KR20150059820A - Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same - Google Patents

Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same Download PDF

Info

Publication number
KR20150059820A
KR20150059820A KR1020130143366A KR20130143366A KR20150059820A KR 20150059820 A KR20150059820 A KR 20150059820A KR 1020130143366 A KR1020130143366 A KR 1020130143366A KR 20130143366 A KR20130143366 A KR 20130143366A KR 20150059820 A KR20150059820 A KR 20150059820A
Authority
KR
South Korea
Prior art keywords
active material
lithium
aqueous solution
coprecipitation
battery
Prior art date
Application number
KR1020130143366A
Other languages
Korean (ko)
Inventor
박장욱
Original Assignee
주식회사 에너세라믹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에너세라믹 filed Critical 주식회사 에너세라믹
Priority to KR1020130143366A priority Critical patent/KR20150059820A/en
Publication of KR20150059820A publication Critical patent/KR20150059820A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a manufacturing method of positive electrode active materials for lithium secondary batteries using co-precipitation, which is allowed to control speed of supplying metallic salt according to the size of particles when co-precipitation reaction is made and accordingly has high tapped density in the whole particle, thereby improving properties of lithium secondary batteries, and positive electrode active materials for lithium secondary batteries manufactured by the same.

Description

공침법에 의한 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질 전구체{MANUFACTURING METHOD OF CATHOD ACTIVE MATERIAL FOR LITHIUM RECHARGIBLE BATTERY BY COPRECIPITATION, AND CATHOD ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery by coprecipitation and a positive electrode active material precursor for a lithium secondary battery,

본 발명은 공침법에 의한 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery by coprecipitation and a cathode active material for a lithium secondary battery produced thereby.

리튬 이온 이차 전지는 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이온 이차 전지에 대한 수요가 나날이 증가하고 있다. 특히 최근에는 내연기관과 리튬이차 전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다.Since its appearance in 1991, lithium ion secondary batteries have been widely used as power sources for portable devices. 2. Description of the Related Art In recent years, with the rapid development of the electronics, communication, and computer industries, camcorders, mobile phones, notebook PCs, and the like have been remarkably developed and demand for lithium ion secondary batteries as power sources for driving these portable electronic information communication devices . In recent years, research on a power source for an electric vehicle by hybridizing an internal combustion engine with a lithium secondary battery has been actively carried out in the United States, Japan, and Europe.

전기 자동차용의 대형 전지로서는, 아직도 개발 시작 단계이고 특히 안전성의 관점에서 니켈 수소 전지가 사용되고 있지만 에너지 밀도 관점에서 리튬이온전지사용을 고려하고 있지만, 최대의 과제는 높은 가격과 안전성이다.As a large-sized battery for an electric vehicle, although a nickel-metal hydride battery is used from the viewpoint of safety, a lithium-ion battery is considered from the viewpoint of energy density, but the biggest problem is high price and safety.

현재 상용화되어 사용되고 있는 LiCoO2나 LiNiO2 등의 양극 활물질은 어느 것이나 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다. 즉, 과충전 상태의 전지를 200 내지 270 ℃에 가열하면, 급격한 구조 변화가 발생하게 되며, 그러한 구조 변화에 기인된 격자내의 산소 방출 반응이 진행된다 (J.R.Dahn et al., Solid State Ionics, 69,265(1994)).The cathode active materials such as LiCoO 2 and LiNiO 2 which are currently in commercial use are disadvantageous in that their crystalline structure is unstable due to the depolymerization at the time of charging and the thermal characteristics are very poor. That is, when the battery in an overcharged state is heated to 200 to 270 ° C, an abrupt structural change occurs, and an oxygen release reaction in the lattice caused by such a structural change proceeds (JR Dahn et al., Solid State Ionics, 69, 265 )).

현재 시판되는 소형 리튬 이온 이차 전지는 양극 활물질로 LiCoO2를 주로 사용한다. LiCoO2는 안정된 충·방전 특성, 우수한 전자전도성, 높은 안정성 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다.LiCoO 2 is mainly used as a cathode active material in a small-sized lithium ion secondary battery currently available on the market. LiCoO 2 is an excellent material with stable charge / discharge characteristics, excellent electron conductivity, high stability and flat discharge voltage characteristics, but Co is required to develop other cathode material because it has a low storage capacity, high cost and toxicity to human body.

