WO2019076122A1 - Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material - Google Patents

Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material Download PDF

Info

Publication number
WO2019076122A1
WO2019076122A1 PCT/CN2018/100850 CN2018100850W WO2019076122A1 WO 2019076122 A1 WO2019076122 A1 WO 2019076122A1 CN 2018100850 W CN2018100850 W CN 2018100850W WO 2019076122 A1 WO2019076122 A1 WO 2019076122A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
lithium ion
lithium
ion battery
acid
Prior art date
Application number
PCT/CN2018/100850
Other languages
French (fr)
Inventor
Liu Li
Qiming Pan
Hui Chen
Zhaojun LUO
Original Assignee
Shenzhen Bak Power Battery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Bak Power Battery Co., Ltd. filed Critical Shenzhen Bak Power Battery Co., Ltd.
Publication of WO2019076122A1 publication Critical patent/WO2019076122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the field of lithium ion battery manufacturing, and particularly relates to a lithium ion battery cathode material and a preparation method thereof, and to a lithium ion battery using this cathode material as a battery cathode.
  • lithium ion batteries Compared with traditional secondary batteries, lithium ion batteries ("lithium batteries” for short) have the advantages of high platform voltage (up to 3.2-3.7 V) , high energy density, no memory effect, etc., and thus find wide application in electronic products such as smartphones, cameras, computers, etc.
  • Lithium ion secondary batteries are not only used in the field of 3C products, but also widely employed in industrial fields such as electric vehicles and uninterruptible power supplies, etc.
  • a lithium ion battery is mainly composed of a cathode material of a lithium-metal oxide, a liquid organic electrolyte or a solid electrolyte, and an anode material.
  • the performance of the cathode material is a major factor affecting the quality of the battery. Given the fact that lithium ion batteries in the prior art generally have an specific anode capacity higher than 300 mAh/g, how to improve the performance of the cathode material becomes an important research direction for improving the performance of lithium ion batteries.
  • LiMO 2 is a layered cathode material having a very high theoretical capacity and can meet the requirement of high-energy-density lithium ion batteries. This material can be prepared by a simple solid-state sintering method with low cost and simple preparation process.
  • LiMO 2 has high capacity and stability, it is still not ideal in terms of environmental and economic friendness. The most important affecting factors are as follows:
  • the secondary particles of LiMO 2 cathode material prepared by the traditional solid phase sintering method are relatively dense and have a low specific surface area. This cathode material would have limited contact area with the electrolyte in battery, resulting in low electrochemical activity, which compromises the actual specific capacity.
  • the LiMO 2 cathode material particles prepared by the traditional method are susceptible to the stress and strain resulting from lithium ion intercalation and deintercalation in the charge and discharge cycles. Hence, the particles cannot withstand the strong stress and strain caused by lithium ion intercalation and deintercalation in the battery and are prone to cracking. The cracked particles fail to achieve continuous transport of lithium ions and electrons, resulting in an increase in internal resistance of the battery and a decrease in battery capacity.
  • the present invention proposes an alternative method for preparing a cathode material.
  • the present invention also employs the solid phase sintering method to prepare a lithium ion battery cathode material, such that the cathode material prepared has sperical particles and high energy density.
  • the preparation method of the present invention involves adding a volatile organic acid and an organic polymer prior to the solid phase sintering process.
  • the uniform porous structure not only provides channels for electrolyte infiltration, enhancing the activity of the cathode material, but also serves as a buffer area for the cathode material to cope with the stress and strain during lithium ion intercalation and deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery during charging and discharging.
  • the lithium ion battery cathode material of the present invention is of a lithium oxide.
  • the cathode material is composed of spherical secondary particles comprised of primary particles with diameter from 100 to 200 nm.
  • the secondary particles have porous structure therein the pore diameter is 1 to 2 ⁇ m.
  • the present invention employs lithium-metal oxide having a porous structure as the cathode material.
  • the pore structures in the cathode material not only provide channels for electrolyte infiltration, enhancing the activity of the cathode material, but also serve as buffer area for the cathode material to cope with the stress and strain during lithium ion deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery cathode material during charging and discharging.
  • the present invention also provides a method for preparing a lithium ion battery cathode material, comprising the following steps:
  • a volatile organic acid is added during mixing the salts.
  • the volatile organic acid can effectively complex the metal ions in the metal salt and the lithium ions in the lithium salt, so that the salts are not only mechanically mixed but also more tightly bonded by cordinatoin bonding force.
  • the volatile organic acid is volatile and produces no residue
  • the amount of the volatile organic acid added so long as it can complex all of the metal ions in the metal salt and the lithium salt in the raw materials. In actual use, it can be added in excess.
  • S02 Mixing the ground product from S01 with an organic polymer in a ratio of 1 to 3 mL of the organic polymer to 1 g of the ground product, and grinding the mixture homogeneously.
  • the addition of the organic polymer allows the metal salt and the lithium salt to be mixed further homogeneously, thus enhancing the degree of homogeneity of raw material mixing, reducing the possibility of ion segregation and mixing in the product. More importantly, the organic polymer is burned out under high temperature conditions during subsequent sintering, such that the organic matter decomposes to generate gas during the sintering process, thereby forming pore structures in the microstructure of the cathode material in the present invention. In this premise, it is necessary to select a suitable organic polymer. Those organic polymers that generate excessive gases or produce ash residues during burning may not be used. In the present invention, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 2000, polyethylene glycol 6000, or polyethylene glycol 12000, or a combination of two or more thereof, is preferably used.
  • S03 Pre-sintering the ground product from S02 at 300-500°C for 4 to 10 hours.
  • S04 Sintering the pre-sintered product from S03 at 750-950°C for 6 to 15 hours, and cooling the product to obtain the desired lithium ion battery cathode material.
  • the invention enhances the homogeneity of raw material mixing by adding a volatile organic acid and a liquid organic polymer in the synthesis process, thereby reducing the possibility of ion segregation, reducing the degree of ion mixing in the product, and increasing the speed of lithium ion transport.
  • the polymer decomposes, leaving uniform pore structures.
  • Such pore structures can on the one hand provide channels for electrolyte infiltration, thus enhancing the electrochemical activity of the material, and on the other hand buffer the stress and strain resulting from intercalation and deintercalation of lithium ions during charging and discharging, thus maintaining structural integrity and stabilizing the cycling performance of the cathode material.
  • the grinding time in S01 and S02 depends on the amount of the raw materials and generally ranges from 0.5 to 10 h. The more the raw materials, the longer the grinding time.
  • the grinding is conducted such that the raw materials are mixed homogeneously and the particle size of the raw materials is uniform.
  • the pre-sintering time and the sintering time can be adjusted according to the difficulty in decomposition of the salts and the total amount of the raw materials to be sintered. The more difficult the decomposition of the salts and the larger the total amount of the raw materials to be sintered, the longer the sintering time.
  • the pre-sintering temperature is 380 to 420°C; and in S04, the sintering temperature is 800 to 850°C.
