JP5765798B2 - Cathode active material for Li-ion battery and method for producing the same - Google Patents

Cathode active material for Li-ion battery and method for producing the same Download PDF

Info

Publication number
JP5765798B2
JP5765798B2 JP2010073965A JP2010073965A JP5765798B2 JP 5765798 B2 JP5765798 B2 JP 5765798B2 JP 2010073965 A JP2010073965 A JP 2010073965A JP 2010073965 A JP2010073965 A JP 2010073965A JP 5765798 B2 JP5765798 B2 JP 5765798B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010073965A
Other languages
Japanese (ja)
Other versions
JP2011210376A (en
Inventor
峰夫 佐藤
峰夫 佐藤
和義 上松
和義 上松
洋悦 辻
洋悦 辻
戸田 健司
健司 戸田
雅 石垣
雅 石垣
浩一 大川
浩一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University
Akita University NUC
Original Assignee
Niigata University
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University, Akita University NUC filed Critical Niigata University
Priority to JP2010073965A priority Critical patent/JP5765798B2/en
Publication of JP2011210376A publication Critical patent/JP2011210376A/en
Application granted granted Critical
Publication of JP5765798B2 publication Critical patent/JP5765798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、Liイオン電池用正極活物質として用いられるLiFePO、およびその製造方法に関する。 The present invention relates to LiFePO 4 used as a positive electrode active material for a Li ion battery, and a method for producing the same.

近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車、ハイブリッドカーの実用化に伴い、小型軽量でかつ高容量の二次電池が必要とされている。また、ソーラー発電や風力発電といった自然エネルギーのバックアップ電源、地震災害等における電力供給源向けに電池業界、重工業業界から、高容量でサイクル特性のよい二次電池が要求されている。現在、この要求に応える高容量二次電池の正極材料としてLiCoO等のリチウム含有遷移金属酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池が商品化されている。 In recent years, along with the development of portable electronic devices such as mobile phones and notebook computers, and the practical application of electric cars and hybrid cars, secondary batteries with small size and light weight and high capacity are required. In addition, secondary batteries with high capacity and good cycle characteristics are demanded by the battery industry and heavy industry for use as backup power sources for natural energy such as solar power generation and wind power generation, and power supply sources in earthquake disasters. Currently, lithium ion secondary batteries using a lithium-containing transition metal oxide such as LiCoO 2 as a positive electrode material of a high capacity secondary battery that meets this requirement and using a carbon-based material as a negative electrode active material have been commercialized.

ところが、LiCoOを用いたリチウムイオン電池は、小型電池としての性能は優れているものの、原料のコバルト埋蔵量が少ないため、資源的制約があり、激しい価格変動があることに加えて、充電時に何らかの原因で内部短絡が生じた際や過充電の際に、LiCoOからの酸素放出により激しい発熱が起こり、電解液を燃焼、電池を爆発させる危険性を有している等の問題を抱えている。 However, although the lithium ion battery using LiCoO 2 has excellent performance as a small battery, there are few resource reserves due to the small amount of cobalt reserves in the raw material, and in addition to severe price fluctuations, When there is an internal short circuit for some reason or overcharge, there is a problem that severe heat generation occurs due to release of oxygen from LiCoO 2 , and there is a risk of burning the electrolyte and exploding the battery. Yes.

今後、電気自動車やハイブリッド車等の環境対応車の開発が重要になってくる状況を考慮すると、安全でかつ安価なリチウムイオン電池用の正極材料が必要とされてくる。このような状況下、Liイオン電池の正極材料として、原料の豊富な鉄系の材料、特にLiFePOに期待が持たれている。 Considering the situation where the development of environmentally friendly vehicles such as electric vehicles and hybrid vehicles will become important in the future, safe and inexpensive cathode materials for lithium ion batteries will be required. Under such circumstances, an iron-based material rich in raw materials, particularly LiFePO 4 , is expected as a positive electrode material for a Li-ion battery.

しかし、LiFePOは電子伝導性が非常に低いため、単に導電助剤を共存させて正極を構成するだけでは不十分であり、優れた電池特性の確保が困難である。そこで、LiFePOを用いたリチウムイオン電池用の正極材料において、電子伝導性を高める技術が検討されている。 However, since LiFePO 4 has very low electronic conductivity, it is not sufficient to simply form a positive electrode by coexisting a conductive additive, and it is difficult to ensure excellent battery characteristics. Therefore, a technique for increasing the electron conductivity in a positive electrode material for a lithium ion battery using LiFePO 4 has been studied.

例えば、リチウム化合物、鉄化合物、リン含有アンモニウム塩、炭素物質微粒子を混合して混合物を得る原料混合工程と、該混合物を600℃以上750℃以下の温度で焼成する焼成工程を含む方法により製造された、炭素含有リチウム鉄複合酸化物が、示されている(特許文献1)。また、炭素−リン酸鉄複合体を沈殿により製造する工程、上記炭素−リン酸鉄複合体とリン酸リチウムとを含有する共沈物を製造する工程、上記共沈物を焼成する工程を有する炭素−オリビン型リン酸鉄リチウム複合粒子の製造方法が示されている(特許文献2)。   For example, it is manufactured by a method including a raw material mixing step of mixing a lithium compound, an iron compound, a phosphorus-containing ammonium salt, and carbon material fine particles to obtain a mixture, and a baking step of baking the mixture at a temperature of 600 ° C. or higher and 750 ° C. or lower. In addition, a carbon-containing lithium iron composite oxide is shown (Patent Document 1). Moreover, it has the process of manufacturing a carbon-iron phosphate complex by precipitation, the process of manufacturing the coprecipitate containing the said carbon-iron phosphate complex and lithium phosphate, and the process of baking the said coprecipitate. A method for producing carbon-olivine type lithium iron phosphate composite particles is shown (Patent Document 2).

また、リン酸鉄リチウムの原料に電子伝導性物質として炭素を加えて、前駆体混合物又は前駆体懸濁物の分散又は粉砕処理を行い、その後、熱水条件下で反応させるリン酸鉄リチウムの製造方法が、示されている(特許文献3)。   In addition, carbon as an electron conductive substance is added to the raw material of lithium iron phosphate, the precursor mixture or the precursor suspension is dispersed or pulverized, and then reacted under hydrothermal conditions. A manufacturing method is shown (Patent Document 3).

しかしながら、上記の製造方法で使用されている炭素材料は、いずれも粉末であり、各原料と炭素材料を、均一な状態で製造することは困難であり、微細なリン酸鉄リチウム粒子を得るためには、焼成後に粉砕工程が必要となる。また、上記の前駆体混合物又は前駆体懸濁物の分散又は粉砕処理を行った後、熱水条件下で反応させる方法(特許文献3)では、分散又は粉砕処理によって炭素材料の分散性は高まる可能性はあるが、工程が多く複雑で、手間やコストがかかり、安価であるという鉄系材料のメリットを活かし難いという課題がある。   However, the carbon materials used in the above production method are all powders, and it is difficult to produce each raw material and the carbon material in a uniform state in order to obtain fine lithium iron phosphate particles. Requires a pulverization step after firing. In addition, in the method (Patent Document 3) in which the precursor mixture or the precursor suspension is dispersed or pulverized and then reacted under hot water conditions (Patent Document 3), the dispersibility of the carbon material is increased by the dispersion or pulverization. Although there is a possibility, there is a problem that it is difficult to take advantage of the merit of the iron-based material that the process is complicated, complicated, costly, and inexpensive.

特開2003−34534号広報Japanese Laid-Open Patent Publication No. 2003-34534 特開2007−35295号広報Japanese Laid-Open Patent Publication No. 2007-35295 特表2007−511458号広報Special table 2007-511458 public information

そこで、発明者らは、鋭意研究した結果、原料混合物を仮焼成した後、仮焼成物に、高分子材料を混合し、焼成する工程により製造された、LiFePOの表面にカーボン微粒子が存在する微細なLiイオン電池用正極活物質が、放電容量が非常に高く、サイクル特性もよいことを見出した。 As a result of intensive research, the inventors have calcinated the raw material mixture, and then mixed the polymer material with the calcined product, followed by calcining, and carbon fine particles are present on the surface of LiFePO 4. It has been found that a fine cathode active material for a Li-ion battery has a very high discharge capacity and good cycle characteristics.