LiNiO2는 LiCoO2와 같은 층상 구조를 가지며, 방전용량이 크나 싸이클 수명 및 열적으로 가장 불안정하고 고온에서의 안전성에 문제가 있어 아직 상품화되지 못하고 있다.LiNiO 2 has a layered structure such as LiCoO 2 , has a large discharge capacity, has the shortest cycle life and thermal instability, and has a problem in safety at high temperature and has not been commercialized yet.

이를 개선하기 위해, 니켈의 일부를 전이금속 원소의 치환에 의해, 발열 시작 온도를 약간의 고온 측으로 이동시키거나 급격한 발열을 방지하기 위하여 발열 피크를 완만하게(broad)하려는 시도가 많이 이루어지고 있다(T.Ohzuku et al., J.Electrochem.Soc.,142,4033(1995),일본특개 평9-237631호 공보). 그러나 아직도 만족된 결과는 얻어지고 있지 않다.In order to solve this problem, attempts have been made to broaden the exothermic peak in order to move the heat generation starting temperature to a slightly higher temperature side or prevent rapid heat generation by substituting a part of nickel with a transition metal element T. Ohzuku et al., J. Electrochem. Soc., 142, 4033 (1995), Japanese Unexamined Patent Publication No. 9-237631). However, still satisfactory results are not obtained.

LiCoO2의 대체 재료로 가장 각광받는 층상 결정구조를 갖는 재료로는 니켈-망간과 니켈-코발트-망간이 각각 1:1 혹은 1:1:1로 혼합된 Li[Ni0 .5Mn0 .5]O2와 Li[Ni1/3Co1/3Mn1/3]O2 등의 리튬 복합금속 산화물을 들 수 있다. 상기 리튬 복합금속 산화물들은 수용액 중에서 중화반응을 이용하여 2 혹은 3원소를 동시에 침전시켜 수산화물이나 산화물 형태의 전구체를 얻고, 이 전구체를 수산화리튬과 혼합, 소성하는 방법으로 얻어진다. 통상적인 공침 반응과는 달리, 망간을 포함한 공침 입자는 불규칙 판상을 나타내는 것이 보통이며, 탭 밀도가 니켈이나 코발트에 비해 반 정도에 지나지 않는다.As a material having a layered crystal structure most favored as an alternative material for LiCoO 2 , there is a Li [Ni 0 .5 Mn 0 .5) mixture of nickel-manganese and nickel-cobalt-manganese in a ratio of 1: 1 or 1: ] O 2 and Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 . The lithium composite metal oxides are obtained by precipitating two or three elements simultaneously in an aqueous solution using a neutralization reaction to obtain precursors in the form of hydroxides or oxides, mixing the precursors with lithium hydroxide, and sintering the precursors. Unlike a typical coprecipitation reaction, coprecipitated particles containing manganese usually exhibit irregular platelets, and the tap density is only about half of that of nickel or cobalt.

일본 특허공개 제2002-201028호에는 불활성 침전법을 이용하여 리튬 복합금속 산화물을 제조하고 있다. 이때 침전에 의해 생성된 리튬 복합금속 산화물의 입자는 입도 분포가 매우 넓을 뿐만 아니라, 1차 입자의 형태가 입자마다 다른 단점이 있다.Japanese Patent Application Laid-Open No. 2002-201028 discloses a lithium composite metal oxide using an inert precipitation method. At this time, the lithium composite metal oxide particles produced by the precipitation have not only a wide particle size distribution, but also have different disadvantages in the shape of primary particles.