  • the present invention also provides a lithium ion battery using the above-mentioned cathode material as a battery cathode material, wherein the lithium ion battery has a capacity retention rate of higher than 94%after 50 cycles of testing, and of higher than 88%after 100 cycles of testing, under the test condition of a cycling test current density of 0.05-5C.
  • the present invention has the following advantages:
  • the lithium ion battery cathode material of the present invention has high density, high activity, and can well withstand the stress and strain during charging and discharging.
  • the preparation method for a lithium ion battery cathode material according to the present invention involves adding a volatile organic acid and an organic polymer prior to the solid phase sintering process. This not only increases the degree of homogeneity of raw material mixing, such that the possibility of segregation of the metal ions in the raw materials is greatly reduced and the degree of ion mixing in the product is decreased, but also allows uniform pore structures to be formed from decomposition of the organic polymer during the sintering process.
  • the uniform pore structures not only provide channels for electrolyte infiltration, thus enhancing the activity of the cathode material, but also constitute a buffer area for the cathode material to cope with the stress and strain during lithium ion deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery cathode material during charging and discharging.
  • Fig. 1 shows the XRD scan patterns for the lithium ion battery cathode material in Example 1 versus that in Comparative example 1 of the present invention
  • Fig. 2 shows the lithium ion battery cathode material in Example 1 versus that in Comparative example 1 of the present invention obtained under a field emission scanning electron microscope (S-4300 Shimadzu, 15 kV) , wherein Figs. 2a-b represent the particle morphology of the material in Comparative example 1, and Figs. 2c-f represents the particle morphology of the material in Example 1;
  • Fig. 3 shows the first charge and discharge curves for the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention
  • Fig. 4 shows the capacity differential curves corresponding to the first charge and discharge curves for the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention
  • Fig. 5 shows the curves of cycling performance test (test condition 0.2C) for the batteries made of the cathode material in Example 1 and Example 5 versus that in Comparative example 1 of the present invention
  • Fig. 6 shows the curves of cycling performance test (test condition 0.5C) for the batteries made of the lithium ion battery cathode material in Example 1 and Example 5 versus that in Comparative example 1 of the present invention
  • Fig. 7 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Example 6 and Example 7 versus that in Comparative example 1 of the present invention
  • Fig. 8 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Example 8 and Example 9 versus that in Comparative example 1 of the present invention
  • Fig. 9 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Examples 10, 11, 12 and 5 versus that in Comparative example 1 of the present invention
  • Fig. 10 shows the microscopic feature of the cathode material particles after 50 cycles at 0.2 C of the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention.
  • the preparation method for the cathode materials in the Examples was as follows:
  • S04 sintering the pre-sintered product from S03, and cooling the product to obtain the desired lithium ion battery cathode material.
  • the fresh battery was charged at a current of 0.2 C at 25°C until the voltage was 4.3 V, and the charged battery was discharged at a current of 0.2C until the voltage was 2.8 V, the discharge capacity being recorded as the first discharge capacity.
  • the button cells made were cycled for 50 and 100 cycles respectively under the conditions of 0.2C/0.2C and 0.5C/0.5C.
  • the test results are as follows:
  • Fig. 1 shows the XRD scan patterns for the cathode material in Example 1 versus that in Comparative example 1.
  • Fig. 2 shows the pictures for the cathode material in Example 1 versus that in Comparative example 1 obtained with powder of the material under a field emission scanning electron microscope (S-4300 Shimadzu, 15 kV) .
  • Figs. 2a to 2b show that the material in Comparative example 1 had dense secondary particles, and the particle size of the primary particles ranged from 100 to 500 nm.
  • Figs. 2c to 2f show that the secondary particles of the material in Example 1 were composed of many primary particles of uniform particle size (100-200 nm) .
  • a plurality of pore structures were distributed on the secondary particles in Example 1, the size of the pores being about 1 to 2 ⁇ m. These pores were formed from decomposition of the polymer to produce a gas during the sintering process.
  • Fig. 3 and Fig. 4 respectively show the first charge and discharge curves and the corresponding capacity differential curves for the batteries made of the cathode material in Example 1 versus that in Comparative example 1.
  • the first charge specific capacity was 300 mAh/g and the first discharge specific capacity was 210 mAh/g for PA-LNO in Example 1, which were significantly higher than 234 mAh/g (charge specific capacity) and 184 mAh/g (discharge specific capacity) for SS-LNO in Comparative Example 1. It can be seen from the dq/dv curves in Fig. 4 that the intensity of the redox reaction of PA-LNO was significantly higher than that of SS-LNO. This is because the porous material had large contact area with the electrolyte and had more electrochemical reaction sites, contributing to higher capacity.
  • Fig. 5 and Fig. 6 respectively show the curves of cycling performance test (at 0.2C in Fig. 5; and at 0.5C in Fig. 6) for the batteries made of the cathode material in Example 1 and that in Example 5 versus that in Comparative Example 1. It can be seen from the figures that at both rates, the PA-LNO material in Example 1 exhibited excellent cycling performance over the SS-LNO material in Comparative example 1. This is because the dense SS-LNO material could not withstand the stress and strain caused by intercalation and deintercalation of lithium ions during cycling, resulting in structural collapse and particle damage (Fig. 8) , which led to capacity degradation.
  • the porous material of PA-LNO in Example 1 could well absorb the stress and strain caused by intercalation and deintercalation of lithium ions during cycling, thus ensuring excellent cycling stability.
  • the porous material in Example 5 further stabilized the structure of the cathode material due to the doping of Co and Al. Therefore, under the test condition of a cycling test voltage of 0.05-5 C, the capacity retention rate was greater than 94%after 50 cycles of test and greater than 88%after 100 cycles of test.
  • Fig. 7 shows the results of cycling performance test (0.5C) for the batteries made of the cathode material in Example 6 and that in Example 7 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the PA-LNO material by the doping of Al.
  • Fig. 8 shows the results of cycling performance test (0.5C) for the batteries made of the cathode material in Example 8 and that in Example 9 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the PA-LNO material by the doping of Co.
  • Fig. 9 shows the results of cycling performance test (0.5C) for the batteries made of the cathode materials in Examples 10, 11, 12 and 5 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the materials by the doping of Mg. It can be seen that the porous material of LiNi 0.8 Co 0.13 Al 0.05 Mg 0.02 O 2 still exhibited a specific capacity of 157 mAh/g after 100 cycles of 0.5 C/0.5 C charging and discharging, with a capacity retention rate of as high as 98%.
  • Fig. 10 shows the transmission electron microscopic pictures showing the microscopic feature of the cathode material particles after 50 cycles of 0.2C cycling of the batteries made of the cathode material in Example 1 versus that in Comparative Example 1.
  • the SS-LNO material particles in Comparative example 1 (a, b) visibly had obvious cavities and a large number of cracks, and some particles had even cracked.
  • the PA-LNO material particles in Example 1 had no microcracks and remained intact.
  • the material synthesized with the addition of the polymer had pore structures which could well buffer the expansion and contraction of the crystal lattices and the stress and strain in the crystal grains during the charging and discharging process, inhibit occurrence of microcracks and cavities in the particles, prevent cracking of the particles, thus ensuring the intactness of the material particles during cycling and maintaining an excellent cycling stability.

Abstract

A lithium ion battery cathode material and a synthesis method thereof are provided. The cathode material is spherical secondary particles comprised of primary particles with diameter from 100 to 200 nm. The secondary particles have porous structure with a pore diameter of 1 to 2 μm. The cathode material has the chemical formula of Li 1+xM 1-xO 2, where x=0.05-0.25, M is one or more selected from the group consisting of Ni, Co, Mn, Al, Mg, Fe, B, Ti, Cr, Ga, Zn, V, Ge, and Sn. The lithium ion battery cathode material has high energy density, high electrochemical activity, and can well withstand the stress and strain during charging and discharging. A method for preparing this cathode material is also provided. The method not only increases the degree of homogeneity of raw material mixing, but also increases the activity of the cathode material, thus macroscopically improving the cycling stability of the lithium ion battery cathode material during charging and discharging.

Description

LITHIUM BATTERY CATHODE MATERIAL, PREPARATION METHOD THEREOF, AND LITHIUM BATTERY USING THE CATHODE MATERIAL Technical Field
The present invention belongs to the field of lithium ion battery manufacturing, and particularly relates to a lithium ion battery cathode material and a preparation method thereof, and to a lithium ion battery using this cathode material as a battery cathode.
Background of the Invention
Compared with traditional secondary batteries, lithium ion batteries ("lithium batteries" for short) have the advantages of high platform voltage (up to 3.2-3.7 V) , high energy density, no memory effect, etc., and thus find wide application in electronic products such as smartphones, cameras, computers, etc. Lithium ion secondary batteries are not only used in the field of 3C products, but also widely employed in industrial fields such as electric vehicles and uninterruptible power supplies, etc. A lithium ion battery is mainly composed of a cathode material of a lithium-metal oxide, a liquid organic electrolyte or a solid electrolyte, and an anode material. The performance of the cathode material, as an important component of a lithium ion battery, is a major factor affecting the quality of the battery. Given the fact that lithium ion batteries in the prior art generally have an specific anode capacity higher than 300 mAh/g, how to improve the performance of the cathode material becomes an important research direction for improving the performance of lithium ion batteries.
In the prior art, commercially available lithium ion batteries mainly employ LiMO 2 as cathode material, wherein M is a metal ion such as Ni, Mn, Co, or Al. LiMO 2 is a layered cathode material having a very high theoretical capacity and can meet the requirement of high-energy-density lithium ion batteries. This material can be prepared by a simple solid-state sintering method with low cost and simple preparation process. Although LiMO 2 has high capacity and stability, it is still not ideal in terms of environmental and economic friendness. The most important affecting factors are as  follows:
1. In preparing the LiMO 2 layered cathode material by the solid phase sintering method, it is difficult to homogeneously mix the raw materials, resulting in segregation of the metal ions in the raw materials that leads to ion mixing. The mixed metal ions in the lithium layer would hinder the transport of lithium ions, thereby reducing the specific capacity of the cathode material.
2. The secondary particles of LiMO 2 cathode material prepared by the traditional solid phase sintering method are relatively dense and have a low specific surface area. This cathode material would have limited contact area with the electrolyte in battery, resulting in low electrochemical activity, which compromises the actual specific capacity.
3. The LiMO 2 cathode material particles prepared by the traditional method are susceptible to the stress and strain resulting from lithium ion intercalation and deintercalation in the charge and discharge cycles. Hence, the particles cannot withstand the strong stress and strain caused by lithium ion intercalation and deintercalation in the battery and are prone to cracking. The cracked particles fail to achieve continuous transport of lithium ions and electrons, resulting in an increase in internal resistance of the battery and a decrease in battery capacity.
Although the above problems have been confirmed in many literatures, they have not been effectively addressed in the actual development of lithium ion battery cathode materials. The reason for this is as follows. Presently, the bottleneck in the application of lithium ion batteries still mainly lies in energy density. The efficiency of lithium ion batteries will be improved as long as the energy density is increased. Theoretically, a cathode material with denser particles can increase the energy density. However, the denser the particles of the cathode material, the more significant the problems described above associated with low specific surface area of the particles and susceptibility of the particles to the stress and strain resulting from charging and discharging, leading to no meaningful progress in the development of lithium ion cathode materials.
Summary of the Invention
In order to address the drawbacks of the prior art, the present invention proposes an alternative method for preparing a cathode material. In the same manner as in the prior art in which the energy density of lithium ion battery cathode materials is improved, the present invention also employs the solid phase sintering method to prepare a lithium ion battery cathode material, such that the cathode material prepared has sperical particles and high energy density. Moreover, the preparation method of the present invention involves adding a volatile organic acid and an organic polymer prior to the solid phase sintering process. This not only increases the degree of homogeneity of raw material mixing, such that the possibility of segregation of the metal ions in the raw materials is greatly reduced and the degree of ion mixing in the product is decreased, but also allows uniform porous structure to be formed from decomposition of the organic polymer during the sintering process. The uniform porous structure not only provides channels for electrolyte infiltration, enhancing the activity of the cathode material, but also serves as a buffer area for the cathode material to cope with the stress and strain during lithium ion intercalation and deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery during charging and discharging.
The technical effects to be achieved by the present invention are effected by the following technical solutions.
The lithium ion battery cathode material of the present invention is of a lithium oxide. The cathode material is composed of spherical secondary particles comprised of primary particles with diameter from 100 to 200 nm. The secondary particles have porous structure therein the pore diameter is 1 to 2 μm.
The lithium-ion-battery used cathode material provided in the present invention has the chemical formula of Li 1+xM 1-xO 2, wherein x=0.05-0.25, M is one or more selected from the group consisting of Ni, Co, Mn, Al, Mg, Fe, B, Ti, Cr, Ga, Zn, V, Ge, and Sn.
Compared with the prior art cathode material with dense particles and thus theoretically high energy density, the present invention employs lithium-metal oxide having a porous structure as the cathode material. The pore structures in the cathode material not only provide channels for electrolyte infiltration, enhancing the activity of the cathode material, but also serve as buffer area for the cathode material to cope with  the stress and strain during lithium ion deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery cathode material during charging and discharging.
The present invention also provides a method for preparing a lithium ion battery cathode material, comprising the following steps:
S01: Mixing a metal salt and a lithium salt in a molar ratio of metal ion to lithium ion of 1: (1-1.3) , adding a volatile organic acid in an amount sufficient for complexing all of the metal ions in the metal salt and the lithium salt in the raw materials, and ball-mixing and grinding the metal salt, the lithium salt and the volatile organic acid to obtain homogeneity.
In the sintering process of the prior art, it is generally not possible to obtain a completely homogeneous mixture of the metal salt and the lithium salt by physical agitation or dispersion, which results in the uniformity of the product after sintering being limited by the effect of the dispersion process. In the present invention, a volatile organic acid is added during mixing the salts. The volatile organic acid can effectively complex the metal ions in the metal salt and the lithium ions in the lithium salt, so that the salts are not only mechanically mixed but also more tightly bonded by cordinatoin bonding force.
Since the volatile organic acid is volatile and produces no residue, there is no particular limitation on the amount of the volatile organic acid added, so long as it can complex all of the metal ions in the metal salt and the lithium salt in the raw materials. In actual use, it can be added in excess.
S02: Mixing the ground product from S01 with an organic polymer in a ratio of 1 to 3 mL of the organic polymer to 1 g of the ground product, and grinding the mixture homogeneously.
The addition of the organic polymer allows the metal salt and the lithium salt to be mixed further homogeneously, thus enhancing the degree of homogeneity of raw material mixing, reducing the possibility of ion segregation and mixing in the product. More importantly, the organic polymer is burned out under high temperature conditions during subsequent sintering, such that the organic matter decomposes to generate gas  during the sintering process, thereby forming pore structures in the microstructure of the cathode material in the present invention. In this premise, it is necessary to select a suitable organic polymer. Those organic polymers that generate excessive gases or produce ash residues during burning may not be used. In the present invention, polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 2000, polyethylene glycol 6000, or polyethylene glycol 12000, or a combination of two or more thereof, is preferably used.
S03: Pre-sintering the ground product from S02 at 300-500℃ for 4 to 10 hours.
S04: Sintering the pre-sintered product from S03 at 750-950℃ for 6 to 15 hours, and cooling the product to obtain the desired lithium ion battery cathode material.
Compared with the prior art, the invention enhances the homogeneity of raw material mixing by adding a volatile organic acid and a liquid organic polymer in the synthesis process, thereby reducing the possibility of ion segregation, reducing the degree of ion mixing in the product, and increasing the speed of lithium ion transport. Moreover, the polymer decomposes, leaving uniform pore structures. Such pore structures can on the one hand provide channels for electrolyte infiltration, thus enhancing the electrochemical activity of the material, and on the other hand buffer the stress and strain resulting from intercalation and deintercalation of lithium ions during charging and discharging, thus maintaining structural integrity and stabilizing the cycling performance of the cathode material.
The grinding time in S01 and S02 depends on the amount of the raw materials and generally ranges from 0.5 to 10 h. The more the raw materials, the longer the grinding time. The grinding is conducted such that the raw materials are mixed homogeneously and the particle size of the raw materials is uniform. Similarly, the pre-sintering time and the sintering time can be adjusted according to the difficulty in decomposition of the salts and the total amount of the raw materials to be sintered. The more difficult the decomposition of the salts and the larger the total amount of the raw materials to be sintered, the longer the sintering time.
Further, in S03, the pre-sintering temperature is 380 to 420℃; and in S04, the sintering temperature is 800 to 850℃.
The present invention also provides a lithium ion battery using the above-mentioned cathode material as a battery cathode material, wherein the lithium ion battery has a capacity retention rate of higher than 94%after 50 cycles of testing, and of higher than 88%after 100 cycles of testing, under the test condition of a cycling test current density of 0.05-5C.
The present invention has the following advantages:
1. The lithium ion battery cathode material of the present invention has high density, high activity, and can well withstand the stress and strain during charging and discharging.
2. The preparation method for a lithium ion battery cathode material according to the present invention involves adding a volatile organic acid and an organic polymer prior to the solid phase sintering process. This not only increases the degree of homogeneity of raw material mixing, such that the possibility of segregation of the metal ions in the raw materials is greatly reduced and the degree of ion mixing in the product is decreased, but also allows uniform pore structures to be formed from decomposition of the organic polymer during the sintering process. The uniform pore structures not only provide channels for electrolyte infiltration, thus enhancing the activity of the cathode material, but also constitute a buffer area for the cathode material to cope with the stress and strain during lithium ion deintercalation, thus macroscopically improving the cycling stability of the lithium ion battery cathode material during charging and discharging.
Brief Description of the Drawings
Fig. 1 shows the XRD scan patterns for the lithium ion battery cathode material in Example 1 versus that in Comparative example 1 of the present invention;
Fig. 2 shows the lithium ion battery cathode material in Example 1 versus that in Comparative example 1 of the present invention obtained under a field emission scanning electron microscope (S-4300 Shimadzu, 15 kV) , wherein Figs. 2a-b represent the particle morphology of the material in Comparative example 1, and Figs. 2c-f represents the particle morphology of the material in Example 1;
Fig. 3 shows the first charge and discharge curves for the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention;
Fig. 4 shows the capacity differential curves corresponding to the first charge and discharge curves for the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention;
Fig. 5 shows the curves of cycling performance test (test condition 0.2C) for the batteries made of the cathode material in Example 1 and Example 5 versus that in Comparative example 1 of the present invention;
Fig. 6 shows the curves of cycling performance test (test condition 0.5C) for the batteries made of the lithium ion battery cathode material in Example 1 and Example 5 versus that in Comparative example 1 of the present invention;
Fig. 7 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Example 6 and Example 7 versus that in Comparative example 1 of the present invention;
Fig. 8 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Example 8 and Example 9 versus that in Comparative example 1 of the present invention;
Fig. 9 shows the results of cycling performance test (test condition 0.5C) for the batteries made of the cathode material in Examples 10, 11, 12 and 5 versus that in Comparative example 1 of the present invention;
Fig. 10 shows the microscopic feature of the cathode material particles after 50 cycles at 0.2 C of the batteries made of the cathode material in Example 1 versus that in Comparative example 1 of the present invention.
Detailed Description
The present invention will now be described in detail with reference to drawings and embodiments.
The raw material components and the amounts thereof in mole, gram or volume used in the preparation of the lithium ion battery cathode material in the Examples are  set forth in the following table:
Figure PCTCN2018100850-appb-000001
Figure PCTCN2018100850-appb-000002
Figure PCTCN2018100850-appb-000003
Figure PCTCN2018100850-appb-000004
The preparation method for the cathode materials in the Examples was as follows:
S01: mixing the metal salt, the lithium salt and the volatile organic acid in the specified ratio, and grinding the mixture for 5 hours;
S02: mixing the ground product from S01 with the organic polymer, and grinding the mixture for 2 hours;
S03: pre-sintering the ground product from S02;
S04: sintering the pre-sintered product from S03, and cooling the product to obtain the desired lithium ion battery cathode material.
The specific parameters for the preparation method are set forth as follows:
Example Pre-sintering Sintering
No. conditions conditions
1 400℃, 4h 750℃, 6h
2 400℃, 4h 900℃, 10h
3 400℃, 4h 900℃, 12h
4 400℃, 6h 850℃, 15h
5 400℃, 4h 750℃, 15h
6 400℃, 4h 750℃, 15h
7 400℃, 4h 800℃, 15h
8 400℃, 4h 750℃, 15h
9 400℃, 4h 750℃, 15h
10 400℃, 4h 750℃, 15h
11 400℃, 4h 750℃, 15h
12 400℃, 4h 750℃, 15h
13 420℃, 6h 800℃, 12h
14 420℃, 6h 800℃, 12h 
15 420℃, 6h 800℃, 12h
16 420℃, 6h 800℃, 12h
17 420℃, 6h 800℃, 12h
18 420℃, 6h 800℃, 12h
19 460℃, 6h 880℃, 10h
20 460℃, 6h 880℃, 10h
21 460℃, 6h 880℃, 10h
22 460℃, 6h 880℃, 10h
23 460℃, 6h 880℃, 10h
24 460℃, 6h 880℃, 10h
25 460℃, 6h 880℃, 10h
26 480℃, 5h 900℃, 10h
27 480℃, 5h 900℃, 10h
28 480℃, 5h 900℃, 10h
29 500℃, 6h 900℃, 10h
30 500℃, 6h 950℃, 8h
Comp. Ex. 1 400℃, 4h 750℃, 6h
Comp. Ex. 2 400℃, 4h 750℃, 6h
A CR2016 button cell was made using the respective cathode materials prepared, wherein the cathode was made of 80 wt%of the cathode material, 10 wt%of pvdf and  10 wt%of acetylene black, the counter electrode was a lithium sheet, the separator was Celgard 2500, and the electrolyte was an organic solution of 1 M of LiPF 6 in EC: DEC=1: 1. The fresh battery was charged at a current of 0.2 C at 25℃ until the voltage was 4.3 V, and the charged battery was discharged at a current of 0.2C until the voltage was 2.8 V, the discharge capacity being recorded as the first discharge capacity. The button cells made were cycled for 50 and 100 cycles respectively under the conditions of 0.2C/0.2C and 0.5C/0.5C. The test results are as follows:
Figure PCTCN2018100850-appb-000005
Figure PCTCN2018100850-appb-000006
Fig. 1 shows the XRD scan patterns for the cathode material in Example 1 versus that in Comparative example 1. The crystal lattice structure of the powder of the materials was analyzed using a Shimadzu XRD-6000 X-ray diffractometer (Cu-Kαradiation, λ = 1.5418 
Figure PCTCN2018100850-appb-000007
) at a 2θ scanning angle of 10-80° and a scanning speed is 1°/min. It can be seen from Fig. 1 that both materials had a similar R-3m structure, but had a different ratio of intensity of (003) peak to that of (104) peak, indicating that the ion mixing was different. The higher the ratio of I (003) /I (104) , the less ion mixing in the cathode material. It can be calculated from Fig. 1 that the I (003) /I (104) was 1.346 in Example 1 (PA) , and the I (003) /I (104) was 1.207 in Comparative example 1 (SS) . This result indicates that the material obtained in this example had a low degree of ion mixing and thus a higher speed of lithium ion transportation.
Fig. 2 shows the pictures for the cathode material in Example 1 versus that in Comparative example 1 obtained with powder of the material under a field emission scanning electron microscope (S-4300 Shimadzu, 15 kV) . Figs. 2a to 2b show that the material in Comparative example 1 had dense secondary particles, and the particle size of the primary particles ranged from 100 to 500 nm. Figs. 2c to 2f show that the secondary particles of the material in Example 1 were composed of many primary particles of uniform particle size (100-200 nm) . A plurality of pore structures were distributed on the secondary particles in Example 1, the size of the pores being about 1 to 2 μm. These pores were formed from decomposition of the polymer to produce a gas during the sintering process.
Fig. 3 and Fig. 4 respectively show the first charge and discharge curves and the corresponding capacity differential curves for the batteries made of the cathode material  in Example 1 versus that in Comparative example 1. The first charge specific capacity was 300 mAh/g and the first discharge specific capacity was 210 mAh/g for PA-LNO in Example 1, which were significantly higher than 234 mAh/g (charge specific capacity) and 184 mAh/g (discharge specific capacity) for SS-LNO in Comparative Example 1. It can be seen from the dq/dv curves in Fig. 4 that the intensity of the redox reaction of PA-LNO was significantly higher than that of SS-LNO. This is because the porous material had large contact area with the electrolyte and had more electrochemical reaction sites, contributing to higher capacity.
Fig. 5 and Fig. 6 respectively show the curves of cycling performance test (at 0.2C in Fig. 5; and at 0.5C in Fig. 6) for the batteries made of the cathode material in Example 1 and that in Example 5 versus that in Comparative Example 1. It can be seen from the figures that at both rates, the PA-LNO material in Example 1 exhibited excellent cycling performance over the SS-LNO material in Comparative example 1. This is because the dense SS-LNO material could not withstand the stress and strain caused by intercalation and deintercalation of lithium ions during cycling, resulting in structural collapse and particle damage (Fig. 8) , which led to capacity degradation. In contrast, the porous material of PA-LNO in Example 1 could well absorb the stress and strain caused by intercalation and deintercalation of lithium ions during cycling, thus ensuring excellent cycling stability. The porous material in Example 5 further stabilized the structure of the cathode material due to the doping of Co and Al. Therefore, under the test condition of a cycling test voltage of 0.05-5 C, the capacity retention rate was greater than 94%after 50 cycles of test and greater than 88%after 100 cycles of test.
Fig. 7 shows the results of cycling performance test (0.5C) for the batteries made of the cathode material in Example 6 and that in Example 7 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the PA-LNO material by the doping of Al.
Fig. 8 shows the results of cycling performance test (0.5C) for the batteries made of the cathode material in Example 8 and that in Example 9 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the PA-LNO material by the doping of Co.
Fig. 9 shows the results of cycling performance test (0.5C) for the batteries made of the cathode materials in Examples 10, 11, 12 and 5 versus that in Comparative Example 1, indicating the improvement of the cycling performance of the materials by the doping of Mg. It can be seen that the porous material of LiNi 0.8Co 0.13Al 0.05Mg 0.02O 2 still exhibited a specific capacity of 157 mAh/g after 100 cycles of 0.5 C/0.5 C charging and discharging, with a capacity retention rate of as high as 98%.
The button cell which was cycled at 0.2 C for 50 cycles was disassembled under a protective atmosphere to obtain the cathode sheet having been subjected to cycling. After rinsing and drying, cathode powder was scraped from the cathode sheet and observed for particle morphology under a transmission electron microscope. Fig. 10 shows the transmission electron microscopic pictures showing the microscopic feature of the cathode material particles after 50 cycles of 0.2C cycling of the batteries made of the cathode material in Example 1 versus that in Comparative Example 1. The SS-LNO material particles in Comparative example 1 (a, b) visibly had obvious cavities and a large number of cracks, and some particles had even cracked. In contrast, despite of the occurrence of a small number of cavities, the PA-LNO material particles in Example 1 (c, d) had no microcracks and remained intact. The material synthesized with the addition of the polymer had pore structures which could well buffer the expansion and contraction of the crystal lattices and the stress and strain in the crystal grains during the charging and discharging process, inhibit occurrence of microcracks and cavities in the particles, prevent cracking of the particles, thus ensuring the intactness of the material particles during cycling and maintaining an excellent cycling stability.
It should be noted that the above examples are only intended to illustrate rather than limit the technical solutions of the embodiments of the present invention. Although the embodiments of the present invention having been described in detail with reference to the preferred examples, those skilled in the art will appreciate that the technical solutions of the embodiments of the present invention may be modified or equivalently substituted in a manner such that the modified technical solutions do not depart from the scope of the technical solutions of the embodiments of the present invention.

Claims (10)

  1. A lithium ion battery cathode material, wherein:
    The cathode material is a lithium-metal-oxide. The cathode material is composed of spherical secondary particles comprised of primary particles with particle diameter from 100 to 200 nm, and the secondary particles has porous structureswith pore diameter of 1 to 2 μm.
  2. The lithium ion battery cathode material according to claim 1, wherein: the cathode material has the chemical formula of Li 1+xM 1-xO 2, wherein x=0.05-0.25, M is one or more selected from the group consisting of Ni, Co, Mn, Al, Mg, Fe, B, Ti, Cr, Ga, Zn, V, Ge, and Sn.
  3. A method for preparing a lithium ion battery cathode material, wherein the method comprises the following steps:
    S01: mixing a metal salt and a lithium salt by a molar ratio of metal ion to lithium ion of 1: (1-1.3) , adding a volatile organic acid in an amount sufficient for complexing all of the metal ions in the metal salt and the lithium salt in the raw materials, and mixing and grinding the metal salt, the lithium salt and the volatile organic acid to obtain homogeneity;
    S02: mixing the ground product from S01 with an organic polymer in a ratio of 1 to 3 mL of the organic polymer to 1 g of the ground product, and grinding the mixture homogeneously.
    S03: pre-sintering the ground product from S02 at 300-500℃ for 4 to 10 hours; and
    S04: sintering the pre-sintered product from S03 at 750-950℃ for 6 to 15 hours, and cooling the product to obtain the desired lithium ion battery cathode material.
  4. The method for preparing a lithium ion battery cathode material according to claim 3, wherein in S01, the metal salt includes a member selected from the group consisting of an oxalate, acetate, nitrate or sulfate salt of the element of Ni, Co, Mn, Al, Mg, Fe, Ti, Cr, Ga, Zn, V, Ge or Sn, or a combination of two or more thereof.
  5. The method for preparing a lithium ion battery cathode material according to claim 3, wherein in S01, the lithium salt includes a member selected from the group  consisting of lithium oxalate, lithium acetate, lithium nitrate, lithium sulfate, lithium hydroxide, or lithium carbonate, or a combination of two or more thereof.
  6. The method for preparing a lithium ion battery cathode material according to claim 3, wherein in S01, the volatile organic acid includes a member selected from the group consisting of oxalic acid, tartaric acid, malic acid, citric acid, benzoic acid, salicylic acid, caffeic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, or isopentanoic acid, or a combination of two or more thereof.
  7. The method for preparing a lithium ion battery cathode material according to claim 3, wherein in S02, the organic polymer includes a member selected from the group consisting of polyethylene glycol 200, polyethylene glycol 400, polyethylene glycol 2000, polyethylene glycol 6000, or polyethylene glycol 12000, or a combination of two or more thereof.
  8. The method for preparing a lithium ion battery cathode material according to claim 3, wherein in S03, the pre-sintering temperature is 380 to 420℃; and in S04, the sintering temperature is 800 to 850℃.
  9. A lithium ion battery, wherein the cathode material thereof is as set forth in claims 1 to 2.
  10. The lithium ion battery according to claim 9, wherein: the lithium ion battery has a capacity retention rate of higher than 94%after 50 cycles of testing, and of higher than 88%after 100 cycles of testing, under the test condition of a cycling test current density of 0.05-5C.
PCT/CN2018/100850 2017-10-19 2018-08-16 Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material WO2019076122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710978916.8A CN107768639A (en) 2017-10-19 2017-10-19 Anode material of lithium battery and preparation method thereof, the lithium battery using the positive electrode
CN201710978916.8 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019076122A1 true WO2019076122A1 (en) 2019-04-25