本発明は、以下に示す構成によって上記課題を解決したLiイオン電池用正極活物質、およびその製造方法に関する。
(1) (A)リチウム化合物、酸化鉄を除く鉄化合物、およびリン酸化合物を混合し、原料混合物を作製する工程、(B)原料混合物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で仮焼成し、仮焼成物を作製する工程、(C)仮焼物を粉砕せずに、仮焼成物に、水を含まない極性溶媒または無極性溶媒に溶解した高分子材料を混合し、被焼成物を作製する工程、(D)被焼成物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で焼成する工程、をこの順で含むことを特徴とする、粒径範囲が15〜400nmであり、LiFePOの表面にカーボン微粒子が存在するLiイオン電池用正極活物質の製造方法。
(2) 高分子材料が、ポリエチレングリコール、ポリスチレン、またはポリビニルアルコールである、上記(1)記載のLiイオン電池用正極活物質の製造方法。
(3) (B)工程での仮焼成の温度が、250〜400℃であり、(D)工程での焼成の温度が、600〜800℃である、上記(1)または(2)記載のLiイオン電池用正極活物質の製造方法。
(4) リチウム化合物が、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウムからなる群より選択される少なくとも1種である、上記(1)〜(3)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(5) 鉄化合物が、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、および炭鉄からなる群より選択される少なくとも1種である、上記(1)〜(4)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(6) リン酸化合物が、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸からなる群より選択される少なくとも1種である、上記(1)〜(5)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(7) 上記(1)〜(6)のいずれか記載のLiイオン電池用正極活物質の製造方法により製造された、Liイオン電池用正極活物質:1gに対して34mAで、金属Li基準での電圧範囲が4.0〜2.5Vでの放電容量が130mAh/g以上のLiFePOの表面にカーボン微粒子が存在することを特徴とする、Liイオン電池用正極活物質。
The present invention relates to a positive electrode active material for a Li-ion battery, which has solved the above problems with the following configuration, and a method for producing the same.
(1) (A) A step of preparing a raw material mixture by mixing a lithium compound, an iron compound excluding iron oxide , and a phosphoric acid compound, and (B) a raw material mixture in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere. (C) without pulverizing the calcined product, mixing the polymer material dissolved in a polar solvent or a non-polar solvent not containing water , A particle size range of 15 includes: a step of producing an object to be fired; and (D) a step of firing the object to be fired in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere in this order. is to 400 nm, method for producing a cathode active material for Li-ion batteries exist fine carbon particles to the surface of LiFePO 4.
(2) The manufacturing method of the positive electrode active material for Li ion batteries of said (1) description whose polymer material is polyethyleneglycol, polystyrene, or polyvinyl alcohol.
(3) Temporary baking temperature in (B) process is 250-400 degreeC, The temperature of baking in (D) process is 600-800 degreeC, The said (1) or (2) description A method for producing a positive electrode active material for a Li-ion battery.
(4) Any of the above (1) to (3), wherein the lithium compound is at least one selected from the group consisting of lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate The manufacturing method of the positive electrode active material for Li ion batteries of description.
(5) an iron compound, iron citrate, iron oxalate, iron phosphate is at least one selected from iron sulfate, and carbonated iron or Ranaru group, any of the above (1) to (4) The manufacturing method of the positive electrode active material for Li ion batteries of these.
(6) The Li according to any one of (1) to (5), wherein the phosphoric acid compound is at least one selected from the group consisting of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid. A method for producing a positive electrode active material for an ion battery.
(7) Lithium ion battery positive electrode active material produced by the method for producing a lithium ion battery positive electrode active material according to any one of (1) to (6) above , at 34 mA with respect to 1 g, based on metallic Li A positive electrode active material for a Li ion battery, characterized in that carbon fine particles are present on the surface of LiFePO 4 having a voltage range of 4.0 to 2.5 V and a discharge capacity of 130 mAh / g or more.

本発明(1)によれば、放電容量が非常に高く、サイクル特性のよいLiFePOの表面にカーボン微粒子が存在するLiイオン電池用正極活物質を、高価な装置および原料を用いることなく、簡便に製造することができる。ここで、カーボン微粒子は、Liイオン電池用正極活物質の導電性に寄与するのみならず、放電容量を向上させるという、顕著な効果をもたらす、と考えられる。 According to the present invention (1), a positive electrode active material for a Li-ion battery in which carbon fine particles are present on the surface of LiFePO 4 having a very high discharge capacity and good cycle characteristics can be easily obtained without using expensive equipment and raw materials. Can be manufactured. Here, it is considered that the carbon fine particles not only contribute to the conductivity of the positive electrode active material for the Li ion battery but also bring about a remarkable effect of improving the discharge capacity.

本発明(7)によれば、放電容量が非常に高く、サイクル特性の良好なLiイオン電池を、容易に製造することができる。   According to the present invention (7), a Li-ion battery having a very high discharge capacity and good cycle characteristics can be easily produced.

実施例1で作製したLiイオン電池用正極活物質の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a positive electrode active material for a Li ion battery produced in Example 1. FIG. 実施例1で作製したLiイオン電池用正極活物質の粒度分布測定結果である。2 is a particle size distribution measurement result of a positive electrode active material for a Li-ion battery produced in Example 1. FIG. 実施例で使用したメノウ容器、メノウボールの写真である。It is a photograph of an agate container and an agate ball used in the examples. 実施例1で作製したLiイオン電池用正極活物質のX線回折図である。2 is an X-ray diffraction pattern of a positive electrode active material for a Li-ion battery produced in Example 1. FIG. 実施例4で作製したLiイオン電池用正極活物質のX線回折図である。6 is an X-ray diffraction diagram of a positive electrode active material for a Li-ion battery produced in Example 4. FIG. 実施例5で作製したLiイオン電池用正極活物質のX線回折図である。6 is an X-ray diffraction diagram of a positive electrode active material for a Li-ion battery produced in Example 5. FIG. 比較例1で作製したLiイオン電池用正極活物質のX線回折図である。2 is an X-ray diffraction pattern of a positive electrode active material for a Li ion battery produced in Comparative Example 1. FIG. 比較例4で作製したLiイオン電池用正極活物質のX線回折図である。6 is an X-ray diffraction pattern of a positive electrode active material for a Li-ion battery produced in Comparative Example 4. FIG. 実施例で合成した活物質を測定するために用いた電気化学セルの構成図である。It is a block diagram of the electrochemical cell used in order to measure the active material synthesize | combined in the Example. 実施例1で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 1. FIG. 実施例1で得られたLiイオン電池用正極活物質の1Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 1C of the positive electrode active material for Li ion batteries obtained in Example 1. FIG. 実施例2で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 2. FIG. 実施例3で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 3. FIG. 実施例3で得られたLiイオン電池用正極活物質の1Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 1C of the positive electrode active material for Li ion batteries obtained in Example 3. FIG. 比較例1で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result at 0.2C of the positive electrode active material for Li ion batteries obtained by the comparative example 1. FIG. 実施例4で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 4. FIG. 実施例5で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 5. FIG. 比較例2で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result at 0.2C of the positive electrode active material for Li ion batteries obtained by the comparative example 2. 比較例3で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained by the comparative example 3. FIG. 比較例4で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained by the comparative example 4.

以下本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量基準の%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated,% is% based on mass unless otherwise specified.

〔Liイオン電池用正極活物質の製造方法〕
本発明のLiイオン電池用正極活物質の製造方法は、(A)リチウム化合物、鉄化合物、およびリン酸化合物を混合し、原料混合物を作製する工程、(B)原料混合物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で仮焼成し、仮焼成物を作製する工程、(C)仮焼成物に、高分子材料を混合し、被焼成物を作製する工程、(D)被焼成物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で焼成する工程、をこの順で含むことを特徴とする。
[Method for producing positive electrode active material for Li-ion battery]
The method for producing a positive electrode active material for a Li-ion battery according to the present invention includes (A) a step of mixing a lithium compound, an iron compound, and a phosphoric acid compound to produce a raw material mixture, and (B) a raw material mixture in an inert atmosphere. A step of pre-baking in a reducing atmosphere or a vacuum atmosphere to produce a pre-fired product, (C) a step of mixing a polymer material with the pre-fired product to produce a fired product, and (D) firing And firing the product in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere in this order.