최근 일본 특허공개 제2003-238165호, 제2003-203633호, 제2003-242976호, 제2003-197256호, 제2003-86182호, 제2003-68299호 및 제2003-59490호, 대한민국 특허등록 제0557240호와 제0548988호에는 니켈염과 망간염 혹은 니켈염, 망간염 및 코발트염을 수용액에 용해한 후, 알칼리 용액을 동시에 반응기에 투입하여 환원제나 불활성 가스로 퍼지(purge)하면서 금속 수산화물이나 산화물을 얻고, 이 전구체를 수산화리튬과 혼합 후 소성하여 충방전 가역성과 열적 안정성이 향상된 고용량 양극 활물질 제조에 관한 기술이 기재되어 있다. Japanese Patent Application Laid-Open Nos. 2003-238165, 2003-203633, 2003-242976, 2003-197256, 2003-86182, 2003-68299 and 2003-59490, 0557240 and No. 0548988 disclose a method of dissolving a nickel salt, a manganese salt, a nickel salt, a manganese salt and a cobalt salt in an aqueous solution and then simultaneously introducing an alkali solution into the reactor to purge the metal hydroxide or oxide with a reducing agent or an inert gas And a method for producing a high-capacity cathode active material having improved charge / discharge reversibility and thermal stability by mixing this precursor with lithium hydroxide followed by firing.

그러나 상기에 제시된 제조 방법은 입자가 형성되는 과정에서 금속염의 공급 속도를 일정하게 함으로써 입자의 외부로 갈수록 입자의 직경이 커짐에 따르는 금속염의 공급속도가 미치지 못해 입자의 내부에서는 1차 입자 사이에 공극이 없이 입자가 성장하지만 입자의 외부에서는 1차 입자 사이에 공극이 증가되어 입자 전체의 탭밀도가 감소하고 이에 따른 전지 특성이 열화되는 문제점이 있었다.
However, in the above-described manufacturing method, since the supply rate of the metal salt is made constant in the process of forming the particles, the supply rate of the metal salt as the diameter of the particles increases toward the outside of the particles is insufficient, There is a problem that the voids increase between the primary particles at the outside of the particles to decrease the tap density of the whole particles and deteriorate the battery characteristics.

본 발명은 상기와 같은 과제를 해결하기 위하여 입자의 내부와 외부에서 모두 일정한 탭밀도를 나타낼 수 있는 새로운 공침법에 의한 리튬 이차전지용 양극활물질의 제조 방법을 제공하는 것을 목적으로 한다.
In order to solve the above problems, it is an object of the present invention to provide a method for producing a cathode active material for a lithium secondary battery by a new coprecipitation method which can exhibit a constant tap density both inside and outside of the particles.

본 발명은 상기와 같은 과제를 해결하기 위하여The present invention has been made to solve the above problems

금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계; 및A metal salt aqueous solution, a chelating agent, and a basic aqueous solution to a reactor to coprecipitate to prepare a coprecipitation compound; And

상기 공침 화합물을 건조 또는 열처리하여 활물질 전구체를 제조하는 단계;Drying or heat-treating the coprecipitated compound to prepare an active material precursor;

상기 활물질 전구체와 리튬염을 혼합하여 소성하여 하기 화학식 1의 리튬 복합금속 산화물을 제조하는 단계; 를 포함하는 공침법에 의한 리튬 이차전지용 양극활물질 전구체의 제조 방법에 있어서, Mixing the lithium salt with the active material precursor to form a lithium composite metal oxide of Formula 1; A method of manufacturing a precursor of a cathode active material for a lithium secondary battery,

상기 금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계에서 공침 화합물의 입경 증가에 따라 상기 금속염 수용액을 반응기에 공급하는 속도를 증가시키는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조 방법을 제공한다. Wherein the rate of supplying the metal salt aqueous solution to the reactor is increased according to an increase in the particle size of the coprecipitation compound in the step of coprecipitating the metal salt aqueous solution, the chelating agent, and the basic aqueous solution, A method for manufacturing a positive electrode active material for a battery is provided.

본 발명에 의한 리튬 이차전지용 양극활물질의 제조 방법에 있어서, 상기 금속염 수용액은 황산염, 질산염, 초산염, 할라이드, 수산화물 및 이들의 조합으로 이루어진 군에서 선택된 1종의 염을 포함하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the aqueous metal salt solution is characterized by containing one kind of salt selected from the group consisting of sulfate, nitrate, acetate, halide, hydroxide and combinations thereof.