Family

ID=61268404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100850 WO2019076122A1 (en) 2017-10-19 2018-08-16 Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material

Country Status (3)

Country Link
CN (1) CN107768639A (en)
TW (1) TWI678835B (en)
WO (1) WO2019076122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158893A (en) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 Preparation method of lithium-rich manganese-based positive electrode material precursor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768639A (en) * 2017-10-19 2018-03-06 深圳市比克动力电池有限公司 Anode material of lithium battery and preparation method thereof, the lithium battery using the positive electrode
TWI736105B (en) 2020-01-16 2021-08-11 國立清華大學 Anode material for secondary battery, anode for secondary battery and secondary battery
CN115020697B (en) * 2022-06-13 2023-12-29 北京当升材料科技股份有限公司 Positive electrode material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
CN103094550A (en) * 2011-10-31 2013-05-08 北京有色金属研究总院 Preparation method of lithium-rich anode material
US20140087265A1 (en) * 2012-09-25 2014-03-27 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
CN105280909A (en) * 2014-07-10 2016-01-27 国家电网公司 Lithium-rich manganese-based lithium-ion battery cathode material and preparation method thereof
CN107768639A (en) * 2017-10-19 2018-03-06 深圳市比克动力电池有限公司 Anode material of lithium battery and preparation method thereof, the lithium battery using the positive electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343347B2 (en) * 2007-11-08 2013-11-13 三菱化学株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
EP2065887A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Method for manufacturing magnetic disk unit
KR20130029041A (en) * 2010-01-08 2013-03-21 미쓰비시 가가꾸 가부시키가이샤 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
EP2741354B1 (en) * 2011-08-05 2016-11-16 Asahi Glass Company, Limited Cathode active material for lithium-ion secondary battery
CN102583583B (en) * 2012-03-12 2016-06-29 中国科学院福建物质结构研究所 A kind of lithium ion battery manganese cobalt lithium oxide anode material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323123A (en) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd Positive electrode active material and positive electrode for non-aqueous secondary battery
CN103094550A (en) * 2011-10-31 2013-05-08 北京有色金属研究总院 Preparation method of lithium-rich anode material
US20140087265A1 (en) * 2012-09-25 2014-03-27 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
CN105280909A (en) * 2014-07-10 2016-01-27 国家电网公司 Lithium-rich manganese-based lithium-ion battery cathode material and preparation method thereof
CN107768639A (en) * 2017-10-19 2018-03-06 深圳市比克动力电池有限公司 Anode material of lithium battery and preparation method thereof, the lithium battery using the positive electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, MIN ET AL.: "Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery", JOURNAL OF POWER SOURCES, vol. 279, 1 April 2015 (2015-04-01), pages 197 - 204, XP029220719 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112158893A (en) * 2020-08-27 2021-01-01 荆门市格林美新材料有限公司 Preparation method of lithium-rich manganese-based positive electrode material precursor
CN112158893B (en) * 2020-08-27 2023-09-26 荆门市格林美新材料有限公司 Preparation method of lithium-rich manganese-based positive electrode material precursor

Also Published As

Publication number Publication date
CN107768639A (en) 2018-03-06
TW201917938A (en) 2019-05-01
TWI678835B (en) 2019-12-01

Similar Documents

Publication Publication Date Title
CN110233253B (en) Binary-doped single-crystal ternary positive electrode material and preparation method thereof
CN110233250B (en) Preparation method of single crystal particle ternary cathode material
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
CN107978751B (en) Ternary positive electrode material with high electrochemical activity and preparation method thereof
KR101630209B1 (en) Positive active material, lithium secondary battery having the same and manufacturing method thereof
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
WO2019076122A1 (en) Lithium battery cathode material, preparation method thereof, and lithium battery using the cathode material
KR20150073970A (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
US20210328217A1 (en) Lithium battery and anode material thereof
KR101223482B1 (en) Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof
CN112768687A (en) Lithium-site-doped modified high-nickel low-cobalt ternary cathode material for lithium ion battery and preparation method thereof
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
CN110699744A (en) Single crystal ternary positive electrode material containing trace elements
CN113571679A (en) Spinel oxide coated lithium-rich manganese-based positive electrode material
JP2024045104A (en) Lithium secondary battery positive electrode active material, manufacturing method thereof, and lithium secondary battery containing the same
CN114597372A (en) Ultrahigh nickel cathode material and preparation method and application thereof
CN114400316A (en) High-nickel lithium ion battery positive electrode material with thermal safety and preparation method thereof
CN111509219B (en) Lithium manganate battery material and preparation method thereof
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
CN109216692B (en) Modified ternary cathode material, preparation method thereof and lithium ion battery
KR20160076037A (en) Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
CN114556635A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
CN111634961A (en) Positive electrode material for lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868261

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868261

Country of ref document: EP

Kind code of ref document: A1