《(A)工程》
リチウム化合物は、LiFePOのリチウム源となり、リチウム化合物としては、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウムが挙げられ、リチウム化合物は、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、水酸化リチウム、リン酸リチウム、および炭酸リチウムであり、より好ましくは、ガス分解成分を発生することにより分解生成物の微粒子化が促進されるという観点から炭酸リチウムである。純度は、試薬メーカーから特級として市販されているものが好ましい。
<< (A) Process >>
The lithium compound serves as a lithium source for LiFePO 4 , and examples of the lithium compound include lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate. These lithium compounds may be used alone or in combination of two types. You may mix and use the above. Lithium hydroxide, lithium phosphate, and lithium carbonate are preferable, and lithium carbonate is more preferable from the viewpoint that generation of a gas decomposition component promotes micronization of decomposition products. The purity is preferably that which is commercially available as a special grade from a reagent manufacturer.

鉄化合物は、LiFePOの鉄源となり、鉄化合物としては、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、および炭鉄が挙げられ、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、クエン酸鉄、シュウ酸鉄、リン酸鉄であり、より好ましくは、ガス分解成分を発生することにより分解生成物の微粒子化が促進されるという観点からシュウ酸鉄である。シュウ酸鉄は、陰イオンが脱離しやすい材料のためである。 Iron compounds become a source of iron LiFePO 4, as the iron compound, iron citrate, iron oxalate, iron phosphate, include iron sulfate, and carbonated iron mixed singly or two or more It may be used. Preferred are iron citrate, iron oxalate, and iron phosphate, and more preferred is iron oxalate from the viewpoint that generation of a gas decomposition component promotes micronization of decomposition products. This is because iron oxalate is a material that easily releases anions.

リン酸化合物は、LiFePOのリン酸源となり、リン酸化合物としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸が挙げられ、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、リン酸二水素アンモニウムである。陽イオンが脱離しやすい観点からである。 The phosphoric acid compound serves as a phosphoric acid source for LiFePO 4 , and examples of the phosphoric acid compound include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid, which are used alone or in combination of two or more. May be. Preferably, it is ammonium dihydrogen phosphate. This is because the cation is easily desorbed.

リチウム化合物、鉄化合物、およびリン酸化合物の含有量は、リチウムイオン:1質量部に対して、鉄イオンは、7〜9質量部、リンイオンは、4〜5質量部が好ましい。   As for content of a lithium compound, an iron compound, and a phosphoric acid compound, 7-9 mass parts and 6-5 mass parts of iron ions are preferable with respect to lithium ion: 1 mass part.

混合する方法としては、ボールミル、ミキサー、乳鉢が挙げられ、均一に混合でき、粉砕も兼ねることができる観点からボールミルが好ましい。ここで、混合は、均一に混合し易い観点から、湿式法により行うことが好ましい。また、混合するときには、コンタミネーション防止の観点から、メノウ、アルミナ、ジルコニア等の容器や、ボール等を使用することが好ましい。   Examples of the mixing method include a ball mill, a mixer, and a mortar, and a ball mill is preferable from the viewpoint that it can be mixed uniformly and can also be pulverized. Here, the mixing is preferably performed by a wet method from the viewpoint of easy uniform mixing. Moreover, when mixing, it is preferable to use containers, such as agate, an alumina, a zirconia, a ball | bowl, etc. from a viewpoint of contamination prevention.

《(B)工程》
仮焼成するときの雰囲気は、鉄イオンの酸化を防ぐ観点から、不活性雰囲気中、還元性雰囲気中または真空雰囲気中であり、3〜5%の水素ガスを含有するアルゴンガス等の弱還元性雰囲気中が好ましい。温度は、250〜400℃が好ましく、300〜350℃がより好ましい。250℃より低いと好ましい仮焼成物(前駆体)の生成が不完全であり、400℃より高いと生成するLiFePO4の粒子成長が顕著となるからである。また、時間は、180〜600分が好ましく、240〜360分が、より好ましい。これより短いと、好ましい前駆体の生成が不完全であり、これより長いと、生産性が悪く、また生成するLiFePO4の粒子成長が顕著となるためである。仮焼成するときには、原料混合物を、アルミナボートに載せて行うと、コンタミネーション防止の観点から好ましい。
<< (B) Process >>
The atmosphere at the time of pre-baking is in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere from the viewpoint of preventing the oxidation of iron ions, and weak reducing properties such as argon gas containing 3 to 5% hydrogen gas. The atmosphere is preferable. The temperature is preferably 250 to 400 ° C, more preferably 300 to 350 ° C. When the temperature is lower than 250 ° C., a preferable pre-fired product (precursor) is not completely generated. When the temperature is higher than 400 ° C., the growth of LiFePO 4 particles becomes remarkable. The time is preferably 180 to 600 minutes, more preferably 240 to 360 minutes. If it is shorter than this, the production of a preferable precursor is incomplete, and if it is longer than this, the productivity is poor, and the particle growth of LiFePO 4 to be produced becomes remarkable. When pre-baking, it is preferable to carry the raw material mixture on an alumina boat from the viewpoint of preventing contamination.

《(C)工程》
高分子材料としては、ポリエチレングリコール、ポリスチレン、ポリビニルアルコール等が挙げられ、LiFePOの表面にカーボン微粒子が適切に析出する、Cに対するHの原子比が比較的小さいことが有利である観点からポリエチレングリコール、ポリスチレン、ポリビニルアルコールが好ましい。ここで、ポリエチレングリコールの場合には、重量平均分子量が、6000〜20000であると好ましく、ポリスチレンの場合には、重量平均分子量が、1000〜3000であると好ましい。重量平均分子量が低すぎると液体になり、重量平均分子量が高すぎると溶媒への溶解に時間がかかることになる。高分子材料は、溶媒に溶解して使用することが高分子材料を前駆体表面に均一に分散させる観点から好ましく、高分子材料を溶媒に溶解した溶液と前駆体を混ぜたスラリーを乾燥させることにより、高分子材料を前駆体表面に均一に分散させることが望ましい。このため上述の特性を持つ高分子材料が好ましい。ここで、高分子材料としては、(D)工程での焼成時にLiFePOの表面に、カーボン微粒子を形成可能なものであればよい。高分子材料としては、ポリエチレングリコール、ポリスチレン、ポリビニルアルコールなど化学式として、C、Hのみ、またはC、H、Oのみからなり、常温で固体であるものが好ましく、さらに極性を有する高分子材料のときには、メタノール、エタノール等の極性溶媒に、無極性高分子材料のときには、トルエンあるいはキシレン等の無極性溶媒に溶解するものが、より好ましい。
<< (C) Process >>
Examples of the polymer material include polyethylene glycol, polystyrene, polyvinyl alcohol and the like. From the viewpoint that carbon fine particles are appropriately deposited on the surface of LiFePO 4 and that the atomic ratio of H to C is relatively small, polyethylene glycol is advantageous. Polystyrene and polyvinyl alcohol are preferred. Here, in the case of polyethylene glycol, the weight average molecular weight is preferably 6,000 to 20,000, and in the case of polystyrene, the weight average molecular weight is preferably 1,000 to 3,000. If the weight average molecular weight is too low, it becomes liquid, and if the weight average molecular weight is too high, it takes time to dissolve in the solvent. The polymer material is preferably used after being dissolved in a solvent from the viewpoint of uniformly dispersing the polymer material on the surface of the precursor, and drying a slurry obtained by mixing the solution in which the polymer material is dissolved in the solvent and the precursor. Thus, it is desirable to uniformly disperse the polymer material on the precursor surface. For this reason, a polymer material having the above-mentioned characteristics is preferable. Here, the polymer material may be any material that can form carbon fine particles on the surface of LiFePO 4 at the time of firing in the step (D). As the polymer material, a chemical formula such as polyethylene glycol, polystyrene, polyvinyl alcohol, etc., which is composed of only C, H, or only C, H, O, and is preferably solid at room temperature, is moreover a polymer material having polarity. In the case of a nonpolar polymer material such as methanol or ethanol, those that are soluble in a nonpolar solvent such as toluene or xylene are more preferable.