본 발명에 의한 리튬 이차전지용 양극활물질의 제조 방법에 있어서, 상기 킬레이트제는 암모니아 수용액, 황산 암모늄 수용액 및 이들의 혼합물로 이루어진 군에서 선택된 1종을 사용하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, the chelating agent is one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution, and a mixture thereof.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 이차전지용 양극활물질을 제공한다.
The present invention also provides a cathode active material for a lithium secondary battery produced by the production method of the present invention.

본 발명에 의한 리튬 이차전지용 양극활물질의 제조 방법은 공침 반응시 입경의 증가에 따라 금속염의 공급 속도를 조절함으로써 입자 전체에서 높은 탭밀도를 나타내고 이에 따라 전지 특성이 향상된다.
The method for preparing a cathode active material for a lithium secondary battery according to the present invention exhibits a high tap density in the whole particle by controlling the supply rate of the metal salt with an increase in particle diameter during the coprecipitation reaction, thereby improving battery characteristics.

도 1 및 도 2는 본 발명의 일 실시예 및 비교예에서 반응 시간에 따른 금속염 수용액 공급 속도 및 입자 성장 속도를 나타낸다.
도 3 은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질 단면의 SEM 사진을 나타낸다.
도 4 및 도 5 는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 충방전 특성 및 수명 특성을 측정한 결과를 나타낸다.
FIG. 1 and FIG. 2 illustrate the metal salt aqueous solution feed rate and particle growth rate according to the reaction time in one embodiment and comparative example of the present invention.
3 is a SEM photograph of a cross-section of a cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 4 and FIG. 5 show the results of measurement of the charging / discharging characteristics and the life characteristics of the battery including the cathode active material prepared in the example of the present invention and the comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1: 농도  1: Concentration 구배를The gradient 가지는 양극 활물질의 제조 Manufacture of positive electrode active material

공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4리터를 넣은 뒤 질소가스를 반응기에 0.5리터/분의 속도로 공급함으로써, 용존산소를 제거하고 반응기의 온도를 50 ℃로 유지시키면서 1000 rpm으로 교반하였다.4 liters of distilled water was placed in a coprecipitation reactor (capacity 4 L, output of a rotary motor 80 W or more), nitrogen gas was supplied to the reactor at a rate of 0.5 liter / min to remove dissolved oxygen, lt; / RTI &gt;

여기에, 황산니켈, 황산코발트 및 황산망간 몰 비가 40 : 30 : 30 비율로 혼합된 2.4M 농도의 금속 수용액을 0.3 리터/시간으로, 4.8 M 농도의 암모니아 용액을 0.03 리터/시간으로 반응기에 연속적으로 투입하였다. 또한 pH 조정을 위해 4.8M 농도의 NaOH 수용액을 공급하여 pH가 11로 유지되도록 하였다.Thereafter, a 2.4 M metal aqueous solution mixed at a molar ratio of 40: 30: 30 of nickel sulfate, cobalt sulfate and manganese sulfate was fed at 0.3 liter / hour, and a 4.8 M ammonia solution at 0.03 liter / . In addition, a pH of 4.8 M was supplied to maintain the pH at 11 by adjusting the pH.

이어서 반응기의 임펠러 속도를 1000 rpm으로 조절하여 공침 반응을 수행하였다. 이후 금속 수용액의 공급 속도를 0.3 리터/시간 에서 0.5 리터/시간까지 증가시키면서 용액의 반응기 내의 평균 체류 시간은 6 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상상태 지속시간을 주어 좀 더 밀도가 높은 공침 화합물(복합금속 수산화물)을 얻도록 하였다.Then, the coprecipitation reaction was performed by controlling the impeller speed of the reactor to 1000 rpm. Then, the average residence time of the solution in the reactor was set to about 6 hours while the feed rate of the metal aqueous solution was increased from 0.3 liters / hour to 0.5 liters / hour. After the reaction reached a steady state, To give a more dense coprecipitation compound (complex metal hydroxide).

