) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel-cobalt composite hydroxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381365C (en) * 2003-04-17 2008-04-16 清美化学股份有限公司 Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR101275845B1 (en) 2011-09-21 2013-06-17 에스케이씨 주식회사 Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
EP2833446B1 (en) 2012-03-31 2017-08-23 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Method for preparing cathode active material precursor for lithium secondary battery and cathode active material precursor for lithium secondary battery prepared thereby
KR101497909B1 (en) 2012-05-04 2015-03-03 주식회사 엘지화학 Precursor for Preparation of Lithium Composite Transition Metal Oxide and Method for Preparation of the Same
KR101547972B1 (en) * 2014-01-09 2015-08-27 주식회사 이엔드디 Manufacturing method for Ni-Co-Mn composite precursor
KR20160099876A (en) * 2015-02-13 2016-08-23 주식회사 이엔드디 Manufacturing method for Ni-Co-Mn composite precursor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201764A (en) 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd Nickel cobalt compound hydroxide and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery obtained by using the compound hydroxide
JP2013246983A (en) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd Method for manufacturing nickel-cobalt composite hydroxide

Also Published As

Publication number Publication date
KR20180098735A (en) 2018-09-05
WO2018155746A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
CN110226251B (en) Nickel active material precursor, method for producing same, nickel active material, and lithium secondary battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US11056681B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
KR101920485B1 (en) Positive active material precursor, positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same
KR101630209B1 (en) Positive active material, lithium secondary battery having the same and manufacturing method thereof
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
CN108155357B (en) Nickel-based active material for lithium secondary battery, method for preparing same, and lithium secondary battery including positive electrode including same
CN106910887B (en) Lithium-rich manganese-based positive electrode material, preparation method thereof and lithium ion battery containing positive electrode material
CN114243014A (en) Single crystal ternary cathode material and preparation method and application thereof
JP2015122234A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and method for manufacturing the same
KR102199753B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
EP3086389B1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
KR101497190B1 (en) Lithium metal oxide composite for lithium secondary battery, method for preparing thereof, and lithium secondary battery including the same
CN109728277A (en) The method and product and battery be surface-treated to nickelic tertiary cathode material
WO2019076122A1 (en) Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material
KR20170009557A (en) Cylindrical secondary battery with enhanced stability by regulating strength of particle of positive active material
CN109817968B (en) Surface-coated lithium nickel manganese oxide particles and method for producing same
CN109728279A (en) The surface treatment method and product and battery of a kind of nickelic tertiary cathode material
KR20180105762A (en) Ni-rich positive composition for lithium secondary battery using spherical transition metal complex hydroxide with nano-titanate and manufacturing method thereof
JP2006232608A (en) Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same
KR20160123406A (en) Positive active material for lithium secondary battery and manufacturing method thereof
CN109037607B (en) Preparation method of coated lithium manganate composite material
KR101470986B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right