高分子材料は、仮焼成物:100質量部に対して、好ましくは5〜40質量部、より好ましくは、15〜25質量部混合する。5質量部より少ないと、析出炭素量が少なく,均一に分散されず、40質量部より多いと、還元性の雰囲気が強まり,生成物が還元されてしまうからである。   The polymer material is preferably 5 to 40 parts by mass, and more preferably 15 to 25 parts by mass, with respect to 100 parts by mass of the calcined product. If the amount is less than 5 parts by mass, the amount of precipitated carbon is small and not uniformly dispersed. If the amount is more than 40 parts by mass, the reducing atmosphere is strengthened and the product is reduced.

仮焼成物に、高分子材料を混合する方法は、(A)工程と同様である。   The method of mixing the polymer material with the temporarily fired product is the same as in step (A).

《(D)工程》
(B)工程と同様に、焼成を不活性雰囲気中、還元性雰囲気中または真空雰囲気中で行う。温度は、600〜800℃が好ましく、700〜750℃がより好ましい。600℃より低いとLiFePOの結晶性の低下が顕著であり、800℃より高いとLiFePOの粒子成長が顕著になるためである。また、時間は、180〜1200分が好ましく、480〜720分が、より好ましい。これより短いと、LiFePOの結晶性の低下が顕著であり、これより長いと、カーボン微粒子が減少する、生産性が悪い、LiFePOの粒子成長が顕著になるためである。焼成するときには、被焼成物を、アルミナボートに載せて行うと、コンタミネーション防止の観点から好ましい。
<< (D) Process >>
As in the step (B), firing is performed in an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere. The temperature is preferably 600 to 800 ° C, more preferably 700 to 750 ° C. This is because when the temperature is lower than 600 ° C., the crystallinity of LiFePO 4 is significantly lowered, and when the temperature is higher than 800 ° C., the particle growth of LiFePO 4 becomes remarkable. Further, the time is preferably 180 to 1200 minutes, and more preferably 480 to 720 minutes. If the length is shorter than this, the crystallinity of LiFePO 4 is significantly reduced. If the length is longer than this, the carbon fine particles are reduced, the productivity is poor, and the growth of LiFePO 4 particles becomes remarkable. When firing, it is preferable to place the material to be fired on an alumina boat from the viewpoint of preventing contamination.

本発明のLiイオン電池用正極活物質の製造方法は、例えば、以下の反応式により起こると考えられる。
LiCO+2(FeC・2HO)+2NHPO
→2LiFePO+5CO↑+2NH↑+5HO↑+2H
The manufacturing method of the positive electrode active material for Li ion batteries of this invention is considered to occur by the following reaction formula, for example.
Li 2 CO 3 +2 (FeC 2 O 4 .2H 2 O) + 2NH 4 H 2 PO 4
→ 2LiFePO 4 + 5CO 2 ↑ + 2NH 3 ↑ + 5H 2 O ↑ + 2H 2

上記の反応においては、Feの酸化を防ぐことにより所望の効果を得ることができるので、アルゴンガス、窒素ガス等の不活性雰囲気中;水素、一酸化炭素等の還元性雰囲気中;または真空雰囲気中、で行う。   In the above reaction, since the desired effect can be obtained by preventing the oxidation of Fe, in an inert atmosphere such as argon gas or nitrogen gas; in a reducing atmosphere such as hydrogen or carbon monoxide; or in a vacuum atmosphere Do in the middle.

〔Liイオン電池用正極活物質〕
本発明のLiイオン電池用正極活物質は、上記のLiイオン電池用正極活物質の製造方法により製造された、放電容量が130mAh/g以上のLiFePOの表面にカーボン微粒子が存在することを特徴とする。
[Positive electrode active material for Li-ion battery]
The positive electrode active material for Li ion batteries of the present invention is characterized in that carbon fine particles are present on the surface of LiFePO 4 having a discharge capacity of 130 mAh / g or more produced by the method for producing a positive electrode active material for Li ion batteries. And

LiFePOは、オリビン型であり、好ましい組成は、LiFePO4(式中、x=0〜1を示す)である。ここで、Li、Fe、P、Oの定量分析は、ICP質量分析法で行う。なお、例えば、結晶構造におけるFeのサイトの一部を、Co、Ni、Mn等の他の元素で置換してもよい。 LiFePO 4 is an olivine type, and a preferred composition is Li x FePO 4 (wherein x = 0 to 1). Here, quantitative analysis of Li, Fe, P, and O is performed by ICP mass spectrometry. For example, a part of the Fe site in the crystal structure may be substituted with another element such as Co, Ni, or Mn.

例えば、Mn、Ni、Coは、Feと約同等のイオン半径を有し、かつFeとは異なる電位で酸化還元するものである。そのため、Feサイトの一部を、これらの元素の1種以上で置換することにより、リチウム鉄複合酸化物のエネルギー密度の向上を図ることができる。したがって、リチウム鉄複合酸化物は、Feのサイトの一部を他の元素Mで置換した、組成式LiFe1−yPO(ここで、Mは、Mn、Ni、Coから選ばれる少なくとも1種であり、y=0〜1.0である)で示されるものとすることが望ましい。特に、資源的にも豊富で安価であるという理由から、置換元素MはMnとすることが望ましい。 For example, Mn, Ni, and Co have an ionic radius that is approximately the same as that of Fe, and are oxidized and reduced at a potential different from that of Fe. Therefore, the energy density of the lithium iron composite oxide can be improved by replacing a part of the Fe site with one or more of these elements. Therefore, the lithium iron composite oxide has a composition formula LiFe 1-y M y PO 4 (where M is at least selected from Mn, Ni, and Co), in which part of the Fe site is substituted with another element M. It is desirable that it be one type and y = 0 to 1.0). In particular, the substitution element M is preferably Mn because it is abundant in terms of resources and is inexpensive.

図1に、実施例1で作製したLiイオン電池用正極活物質の走査型電子顕微鏡写真を、図2に、実施例1で作製したLiイオン電池用正極活物質の粒度分布測定の結果を示す。図1および図2からわかるように、Liイオン電池用正極活物質は、いわゆる固相法で製造したのにもかかわらず、サブミクロンオーダーであり、粒径範囲は15〜400nmである。粒度分布の累積50%における粒径を平均粒径と考えると60nmである。また粒度分布の頻度36%および粒度分布の頻度64%にピークが見られ、その値は各々35nmと80nmであることから、これらの値の径を持つ粒子が多いことがわかる。また、BET法で測定したLiイオン電池用正極活物質の比表面積が、約10〜30m/gであり、カーボンは、微粒子で存在していると考えられる。 FIG. 1 shows a scanning electron micrograph of the Li-ion battery positive electrode active material produced in Example 1, and FIG. 2 shows the results of particle size distribution measurement of the Li-ion battery positive electrode active material produced in Example 1. . As can be seen from FIG. 1 and FIG. 2, the positive electrode active material for Li-ion batteries is in the submicron order and has a particle size range of 15 to 400 nm, despite being manufactured by a so-called solid phase method. When the particle diameter at the cumulative 50% of the particle size distribution is considered as the average particle diameter, it is 60 nm. In addition, peaks are observed at a particle size distribution frequency of 36% and a particle size distribution frequency of 64%, and the values are 35 nm and 80 nm, respectively, which indicates that there are many particles having the diameters of these values. Moreover, the specific surface area of the positive electrode active material for Li ion batteries measured by BET method is about 10-30 m < 2 > / g, and it is thought that carbon exists with fine particle.

カーボン微粒子の含有量は、Liイオン電池用正極活物質:100質量部に対して、1〜5質量部であると好ましく、1〜3質量部であると、より好ましい。1質量部より少ないと、粒子表面全体に炭素が分布できず、5質量部より多いと無駄である。ここで、カーボン微粒子含有量の定量は、製造したLiイオン電池用正極活物質を、4mol/dmの塩酸に浸漬してLiFePOを溶解し、吸引濾過後、乾燥する。このときの残留分の質量をカーボン微粒子量として、処理前のLiイオン電池用正極活物質の質量との比較から求める。なお、カーボン微粒子の含有量は、主に添加する高分子材料の含有量により制御することができ、(D)工程の焼成温度、焼成時間によっても制御することができる。 The content of the carbon fine particles is preferably 1 to 5 parts by mass and more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material for Li ion batteries. If it is less than 1 part by mass, carbon cannot be distributed over the entire particle surface, and if it is more than 5 parts by mass, it is useless. Here, the carbon fine particle content is determined by immersing the produced positive electrode active material for Li ion battery in 4 mol / dm 3 hydrochloric acid to dissolve LiFePO 4 , suction filtration, and drying. The residual mass at this time is determined as the amount of carbon fine particles and is compared with the mass of the positive electrode active material for the Li ion battery before treatment. The content of the carbon fine particles can be controlled mainly by the content of the polymer material to be added, and can also be controlled by the firing temperature and firing time in the step (D).

本発明のLiイオン電池用正極活物質の放電容量は、放電レート:0.2Cで測定したときの値とする。ここで、0.2Cは、理論容量分を充放電するのにかかる時間を5時間とするレートをいい、具体的な測定条件としては、電流値は、Liイオン電池用正極活物質:1gに対して、34mAとし、負極には金属リチウムを用い、電圧範囲は、金属リチウム基準で、4.0〜2.0Vとする。本発明のLiイオン電池用正極活物質の放電容量は、130mAh/g以上であり、好ましくは140mAh以上、より好ましくは150mAh/g以上である。   The discharge capacity of the positive electrode active material for a Li-ion battery of the present invention is a value measured at a discharge rate of 0.2C. Here, 0.2 C refers to a rate that takes 5 hours to charge and discharge the theoretical capacity. As specific measurement conditions, the current value is 1 g of the positive electrode active material for Li-ion batteries. On the other hand, it is 34 mA, metal lithium is used for the negative electrode, and the voltage range is 4.0 to 2.0 V with respect to metal lithium. The discharge capacity of the positive electrode active material for a Li-ion battery of the present invention is 130 mAh / g or more, preferably 140 mAh or more, more preferably 150 mAh / g or more.

本発明の方法で製造されたLiイオン電池用正極活物質を用いて、リチウムイオン電池用の正極を構成するには、例えば、Liイオン電池用正極活物質を、そのまま活物質として用い、その他については従来公知の正極と同様に、バインダーや、必要に応じて更に炭素材料などの導電助剤を含有する正極スラリーの成形体とすればよい。また、必要に応じて、これらの正極スラリーを、集電体となる導電性基体の片面または両面に、正極活物質層として形成すればよい。   In order to construct a positive electrode for a lithium ion battery using the positive electrode active material for a Li ion battery produced by the method of the present invention, for example, the positive electrode active material for a Li ion battery is used as an active material as it is, and the others Like the conventionally known positive electrode, a molded body of a positive electrode slurry containing a binder and, if necessary, a conductive aid such as a carbon material may be used. Moreover, what is necessary is just to form these positive electrode slurries as a positive electrode active material layer in the single side | surface or both surfaces of the electroconductive base | substrate used as a collector as needed.

本発明の方法で製造されたLiイオン電池用正極活物質を用いたリチウムイオン電池用の正極を用いてリチウムイオン電池を構成する際には、負極、セパレーター、非水電解液、外装体などの各種構成については特に制限はなく、従来公知のリチウムイオン電池と同様の構成を採用することができる。   When a lithium ion battery is constructed using a positive electrode for a lithium ion battery using the positive electrode active material for a Li ion battery produced by the method of the present invention, the negative electrode, separator, non-aqueous electrolyte, exterior body, etc. There is no restriction | limiting in particular about various structures, The structure similar to a conventionally well-known lithium ion battery is employable.

本発明の方法で製造されたLiイオン電池用正極活物質は、電池電極、二次電池用電極の正極活物質として有効に使用される。特に、リチウムイオン電池、リチウムイオンポリマー電池、リチウムポリマー電池等の非水電解液二次電池用正極活物質として極めて有効であり、リチウム一次電池用正極活物質としても有効である。本発明の電極活物質を用いた非水電解液二次電池は、大きな充放電容量と高いエネルギー密度を持ち、優れたサイクル特性、安全性等を発現し、中・大型二次電池や車載用二次電池の正極活物質として有効に適用できる。また、本発明の製造方法は、大掛かりな装置が不要で、容易に合成できるため、製造コストを抑えることができる。   The positive electrode active material for Li ion batteries produced by the method of the present invention is effectively used as a positive electrode active material for battery electrodes and secondary battery electrodes. In particular, it is extremely effective as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, and is also effective as a positive electrode active material for lithium primary batteries. The non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and high energy density, and exhibits excellent cycle characteristics, safety, etc. It can be effectively applied as a positive electrode active material of a secondary battery. Further, the manufacturing method of the present invention does not require a large-scale apparatus and can be easily synthesized, so that the manufacturing cost can be suppressed.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実施例1〕
《(A)工程》
図3に、使用したメノウ容器(内容積:約80cm)と、メノウボールを示す。エタノールを入れたメノウ容器に、Li、Fe、Pの原料として、それぞれ炭酸リチウム:0.2342g、シュウ酸鉄2水和物:1.1404g、リン酸二水素アンモニウム:0.7292gを加え、FRITSCH社製ボールミル(型番:P−6)で2時間混合し、原料混合物を作製した。
《(B)工程》
原料混合物を電気炉に入れ、5%水素ガスを含むアルゴンガスを流しながら、350℃程度で10時間仮焼成を行い、約1.3gの仮焼成物を作成した。
《(C)工程》
仮焼成物に、高分子材料として、エタノールに溶解したポリエチレングリコール(PEG):0.2gを添加して、上記ボールミルで2時間混合し、被焼成物を作製した。
《(D)工程》
水素ガスを含まないアルゴンガスを流しながら700℃で10時間焼成し、実施例1のLiイオン電池用正極活物質を製造した。
[Example 1]
<< (A) Process >>
FIG. 3 shows an agate container (internal volume: about 80 cm 3 ) and an agate ball used. To an agate vessel containing ethanol, lithium carbonate: 0.2342 g, iron oxalate dihydrate: 1.1404 g, and ammonium dihydrogen phosphate: 0.7292 g were added as raw materials for Li, Fe, and P, respectively. A raw material mixture was prepared by mixing for 2 hours with a ball mill (model number: P-6).
<< (B) Process >>
The raw material mixture was put into an electric furnace and pre-baked at about 350 ° C. for 10 hours while flowing an argon gas containing 5% hydrogen gas to prepare about 1.3 g of a pre-fired product.
<< (C) Process >>
To the calcined product, 0.2 g of polyethylene glycol (PEG) dissolved in ethanol was added as a polymer material and mixed for 2 hours with the above ball mill to prepare a product to be fired.
<< (D) Process >>
Firing was performed at 700 ° C. for 10 hours while flowing an argon gas not containing hydrogen gas, to produce a positive electrode active material for a Li-ion battery of Example 1.

〔実施例2〕
(C)工程で、仮焼成物に、高分子材料として、エタノールに溶解したポリスチレン:0.2gを添加したこと以外は、実施例1と同様にして、実施例2のLiイオン電池用正極活物質を製造した。
[Example 2]
In the step (C), the positive electrode active for Li-ion battery of Example 2 was performed in the same manner as in Example 1 except that 0.2 g of polystyrene dissolved in ethanol was added as a polymer material to the temporarily fired product. The material was manufactured.

〔実施例3〕
(B)工程で、320℃、5時間で仮焼成したこと以外は、実施例2と同様にして、実施例3のLiイオン電池用正極活物質を製造した。
Example 3
In the step (B), a positive electrode active material for a Li-ion battery of Example 3 was produced in the same manner as in Example 2 except that calcination was performed at 320 ° C. for 5 hours.

〔比較例1〕
(C)工程で、ポリエチレングリコールを添加しなかったこと以外は、実施例1と同様にして、比較例1のLiイオン電池用正極活物質を製造した。
[Comparative Example 1]
In the step (C), a positive electrode active material for a Li-ion battery of Comparative Example 1 was produced in the same manner as in Example 1 except that polyethylene glycol was not added.

〔実施例4〕
(D)工程で、650℃、10時間で仮焼成したこと以外は、実施例1と同様にして、実施例4のLiイオン電池用正極活物質を製造した。
Example 4
In the step (D), a positive electrode active material for a Li-ion battery of Example 4 was produced in the same manner as in Example 1 except that calcination was performed at 650 ° C. for 10 hours.

〔実施例5〕
(D)工程で、750℃、10時間で仮焼成したこと以外は、実施例1と同様にして、実施例4のLiイオン電池用正極活物質を製造した。
Example 5
In the step (D), a positive electrode active material for a Li-ion battery of Example 4 was produced in the same manner as in Example 1 except that calcination was performed at 750 ° C. for 10 hours.

〔比較例2〕
比較例1で製造したLiイオン電池用正極活物質に、エタノールに溶解したポリエチレングリコール:0.2gを添加した後、ボールミルで2時間混合して、比較例2のLiイオン電池用正極活物質を製造した。
[Comparative Example 2]
After adding 0.2 g of polyethylene glycol dissolved in ethanol to the positive electrode active material for Li ion battery produced in Comparative Example 1, the mixture was mixed for 2 hours by a ball mill to obtain the positive electrode active material for Li ion battery of Comparative Example 2. Manufactured.

〔比較例3〕
比較例1で製造したLiイオン電池用正極活物質に、アセチレンブラック(AB):0.2gを添加した後、ボールミルで2時間混合して、比較例3のLiイオン電池用正極活物質を製造した。
[Comparative Example 3]
Acetylene black (AB): 0.2 g was added to the Li-ion battery positive electrode active material produced in Comparative Example 1, and then mixed for 2 hours in a ball mill to produce the Li-ion battery positive electrode active material of Comparative Example 3. did.

〔比較例4〕
(A)で、さらに、エタノールに溶解したポリエチレングリコール:0.2gを添加し、(C)工程で、ポリエチレングリコールを添加しなかったこと以外は、実施例1と同様にして、比較例4のLiイオン電池用正極活物質を製造した。
[Comparative Example 4]
In (A), polyethylene glycol dissolved in ethanol: 0.2 g was further added, and in the step (C), polyethylene glycol was not added. A positive electrode active material for a Li-ion battery was produced.

表1に、実施例1〜5、比較例1〜4の製造条件のまとめを示す。   In Table 1, the summary of the manufacturing conditions of Examples 1-5 and Comparative Examples 1-4 is shown.

〔カーボン含有量の定量〕
製造したLiイオン電池用正極活物質を、4mol/dmの塩酸に浸漬してLiFePOを溶解し、吸引濾過後、乾燥した。このときの残留分の質量をカーボン微粒子量として、処理前のLiイオン電池用正極活物質の質量との比較から、Liイオン電池用正極活物質中のカーボン含有量を求めた。表1に、結果を示す。
[Quantification of carbon content]
The produced positive electrode active material for Li ion battery was immersed in 4 mol / dm 3 hydrochloric acid to dissolve LiFePO 4 , suction filtered, and dried. The carbon content in the positive electrode active material for the Li ion battery was determined from the comparison with the mass of the positive electrode active material for the Li ion battery before the treatment, with the residual mass at this time as the amount of carbon fine particles. Table 1 shows the results.

〔比表面積の測定〕
製造したLiイオン電池用正極活物質の比表面積を、島津製作所社製比表面積測定装置(型番:フローソーブII−2300)を用いて、測定した。表1に、結果を示す。
[Measurement of specific surface area]
The specific surface area of the manufactured positive electrode active material for Li ion batteries was measured using a specific surface area measuring device (model number: Flowsorb II-2300) manufactured by Shimadzu Corporation. Table 1 shows the results.

〔走査型電子顕微鏡観察〕
実施例1で得られたLiイオン電池用正極活物質をJEOL製走査型電子顕微鏡(型番:JSM−5900)で観察した。図1に、その結果を示す。
[Scanning electron microscope observation]
The positive electrode active material for Li ion battery obtained in Example 1 was observed with a scanning electron microscope (model number: JSM-5900) manufactured by JEOL. FIG. 1 shows the result.

〔粒度分布測定〕
実施例1で得られた正Liイオン電池用正極活物質の粒度分布測定を、マイクロトラック社製粒度分布測定機(型番:UPA−EX)で行った。図2に、その結果を示す。図2で、棒グラフは頻度を、折れ線グラフは累積を示す。
(Particle size distribution measurement)
The particle size distribution of the positive electrode active material for a positive Li ion battery obtained in Example 1 was measured with a particle size distribution measuring machine (model number: UPA-EX) manufactured by Microtrack. FIG. 2 shows the result. In FIG. 2, the bar graph indicates frequency, and the line graph indicates accumulation.

〔X線回折測定〕
実施例1、4、5、および比較例1、4で得られたLiイオン電池用正極活物質を、リガク製X線回折装置を用いて、2θ:10〜70°の範囲でX線回折測定を行った。図4に実施例1の、図5に実施例4の、図6に実施例5の、図7に比較例1の、図8に比較例4の、それぞれの結果を示す。ここで、図4〜8で、縦軸は、強度(Intensity、単位:a.u.(Arbitrary unit))、横軸は、2θ(単位:°)を示し、図4〜8の上段には、LiFePOの無機結晶構造データベースを元に記載したX線ピークを、参考のために記載した。測定した全てで、LiFePOの単一相が確認された。
[X-ray diffraction measurement]
X-ray diffraction measurement of the positive electrode active materials for Li-ion batteries obtained in Examples 1, 4, 5 and Comparative Examples 1, 4 using a Rigaku X-ray diffractometer in the range of 2θ: 10 to 70 °. Went. FIG. 4 shows the results of Example 1, FIG. 5 shows the results of Example 4, FIG. 6 shows the results of Example 5, FIG. 7 shows the results of Comparative Example 1, and FIG. 4 to 8, the vertical axis represents intensity (Intensity, unit: au (Arbitrary unit)), and the horizontal axis represents 2θ (unit: °). The X-ray peak described based on the LiFePO 4 inorganic crystal structure database is shown for reference. All measured confirmed a single phase of LiFePO 4 .

〔試験例5〕
図9に、電池特性評価に用いた電気化学セルの構成図を示す。図9では、10は作用極、11は正極および集電体、12は不織布、13はセパレーター、14は負極、15は対極、16は電解液を示す。電極面積は1cmとした。合成したLiイオン電池用正極活物質粉末、アセチレンブラック(導電助剤)、ポリテトラフルオロエチレン(結着剤)を、質量比70:25:5で混合したもの(総量:0.1g)を正極11とした。負極14には、金属リチウムを用い、電解液16には、ポリカーボネートとジメトキシエタンを体積比1:1で混合した溶液に電解質として1mol/dmのLiClOを溶解した有機溶媒を用いた。集電体11には、ニッケルメッシュ、セパレーター13には、日揮化学株式会社製セパレーター、さらに不織布12には、三井石油化学工業製ポリプロピレン不織布を用いた。
[Test Example 5]
In FIG. 9, the block diagram of the electrochemical cell used for battery characteristic evaluation is shown. In FIG. 9, 10 is a working electrode, 11 is a positive electrode and a current collector, 12 is a nonwoven fabric, 13 is a separator, 14 is a negative electrode, 15 is a counter electrode, and 16 is an electrolytic solution. The electrode area was 1 cm 2 . Synthesized positive electrode active material powder for Li-ion battery, acetylene black (conducting aid), polytetrafluoroethylene (binder) mixed in a mass ratio of 70: 25: 5 (total amount: 0.1 g) It was set to 11. For the negative electrode 14, metallic lithium was used, and for the electrolytic solution 16, an organic solvent in which 1 mol / dm 3 of LiClO 4 was dissolved as an electrolyte in a mixed solution of polycarbonate and dimethoxyethane at a volume ratio of 1: 1 was used. The current collector 11 was a nickel mesh, the separator 13 was a separator manufactured by JGC Chemicals, and the nonwoven fabric 12 was a polypropylene nonwoven fabric manufactured by Mitsui Petrochemical Industries.

充放電測定は、充放電測定装置(北斗電工(株)製 HJ−101 SM6)を用いて行った。測定条件は、20℃の温度条件下、2端子法で、充放電レート:0.2C(Liイオン電池用正極活物質:1gに対して、34mA)、電圧範囲:2.5〜4.0Vで、充電・放電を10回繰り返した。また、実施例1、3については、充放電レート:1C(理論容量分を充放電するのにかかる時間を1時間とするレート)でも測定を行った。図10に、実施例1の0.2Cでの結果を、図11に、実施例1の1Cでの結果を、図12に、実施例2の0.2Cでの結果を、図13に、実施例3の0.2Cでの結果を、図14に、実施例3の1Cでの結果を、図15に、比較例1の0.2Cでの結果を、図16に、実施例4の0.2Cでの結果を、図17に、実施例5の0.2Cでの結果を、図18に、比較例2の0.2Cでの結果を、図19に、比較例3の0.2Cでの結果を、図20に、比較例4の0.2Cでの結果を示す。なお、図10〜20で、縦軸は、負極Li金属に対する電圧(Voltage、単位:V)、横軸は、容量(capacity、単位:mAh/g)を示す。   The charge / discharge measurement was performed using a charge / discharge measuring device (HJ-101 SM6 manufactured by Hokuto Denko Co., Ltd.). Measurement conditions are a temperature condition of 20 ° C., a two-terminal method, a charge / discharge rate: 0.2 C (34 mA for a positive electrode active material for Li ion battery: 1 g), a voltage range: 2.5 to 4.0 V. Then, charging and discharging were repeated 10 times. Further, in Examples 1 and 3, the measurement was also performed at a charge / discharge rate of 1C (a rate in which the time taken to charge / discharge the theoretical capacity is 1 hour). FIG. 10 shows the result of Example 1 at 0.2C, FIG. 11 shows the result of Example 1 at 1C, FIG. 12 shows the result of Example 2 at 0.2C, and FIG. FIG. 14 shows the result of Example 3 at 0.2C, FIG. 15 shows the result of 1C of Example 3, FIG. 15 shows the result of 0.2C of Comparative Example 1, FIG. FIG. 17 shows the result at 0.2C, FIG. 18 shows the result at 0.2C in Example 5, FIG. 18 shows the result at 0.2C in Comparative Example 2, and FIG. The result at 2C is shown in FIG. 20, and the result at 0.2C in Comparative Example 4 is shown. 10 to 20, the vertical axis represents the voltage (Voltage, unit: V) with respect to the negative electrode Li metal, and the horizontal axis represents the capacity (capacity, unit: mAh / g).

また、表2に、初期放電容量、10サイクル後の放電容量、容量維持率を示す。ここで、容量維持率は、〔(10サイクル後の放電容量)/(初期放電容量)〕である(単位は、「%」)。ここで、比較例3の10サイクル後の放電容量には、2サイクル後の値を、比較例4の10サイクル後の放電容量には、3サイクル後の値を記載した。   Table 2 shows the initial discharge capacity, the discharge capacity after 10 cycles, and the capacity retention rate. Here, the capacity retention rate is [(discharge capacity after 10 cycles) / (initial discharge capacity)] (unit is “%”). Here, the discharge capacity after 10 cycles of Comparative Example 3 is the value after 2 cycles, and the discharge capacity after 10 cycles of Comparative Example 4 is the value after 3 cycles.

表1からわかるように、実施例1〜5のいずれにおいても1.67〜3.79質量%のカーボンが存在し、比表面積が、14.55m/gと非常に大きかった。これに対して、比較例1〜3は、比表面積が、7.68m/g以下であった。また、実施例1〜5では、0.2Cでの放電容量が140mAh/g以上、10サイクル後のサイクル維持率が95%以上であった。特に、焼成温度が700℃で、カーボン量が1.98〜2.92%の実施例1〜3では、150mAh/g以上と非常に高く、10サイクル後のサイクル維持率も顕著に良好であった。また、図10、図12、図13からわかるように、3.4V付近でのフラットな放電領域が大きく、使用面からも良好である。さらに、実施例1、3では、1C放電においても良好な結果が得られた。これに対して、(C)工程で高分子材料を添加しなかった比較例1では、放電容量が113mA/gと小さく、サイクル特性も悪かった。(D)工程後に高分子材料を添加した比較例2は、放電容量が150mAh/gと大きいが、粒子径が大きいためサイクル特性が低下した。ここで、比較例2について、図18から120mAh/gにおける充電と放電の電圧差(分極)を算出したところ、0.254Vであった。これに対して、実施例1、実施例2、実施例3で合成した正極材料の120mAh/gにおける分極は、それぞれ0.163V、0.166V、0.104Vであり、これらと比べると比較例2の分極は大きいので、電池抵抗が大きいことがわかる。(D)工程後にABを添加した比較例3は、粒子成長が進んだため、放電容量が109mA/gと小さく、(A)工程で高分子材料を添加した比較例4も、放電容量が97mA/gと小さかった。また、各比較例では、放電開始電圧が低く、放電容量が低いだけでなく、放電エネルギー量も低い。これらの結果より、本発明のLiイオン電池用正極活物質の表面に存在するカーボン微粒子により、Liイオン電池用正極活物質の導電性が向上することに加えて、放電容量が著しく増加することがわかった。 As can be seen from Table 1, 1.67 to 3.79% by mass of carbon was present in any of Examples 1 to 5, and the specific surface area was very large at 14.55 m 2 / g. On the other hand, Comparative Examples 1 to 3 had a specific surface area of 7.68 m 2 / g or less. In Examples 1 to 5, the discharge capacity at 0.2 C was 140 mAh / g or more, and the cycle retention after 10 cycles was 95% or more. In particular, in Examples 1 to 3, in which the firing temperature was 700 ° C. and the carbon amount was 1.98 to 2.92%, it was very high at 150 mAh / g or more, and the cycle maintenance rate after 10 cycles was remarkably good. It was. Further, as can be seen from FIGS. 10, 12, and 13, a flat discharge region in the vicinity of 3.4 V is large, which is favorable in terms of use. Further, in Examples 1 and 3, good results were obtained even in 1C discharge. On the other hand, in Comparative Example 1 in which the polymer material was not added in the step (C), the discharge capacity was as small as 113 mA / g, and the cycle characteristics were also poor. In Comparative Example 2 in which the polymer material was added after the step (D), the discharge capacity was as large as 150 mAh / g, but the cycle characteristics were degraded due to the large particle size. Here, for Comparative Example 2, the voltage difference (polarization) between charging and discharging at 120 mAh / g was calculated from FIG. 18 and found to be 0.254V. On the other hand, the polarities at 120 mAh / g of the positive electrode materials synthesized in Example 1, Example 2, and Example 3 are 0.163 V, 0.166 V, and 0.104 V, respectively. Since the polarization of 2 is large, it can be seen that the battery resistance is large. In Comparative Example 3 in which AB was added after the (D) step, the particle growth progressed, so the discharge capacity was as small as 109 mA / g. In Comparative Example 4 in which the polymer material was added in the (A) step, the discharge capacity was also 97 mA. It was as small as / g. In each comparative example, not only the discharge start voltage is low and the discharge capacity is low, but also the amount of discharge energy is low. From these results, the carbon fine particles present on the surface of the positive electrode active material for the Li ion battery of the present invention can significantly increase the discharge capacity in addition to improving the conductivity of the positive electrode active material for the Li ion battery. all right.

以上より、本発明の製造方法によるLiFePOの表面にカーボン微粒子が存在するLiイオン電池用正極活物質は、放電容量、サイクル特性ともに顕著に優れており、Liイオン電池向けに好適である。 From the above, the positive electrode active material for Li ion battery in which carbon fine particles are present on the surface of LiFePO 4 by the production method of the present invention is remarkably excellent in both discharge capacity and cycle characteristics, and is suitable for Li ion battery.

10 作用極
11 正極および集電体
12 不織布
13 セパレーター
14 負極
15 対極
16 電解液
DESCRIPTION OF SYMBOLS 10 Working electrode 11 Positive electrode and current collector 12 Nonwoven fabric 13 Separator 14 Negative electrode 15 Counter electrode 16 Electrolyte

Claims (7)

(A)リチウム化合物、酸化鉄を除く鉄化合物、およびリン酸化合物を混合し、原料混合物を作製する工程、(B)原料混合物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で仮焼成し、仮焼成物を作製する工程、(C)仮焼物を粉砕せずに、仮焼成物に、水を含まない極性溶媒または無極性溶媒に溶解した高分子材料を混合し、被焼成物を作製する工程、(D)被焼成物を、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で焼成する工程、をこの順で含むことを特徴とする、粒径範囲が15〜400nmであり、LiFePOの表面にカーボン微粒子が存在するLiイオン電池用正極活物質の製造方法。 (A) A step of mixing a lithium compound, an iron compound excluding iron oxide , and a phosphoric acid compound to produce a raw material mixture; (B) a raw material mixture temporarily in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere; A step of firing and preparing a calcined product, (C) without crushing the calcined product, mixing the calcined product with a polymer material dissolved in a polar solvent or a nonpolar solvent not containing water, And (D) a step of firing the object to be fired in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere in this order, and a particle size range of 15 to 400 nm. A method for producing a positive electrode active material for a Li ion battery, in which carbon fine particles are present on the surface of LiFePO 4 . 高分子材料が、ポリエチレングリコール、ポリスチレン、またはポリビニルアルコールである、請求項1記載のLiイオン電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for Li ion batteries of Claim 1 whose polymer material is polyethyleneglycol, polystyrene, or polyvinyl alcohol. )工程での仮焼成の温度が、250〜400℃であり、(D)工程での焼成の温度が、600〜800℃である、請求項1または2記載のLiイオン電池用正極活物質の製造方法。 The positive electrode active for Li ion battery according to claim 1 or 2, wherein the temperature of pre-baking in step ( B ) is 250 to 400 ° C, and the temperature of baking in step (D) is 600 to 800 ° C. A method for producing a substance. リチウム化合物が、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウムからなる群より選択される少なくとも1種である、請求項1〜3のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The Li ion according to any one of claims 1 to 3, wherein the lithium compound is at least one selected from the group consisting of lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate. A method for producing a positive electrode active material for a battery. 鉄化合物が、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、および炭鉄からなる群より選択される少なくとも1種である、請求項1〜4のいずれか1項記載のLiイオン電池用正極活物質の製造方法。 Iron compounds, iron citrate, iron oxalate, iron phosphate is at least one selected from iron sulfate, and carbonated iron or Ranaru group, Li of any of claims 1-4 A method for producing a positive electrode active material for an ion battery. リン酸化合物が、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸からなる群より選択される少なくとも1種である、請求項1〜5のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The positive electrode for a Li ion battery according to any one of claims 1 to 5, wherein the phosphoric acid compound is at least one selected from the group consisting of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid. A method for producing an active material. 請求項1〜6のいずれか1項記載のLiイオン電池用正極活物質の製造方法により製造された、Liイオン電池用正極活物質:1gに対して34mAで、金属Li基準での電圧範囲が4.0〜2.5Vでの放電容量が130mAh/g以上のLiFePOの表面にカーボン微粒子が存在することを特徴とする、Liイオン電池用正極活物質。 The positive electrode active material for a Li ion battery manufactured by the method for manufacturing a positive electrode active material for a Li ion battery according to any one of claims 1 to 6 , wherein the voltage range based on metal Li is 34 mA with respect to 1 g. A positive electrode active material for a Li-ion battery, wherein carbon fine particles are present on the surface of LiFePO 4 having a discharge capacity of 4.0 to 2.5 V and a discharge capacity of 130 mAh / g or more.
JP2010073965A 2010-03-28 2010-03-28 Cathode active material for Li-ion battery and method for producing the same Active JP5765798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073965A JP5765798B2 (en) 2010-03-28 2010-03-28 Cathode active material for Li-ion battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073965A JP5765798B2 (en) 2010-03-28 2010-03-28 Cathode active material for Li-ion battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011210376A JP2011210376A (en) 2011-10-20
JP5765798B2 true JP5765798B2 (en) 2015-08-19

Family

ID=44941238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073965A Active JP5765798B2 (en) 2010-03-28 2010-03-28 Cathode active material for Li-ion battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5765798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057577A (en) 2017-11-20 2019-05-29 에스케이이노베이션 주식회사 Method of preparing lithium metal oxide and method of manufacturing lithium secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323104B1 (en) 2011-12-13 2013-10-30 한국세라믹기술원 Manufacturing method of LiFePO4 cathode active material for lithium battery
KR101733743B1 (en) 2012-10-05 2017-05-08 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery, positive active material for rechargeable lithium battery using the method, and rechargeable lithium battery including the same
JP5932688B2 (en) * 2013-03-14 2016-06-08 三井造船株式会社 Method for producing electrode material
KR101580030B1 (en) * 2013-07-09 2015-12-23 주식회사 엘지화학 Method for manufacturing lithium iron phosphate nanopowder coated with carbon
JP6654355B2 (en) * 2015-03-28 2020-02-26 国立大学法人秋田大学 Method for producing gold nanoparticles, gold nanoparticles, method for producing positive electrode active material for Li-ion battery, and positive electrode active material for Li-ion battery
JP6288338B1 (en) * 2017-03-24 2018-03-07 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
CN107180965B (en) * 2017-07-10 2019-08-30 浙江美都墨烯科技有限公司 A kind of nano-scale lithium iron phosphate/graphene composite material and its preparation method and application
CN108101013A (en) * 2018-01-17 2018-06-01 靖西湘潭电化新能源材料有限公司 A kind of production method of high-quality battery-grade iron phosphate
CN109786699B (en) * 2018-12-29 2022-05-06 合肥融捷能源材料有限公司 High-compaction lithium iron phosphate cathode material and hydrothermal method preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187524B2 (en) * 2002-01-31 2008-11-26 日本化学工業株式会社 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4297406B2 (en) * 2002-07-31 2009-07-15 三井造船株式会社 Method for producing secondary battery positive electrode material and secondary battery
KR101156828B1 (en) * 2003-10-27 2012-06-18 자이단호우진 치큐칸쿄 산교기쥬츠 켄큐키코 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP4794833B2 (en) * 2004-07-21 2011-10-19 日本コークス工業株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5017778B2 (en) * 2005-01-05 2012-09-05 株式会社Gsユアサ Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP5385616B2 (en) * 2007-01-29 2014-01-08 関東電化工業株式会社 COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20110091772A1 (en) * 2008-03-31 2011-04-21 Yuji Mishima Process for producing lithium iron phosphate particles, lithium iron phosphate particles having olivine type structure, and positive electrode sheet and non-aqueous solvent-based secondary battery using the lithium iron phosphate particles
WO2009131095A1 (en) * 2008-04-25 2009-10-29 住友大阪セメント株式会社 Method for production of cathode active material for lithium ion battery, cathode active material for lithium ion battery produced by the method, electrode for lithium ion battery, and lithium ion battery
JP2011076820A (en) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and positive electrode for lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057577A (en) 2017-11-20 2019-05-29 에스케이이노베이션 주식회사 Method of preparing lithium metal oxide and method of manufacturing lithium secondary battery

Also Published As

Publication number Publication date
JP2011210376A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5765798B2 (en) Cathode active material for Li-ion battery and method for producing the same
Yang et al. Effect of niobium doping on the structure and electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for lithium ion batteries
Jadhav et al. Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries
JP5552709B2 (en) Cathode active material for Li-ion battery and method for producing the same
US9620783B2 (en) Mesoporous metal oxide microsphere electrode compositions and their methods of making
JP5165515B2 (en) Lithium ion secondary battery
JPWO2014061653A1 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
Cao et al. Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique
Liu et al. Combustion synthesized macroporous structure MFe2O4 (M= Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries
Zhang et al. Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries
EP2349925A1 (en) HYDROTHERMAL PROCESS FOR THE PRODUCTION OF LiFePO4 POWDER
JPWO2014061654A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP2007035295A (en) Manufacturing method of carbon-olivine type iron lithium phosphate complex particle, and cathode material for lithium ion battery
KR20120113995A (en) Nano composite materials, method for preparing the same, and energy storage device comprising the same
Meng et al. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries
Li et al. Ultrathin and uniform carbon-layer-coated hierarchically porous LiFePO4 microspheres and their electrochemical performance
JP2012036048A (en) Process of producing vanadium lithium phosphate carbon composite
Su et al. Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries
CN100404413C (en) Preparation method of carbon clocd ferrolithium phosphate of lithium ion battery anode material
JP5928648B1 (en) Electrode material for lithium ion secondary battery
Wang et al. Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode
Huang et al. Well-dispersed MnO-quantum-dots/N-doped carbon layer anchored on carbon nanotube as free-standing anode for high-performance Li-Ion batteries
JP2011181293A (en) Positive electrode active material for lithium-ion battery, and method of manufacturing the same
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries
Mao et al. Advanced Aqueous Zinc‐Ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5765798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250