상기 공침 화합물을 여과하고, 물로 세척한 다음, 110 ℃의 온풍 건조기에서 15 시간 동안 건조시켜, 활물질 전구체(금속 복합 수산화물, Ni0.4Co0.3Mn0.3(OH)2)를 얻었다.The coprecipitated compound was filtered, washed with water, and dried in a hot air dryer at 110 ° C for 15 hours to obtain an active material precursor (metal complex hydroxide, Ni0.4Co0.3Mn0.3 (OH) 2).

상기 얻어진 활물질 전구체와 수산화리튬(LiOH)을 혼합한 후에 1 ℃/min의 승온 속도로 가열한 후 500 ℃에서 10 시간 동안 유지시켜 예비 소성을 수행하였으며, 뒤이어 950 ℃에서 20 시간 소성시켜 양극 활물질 분말(Li[Ni0.4Co0.3Mn0.3]O2)을 얻었다.
The obtained active material precursor was mixed with lithium hydroxide (LiOH), heated at a heating rate of 1 ° C / min, and then prebaked at 500 ° C for 10 hours, followed by calcination at 950 ° C for 20 hours to obtain a cathode active material powder (Li [Ni0.4Co0.3Mn0.3] O2).

<< 비교예Comparative Example >>

상기 금속 수용액의 공급 속도를 0.3 리터/시간으로 일정하게 유지한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 양극 활물질 분말(Li[Ni0.4Co0.3Mn0.3]O2)을 얻었다.
The cathode active material powder (Li [Ni0.4Co0.3Mn0.3] O2) was obtained in the same manner as in Example 1, except that the feed rate of the metal aqueous solution was kept constant at 0.3 liter / hour.

<< 실험예Experimental Example > 반응 시간에 따른 입자 크기 측정> Particle size measurement with reaction time

상기 실시예 및 비교예에서 공침 반응 시간에 따른 금속 수용액 공급 속도 및 입자 크기를 측정하고 그 결과를 도 1 및 도 2에 나타내었다. In the examples and comparative examples, the metal aqueous solution feed rate and particle size were measured according to the coprecipitation reaction time, and the results are shown in FIGS. 1 and 2. FIG.

본 발명에 의한 실시예의 경우 도 1에서 보는 바와 같이 입자가 성장함에 따라 금속 수용액의 공급 속도를 증가시킴으로써 입자 크기가 1차원적으로 균일하게 성장하는데 비해, 금속 수용액의 공급 속도를 일정하게 하는 비교예의 경우 도 2에서 보는 바와 같이 입자 크기의 성장 속도가 반응 시간에 따라 감소하는 것을 알 수 있다.
In the case of the embodiment of the present invention, as shown in FIG. 1, the particle size is uniformly grown in one dimension by increasing the feed rate of the metal aqueous solution as the particles grow, 2, it can be seen that the growth rate of the particle size decreases with the reaction time.

<< 실험예Experimental Example > > SEMSEM 측정 Measure

상기 실시예 및 비교예에서 제조된 활물질 입자의 단면에 대해 SEM 사진을 측정하고 그 결과를 도 3 에 나타내었다. 도 3에서 보는 바와 같이 비교예의 경우 내부와 외부의 밀도가 차이가 나는 반면, 본 발명의 실시예에서 제조된 활물질 입자의 경우 입자 내부로부터 외부까지 균일한 밀도로 성장하는 것을 알 수 있다.
SEM photographs were taken of the cross-sections of the active material particles prepared in the Examples and Comparative Examples, and the results are shown in FIG. As shown in FIG. 3, the internal and external densities of the comparative example are different from each other. On the other hand, the active material particles produced in the embodiment of the present invention exhibit a uniform density from the inside to the outside of the particle.

<< 실험예Experimental Example > > 탭밀도Tap density  And 비표면적Specific surface area 측정 Measure

상기 실시예 및 비교예에서 제조된 활물질 입자의 탭밀도 및 비표면적을 측정하고 그 결과를 아래 표 1에 나타내었다. 아래 표 1에서 보는 바와 같이 본 발명의 실시예의 경우 1차 입자가 조밀하게 성장되어 비교예보다 탭밀도가 5% 이상 증가하고, 비표면적은 40% 이상 감소하는 것을 알 수 있다.
The tap density and specific surface area of the active material particles prepared in the above Examples and Comparative Examples were measured and the results are shown in Table 1 below. As shown in the following Table 1, the primary particles are densely grown in the embodiment of the present invention, so that the tap density is increased by 5% or more and the specific surface area is reduced by 40% or more as compared with the comparative example.

Figure pat00001
Figure pat00001

<< 제조예Manufacturing example > 전지 제조> Battery Manufacturing

상기 실시예 1 및 비교예 1에서 제조된 양극 활물질과 도전재로 아세틸렌블랙, 결합제로는 폴리비닐리덴 플루오라이드(PVdF)를 80:10:10의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 20㎛ 두께의 알루미늄박에 균일하게 도포하고, 120 ℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.Acetylene black was mixed with polyvinylidene fluoride (PVdF) as a binder and the cathode active material prepared in Example 1 and Comparative Example 1 at a weight ratio of 80:10:10 to prepare a slurry. The slurry was uniformly applied to an aluminum foil having a thickness of 20 탆 and vacuum-dried at 120 캜 to prepare a positive electrode for a lithium secondary battery.

상기 양극과, 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 디에틸 카보네이트가 부피비로 1:1로 혼합된 용매에 LiPF6가 1M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인 전지를 제조하였다.
A mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used as a separator, using the above anode and lithium foil as counter electrodes, and using a porous polyethylene membrane (Celgard 2300, thickness: A coin cell was prepared according to a conventionally known production process using a liquid electrolyte in which LiPF6 was dissolved in a solvent at a concentration of 1M.

<< 실험예Experimental Example > > 충방전Charging and discharging 특성 및 수명 특성 측정 Measurement of characteristics and life characteristics

상기 제조예에서 제조된 전지에 대해 충방전 특성 및 수명 특성을 측정하고 그 결과를 도 4 및 도 5 에 나타내었다. 도 4 및 도 5에서 본 발명의 실시예의 양극활물질로 제조되는 전지의 경우 충방전 특성 및 수명 특성이 개선되는 것을 확인할 수 있다.
Charge-discharge characteristics and life characteristics were measured for the batteries prepared in the above production examples, and the results are shown in FIGS. 4 and 5. FIG. 4 and 5, it can be seen that the battery manufactured from the cathode active material of the embodiment of the present invention improves the charge-discharge characteristics and the life characteristics.

Claims (4)

금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계; 및
상기 공침 화합물을 건조 또는 열처리하여 활물질 전구체를 제조하는 단계;
상기 활물질 전구체와 리튬염을 혼합하여 소성하여 하기 화학식 1의 리튬 복합금속 산화물을 제조하는 단계; 를 포함하는 공침법에 의한 리튬 이차전지용 양극활물질 전구체의 제조 방법에 있어서,
상기 금속염 수용액, 킬레이팅제, 및 염기성 수용액을 반응기에 공급하여 공침시켜 공침 화합물을 제조하는 단계에서 공침 화합물의 입경 증가에 따라 상기 금속염 수용액을 반응기에 공급하는 속도를 증가시키는 것을 특징으로 하는 리튬 이차전지용 양극활물질의 제조 방법
A metal salt aqueous solution, a chelating agent, and a basic aqueous solution to a reactor to coprecipitate to prepare a coprecipitation compound; And
Drying or heat-treating the coprecipitated compound to prepare an active material precursor;
Mixing the lithium salt with the active material precursor to form a lithium composite metal oxide of Formula 1; A method of manufacturing a precursor of a cathode active material for a lithium secondary battery,
Wherein the rate of supplying the metal salt aqueous solution to the reactor is increased according to an increase in the particle size of the coprecipitation compound in the step of coprecipitating the metal salt aqueous solution, the chelating agent, and the basic aqueous solution, Method for producing cathode active material for battery
제 1 항에 있어서,
상기 금속염 수용액은 황산염, 질산염, 초산염, 할라이드, 수산화물 및 이들의 조합으로 이루어진 군에서 선택된 1종의 염을 포함하는 것인 리튬 이차 전지용 양극 활물질의 제조방법.
The method according to claim 1,
Wherein the metal salt aqueous solution contains one kind of salt selected from the group consisting of sulfate, nitrate, acetate, halide, hydroxide, and combinations thereof.
제 1 항에 있어서,
상기 킬레이트제는 암모니아 수용액, 황산 암모늄 수용액 및 이들의 혼합물로 이루어진 군에서 선택된 1종을 사용하는 것인 리튬 이차 전지용 양극 활물질의 제조방법.
The method according to claim 1,
Wherein the chelating agent is one selected from the group consisting of an aqueous ammonia solution, an aqueous ammonium sulfate solution, and a mixture thereof.
제 1 항 내지 제 3 항 중 어느 하나의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극 활물질
A positive electrode active material for a lithium secondary battery produced by the production method of any one of claims 1 to 3
KR1020130143366A 2013-11-23 2013-11-23 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same KR20150059820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130143366A KR20150059820A (en) 2013-11-23 2013-11-23 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130143366A KR20150059820A (en) 2013-11-23 2013-11-23 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same

Publications (1)

Publication Number Publication Date
KR20150059820A true KR20150059820A (en) 2015-06-03

Family

ID=53504584

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130143366A KR20150059820A (en) 2013-11-23 2013-11-23 Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same

Country Status (1)

Country Link
KR (1) KR20150059820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200075356A (en) 2018-12-18 2020-06-26 주식회사 이엔드디 Manufacturing method for high density Ni-Co-Mn composite precursor
CN111837264A (en) * 2018-07-25 2020-10-27 株式会社Lg化学 Method for pretreating lithium metal for lithium secondary battery
WO2021073583A1 (en) * 2019-10-17 2021-04-22 中国石油化工股份有限公司 Lithium battery positive electrode material precursor, preparation method therefor and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837264A (en) * 2018-07-25 2020-10-27 株式会社Lg化学 Method for pretreating lithium metal for lithium secondary battery
US11978886B2 (en) 2018-07-25 2024-05-07 Lg Energy Solution, Ltd. Method for preprocessing lithium metal for lithium secondary battery
KR20200075356A (en) 2018-12-18 2020-06-26 주식회사 이엔드디 Manufacturing method for high density Ni-Co-Mn composite precursor
WO2021073583A1 (en) * 2019-10-17 2021-04-22 中国石油化工股份有限公司 Lithium battery positive electrode material precursor, preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
JP7121771B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
CN110380024B (en) Sodium transition metal oxide with P3 structure, preparation method thereof and sodium ion battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US10367197B2 (en) Positive active material composition for lithium battery, method of preparing the same, and lithium battery including the same
KR101521178B1 (en) Manufacturing method of positive active material precursor and positive active material precursor made by the same, and lithium metal composite oxides including the same
KR101577180B1 (en) Positive electrode active material with improved energy density
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR102357836B1 (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
CN110817974B (en) Nickel-based active material precursor, method for preparing same, nickel-based active material, and lithium secondary battery
WO2022105696A1 (en) Positive electrode active material precursor and preparation method therefor, positive electrode active material and preparation method therefor, positive electrode of lithium ion secondary battery, and lithium ion secondary battery
JP6020204B2 (en) Nonaqueous electrolyte secondary battery
KR20150065046A (en) Transition metal precursor, preparation method thereof, and cathode active material comprising the same
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR101991254B1 (en) Positive Active material with high Power density and longevity
KR20160076037A (en) Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
KR102381520B1 (en) Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same
KR20170041650A (en) Cathode material composed of Li-Ni-Co-Mn-Mg oxide for lithium secondary battery and a method for producing the same
KR100582115B1 (en) 5? spinel complex-oxide prepared, method for preparing the same, and lithium secondary batteries using the same
KR101506680B1 (en) Cathode active material for lithium secondary battery and manufacturing method of the same
KR20150069336A (en) Cathode active material and lithium secondary batteries comprising the same
KR20150067886A (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
KR20140038847A (en) Manufacuring method of 5?? spinel complex-oxide, 5?? spinel complex-oxide made by the same and lithium rechargeable batteries comprising the same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination