JP4794833B2 - Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP4794833B2
JP4794833B2 JP2004212433A JP2004212433A JP4794833B2 JP 4794833 B2 JP4794833 B2 JP 4794833B2 JP 2004212433 A JP2004212433 A JP 2004212433A JP 2004212433 A JP2004212433 A JP 2004212433A JP 4794833 B2 JP4794833 B2 JP 4794833B2
Authority
JP
Japan
Prior art keywords
positive electrode
lifepo
carbon
electrode material
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004212433A
Other languages
Japanese (ja)
Other versions
JP2006032241A (en
Inventor
達夫 梅野
忠則 綱分
憲二 福田
英二 安部
孝士 岩尾
茂吉 中野
孝平 村山
十五 住友
陽一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Coke and Engineering Co Ltd
Original Assignee
Nippon Coke and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Coke and Engineering Co Ltd filed Critical Nippon Coke and Engineering Co Ltd
Priority to JP2004212433A priority Critical patent/JP4794833B2/en
Publication of JP2006032241A publication Critical patent/JP2006032241A/en
Application granted granted Critical
Publication of JP4794833B2 publication Critical patent/JP4794833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池用正極材料及びその製造方法、並びに、その正極材料を用いてなるリチウムイオン二次電池に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the positive electrode material.

リチウムイオン二次電池は、軽量でエネルギー密度が高いことから、民生用では、IT情報端末を中心に携帯電話、ノート型パソコン、バックアップ電源の小型電池に幅広く使用されている。現在もその需要が世界的な規模で伸びている。   Lithium ion secondary batteries are lightweight and have a high energy density, and are therefore widely used in consumer applications, mainly in IT information terminals, for mobile phones, laptop computers, and small batteries for backup power supplies. Today, the demand is growing on a global scale.

この小型電池に加えて、産業用の大型電池としても、ハイブリッド自動車用、電気自動車用、電力平準化用、電力貯蔵用、ロボット用など多方面に、その需要が今後期待され、研究開発も盛んに行われている。   In addition to these small batteries, industrial large batteries are also expected to be used in various fields such as hybrid cars, electric cars, power leveling, power storage, and robots, and research and development are thriving. Has been done.

このような状況下で産業用の大型電池が本格的に実用化されるための課題として、正極材料には、高い安全性、高寿命、高出力、低価格が要求されている。その中で高い安全性と優れたサイクル性能を示し、低価格で製造可能なLiFePO4がLiCoO2やLiMn24等の代替正極材料として注目されている。 Under such circumstances, high safety, long life, high output, and low price are required for the positive electrode material as a problem for full-scale commercialization of large industrial batteries. Among them, LiFePO 4 , which exhibits high safety and excellent cycle performance and can be manufactured at a low price, has attracted attention as an alternative positive electrode material such as LiCoO 2 or LiMn 2 O 4 .

しかし、LiFePO4は材料そのものの導電性が悪く、充放電時のリチウムの挿入脱離反応が遅いため、電池にした場合に高出力が得られない。そのため、導電助材との混合が検討されている。しかし、未だに電池の出力を大幅に改善する正極材料を開発するに到っておらず、前記正極材料LiFePO4の欠点を解決するには到っていない。 However, LiFePO 4 has poor conductivity of the material itself, and the lithium insertion / desorption reaction during charging / discharging is slow, so that a high output cannot be obtained when a battery is used. Therefore, mixing with a conductive additive has been studied. However, a positive electrode material that greatly improves the output of the battery has not yet been developed, and the defect of the positive electrode material LiFePO 4 has not been solved.

この欠点を解決するために、現在、
(1) LiFePO42次粒子中の1次粒子を微粒子化すること
(2) 微粒子全体、つまり外表面積の大きくなった正極材料に均一に導電性を与えること
(3) LiFePO4の一部を異種元素で置換して導電性を改善すること(例えば、非特許文献1参照)
が重要な課題対策として提案されている。更に、炭素とLiFePO4との複合体に限っては、電池のエネルギー密度を高くするためには
(4) 炭素とLiFePO4との複合体の充填密度を高くすることの必要性を、Dahn等が報告している(例えば、非特許文献2参照)。
To solve this shortcoming,
(1) Making primary particles in LiFePO 4 secondary particles fine.
(2) Uniformly impart conductivity to the entire fine particles, that is, the positive electrode material having a large outer surface area.
(3) Replacing a part of LiFePO 4 with a different element to improve conductivity (for example, see Non-Patent Document 1)
Has been proposed as an important countermeasure. Furthermore, in order to increase the energy density of the battery only for the composite of carbon and LiFePO 4
(4) The necessity of increasing the packing density of the composite of carbon and LiFePO 4 has been reported by Dahn et al. (For example, see Non-Patent Document 2).

(1)については、例えば水熱合成法や粒子成長を抑制する方法(例えば、特許文献1参照)が開示されている。しかし、製造方法が難しい上に粒子成長を抑制するために焼成時間が長時間必要であり、多量の合成に向いていない。   Regarding (1), for example, a hydrothermal synthesis method and a method for suppressing particle growth (for example, see Patent Document 1) are disclosed. However, the manufacturing method is difficult, and a firing time is required for suppressing particle growth, which is not suitable for a large amount of synthesis.

他方、粒子成長を抑制しないで製造するLiFePO4粒子は、1次粒子が集合した2次粒子であって、この2次粒子は、粒子成長した1次粒子で包囲された空間(孔)が多数存在する多孔質体を形成している。そのため、粒子成長を抑制しなかったLiFePO4粒子は、導電性が非常に悪い。その結果、電極作製時にアセチレンブラックなどの導電助材と結着材が多量に必要である。 On the other hand, LiFePO 4 particles produced without suppressing particle growth are secondary particles in which primary particles are aggregated, and the secondary particles have a large number of spaces (pores) surrounded by the primary particles that have grown. An existing porous body is formed. Therefore, the LiFePO 4 particles that did not suppress particle growth have very poor conductivity. As a result, a large amount of a conductive additive such as acetylene black and a binder are required when producing the electrode.

多量の導電助材と結着材を添加すると、電極中の活物質密度が低くなるばかりでなく、電極作製時においてLiFePO4粒子のスラリーを形成することができないので、塗布して電極を作製できない。無理に電極を作製しても電極密度が低く、剥離しやすく実質的な電極を構成していない。このような正極材料では、高容量、高出力、高寿命の電池は得られていない。 When a large amount of conductive additive and binder are added, not only the density of the active material in the electrode is lowered, but also a slurry of LiFePO 4 particles cannot be formed at the time of electrode preparation, so that an electrode cannot be prepared by coating. . Even if an electrode is forcibly produced, the electrode density is low, and it is easy to peel off and does not constitute a substantial electrode. With such a positive electrode material, a battery with high capacity, high output, and long life has not been obtained.

(2)については、粒子の周りに導電性の粒子を存在させて導電性を改善しようとする方法(例えば、特許文献2参照)や、炭素あるいは炭素前駆体と一緒に焼成する方法(例えば、特許文献3及び4参照)が開示されている。   As for (2), a method of improving the conductivity by making conductive particles exist around the particles (for example, see Patent Document 2), and a method of firing together with carbon or a carbon precursor (for example, Patent Documents 3 and 4) are disclosed.

しかし、多くの場合は導電助材と混合しているだけなのでLiFePO4との接着が悪い。また、正極材料の粒子内部まで導電助材を均一に分散することができていない。 However, in many cases, the adhesion with LiFePO 4 is poor because it is only mixed with a conductive additive. Further, the conductive additive cannot be uniformly dispersed into the particles of the positive electrode material.

導電助材として金属を用いる方法も考案されている。しかし、この方法では金属の比重が重いため、LiFePO4に十分な導電性を与えるには導電助材として炭素を用いる場合よりも重量的には多量に添加しなければならない。よって、導電助材としては一般的には軽元素の炭素が最も好ましい。 A method of using a metal as a conductive aid has also been devised. However, in this method, since the specific gravity of the metal is heavy, in order to give sufficient conductivity to LiFePO 4 , it must be added in a larger amount than when carbon is used as a conductive aid. Therefore, light elemental carbon is generally most preferable as the conductive additive.

その観点から考えると特許文献3に示されているように、炭素と接着し複合化したLiFePO4が好ましい。しかし、この特許文献3の方法でも電池の出力を改善するには、LiFePO4の1次粒子を小さくする必要がある。 From this point of view, as shown in Patent Document 3, LiFePO 4 bonded to carbon and complexed is preferable. However, even with the method of Patent Document 3, it is necessary to reduce the primary particles of LiFePO 4 in order to improve the output of the battery.

すなわち、700℃以下の条件で粒子成長を抑制しながら焼成する必要がある。しかし、焼成温度が700℃以下では、LiFePO4と接着し複合化した炭素の導電性が低く、正極材料自体の導電性も低くなる。 That is, it is necessary to perform firing while suppressing particle growth under conditions of 700 ° C. or lower. However, when the firing temperature is 700 ° C. or lower, the conductivity of carbon bonded and combined with LiFePO 4 is low, and the conductivity of the positive electrode material itself is also low.

これに対し、炭素の導電性を良好にするには700〜900℃での焼成が必要である。しかし、焼成温度が700〜900℃では前述のように粒子成長を抑制できない。よって、特許文献3の方法では何れの焼成温度でも、電池の出力を改善し且つ電極の導電性を良好にすることは困難である。   On the other hand, firing at 700 to 900 ° C. is necessary to improve carbon conductivity. However, when the firing temperature is 700 to 900 ° C., particle growth cannot be suppressed as described above. Therefore, in the method of Patent Document 3, it is difficult to improve the output of the battery and improve the conductivity of the electrode at any firing temperature.

(3)のLiFePO4の一部を異種元素(M)で置換する方法については、特許文献5、6及び7など多くの方法が開示されている。しかし、異種元素置換正極材料単独では大きな導電性改善効果はなく、電極作製時に多量の導電助材の添加を必要としている。 As for the method of substituting a part of LiFePO 4 of (3) with a different element (M), many methods such as Patent Documents 5, 6 and 7 are disclosed. However, the dissimilar element-substituted positive electrode material alone does not have a great effect of improving the conductivity, and a large amount of conductive auxiliary material is required during electrode production.

また、700〜900℃という高温、炭素が共存した極度の還元雰囲気下で処理したLiFex1-xPO4炭素複合体を正極材料として提案されたものはない。 In addition, there has been no proposal of a LiFe x M 1-x PO 4 carbon composite treated at a high temperature of 700 to 900 ° C. in an extremely reducing atmosphere in which carbon coexists as a positive electrode material.

(4)については、LiFePO4は多孔質体であるために、LiFePO4と炭素とを複合化した場合、炭素はLiFePO4の孔に浸透することなくLiFePO4粒子を覆うように付着されるので、前述の報告において述べられている必要性に反し、LiFePO4と炭素との複合体は低い充填密度となる。 For (4), in order LiFePO 4 is a porous body, when complexed with the LiFePO 4 carbon, since carbon is deposited to cover the LiFePO 4 particles without penetration into the pores of the LiFePO 4 Contrary to the need stated in the aforementioned report, the composite of LiFePO 4 and carbon has a low packing density.

また、LiFePO4を製造する原料(以下、LiFePO4原料と称す)に炭素前駆体を混合して焼成する場合も、原料及び炭素前駆体からの揮発分が多く発生し、生成したLiFePO4炭素複合体は、多孔質で粒子自体の嵩密度が低く、粒子形状も球状ではない。そのため、LiFePO4原料と炭素前駆体とを混合焼成して得られる複合体の充填密度は、LiFePO4粒子を炭素で被覆付着した上記複合体よりも更に低いものになっている。 Also, when a carbon precursor is mixed with a raw material for producing LiFePO 4 (hereinafter referred to as a LiFePO 4 raw material) and baked, a large amount of volatile matter is generated from the raw material and the carbon precursor, and the generated LiFePO 4 carbon composite is produced. The body is porous, the particle itself has a low bulk density, and the particle shape is not spherical. Therefore, the packing density of the composite obtained by mixing and firing the LiFePO 4 raw material and the carbon precursor is much lower than that of the above composite in which LiFePO 4 particles are coated and attached with carbon.

このことに加えて、LiFePO4原料と炭素前駆体とを混合焼成して得られる複合体は、焼成後に再度粉砕処理されているために、炭素で被覆した正極材料粒子が破壊されてLiFePO4の断面が露出し、そのうえ粒子が小さくなるので粒子間でブリッジングが起こって充填密度が低くなり、正極材料としての導電性が極度に低下する。 In addition to this, since the composite obtained by mixing and firing the LiFePO 4 raw material and the carbon precursor is pulverized again after firing, the positive electrode material particles coated with carbon are destroyed and the LiFePO 4 Since the cross section is exposed and the particles become smaller, bridging occurs between the particles, the packing density is lowered, and the conductivity as the positive electrode material is extremely lowered.

電極寿命に関しては、一般的にアセチレンブラックなどの導電助材を多量に使用すると、作製された電極は剥離しやすい。また、電極の表面積が増加して電解液と反応して電解液が減少する現象(いわゆる液枯れ現象)を起こし、サイクル性能が劣化する問題がある。   Regarding the electrode life, generally, when a large amount of conductive aid such as acetylene black is used, the produced electrode is easily peeled off. In addition, there is a problem in that the surface performance of the electrode increases and reacts with the electrolytic solution to cause a phenomenon that the electrolytic solution decreases (so-called liquid withdrawing phenomenon), resulting in deterioration of cycle performance.

以上のように、従来のLiFePO4と炭素との複合体は、多孔質で充填密度が低く、更に導電性も低い。そのため、電極を作製する際に多量の導電助材と結着材を未だに必要とする。また、この従来の複合体では、高密度な電極、すなわち高容量、高出力、高寿命の電池が得られない問題がある。
電気化学vol.71 No.8 P.717〜722、2003 R. Dahn, Journal of the Electrochemical Society, 149, A1184−A1189, 2002 特開2003−45430号公報 (特許請求の範囲、段落番号[0007]〜[0016]) 特開2001−110414号公報 (特許請求の範囲、段落番号[0010]〜[0012]) 特開2003−292308号公報 (特許請求の範囲、段落番号[0010]〜[0014]) 特開2003−292309号公報 (特許請求の範囲、段落番号[0010]〜[0014]) 特開2001−307726号公報 (特許請求の範囲、段落番号[0012]〜[0013]) 特開2001−307732号公報 (特許請求の範囲、段落番号[0019]〜[0026]) 特開2001−85010号公報 (特許請求の範囲、段落番号[0008]〜[0009])
As described above, the conventional composite of LiFePO 4 and carbon is porous, has a low packing density, and has a low conductivity. For this reason, a large amount of a conductive additive and a binder are still required when producing an electrode. In addition, this conventional composite has a problem that a high-density electrode, that is, a battery having a high capacity, a high output, and a long life cannot be obtained.
Electrochemistry vol. 71 no. 8 p. 717-722, 2003 R. Dahn, Journal of the Electrochemical Society, 149, A1184-A1189, 2002 JP 2003-45430 A (Claims, paragraph numbers [0007] to [0016]) JP 2001-110414 A (claims, paragraph numbers [0010] to [0012]) JP 2003-292308 A (Claims, paragraph numbers [0010] to [0014]) JP 2003-292309 A (claims, paragraph numbers [0010] to [0014]) JP 2001-307726 A (claims, paragraph numbers [0012] to [0013]) JP 2001-307732 A (claims, paragraph numbers [0019] to [0026]) JP-A-2001-85010 (Claims, paragraph numbers [0008] to [0009])

本発明者等は、上記問題について種々検討しているうちに、LiFePO4、あるいはFeの一部を異種元素で置換したLiFex1-xPO4の凝集状態を変えることにより空隙の少ない正極材料を得ることができること、更にこのようにして空隙の少ないLiFePO4と炭素とを複合化する工程、あるいはLiFePO4の一部をCo、Cr、Mn、Ni、Ti、Vなどの異種元素Mで置換したLiFex1-xPO4と炭素とを複合化する工程で、粒子を球形化し、この球形化粒子を正極材料とすることにより、電極作製時に導電助材を使用せずに最低限の粘着材で電極を作製できること、その結果、この電極中の活物質密度を高くできること、並びに、この電極により高容量、高出力、高寿命のリチウムイオン電池を提供できることを知得し、本発明を完成するに到った。 While various studies on the above problems, the present inventors have changed the aggregation state of LiFe x M 1-x PO 4 in which LiFePO 4 or a part of Fe is substituted with a different element to reduce the number of voids in the positive electrode A material can be obtained, and further, a process of combining LiFePO 4 and carbon with few voids in this way, or a part of LiFePO 4 with a different element M such as Co, Cr, Mn, Ni, Ti, V, etc. In the process of compounding the substituted LiFe x M 1-x PO 4 and carbon, the particles are spheroidized, and the spheroidized particles are used as a positive electrode material. That the electrode can be produced with the adhesive material, and as a result, the active material density in this electrode can be increased, and that this electrode can provide a high-capacity, high-power, long-life lithium ion battery. Tokushi, which resulted in the completion of the present invention.

従って、本発明の目的とするところは、上記問題を解決したリチウムイオン二次電池用正極材料及びその製造方法、並びに、その正極材料を用いてなるリチウムイオン二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a positive electrode material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the positive electrode material, which have solved the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 LiFePO4と炭素との複合体、あるいはFeの一部を異種元素で置換したLiFex1-xPO4(0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)と炭素との複合体からなるリチウムイオン二次電池用正極材料であって、前記正極材料の粒子形状がアスペクト比(L/D)1〜2の球形状であるリチウムイオン二次電池用正極材料。 [1] LiFePO 4 and carbon composite, or LiFe x M 1-x PO 4 in which part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni , Ti or V, or a mixed element thereof) and a positive electrode material for a lithium ion secondary battery comprising a composite of carbon, the particle shape of the positive electrode material having an aspect ratio (L / D) of 1 A positive electrode material for a lithium ion secondary battery having a spherical shape of ~ 2.

〔2〕 炭素含有量が1〜20質量%、且つ平均粒子径が5〜60μmである〔1〕に記載のリチウムイオン二次電池用正極材料。   [2] The positive electrode material for a lithium ion secondary battery according to [1], wherein the carbon content is 1 to 20% by mass and the average particle size is 5 to 60 μm.

〔3〕 充填密度が1.0〜1.8g/cm3である〔1〕に記載のリチウムイオン二次電池用正極材料。 [3] The positive electrode material for a lithium ion secondary battery according to [1], which has a packing density of 1.0 to 1.8 g / cm 3 .

〔4〕 プレス圧49MPaの時の体積抵抗値が0.1〜20Ω・cmである〔1〕に記載のリチウムイオン二次電池用正極材料。   [4] The positive electrode material for a lithium ion secondary battery according to [1], wherein the volume resistance value at a press pressure of 49 MPa is 0.1 to 20 Ω · cm.

〔5〕 LiFePO4、あるいはFeの一部を異種元素で置換したLiFex1-xPO4(0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)を5μm以下に粉砕し、得られた粉砕物に炭素前駆体を添加、混合、造粒し、得られた造粒物を700〜900℃で焼成することを特徴とするリチウムイオン二次電池用正極材料の製造方法。 [5] LiFePO 4 or LiFe x M 1-x PO 4 in which part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni, Ti or V, or These mixed elements are pulverized to 5 μm or less, a carbon precursor is added to the obtained pulverized product, mixed and granulated, and the obtained granulated product is fired at 700 to 900 ° C. A method for producing a positive electrode material for a lithium ion secondary battery.

〔6〕 LiFePO4、あるいはFeの一部を異種元素で置換したLiFex1-xPO4(0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)が、活物質LiFePO4製造用の二以上の原料、又は活物質LiFex1-xPO4製造用の二以上の原料を混合し、得られた混合物を300〜900℃で焼成して得られた焼成物である〔5〕に記載のリチウムイオン二次電池用正極材料の製造方法。 [6] LiFePO 4 , or LiFe x M 1-x PO 4 in which part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni, Ti or V, or And these mixed elements are mixed), two or more raw materials for producing the active material LiFePO 4 , or two or more raw materials for producing the active material LiFe x M 1-x PO 4 are mixed, and the resulting mixture is The method for producing a positive electrode material for a lithium ion secondary battery according to [5], which is a fired product obtained by firing at 300 to 900 ° C.

〔7〕 〔1〕乃至〔6〕の何れかに記載の正極材料と、結着材とがアルミ箔上に塗布されてなり、導電助材を含まない電極を有するリチウムイオン二次電池。   [7] A lithium ion secondary battery having an electrode that is formed by applying the positive electrode material according to any one of [1] to [6] and a binder onto an aluminum foil and does not include a conductive additive.

本発明の正極材料によれば、電極作製時に導電助材を使用せずに最低限の粘着材で電極を作製できること、この電極中の活物質密度を高くできること、並びに、この電極を用いることにより高容量、高出力、高寿命のリチウムイオン二次電池を得ることができる。   According to the positive electrode material of the present invention, it is possible to produce an electrode with a minimum pressure-sensitive adhesive material without using a conductive aid during electrode production, to increase the active material density in the electrode, and to use this electrode. A high-capacity, high-power, long-life lithium ion secondary battery can be obtained.

また、本発明の正極材料の製造方法によれば、高容量と高出力と高寿命とを同時に満たすことができるリチウムイオン二次電池用の正極材料を効率良く安定して製造することができる。   Moreover, according to the manufacturing method of the positive electrode material of this invention, the positive electrode material for lithium ion secondary batteries which can satisfy | fill high capacity | capacitance, high output, and long lifetime simultaneously can be manufactured efficiently and stably.

以下、本発明について更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明のリチウムイオン二次電池用正極材料は、活物質LiFePO4と炭素との複合体、あるいはFeの一部をCo、Cr、Mn、Ni、Ti、Vなどの異種元素(M)で置換した活物質LiFex1-xPO4(0.5<x<1、好ましくは0.7<x<1)と炭素との複合体からなる。 The positive electrode material for a lithium ion secondary battery of the present invention is a composite of an active material LiFePO 4 and carbon, or a part of Fe is replaced with a different element (M) such as Co, Cr, Mn, Ni, Ti, V, etc. the active material LiFe x M 1-x PO 4 (0.5 <x <1, preferably 0.7 <x <1) consists of a complex of the carbon.

正極材料活物質LiFePO4中のFeの一部を異種元素で置換することにより、正極材料の導電性を改善することができる。但し、この異種元素置換だけでは大幅な導電性改善は難しい。 By replacing a part of Fe in the positive electrode material active material LiFePO 4 with a different element, the conductivity of the positive electrode material can be improved. However, it is difficult to significantly improve conductivity only by the substitution of this different element.

これに対し、活物質LiFePO4と炭素とを複合化してなる正極材料は、飛躍的に導電性が改善される。この活物質LiFePO4炭素複合化正極材料において、活物質Feの一部を異種元素で置換することにより、正極材料の導電性は更に改善できる。例えば、x=0.9のとき正極材料粒子の体積抵抗値は、未置換の正極材料粒子(x=1)に比べ更に1桁低減させることが可能である。 On the other hand, the conductivity of the positive electrode material formed by combining the active material LiFePO 4 and carbon is dramatically improved. In this active material LiFePO 4 carbon composite cathode material, the conductivity of the cathode material can be further improved by substituting a part of the active material Fe with a different element. For example, when x = 0.9, the volume resistance value of the positive electrode material particles can be further reduced by an order of magnitude compared to the unsubstituted positive electrode material particles (x = 1).

この異種元素置換活物質におけるFeを置換する元素は、Feとの置換が容易であり、置換後の結晶性に優れることから、Feに元素番号が近く、Fe同様に融点が高いCo、Cr、Mn、Ni、Ti、Vなどが好ましい。また、これらの混合元素でFeを置換しても良い。   The element substituting Fe in this heteroelement-substituted active material is easy to substitute with Fe and has excellent crystallinity after substitution, so that the element number is close to Fe and has a high melting point like Fe, Co, Cr, Mn, Ni, Ti, V and the like are preferable. Moreover, you may substitute Fe with these mixed elements.

本発明の正極材料は、粒子形状がアスペクト比(L/D)1〜2、好ましくは1〜1.2の球形状である。正極材料の粒子形状を示すアスペクト比(L/D)が2を超える場合は、充填密度が低くなり、正極材料としての導電性が低下するので好ましくない。   The positive electrode material of the present invention has a spherical shape with a particle shape having an aspect ratio (L / D) of 1 to 2, preferably 1 to 1.2. When the aspect ratio (L / D) indicating the particle shape of the positive electrode material exceeds 2, the packing density is lowered and the conductivity as the positive electrode material is lowered, which is not preferable.

本発明の正極材料の後述する測定方法で求められる充填密度は、1.0〜1.8g/cm3が好ましく、1.4〜1.8g/cm3が更に好ましい。正極材料の充填密度が1.0g/cm3未満の場合は、その正極材料を用いて作製する電極の密度が低くなるので好ましくない。なお、正極材料の充填密度は1.8g/cm3で充填構造上飽和状態に達する。 Packing density obtained by later-described measuring method of the positive electrode material of the present invention is preferably 1.0~1.8g / cm 3, 1.4~1.8g / cm 3 is more preferred. When the packing density of the positive electrode material is less than 1.0 g / cm 3 , the density of an electrode manufactured using the positive electrode material is not preferable. The filling density of the positive electrode material reaches 1.8 g / cm 3 and reaches a saturated state in the filling structure.

本発明の正極材料の炭素含有量は、1〜20質量%が好ましく、5〜10質量%が更に好ましい。正極材料の炭素含有量を1質量%以上にすることで、電極作製時にアセチレンブラック、ケッチェンブラック、黒鉛、気相炭素繊維などの導電助材を使用しないで高導電性の電極を作製できる。   1-20 mass% is preferable and, as for carbon content of the positive electrode material of this invention, 5-10 mass% is still more preferable. By setting the carbon content of the positive electrode material to 1% by mass or more, a highly conductive electrode can be produced without using a conductive aid such as acetylene black, ketjen black, graphite, or vapor phase carbon fiber at the time of producing the electrode.

すなわち、LiFePO4又はLiFex1-xPO4と炭素との複合体と、必要最少量の結着材のみで容易に粘調性スラリーを形成し、スラリー濃度を50〜70質量%と高くできる。そのスラリーをアルミ箔上に塗布、乾燥する通常の工程を経て高密度、高導電性、高容量、高出力、高寿命のリチウムイオン二次電池の電極を作製できる。 That is, to form a complex with LiFePO 4 or LiFe x M 1-x PO 4 and carbon, easily viscous slurry only requires minimal amount of binder, high slurry concentration 50-70 wt% it can. Through an ordinary process of applying and drying the slurry on an aluminum foil, a high-density, high-conductivity, high-capacity, high-power, long-life electrode of a lithium ion secondary battery can be produced.

正極材料の炭素含有量が20質量%を超える場合は、電極の導電性を更に改善する効果はあまりなく、炭素含有量が多い分、正極材料中の活物質LiFePO4又はLiFex1-xPO4の割合が低下するので好ましくない。 If the carbon content of the cathode material exceeds 20 wt%, the effect is not much to further improve the conductivity of the electrode, the partial carbon content is large, the active material in the positive electrode material LiFePO 4 or LiFe x M 1-x Since the ratio of PO 4 decreases, it is not preferable.

一般的には、正極活物質をアルミ箔等に塗布して電極を作製する場合に導電助材を加えることは常識となっている。これに対し、本発明の正極材料を用いて電極を作製する場合、導電助材は必要ではない。   In general, it is common sense to add a conductive additive when an electrode is produced by applying a positive electrode active material to an aluminum foil or the like. On the other hand, when producing an electrode using the positive electrode material of the present invention, a conductive additive is not necessary.

このことは、本発明の正極材料が、活物質LiFePO4又はLiFex1-xPO4が良好な導電性を有する炭素によって複合化されてなる複合体であって、この複合体自体が良好な導電性を有することによる。 This is because the positive electrode material of the present invention is a composite in which the active material LiFePO 4 or LiFe x M 1-x PO 4 is composited with carbon having good conductivity, and the composite itself is good. This is because of having good conductivity.

本発明の正極材料の平均粒子径は、5〜60μmが好ましく、高出力のリチウムイオン二次電池の電極を形成するには5〜20μmが更に好ましい。   The average particle diameter of the positive electrode material of the present invention is preferably 5 to 60 μm, and more preferably 5 to 20 μm for forming an electrode of a high-power lithium ion secondary battery.

本発明の正極材料の粒度分布は、その平均粒子径±5%の範囲内に全粒子の90%以上が含まれるシャープな分布であることが好ましい。シャープな粒度分布を有する正極材料を用いて電極を作製した場合、電荷が均一に正極材料粒子に掛かり易くなり、体積抵抗値が低減する。   The particle size distribution of the positive electrode material of the present invention is preferably a sharp distribution in which 90% or more of all particles are included in the range of the average particle diameter ± 5%. When an electrode is produced using a positive electrode material having a sharp particle size distribution, electric charges are easily applied to the positive electrode material particles, and the volume resistance value is reduced.

そのため、上記シャープな粒度分布を有する正極材料は、高出力を要求される電気自動車用、電力貯蔵用などの大型電池に用いるのに適している。以後、正極材料の粒度分布のシャープ性(粒度シャープ性)を表すのに、上記全粒子の90%以上が含まれる平均粒子径からの範囲を示す±%の数値を用いることにする。   Therefore, the positive electrode material having the sharp particle size distribution is suitable for use in large batteries for electric vehicles and power storage that require high output. Hereinafter, in order to represent the sharpness (particle sharpness) of the particle size distribution of the positive electrode material, a numerical value of ±% indicating a range from the average particle diameter including 90% or more of all the particles is used.

本発明の正極材料について、プレス圧49MPa(500kgf/cm2)の時の体積抵抗値は、0.1〜20Ω・cmが好ましく、0.1〜1Ω・cmが更に好ましい。 Regarding the positive electrode material of the present invention, the volume resistance value when the pressing pressure is 49 MPa (500 kgf / cm 2 ) is preferably 0.1 to 20 Ω · cm, and more preferably 0.1 to 1 Ω · cm.

正極材料の体積抵抗値を0.1Ω・cm未満にするには、正極材料の炭素含有量が20質量%を超えるようにする必要がある。この場合、前述したように炭素含有量が多い分、活物質LiFePO4又はLiFex1-xPO4の正極材料中の割合が低下するので好ましくない。 In order to make the volume resistance value of the positive electrode material less than 0.1 Ω · cm, the carbon content of the positive electrode material needs to exceed 20 mass%. This is not preferable, minute high carbon content as described above, the ratio in the positive electrode material active material LiFePO 4 or LiFe x M 1-x PO 4 is lowered.

正極材料の体積抵抗値が20Ω・cmを超える場合は、この正極材料を用いて作製される電極の導電性が低下するので好ましくない。   When the volume resistance value of the positive electrode material exceeds 20 Ω · cm, the conductivity of an electrode produced using this positive electrode material is not preferable.

本発明の正極材料は、その物性が上記範囲内にあれば、その製造方法としては、特に限定されるものではないが、例えば以下の製造方法により製造することができる。   The positive electrode material of the present invention is not particularly limited as long as its physical properties are within the above range, but can be manufactured by, for example, the following manufacturing method.

先ず、二以上の活物質LiFePO4の原料、又は二以上の活物質LiFex1-xPO4の原料を混合し、この混合物を300〜900℃で焼成し、この焼成物を5μm以下に粉砕する(第1工程)。次いで、この粉砕物に炭素前駆体を添加、混合、造粒する(第2工程)。その後、この造粒物を700〜900℃で焼成する(第3工程)ことにより本発明のリチウムイオン二次電池用正極材料を製造することができる。 First, the raw materials of two or more active materials LiFePO 4 or the raw materials of two or more active materials LiFe x M 1-x PO 4 are mixed, the mixture is fired at 300 to 900 ° C., and the fired product is reduced to 5 μm or less. Grind (first step). Next, a carbon precursor is added to the pulverized product, mixed and granulated (second step). Thereafter, the granulated product is fired at 700 to 900 ° C. (third step), whereby the positive electrode material for a lithium ion secondary battery of the present invention can be produced.

なお、上記第1工程の焼成物は、その組成がLiFePO4又はLiFex1-xPO4であり、これを焼成したときに更なる揮発分の発生、更なる空隙の生成が無いものであれば、市販のLiFePO4又はLiFex1-xPO4を用いることもできる。 The fired product of the first step has a composition of LiFePO 4 or LiFe x M 1-x PO 4 , and when this is fired, there is no generation of further volatile matter and generation of further voids. If available, commercially available LiFePO 4 or LiFe x M 1-x PO 4 can also be used.

次に、本例の正極材料の製造方法における個々の原料、工程について詳細に説明する。   Next, individual raw materials and processes in the method for producing the positive electrode material of this example will be described in detail.

(第1工程)
[活物質原料]
本発明の正極材料の製造においては、通常二以上の活物質原料を混合後、焼成してLiFePO4又はLiFex1-xPO4で示される活物質を得る。この活物質原料としては、燐酸二水素リチウム、蓚酸鉄二水和物、炭酸マンガン、酢酸ニッケル、蓚酸コバルト、酸化クロム、酸化チタン、酸化バナジウムなどが例示できる。
(First step)
[Active material]
In the production of the positive electrode material of the present invention, usually, two or more active material materials are mixed and then fired to obtain an active material represented by LiFePO 4 or LiFe x M 1-x PO 4 . Examples of the active material raw material include lithium dihydrogen phosphate, iron oxalate dihydrate, manganese carbonate, nickel acetate, cobalt oxalate, chromium oxide, titanium oxide, and vanadium oxide.

[原料の混合]
上記活物質原料は、遊星ミル、ヘンシェルミキサー、振動ミル、ボールミルなどの混合機により混合する。混合程度は特に限定されるものではないが、例えば遊星ミルの場合、好ましくは50〜500rpmで1〜15hr、更に好ましくは100〜200rpmで2〜5hr混合する。
[Mixing raw materials]
The active material raw materials are mixed by a mixer such as a planetary mill, a Henschel mixer, a vibration mill, or a ball mill. The degree of mixing is not particularly limited. For example, in the case of a planetary mill, the mixing is preferably performed at 50 to 500 rpm for 1 to 15 hours, more preferably 100 to 200 rpm for 2 to 5 hours.

[一次焼成]
上記原料混合物は、窒素、アルゴン等の不活性ガス雰囲気下、300〜900℃で0.5〜15hr、好ましくは350〜900℃で5〜10hr焼成することにより、活物質LiFePO4又はLiFex1-xPO4を得る(一次焼成)。この一次焼成は、300〜450℃で1〜5hr、700〜900℃で1〜5hrと二段階で行っても良い。
[Primary firing]
The raw material mixture is fired in an inert gas atmosphere such as nitrogen and argon at 300 to 900 ° C. for 0.5 to 15 hours, preferably at 350 to 900 ° C. for 5 to 10 hours, so that the active material LiFePO 4 or LiFe x M 1-x PO 4 is obtained (primary firing). This primary firing may be performed in two stages, 1 to 5 hours at 300 to 450 ° C. and 1 to 5 hours at 700 to 900 ° C.

この一次焼成により、第3工程の二次焼成において一次焼成物LiFePO4又はLiFex1-xPO4からの揮発分の発生が殆ど無くなり、得られるLiFePO4又はLiFex1-xPO4と炭素との複合体は、充填密度が高いものとなる。 By this primary firing, in the second firing in the third step, almost no volatile matter is generated from the primary fired product LiFePO 4 or LiFe x M 1-x PO 4 , and the resulting LiFePO 4 or LiFe x M 1-x PO 4 is obtained. The carbon / carbon composite has a high packing density.

このことは、次のように考えられる。一方の原料の活物質原料について、この活物質原料からLiFePO4又はLiFex1-xPO4への反応は350℃で90%以上進行する。そのため、第1工程の一次焼成において揮発分の発生、空隙の生成は殆ど終了しているので、第3工程の二次焼成では更なる揮発分の発生は無いし、更なる空隙の生成も無い。 This is considered as follows. With respect to one active material raw material, the reaction from this active material raw material to LiFePO 4 or LiFe x M 1-x PO 4 proceeds at 90% or more at 350 ° C. Therefore, since the generation of volatile matter and the generation of voids are almost completed in the primary firing of the first step, there is no further generation of volatile matter in the secondary firing of the third step, and no further creation of voids. .

他方の原料の炭素原料について、この炭素原料の炭素前駆体は、炭素繊維に象徴されるように熱処理されると収縮して高密度の炭素になる特徴がある。よって、第2工程において添加、混合、造粒される炭素前駆体は、第3工程の二次焼成において収縮して高密度の炭素になる。   Regarding the carbon raw material of the other raw material, the carbon precursor of this carbon raw material is characterized by shrinking to high density carbon when heat treated as symbolized by carbon fiber. Therefore, the carbon precursor that is added, mixed, and granulated in the second step is shrunk into high-density carbon in the secondary firing in the third step.

以上のように、第3工程の二次焼成においては、活物質原料も炭素原料も高密度になる方向に動き、得られるLiFePO4又はLiFex1-xPO4と炭素との複合体は、充填密度が高いものとなる。 As described above, in the secondary firing in the third step, both the active material raw material and the carbon raw material move toward a high density, and the resulting LiFePO 4 or LiFe x M 1-x PO 4 and carbon composite is The packing density is high.

[粉砕]
上記一次焼成物は、乾式粉砕後、必要に応じ分級することにより、あるいは湿式粉砕後、乾燥することにより5μm以下の粒子とする。乾式粉砕機としては、ジェットミル、振動ミル、遠心式衝撃ミル等の汎用粉砕機を用いることができる。湿式粉砕機も同様に水を溶媒とした湿式のボールミル、ビーズミルなどの汎用粉砕機で良い。
[Crushing]
The primary fired product is classified into particles as needed after dry pulverization, or is wet pulverized and dried to give particles of 5 μm or less. As the dry pulverizer, general-purpose pulverizers such as a jet mill, a vibration mill, and a centrifugal impact mill can be used. Similarly, the wet pulverizer may be a general pulverizer such as a wet ball mill or bead mill using water as a solvent.

これら種々の汎用粉砕機を使用できることは、上記一次焼成物のLiFePO4又はLiFex1-xPO4が多孔性なため粉砕され易いことによる。分級機は、粉砕分級後の粒子径を5μm以下にできるものであれば汎用品で何ら問題はない。 The reason why these various general-purpose pulverizers can be used is that LiFePO 4 or LiFe x M 1-x PO 4 of the primary fired product is porous and is easily pulverized. The classifier is a general-purpose product as long as the particle size after pulverization classification can be reduced to 5 μm or less, and there is no problem.

なお、粉砕分級後の粒子径が5μmを超えると、これを用いて電池性能試験をした場合、レート性能が極度に低下する。また、第2工程において炭素前駆体と造粒する際、うまく造粒できないので好ましくない。   In addition, when the particle diameter after pulverization classification exceeds 5 μm, when the battery performance test is performed using this, the rate performance is extremely lowered. Moreover, when granulating with a carbon precursor in a 2nd process, since it cannot granulate well, it is unpreferable.

LiFePO4又はLiFex1-xPO4と炭素との複合体の充填密度を高くするためには、上記したように一次焼成物を粉砕、必要に応じ分級する必要がある。このことは、以下のように考えられる。 In order to increase the packing density of the complex of the LiFePO 4 or LiFe x M 1-x PO 4 and carbon, pulverized primary sintered product as described above, it is necessary to classification if necessary. This is considered as follows.

上記一次焼成物のLiFePO4粒子又はLiFex1-xPO4粒子は、1次粒子が集合した2次粒子であって、この2次粒子は、1次粒子で包囲された空間(孔)が多数存在する多孔質体を形成している。この2次粒子を粉砕、必要に応じ分級すると、1次粒子毎にばらばらになる。その結果、1次粒子で包囲された空間(孔)はなくなる。即ち、LiFePO4又はLiFex1-xPO4自体の無駄な空間(孔)はなくなる。 The LiFePO 4 particles or LiFe x M 1-x PO 4 particles of the primary fired product are secondary particles in which primary particles are aggregated, and the secondary particles are surrounded by the primary particles (pores). Forms a porous body. When the secondary particles are pulverized and classified as necessary, the primary particles are separated. As a result, the space (hole) surrounded by the primary particles disappears. That, LiFePO 4 or LiFe x M 1-x PO 4 wasted space (hole) in itself is not.

前述したように、従来方法で多孔質のLiFePO4粒子又はLiFex1-xPO4粒子と炭素とを複合化する場合は、炭素はLiFePO4又はLiFex1-xPO4の孔に浸透することなく、LiFePO4又はLiFex1-xPO4粒子を覆うように付着される問題がある。 As described above, when the composite porous LiFePO 4 particles or LiFe x M 1-x PO 4 particles and carbon in the conventional method, the carbon in the pores of the LiFePO 4 or LiFe x M 1-x PO 4 There is a problem that it adheres so as to cover the LiFePO 4 or LiFe x M 1-x PO 4 particles without penetrating.

これに対し、上記一次焼成物の粉砕物には、無駄な空間(孔)が無いので、前述の従来の問題はなくなる。よって、本発明の製造方法で得られるLiFePO4又はLiFex1-xPO4と炭素との複合体粒子は、粒子自体の嵩密度が高く、後述する測定方法で求められる充填密度も高いものとなる。 On the other hand, since the pulverized product of the primary fired product has no useless space (holes), the above-described conventional problems are eliminated. Therefore, the LiFePO 4 or LiFe x M 1-x PO 4 and carbon composite particles obtained by the production method of the present invention have a high bulk density of the particles themselves and a high packing density required by the measurement method described later. It becomes.

(第2工程)
第2工程では、第1工程で得たLiFePO4又はLiFex1-xPO4と、炭素前駆体とを混合し、造粒する。
(Second step)
In the second step, LiFePO 4 or LiFe x M 1-x PO 4 obtained in the first step and a carbon precursor are mixed and granulated.

[炭素前駆体]
炭素前駆体としては、フェノール樹脂等のフェノール縮合生成物、ナフタレンスルホン酸樹脂等のナフタリン縮合物、アントラセン縮合物、スチレン系樹脂、アクリロニトリル系樹脂、ビニル系樹脂、イミド系樹脂、アラミド系樹脂、セルロース系樹脂、そのモノマー及びその誘導体、石炭タール、石炭ピッチ、石油タール、並びに、石油ピッチなどの熱分解して炭素を生成するものが好ましい。
[Carbon precursor]
Examples of carbon precursors include phenol condensation products such as phenol resins, naphthalene condensates such as naphthalene sulfonic acid resins, anthracene condensates, styrene resins, acrylonitrile resins, vinyl resins, imide resins, aramid resins, and cellulose. It is preferable to use carbon-based resin, its monomer and its derivative, coal tar, coal pitch, petroleum tar, petroleum pitch, etc. to generate carbon by pyrolysis.

[造粒]
第1工程で得たLiFePO4又はLiFex1-xPO4と、炭素前駆体とを混合し、造粒するに際し、炭素前駆体の添加量は、炭素として1〜20質量%が好ましい。炭素前駆体の添加量が1質量%未満の場合は、造粒ができないので好ましくない。炭素前駆体の添加量が20質量%を超える場合は、添加効果があまりなく、炭素前駆体を添加した分、活物質LiFePO4又はLiFex1-xPO4の正極材料中の割合が低下するので好ましくない。
[Granulation]
And LiFePO 4 or LiFe x M 1-x PO 4 obtained in the first step, mixing the carbon precursor, upon granulation, the addition amount of the carbon precursor is preferably 1 to 20 mass% as a carbon. When the amount of carbon precursor added is less than 1% by mass, granulation cannot be performed, which is not preferable. When the addition amount of the carbon precursor exceeds 20% by mass, the addition effect is not so much, and the proportion of the active material LiFePO 4 or LiFe x M 1-x PO 4 in the positive electrode material is reduced by the amount of addition of the carbon precursor. This is not preferable.

炭素前駆体は、第3工程の焼成で炭素化され、得られた正極材料において導電性を付与する材料として働くばかりでなく、この造粒において、LiFePO4又はLiFex1-xPO4粒子を球形に造粒するバインダーとしての機能も持っている。 The carbon precursor is carbonized by firing in the third step, and not only serves as a material for imparting conductivity in the obtained positive electrode material, but also in this granulation, LiFePO 4 or LiFe x M 1-x PO 4 particles It also functions as a binder that granulates spheres.

造粒には、ヘンシェルミキサーやスプレードライヤーなど通常の粉体の造粒機器を使用することが可能で、使用する炭素前駆体によって機器を使い分けることが好ましい。   For granulation, it is possible to use an ordinary powder granulating device such as a Henschel mixer or a spray dryer, and it is preferable to use different devices depending on the carbon precursor used.

例えば、スチレン系樹脂、アクリロニトリル系樹脂、ビニル系樹脂、イミド系樹脂、アラミド系樹脂、ピッチなど溶剤に溶けにくく、温度によって軟化する炭素前駆体は、ヘンシェルミキサーでの造粒が好ましい。ナフタリン縮合物、タール、セルロース系樹脂など溶剤に溶け易い炭素前駆体は、スプレードライヤーでの造粒が好ましい。フェノール樹脂やモノマーは、スプレードライヤー、ヘンシェルミキサーのどちらを用いても造粒可能である。   For example, a carbon precursor that is hardly soluble in a solvent such as styrene resin, acrylonitrile resin, vinyl resin, imide resin, aramid resin, and pitch and softens with temperature is preferably granulated with a Henschel mixer. A carbon precursor that is easily soluble in a solvent such as naphthalene condensate, tar, or cellulose resin is preferably granulated with a spray dryer. Phenol resin and monomer can be granulated using either a spray dryer or a Henschel mixer.

上記炭素前駆体を使用せずに、固形炭素、例えばアセチレンブラックなどを付加して造粒する場合は、LiFePO4又はLiFex1-xPO4と、炭素とが完全に接着されないため、正極材料の導電性が損なわれ易く、電池試験でレート性能、サイクル性能が低下するので好ましくない。 For without the carbon precursor, carbon solids, for example, in the case of granulation by adding acetylene black, that the LiFePO 4 or LiFe x M 1-x PO 4 , are not completely bonded to carbon, the positive electrode It is not preferable because the conductivity of the material is easily impaired and rate performance and cycle performance are deteriorated in the battery test.

従って、炭素を付加して導電性を付与する場合は、LiFePO4又はLiFex1-xPO4との接着が強い上記炭素前駆体を用いることが特に好ましい。 Therefore, when carbon is added to impart conductivity, it is particularly preferable to use the carbon precursor having strong adhesion to LiFePO 4 or LiFe x M 1-x PO 4 .

なお、スプレードライヤー、ヘンシェルミキサーなど通常の粉体の造粒機器を使用する造粒方法によれば、ボールミル、振動ミル、ターボミルなどの粉砕機器を使用する粉砕方法と比較して任意の粒度分布をもつ球形状の粒子を、安定にしかも高効率で得ることができる。   In addition, according to the granulation method using a normal powder granulator such as a spray dryer or a Henschel mixer, an arbitrary particle size distribution is obtained as compared with a pulverization method using a pulverizer such as a ball mill, a vibration mill or a turbo mill. Spherical shaped particles can be obtained stably and with high efficiency.

以上の球形状への造粒は、平均粒子径を任意に設定できるばかりでなく、粒度分布を任意に設定できることも特徴としている。この平均粒子径及び粒度分布を有する造粒物からは、第3工程の二次焼成により、同様の平均粒子径及び粒度分布を有する正極材料が得られる。   Granulation into the above spherical shape is characterized in that not only the average particle diameter can be arbitrarily set, but also the particle size distribution can be arbitrarily set. From the granulated product having this average particle size and particle size distribution, a positive electrode material having the same average particle size and particle size distribution is obtained by secondary firing in the third step.

前述したように、本発明の正極材料の平均粒子径は、5〜60μmが好ましく、高出力のリチウムイオン二次電池の電極を形成するには5〜20μmが更に好ましい。また、本発明の正極材料の粒度分布は、その平均粒子径±5%の範囲内に全粒子の90%以上が含まれるシャープな分布であることが好ましい。   As described above, the average particle size of the positive electrode material of the present invention is preferably 5 to 60 μm, and more preferably 5 to 20 μm for forming an electrode of a high output lithium ion secondary battery. In addition, the particle size distribution of the positive electrode material of the present invention is preferably a sharp distribution in which 90% or more of all particles are included in the range of the average particle diameter ± 5%.

正極材料の平均粒子径を上記条件にするには、造粒物の平均粒子径は、1〜60μmに設定することが好ましく、高出力のリチウムイオン二次電池の電極を形成するには1〜20μmに設定することが特に好ましい。また、正極材料の粒度分布を上記条件にするには、造粒物の粒度分布は、その平均粒子径±5%の範囲内に全粒子の90%以上が含まれるシャープなものに設定することが好ましい。   In order to set the average particle size of the positive electrode material to the above-mentioned conditions, the average particle size of the granulated product is preferably set to 1 to 60 μm, and 1 to form an electrode of a high-power lithium ion secondary battery. It is particularly preferable to set it to 20 μm. In addition, in order to make the particle size distribution of the positive electrode material the above-mentioned condition, the particle size distribution of the granulated product should be set to a sharp one in which 90% or more of all particles are included in the range of the average particle diameter ± 5%. Is preferred.

なお、粒度シャープ性を30%粒径と70%粒径との粒径比(D30/D70)で示す場合、本発明の正極材料及び造粒物の粒度シャープ性は0.5以上が好ましく、0.6以上が更に好ましく、0.75以上が特に好ましい。   In addition, when the particle size sharpness is shown by a particle size ratio (D30 / D70) of 30% particle size and 70% particle size, the particle size sharpness of the positive electrode material and the granulated product of the present invention is preferably 0.5 or more, 0.6 or more is more preferable, and 0.75 or more is particularly preferable.

(第3工程)
[二次焼成]
第3工程では、第2工程で得たLiFePO4又はLiFex1-xPO4と、炭素前駆体との造粒物を熱処理(二次焼成)する。
(Third step)
[Secondary firing]
In the third step, the LiFePO 4 or LiFe x M 1-x PO 4 obtained in the second step, heat treating the granulated product of carbon precursor (secondary firing).

焼成炉は、固定床炉、ロータリーキルン、流動式炉、攪拌炉など、焼成後、炭素になる原材料一般を取扱う汎用炉を用いるのが良い。これら汎用炉のうちでも原材料を均一に処理する観点からロータリーキルン、流動式炉、攪拌炉が特に好ましい。   As the firing furnace, it is preferable to use a general-purpose furnace that handles raw materials that generally become carbon after firing, such as a fixed bed furnace, a rotary kiln, a fluidized furnace, and a stirring furnace. Among these general-purpose furnaces, a rotary kiln, a fluid type furnace, and a stirring furnace are particularly preferable from the viewpoint of uniformly processing raw materials.

焼成雰囲気は、窒素雰囲気、アルゴン雰囲気など不活性雰囲気であれば良い。   The firing atmosphere may be an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere.

従来の正極材料LiFePO4又はLiFex1-xPO4の製造方法では、焼成温度を700℃以上にすると、LiFePO4結晶粒子又はLiFex1-xPO4結晶粒子の成長による粒子の多孔質化、嵩密度低下、充填密度低下の問題があり、焼成温度を700℃以上にできなかった。 In the conventional method for producing the positive electrode material LiFePO 4 or LiFe x M 1-x PO 4 , when the firing temperature is 700 ° C. or higher, the porosity of the particles is increased by the growth of LiFePO 4 crystal particles or LiFe x M 1-x PO 4 crystal particles. There were problems of quality improvement, bulk density reduction, and packing density reduction, and the firing temperature could not be raised to 700 ° C or higher.

本発明の製造方法によれば、第3工程の二次焼成における対象物を、第2工程で得たLiFePO4又はLiFex1-xPO4と炭素前駆体との混合造粒物としていること、並びに、この第2工程の混合造粒における対象物を、炭素前駆体及び第1工程の一次焼成物の粉砕物としていることにより、焼成温度を700℃以上にしても、二次焼成物粒子の多孔質化は起こらず、嵩密度及び充填密度の高い正極材料が得られる。 According to the production method of the present invention, the object in the secondary firing in the third step is a mixed granulated product of LiFePO 4 or LiFe x M 1-x PO 4 obtained in the second step and a carbon precursor. In addition, since the object in the mixed granulation in the second step is a pulverized product of the carbon precursor and the primary fired product in the first step, the fired secondary product can be set to 700 ° C. or higher. The particles do not become porous, and a positive electrode material having a high bulk density and a high packing density can be obtained.

以上のことから、二次焼成において焼成温度は700℃以上にすることができ、その700℃以上のうちでも炭素前駆体が炭素として導電性を発揮し、且つ高結晶性のLiFePO4又はLiFex1-xPO4が得られる700〜900℃が好ましく、750〜900℃が更に好ましく、790〜900℃が特に好ましい。 From the above, secondary firing temperature in the firing may be at least 700 ° C., the carbon precursor Among the more that 700 ° C. exerts conductive as carbon, and highly crystalline LiFePO 4 or LiFe x 700 to 900 ° C. are preferred M 1-x PO 4 is obtained, more preferably 750 to 900 ° C., particularly preferably from 790 to 900 ° C..

焼成温度が900℃を超える場合、得られるLiFePO4又はLiFex1-xPO4と炭素との複合体におけるLiFePO4又はLiFex1-xPO4は、その熱安定性が悪くなる。しかも、還元されて結晶性が低下するので好ましくない。 If the firing temperature exceeds 900 ° C., LiFePO 4 or LiFe x M 1-x PO 4 in complex with the resulting LiFePO 4 or LiFe x M 1-x PO 4 and carbon, their thermal stability is poor. Moreover, it is not preferable because it is reduced and crystallinity is lowered.

焼成温度が700℃未満では、得られるLiFePO4又はLiFex1-xPO4と炭素との複合体における炭素の抵抗値が、焼成温度750〜900℃のものに比べて1桁以上増加するので好ましくない。 When the firing temperature is less than 700 ° C., the resistance value of carbon in the resulting LiFePO 4 or LiFe x M 1-x PO 4 and carbon composite increases by an order of magnitude or more compared to that of the firing temperature of 750 to 900 ° C. Therefore, it is not preferable.

第3工程の二次焼成により、第2工程の造粒で球形化されたLiFePO4又はLiFex1-xPO4と炭素との造粒物は、そのままの粒子形状で焼成、複合化される。 Due to the secondary firing in the third step, the granulated product of LiFePO 4 or LiFe x M 1-x PO 4 and carbon that has been spheroidized by the granulation in the second step is fired and combined in the same particle shape. The

この二次焼成物は、粒度調整のため粉砕する必要がないので、LiFePO4断面又はLiFex1-xPO4断面の露出などの導電性低下要因がなく良好な導電性を有する球形状のLiFePO4又はLiFex1-xPO4と炭素との複合体である。 Since this secondary fired product does not need to be pulverized for particle size adjustment, it has a spherical shape having good conductivity without causing a decrease in conductivity such as exposure of the LiFePO 4 cross section or LiFe x M 1-x PO 4 cross section. LiFePO 4 or LiFe x M 1-x PO 4 and complexes with carbon.

この焼成における対象物が、第2工程で得たLiFePO4又はLiFex1-xPO4と炭素前駆体との混合造粒物ではなく、第1工程で用いた活物質原料に直接炭素前駆体を混合し、造粒したものである場合、焼成時、活物質原料が分解ガスを放って熱重量減少するので、得られる複合体は多孔質で充填密度の低い正極材料となる。 Object in this firing, rather than the mixture granulated product of LiFePO 4 or LiFe x M 1-x PO 4 and carbon precursor obtained in the second step, directly a carbon precursor in the raw active material used in the first step When the body is mixed and granulated, during firing, the active material raw material emits a decomposition gas to reduce the thermal weight, so that the resulting composite is a positive electrode material that is porous and has a low packing density.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、これら実施例及び比較例における負極材の各物性値は以下の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, each physical property value of the negative electrode material in these Examples and Comparative Examples was measured by the following methods.

(1) 平均粒子径及び粒度分布
島津製作所(株)製レーザー式回折粒度分布測定装置SALD−1000を用いて測定した。
(1) Average particle size and particle size distribution Measurement was performed using a laser diffraction particle size distribution analyzer SALD-1000 manufactured by Shimadzu Corporation.

(2) アスペクト比(L/D)
日本電子社製走査型電子顕微鏡(SEM)JSM5300(商品名)を用いて測定した。
(2) Aspect ratio (L / D)
The measurement was performed using a scanning electron microscope (SEM) JSM5300 (trade name) manufactured by JEOL Ltd.

(3) 炭素含有量
JIS M 8813 セフィールド高温法により測定した。
(3) Carbon content Measured by JIS M 8813 Cefield high temperature method.

(4) 充填密度
10mLのガラス製メスシリンダーに試料を入れてタッピングし、試料の容積が変化しなくなったところで試料容積を測定し、試料重量を試料容積で除した値を充填密度とした。
(4) Packing density A sample was put into a 10 mL glass graduated cylinder and tapped, and when the volume of the sample ceased to change, the sample volume was measured, and the value obtained by dividing the sample weight by the sample volume was taken as the packing density.

(5) 体積抵抗
宝泉製インピーダンス測定装置で49MPa(500kgf/cm2)条件下で試料の抵抗を測定し、体積抵抗を算出した。
(5) Volume resistance The resistance of the sample was measured under the condition of 49 MPa (500 kgf / cm 2 ) using an impedance measuring device manufactured by Hosen, and the volume resistance was calculated.

(6) XRD法による結晶解析
Philips社製X線回折装置 X‘pert pro(商品名)で測定した。
(6) Crystal analysis by XRD method Measured with an X-ray diffractometer X'pert pro (trade name) manufactured by Philips.

[実施例1]
活物質原料として、燐酸二水素リチウム1モル、蓚酸鉄二水和物1モルを用い、これらを遊星ミルで200rpm、12hr混合した。この原料混合物100gを350℃で5hr、800℃で1hr、窒素雰囲気下、小型電気炉で1回目の焼成をし、活物質としての一次焼成物を得た。この一次焼成物は、XRD法により測定したところ、結晶性の高いLiFePO4であった。
[Example 1]
As active material raw materials, 1 mol of lithium dihydrogen phosphate and 1 mol of iron oxalate dihydrate were used, and these were mixed in a planetary mill at 200 rpm for 12 hours. 100 g of this raw material mixture was baked for the first time in a small electric furnace in a nitrogen atmosphere at 350 ° C. for 5 hr and 800 ° C. for 1 hr to obtain a primary baked product as an active material. This primary fired product was LiFePO 4 having high crystallinity as measured by the XRD method.

この一次焼成物を5μm以下に粉砕分級し、20gをナフタレンスルホン酸樹脂溶液50g(樹脂溶液中の固形分20質量%、炭素分10質量%)と混合して液状物にした。この液状物について、アトマイザーノズルを備えた小型スプレードライヤーを用い、気流によりノズルを3000rpmで回転させながら、120℃の乾燥空気中に液状物を5cm3/minの供給量で噴出して造粒した。 This primary baked product was pulverized and classified to 5 μm or less, and 20 g was mixed with 50 g of a naphthalenesulfonic acid resin solution (solid content 20 mass% in the resin solution, carbon content 10 mass%) to obtain a liquid material. This liquid material was granulated by using a small spray dryer equipped with an atomizer nozzle and spouting the liquid material at a supply rate of 5 cm 3 / min into 120 ° C. dry air while rotating the nozzle at 3000 rpm by an air flow. .

造粒物を回収後、小型電気炉で800℃、2hr、窒素雰囲気下の条件で2回目の焼成をして、二次焼成物を得、これを正極材料の試料として諸物性を測定した。この試料は、図2及び3の走査型電子顕微鏡(SEM)写真に示すように球形であり、XRD法による測定の結果、図1に示すように一次焼成物のXRDパターンと強度が一致した。   After the granulated material was collected, it was fired a second time in a small electric furnace under conditions of 800 ° C. and 2 hours under a nitrogen atmosphere to obtain a secondary fired product, and various physical properties were measured using this as a positive electrode material sample. This sample was spherical as shown in the scanning electron microscope (SEM) photographs of FIGS. 2 and 3, and as a result of measurement by the XRD method, the intensity coincided with the XRD pattern of the primary fired product as shown in FIG.

上記試料について、炭素含有量は10質量%、充填密度は1.41g/cm3、平均粒子径は14μm、アスペクト比(L/D)は1.1、粒度シャープ性(D30/D70)は0.79、体積抵抗は7Ω・cmであった。 For the above sample, the carbon content was 10% by mass, the packing density was 1.41 g / cm 3 , the average particle size was 14 μm, the aspect ratio (L / D) was 1.1, and the particle size sharpness (D30 / D70) was 0. 79, volume resistance was 7 Ω · cm.

上記試料について、コイン型電池で電極の評価を実施した。コイン型電池は、以下の手順で作製した。   About the said sample, evaluation of the electrode was implemented with the coin-type battery. The coin-type battery was produced by the following procedure.

上記試料に結着材としてポリビニリデンフルオライド(PVDF)8質量%Nメチルピロリドン(NMP)溶液を添加混合し、上記試料95質量%−PVDF5質量%の混合物を得た。この混合物をアルミ箔上に塗布し、80℃で乾燥後、電極寸法の直径1.6mmφに切り出し、プレス圧78MPa(0.8tonf/cm2)でプレスし、電極を作製した。 A polyvinylidene fluoride (PVDF) 8 mass% N-methylpyrrolidone (NMP) solution was added to and mixed with the sample as a binder to obtain a mixture of the sample 95 mass% -PVDF 5 mass%. This mixture was applied onto an aluminum foil, dried at 80 ° C., cut into an electrode size of 1.6 mmφ, and pressed at a press pressure of 78 MPa (0.8 tonf / cm 2 ) to produce an electrode.

この電極を正極とし、グローブボックス内での対極を金属Liとし、EC/DMC=1/2(容積比)、LiPF61mol/Lの電解液を用いてC2023タイプコイン電池を作製した。 This electrode was used as a positive electrode, the counter electrode in the glove box was made of metal Li, and a C2023 type coin battery was manufactured using an electrolytic solution of EC / DMC = 1/2 (volume ratio) and LiPF 6 1 mol / L.

電極の初期評価は、充電0.2mA/cm2、4.3V、放電0.2mA/cm2、2.0V、休止10分の条件で実施した。 The initial evaluation of the electrodes was performed under the conditions of charge 0.2 mA / cm 2 , 4.3 V, discharge 0.2 mA / cm 2 , 2.0 V, and rest for 10 minutes.

充電における電極のレート性能は、1Cを120mAhとし、放電を0.5C一定で行い、充電を1〜15Cの範囲で変更させる条件で実施した。放電における電極のレート性能は、充電レート性能と逆の条件で実施した。充電レート性能の評価結果を図4に、放電レート性能の評価結果を図5に示す。   The rate performance of the electrode in charging was 1 C at 120 mAh, discharging was performed at a constant 0.5 C, and charging was performed under the condition that the charging was changed in the range of 1 to 15 C. The rate performance of the electrode in discharging was performed under conditions opposite to the charge rate performance. FIG. 4 shows the evaluation result of the charge rate performance, and FIG. 5 shows the evaluation result of the discharge rate performance.

電極のサイクル性能は、10Cで充放電を実施して評価した。このサイクル性能の推移を図6に示す。電極サイクル性能における測定条件は、
電解液 : EC/DMC=1/2(容積比)
電解質 : LiPF61mol/L、25℃
充電終止電圧 : 4.2V
充電終止電圧 : 1.5V
休止時間 : 10分
であった。各サイクルでのレート条件は
1〜50サイクル ・・・・・・ 3C(3mA/cm2)
50〜100サイクル ・・・・ 6C(6mA/cm2)
100〜150サイクル ・・・ 9C(9mA/cm2)
150〜200サイクル ・・ 12C(12mA/cm2)
のとおりであった。
The cycle performance of the electrode was evaluated by charging and discharging at 10C. The transition of this cycle performance is shown in FIG. Measurement conditions for electrode cycle performance are:
Electrolyte: EC / DMC = 1/2 (volume ratio)
Electrolyte: LiPF 6 1 mol / L, 25 ° C.
End-of-charge voltage: 4.2V
End-of-charge voltage: 1.5V
Rest time: 10 minutes. The rate condition in each cycle is 1 to 50 cycles .... 3C (3mA / cm 2 )
50 to 100 cycles ··· 6C (6mA / cm 2 )
100 to 150 cycles ··· 9C (9mA / cm 2)
150 to 200 cycles ·· 12C (12mA / cm 2)
It was as follows.

上記試料について、電極レート性能、電極サイクル性能以外の諸物性測定結果は表1及び2に示す。   Tables 1 and 2 show the measurement results of the physical properties other than the electrode rate performance and the electrode cycle performance for the above samples.

[実施例2]
活物質原料として、燐酸二水素リチウム1モル、蓚酸鉄二水和物0.9モル、炭酸マンガン0.1モルを用い、これらを遊星ミルで200rpm、3hr混合した以外は、実施例1と同様に正極材料の試料を作製した。
[Example 2]
As Example 1, except that 1 mol of lithium dihydrogen phosphate, 0.9 mol of iron oxalate dihydrate, and 0.1 mol of manganese carbonate were used as active material raw materials, and these were mixed at 200 rpm for 3 hours by a planetary mill. A sample of the positive electrode material was prepared.

得られた試料について、炭素含有量は10質量%、充填密度は1.42g/cm3、平均粒子径は12μm、アスペクト比(L/D)は1.2、粒度シャープ性(D30/D70)は0.81、体積抵抗は2Ω・cmであった。また、一次焼成物と二次焼成物とにおいて結晶性の変化はなかった。上記試料についての諸物性測定結果を表1及び2に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 1.42 g / cm 3 , the average particle size is 12 μm, the aspect ratio (L / D) is 1.2, and the particle size sharpness (D30 / D70). Was 0.81 and the volume resistance was 2 Ω · cm. Further, there was no change in crystallinity between the primary fired product and the secondary fired product. Tables 1 and 2 show the measurement results of various physical properties of the sample.

[実施例3]
実施例2で作製した活物質混合物100gを350℃で5hr、窒素雰囲気下、小型電気炉で1回目の焼成をした以外は、実施例2と同様に正極材料の試料を作製した。
[Example 3]
A sample of the positive electrode material was prepared in the same manner as in Example 2, except that 100 g of the active material mixture prepared in Example 2 was baked for the first time in a small electric furnace in a nitrogen atmosphere at 350 ° C. for 5 hours.

得られた試料について、炭素含有量は10質量%、充填密度は1.48g/cm3、平均粒子径は18μm、アスペクト比(L/D)は1.1、粒度シャープ性(D30/D70)は0.75、体積抵抗は11Ω・cmであった。また、一次焼成物と二次焼成物とにおいて結晶性の変化はなかった。上記試料についての諸物性測定結果を表1及び2に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 1.48 g / cm 3 , the average particle size is 18 μm, the aspect ratio (L / D) is 1.1, and the particle size sharpness (D30 / D70). Was 0.75 and the volume resistance was 11 Ω · cm. Further, there was no change in crystallinity between the primary fired product and the secondary fired product. Tables 1 and 2 show the measurement results of various physical properties of the sample.

[実施例4]
活物質原料として、燐酸二水素リチウム1モル、蓚酸鉄二水和物0.9モル、酢酸ニッケル0.1モルを用い、これらを遊星ミルで200rpm、3hr混合した以外は、実施例1と同様に正極材料の試料を作製した。
[Example 4]
As Example 1, except that 1 mol of lithium dihydrogen phosphate, 0.9 mol of iron oxalate dihydrate, and 0.1 mol of nickel acetate were used as active material raw materials, and these were mixed by a planetary mill at 200 rpm for 3 hr. A sample of the positive electrode material was prepared.

得られた試料について、炭素含有量は10質量%、充填密度は1.49g/cm3、平均粒子径は19μm、アスペクト比(L/D)は1.1、粒度シャープ性(D30/D70)は0.82、体積抵抗は0.7Ω・cmであった。また、一次焼成物と二次焼成物とにおいて結晶性の変化はなかった。上記試料についての諸物性測定結果を表1及び2に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 1.49 g / cm 3 , the average particle size is 19 μm, the aspect ratio (L / D) is 1.1, and the particle size sharpness (D30 / D70). Was 0.82 and the volume resistance was 0.7 Ω · cm. Further, there was no change in crystallinity between the primary fired product and the secondary fired product. Tables 1 and 2 show the measurement results of various physical properties of the sample.

[実施例5]
実施例2で作製した一次焼成物(LiFe0.9Mn0.1PO4)の粉砕分級物200gにフェノール樹脂を炭素分として10質量%添加混合し、ヘンシェルミキサーで5000rpm、2hr混合造粒した以外は、実施例2と同様に正極材料の試料を作製した。
[Example 5]
Except for adding and mixing 10% by mass of phenol resin as carbon content to 200 g of the pulverized and classified product of the primary fired product (LiFe 0.9 Mn 0.1 PO 4 ) prepared in Example 2 and mixing and granulating at 5000 rpm for 2 hours using a Henschel mixer. A sample of the positive electrode material was prepared in the same manner as in Example 2.

得られた試料について、炭素含有量は10質量%、充填密度は1.55g/cm3、平均粒子径は25μm、アスペクト比(L/D)は1.1、粒度シャープ性(D30/D70)は0.76、体積抵抗は6Ω・cmであった。また、一次焼成物と二次焼成物とにおいて結晶性の変化はなかった。上記試料についての諸物性測定結果を表1及び2に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 1.55 g / cm 3 , the average particle size is 25 μm, the aspect ratio (L / D) is 1.1, and the particle size sharpness (D30 / D70). Was 0.76 and the volume resistance was 6 Ω · cm. Further, there was no change in crystallinity between the primary fired product and the secondary fired product. Tables 1 and 2 show the measurement results of various physical properties of the sample.

[比較例1]
実施例1で作製した一次焼成物(LiFePO4)の未粉砕物を正極材料の試料として用い、80質量%を、導電助材アセチレンブラック10質量%と混合し、結着材PVDF10質量%で結着して電極を作製した以外は、実施例1と同様にC2023タイプコイン電池を作製した。
[Comparative Example 1]
The primary baked product (LiFePO 4 ) produced in Example 1 was used as a positive electrode material sample, 80% by mass was mixed with 10% by mass of the conductive auxiliary material acetylene black, and the binder PVDF was 10% by mass. A C2023 type coin battery was produced in the same manner as in Example 1 except that the electrode was produced by wearing.

上記試料についての諸物性測定結果を表1及び2、並びに、図4〜6に示す。この試料は、図7及び8の走査型電子顕微鏡(SEM)写真に示すように不定形であり、粒度分布も幅広くばらついている。   The physical property measurement results for the sample are shown in Tables 1 and 2, and FIGS. This sample is irregular as shown in the scanning electron microscope (SEM) photographs of FIGS. 7 and 8, and the particle size distribution varies widely.

[比較例2]
実施例2で作製した一次焼成物(LiFe0.9Mn0.1PO4)の未粉砕物を正極材料の試料として用い、80質量%を、導電助材アセチレンブラック10質量%と混合し、結着材PVDF10質量%で結着して電極を作製した以外は、実施例2と同様にC2023タイプコイン電池を作製した。
[Comparative Example 2]
The primary fired product (LiFe 0.9 Mn 0.1 PO 4 ) produced in Example 2 was used as a positive electrode material sample, and 80% by mass was mixed with 10% by mass of the conductive auxiliary material acetylene black, and the binder PVDF10 A C2023 type coin battery was produced in the same manner as in Example 2 except that the electrode was produced by binding at mass%.

上記試料についての諸物性測定結果を表1及び2、並びに、図4〜6に示す。   The physical property measurement results for the sample are shown in Tables 1 and 2, and FIGS.

[比較例3]
実施例2で作製した一次焼成物(LiFe0.9Mn0.1PO4)の粉砕分級物を正極材料の試料として用い、80質量%を、導電助材アセチレンブラック10質量%と混合し、結着材PVDF10質量%で結着して電極を作製した以外は、実施例2と同様にC2023タイプコイン電池を作製した。
[Comparative Example 3]
The pulverized and classified product of the primary fired product (LiFe 0.9 Mn 0.1 PO 4 ) produced in Example 2 was used as a positive electrode material sample, and 80% by mass was mixed with 10% by mass of the conductive auxiliary material acetylene black, and the binder PVDF10 A C2023 type coin battery was produced in the same manner as in Example 2 except that the electrode was produced by binding at mass%.

上記試料についての諸物性測定結果を表1及び2に示す。   Tables 1 and 2 show the measurement results of various physical properties of the sample.

[比較例4]
実施例2で作製した一次焼成物(LiFe0.9Mn0.1PO4)の未粉砕物200gにナフタレンスルホン酸樹脂を炭素分として10質量%添加したが、造粒処理はしなかった。即ち、第1工程で粉砕処理をしなかったこと及び第2工程で造粒処理をしなかったこと以外は、実施例2と同様に正極材料の試料を作製した。
[Comparative Example 4]
Although 10% by mass of naphthalene sulfonic acid resin as a carbon content was added to 200 g of the unfired product of the primary fired product (LiFe 0.9 Mn 0.1 PO 4 ) prepared in Example 2, no granulation treatment was performed. That is, a sample of the positive electrode material was prepared in the same manner as in Example 2 except that the pulverization treatment was not performed in the first step and the granulation treatment was not performed in the second step.

得られた試料について、炭素含有量は10質量%、充填密度は1.18g/cm3、平均粒子径は26μm、アスペクト比(L/D)は2.3、粒度シャープ性(D30/D70)は0.48、体積抵抗は19Ω・cmであった。上記試料についての諸物性測定結果を表1及び2に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 1.18 g / cm 3 , the average particle size is 26 μm, the aspect ratio (L / D) is 2.3, and the particle size sharpness (D30 / D70). Was 0.48 and the volume resistance was 19 Ω · cm. Tables 1 and 2 show the measurement results of various physical properties of the sample.

なお、コイン型電池の作製時、上記試料95質量%−PVDF5質量%の混合物では、アルミ箔上への塗布が困難であったので、上記試料90質量%−PVDF10質量%の混合物をアルミ箔上に塗布した。   In addition, since it was difficult to apply the mixture of 95% by mass of the sample to 5% by mass of PVDF on the aluminum foil at the time of producing the coin-type battery, the mixture of the sample of 90% by mass to 10% by mass of PVDF was placed on the aluminum foil. It was applied to.

[比較例5]
実施例2で使用した活物質原料200gにアセチレンブラックを炭素分として10質量%添加混合し、遊星ミルで200rpm、3hr混合造粒し、この造粒物の焼成物を粉砕して全粒子とも45μm以下とした以外は、実施例2と同様に一次焼成物を作製した。この焼成物を正極材料の試料とした。
[Comparative Example 5]
200 g of acetylene black as a carbon component was added to and mixed with 200 g of the active material raw material used in Example 2 and mixed and granulated at 200 rpm for 3 hours using a planetary mill. The fired product of this granulated product was pulverized and all particles were 45 μm. A primary fired product was produced in the same manner as in Example 2 except for the following. This fired product was used as a positive electrode material sample.

得られた試料について、炭素含有量は10質量%、充填密度は0.8g/cm3、平均粒子径は2μm、アスペクト比(L/D)は2.2、粒度シャープ性(D30/D70)は0.21、体積抵抗は79Ω・cm以上であった。上記試料についての諸物性測定結果を表1及び2、並びに、図4〜6に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 0.8 g / cm 3 , the average particle size is 2 μm, the aspect ratio (L / D) is 2.2, and the particle size sharpness (D30 / D70). Was 0.21 and the volume resistance was 79 Ω · cm or more. The physical property measurement results for the sample are shown in Tables 1 and 2, and FIGS.

なお、コイン型電池の作製時、上記試料95質量%−PVDF5質量%の混合物では、アルミ箔上への塗布が困難であったので、上記試料90質量%−PVDF10質量%の混合物をアルミ箔上に塗布した。   In addition, since it was difficult to apply the mixture of 95% by mass of the sample to 5% by mass of PVDF on the aluminum foil at the time of producing the coin-type battery, the mixture of the sample of 90% by mass to 10% by mass of PVDF was placed on the aluminum foil. It was applied to.

[比較例6]
実施例2で使用した活物質原料200gにフェノール樹脂を炭素分として10質量%添加混合し、ヘンシェルミキサーで5000rpm、2hr混合造粒し、この造粒物の焼成物を粉砕して全粒子とも45μm以下とした以外は、実施例2と同様に一次焼成物を作製した。この焼成物を正極材料の試料とした。
[Comparative Example 6]
200 g of a phenol resin was added to and mixed with 200 g of the active material raw material used in Example 2 and mixed and granulated with a Henschel mixer at 5000 rpm for 2 hours, and the fired product of this granulated product was pulverized and all particles were 45 μm. A primary fired product was produced in the same manner as in Example 2 except for the following. This fired product was used as a positive electrode material sample.

得られた試料について、炭素含有量は10質量%、充填密度は0.8g/cm3、平均粒子径は3μm、アスペクト比(L/D)は2.4、粒度シャープ性(D30/D70)は0.19、体積抵抗は37Ω・cmであった。上記試料についての諸物性測定結果を表1及び2、並びに、図4〜6に示す。 About the obtained sample, the carbon content is 10% by mass, the packing density is 0.8 g / cm 3 , the average particle size is 3 μm, the aspect ratio (L / D) is 2.4, and the particle size sharpness (D30 / D70). Was 0.19 and the volume resistance was 37 Ω · cm. The physical property measurement results for the sample are shown in Tables 1 and 2, and FIGS.

なお、コイン型電池の作製時、上記試料95質量%−PVDF5質量%の混合物では、アルミ箔上への塗布が困難であったので、上記試料90質量%−PVDF10質量%の混合物をアルミ箔上に塗布した。   In addition, since it was difficult to apply the mixture of 95% by mass of the sample to 5% by mass of PVDF on the aluminum foil at the time of producing the coin-type battery, the mixture of the sample of 90% by mass to 10% by mass of PVDF was placed on the aluminum foil. It was applied to.

Figure 0004794833
Figure 0004794833

Figure 0004794833
[実施例1〜5及び比較例1〜6についての考察]
図1に示すXRDチャートから、実施例1で作製した炭素未被覆活物質(LiFePO4)と炭素被覆活物質(LiFePO4/C)、並びに、実施例2で作製した炭素未被覆活物質(LiFe0.9Mn0.1PO4)と炭素被覆活物質(LiFe0.9Mn0.1PO4/C)は、何れも同等の高い結晶性を示しており、炭素被覆処理されても活物質の結晶性の劣化は認められない。
Figure 0004794833
[Discussion about Examples 1-5 and Comparative Examples 1-6]
From the XRD chart shown in FIG. 1, the carbon uncoated active material (LiFePO 4 ) and the carbon coated active material (LiFePO 4 / C) prepared in Example 1, and the carbon uncoated active material (LiFePO 4 ) prepared in Example 2 are used. 0.9 Mn 0.1 PO 4 ) and carbon-covered active material (LiFe 0.9 Mn 0.1 PO 4 / C) both show the same high crystallinity, and even when carbon-coated, the deterioration of the crystallinity of the active material is recognized. I can't.

図2に示すSEM写真から、実施例1で作製した炭素被覆活物質(LiFePO4/C)は、均一で粒度の揃った球形粒子であることが解る。 From the SEM photograph shown in FIG. 2, it can be seen that the carbon-coated active material (LiFePO 4 / C) produced in Example 1 is a uniform and uniform spherical particle size.

図3に示す図2を更に拡大したSEM写真から、実施例1で作製した炭素被覆活物質(LiFePO4/C)は、均一で粒度の揃った球形粒子であるばかりでなく、その粒子には大きな空隙も無いことが解る。 From the SEM photograph obtained by further enlarging FIG. 2 shown in FIG. 3, the carbon-coated active material (LiFePO 4 / C) produced in Example 1 is not only uniform and uniform spherical particles, but also the particles include It can be seen that there are no large voids.

図4の充電レート性能を示すグラフから、実施例1と比較例1とを比較すると、電極作製時に導電助材を添加しなくても高いレート性能が得られることが解る。   From the graph showing the charge rate performance in FIG. 4, comparing Example 1 with Comparative Example 1, it can be seen that high rate performance can be obtained without adding a conductive additive during electrode production.

図5の放電レート性能を示すグラフから、実施例1と比較例1とを比較しても、図4と同様に電極作製時に導電助材を添加しなくても高いレート性能が得られることが解る。   From the graph showing the discharge rate performance of FIG. 5, even if Example 1 and Comparative Example 1 are compared, high rate performance can be obtained without adding a conductive additive during electrode preparation as in FIG. I understand.

図6のサイクル性能を示すグラフから、実施例1で作製した電極はサイクル数の増加につれて充放電容量が若干低下するものの、良好なサイクル性能を示している。これに対し、比較例1で作製した電極は50サイクル、比較例5で作製した電極は2サイクル、比較例6で作製した電極は100サイクルと何れも短期間で劣化した。   From the graph showing the cycle performance shown in FIG. 6, the electrode produced in Example 1 shows good cycle performance although the charge / discharge capacity slightly decreases as the number of cycles increases. In contrast, the electrode produced in Comparative Example 1 deteriorated in a short period of 50 cycles, the electrode produced in Comparative Example 5 produced 2 cycles, and the electrode produced in Comparative Example 6 produced 100 cycles.

表1に示す結果から、実施例1〜5で作製した正極材料は、何れも充填密度が高く、体積抵抗が低い材料である。これに対し、比較例1〜6で作製した正極材料は、何れも充填密度が低く、体積抵抗が高い材料であることが解る。   From the results shown in Table 1, all of the positive electrode materials produced in Examples 1 to 5 are materials having a high packing density and a low volume resistance. On the other hand, it can be seen that all of the positive electrode materials produced in Comparative Examples 1 to 6 have a low packing density and a high volume resistance.

表2に示す結果から、実施例1〜5で作製した電極は結着性が高く、電極密度、充放電容量、初期効率等の何れの電極物性も高い良好な電極であることが解る。これに対して、比較例1〜6で作製した電極は極めて電極が剥がれ易く、前記電極物性は少なくとも一以上が低いことが解る。   From the results shown in Table 2, it can be seen that the electrodes produced in Examples 1 to 5 are excellent electrodes having high binding properties and high electrode properties such as electrode density, charge / discharge capacity, and initial efficiency. On the other hand, the electrodes produced in Comparative Examples 1 to 6 are extremely easy to peel off, and it is understood that at least one of the electrode physical properties is low.

本発明の正極材料で正極の電極を作製し、Liを負極の電極とし、電解液としてエチレンカーボネートとジメチルカーボネートとの容積比1:2の混合溶媒(EC/2DMC)、電解液としてLiPF6を用いて作製したコイン型のリチウムイオン二次電池(実施例1)は、従来の正極材料を用いて作製した電池(比較例5)と比べ、表1、並びに、図4及び5に示す結果から、初期評価の充放電容量で1.2倍程度、10Cでの充放電におけるサイクル性能で5倍以上も優れている。 A positive electrode is produced from the positive electrode material of the present invention, Li is used as a negative electrode, a mixed solvent (EC / 2DMC) of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 is used as an electrolytic solution, and LiPF 6 is used as an electrolytic solution. The coin-type lithium ion secondary battery (Example 1) produced using the results shown in Table 1 and the results shown in FIGS. 4 and 5 are compared with the battery produced using the conventional positive electrode material (Comparative Example 5). The charge / discharge capacity of the initial evaluation is about 1.2 times, and the cycle performance in charge / discharge at 10 C is 5 times or more.

比較例1〜6で作製した正極材料は、何れも多孔質で、充填密度が低い。比較例1〜3の正極材料は、電極作製時に導電助材のアセチレンブラックを10質量%加えており、電極への結着性が低くなっている。そのため、結着材のPVDFを多量に用いている。   The positive electrode materials produced in Comparative Examples 1 to 6 are all porous and have a low packing density. In the positive electrode materials of Comparative Examples 1 to 3, 10% by mass of acetylene black, which is a conductive additive, is added at the time of electrode preparation, and the binding property to the electrode is low. Therefore, a large amount of binder PVDF is used.

比較例4〜6の正極材料は、電極作製時に導電助材のアセチレンブラックは加えていないが、炭素前駆体を、一次焼成物の粉砕物である活物質にではなく、活物質原料に添加、混合、造粒した後、焼成しており、比較例1〜3の正極材料と同様に電極への結着性が低くなっている。そのため、結着材のPVDFを多量に用いている。   In the positive electrode materials of Comparative Examples 4 to 6, the conductive auxiliary material acetylene black was not added at the time of electrode preparation, but the carbon precursor was added to the active material raw material instead of the active material that was the pulverized product of the primary fired product, After mixing and granulating, it is fired, and the binding property to the electrode is low like the positive electrode materials of Comparative Examples 1 to 3. Therefore, a large amount of binder PVDF is used.

これら比較例1〜6で作製した正極材料に対し、実施例1〜5で作製した正極材料は、電極への結着性が高いため、結着材のPVDFの配合量は少量で良い。その結果、実施例1〜5の正極材料は、比較例1〜6の正極材料と比べ、活物質密度が1.3〜1.9倍高い。よって、本発明の正極材料によれば、高容量の電極が作製可能である。   Since the positive electrode material produced in Examples 1-5 has high binding property to an electrode with respect to the positive electrode material produced in these comparative examples 1-6, the compounding quantity of PVDF of a binder may be small. As a result, the positive electrode materials of Examples 1 to 5 have an active material density that is 1.3 to 1.9 times higher than the positive electrode materials of Comparative Examples 1 to 6. Therefore, according to the positive electrode material of the present invention, a high-capacity electrode can be produced.

実施例1、2で作製した炭素未被覆活物質(LiFePO4、LiFe0.9Mn0.1PO4)と炭素被覆活物質(LiFePO4/C、LiFe0.9Mn0.1PO4/C)についてのXRD法による結晶性の測定結果を示すXRDチャートである。Crystal by XRD method about carbon uncoated active material (LiFePO 4 , LiFe 0.9 Mn 0.1 PO 4 ) and carbon coated active material (LiFePO 4 / C, LiFe 0.9 Mn 0.1 PO 4 / C) prepared in Examples 1 and 2 It is an XRD chart which shows the measurement result of property. 実施例1で作製した炭素被覆活物質(LiFePO4/C)についての図面代用走査型電子顕微鏡(SEM)写真である。2 is a drawing-substitute scanning electron microscope (SEM) photograph of the carbon-coated active material (LiFePO 4 / C) produced in Example 1. FIG. 実施例1で作製した炭素被覆活物質(LiFePO4/C)についての図面代用拡大走査型電子顕微鏡(SEM)写真である。3 is an enlarged scanning electron microscope (SEM) photograph substituting for a drawing of the carbon-coated active material (LiFePO 4 / C) produced in Example 1. FIG. 実施例1、並びに、比較例1、5及び6で作製した電極について行った電池性能試験の試験結果であって充電レート性能を示すグラフである。It is a graph which is a test result of the battery performance test done about the electrode produced in Example 1 and Comparative Examples 1, 5, and 6, and shows charge rate performance. 実施例1、並びに、比較例1、5及び6で作製した電極について行った電池性能試験の試験結果であって放電レート性能を示すグラフである。It is a graph which is a test result of the battery performance test done about the electrode produced in Example 1 and Comparative Examples 1, 5, and 6, and shows discharge rate performance. 実施例1、並びに、比較例1、5及び6で作製した電極について行った電池性能試験の試験結果であってサイクル性能を示すグラフである。It is a graph which is a test result of the battery performance test done about the electrode produced in Example 1 and Comparative Examples 1, 5, and 6, and shows cycle performance. 比較例1で正極材料として用いた実施例1で作製の一次焼成物(LiFePO4)の未粉砕物についての図面代用走査型電子顕微鏡(SEM)写真である。FIG. 2 is a drawing-substitute scanning electron microscope (SEM) photograph of an unground product of a primary fired product (LiFePO 4 ) produced in Example 1 used as a positive electrode material in Comparative Example 1. FIG. 比較例1で正極材料として用いた実施例1で作製の一次焼成物(LiFePO4)の未粉砕物についての図面代用拡大走査型電子顕微鏡(SEM)写真である。It is a drawing-substitute enlarged scanning electron microscope (SEM) photograph for the unground product of the primary fired product (LiFePO 4 ) produced in Example 1 used as the positive electrode material in Comparative Example 1.

Claims (2)

LiFePO4、あるいはFeの一部を異種元素で置換したLiFex1-xPO4(0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)を5μm以下に粉砕し、得られた粉砕物に炭素前駆体を添加これらを混合得られた混合物をヘンシェルミキサー又はスプレードライヤーを用いて造粒し、得られた造粒物を700〜900℃で焼成することを特徴とする、粒子形状がアスペクト比(L/D)1〜2の球形状であり、平均粒子径が5〜60μmであり、30%粒径と70%粒径との粒径比(D30/D70)で示される粒度シャープ性が0.5以上であり、10mLのガラス製メスシリンダーに試料を入れてタッピングし、試料の容積が変化しなくなったところで試料容積を測定し、試料重量を試料容積で除した値で示される充填密度が1.0〜1.8g/cm 3 であり、プレス圧49MPaの時の体積抵抗値が0.1〜20Ω・cmであるリチウムイオン二次電池用正極材料の製造方法。 LiFePO 4 or LiFe x M 1-x PO 4 in which a part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni, Ti or V, or these shows a mixing element.) was ground to 5μm or less, was added to the obtained carbon precursor to grind them were mixed, granulated using a modification resulting mixture Henschel mixer or a spray dryer, to obtain The granulated product is fired at 700 to 900 ° C. , the particle shape is spherical with an aspect ratio (L / D) of 1 to 2, the average particle size is 5 to 60 μm, and 30% particles The particle size sharpness indicated by the particle size ratio (D30 / D70) between the diameter and the 70% particle size is 0.5 or more, and the sample is put into a 10 mL glass graduated cylinder and tapped to change the sample volume. Measure the sample volume when it is gone, The amount of a 1.0~1.8g / cm 3 bulk density is represented by a value obtained by dividing the sample volume, the lithium ion secondary volume resistance value when the press pressure 49MPa is 0.1 to 20 · cm A method for producing a positive electrode material for a battery. LiFePO4、あるいはFeの一部を異種元素で置換したLiFex1-xPO4(0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)が、活物質LiFePO4製造用の二以上の原料、又は活物質LiFex1-xPO4製造用の二以上の原料を混合し、得られた混合物を300〜900℃で焼成して得られた、LiFePO 4 、あるいはFeの一部を異種元素で置換したLiFe x 1-x PO 4 (0.5<x<1、Mは、Co、Cr、Mn、Ni、Ti若しくはV、又は、これらの混合元素を示す。)である請求項1に記載のリチウムイオン二次電池用正極材料の製造方法。
LiFePO 4 or LiFe x M 1-x PO 4 in which a part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni, Ti or V, or these 2 represents two or more raw materials for producing the active material LiFePO 4 , or two or more raw materials for producing the active material LiFe x M 1-x PO 4 , and the resulting mixture is 300 to 900 LiFePO 4 obtained by firing at 0 ° C. or LiFe x M 1-x PO 4 in which a part of Fe is substituted with a different element (0.5 <x <1, M is Co, Cr, Mn, Ni , Ti or V, or a mixed element thereof.) The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1.
JP2004212433A 2004-07-21 2004-07-21 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Expired - Lifetime JP4794833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212433A JP4794833B2 (en) 2004-07-21 2004-07-21 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212433A JP4794833B2 (en) 2004-07-21 2004-07-21 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006032241A JP2006032241A (en) 2006-02-02
JP4794833B2 true JP4794833B2 (en) 2011-10-19

Family

ID=35898313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212433A Expired - Lifetime JP4794833B2 (en) 2004-07-21 2004-07-21 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4794833B2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921931B2 (en) * 2000-09-29 2007-05-30 ソニー株式会社 Cathode active material and non-aqueous electrolyte battery
JP2006261061A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP4876414B2 (en) * 2005-03-23 2012-02-15 株式会社豊田中央研究所 Method for producing active material and lithium secondary battery
US7824581B2 (en) * 2007-06-18 2010-11-02 Advanced Lithium Electrochemistry Co., Ltd. Cocrystalline metallic compounds and electrochemical redox active material employing the same
US20070160752A1 (en) * 2006-01-09 2007-07-12 Conocophillips Company Process of making carbon-coated lithium metal phosphate powders
JP5268042B2 (en) * 2006-11-24 2013-08-21 国立大学法人九州大学 Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
JP5213213B2 (en) * 2006-11-27 2013-06-19 日立マクセル株式会社 Active material for electrochemical device, method for producing the same, and electrochemical device
CA2569991A1 (en) * 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making
JP5036348B2 (en) * 2007-02-27 2012-09-26 三洋電機株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5153189B2 (en) * 2007-03-30 2013-02-27 三井造船株式会社 Method for producing lithium ion secondary battery positive electrode material
EP2142473B1 (en) * 2007-07-31 2014-04-02 Byd Company Limited Method for preparing lithium iron phosphate as positive electrode active material for lithium ion secondary battery
JP5164477B2 (en) * 2007-08-23 2013-03-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR101519686B1 (en) * 2007-10-01 2015-05-12 바스프 에스이 Process for the preparation of crystalline lithium-, vanadium- and phosphate-comprising materials
JP5702145B2 (en) * 2007-10-01 2015-04-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Compound containing lithium, vanadium, and phosphate, and method for producing a mixture comprising the compound and a conductive material
KR101587671B1 (en) 2008-03-31 2016-01-21 도다 고교 가부시끼가이샤 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP2010033924A (en) * 2008-07-30 2010-02-12 Nec Tokin Corp Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery using the same
JP5121625B2 (en) * 2008-08-11 2013-01-16 古河電池株式会社 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP5794753B2 (en) * 2008-09-30 2015-10-14 電気化学工業株式会社 Positive electrode for secondary battery
JP5231171B2 (en) * 2008-10-30 2013-07-10 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5813910B2 (en) * 2008-11-05 2015-11-17 古河電池株式会社 Method for producing positive electrode for lithium secondary battery and lithium secondary battery
JP2010157405A (en) * 2008-12-26 2010-07-15 Toda Kogyo Corp Polyanionic positive electrode active material for nonaqueous electrolyte secondary battery, producing process thereof, and nonaqueous electrolyte secondary battery
JP5141582B2 (en) * 2009-01-30 2013-02-13 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP5436896B2 (en) * 2009-03-17 2014-03-05 日本化学工業株式会社 Lithium phosphorus composite oxide carbon composite, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5464330B2 (en) * 2009-07-31 2014-04-09 戸田工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2011013652A1 (en) 2009-07-31 2011-02-03 戸田工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20110049421A1 (en) * 2009-08-28 2011-03-03 Primet Precision Materials, Inc. Compositions and processes for making the same
JP5835540B2 (en) * 2009-09-09 2015-12-24 戸田工業株式会社 A method for producing ferric phosphate hydrate particles, a method for producing olivine-type lithium iron phosphate particles, and a method for producing a nonaqueous electrolyte secondary battery.
JP2011076820A (en) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd Lithium secondary battery and positive electrode for lithium secondary battery
JP5502518B2 (en) * 2010-02-15 2014-05-28 旭化成イーマテリアルズ株式会社 Lithium ion secondary battery
WO2011118350A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP5765798B2 (en) * 2010-03-28 2015-08-19 国立大学法人 新潟大学 Cathode active material for Li-ion battery and method for producing the same
KR101392816B1 (en) * 2010-04-21 2014-05-08 주식회사 엘지화학 Cathode active material for secondary battery and lithium secondary battery including the same
DE102010021804A1 (en) * 2010-05-27 2011-12-01 Süd-Chemie AG Composite material containing a mixed lithium metal phosphate
JP5604216B2 (en) * 2010-08-09 2014-10-08 日本化学工業株式会社 Method for producing lithium vanadium phosphate carbon composite
JP5604217B2 (en) * 2010-08-09 2014-10-08 日本化学工業株式会社 Method for producing lithium vanadium phosphate carbon composite
EP2654110B1 (en) 2010-12-17 2016-07-06 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing same
JP6077205B2 (en) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 Electrode material and manufacturing method thereof
JPWO2012114502A1 (en) * 2011-02-25 2014-07-07 日立ビークルエナジー株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
JPWO2012133581A1 (en) * 2011-03-28 2014-07-28 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
JPWO2012133584A1 (en) * 2011-03-28 2014-07-28 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
EP2522625B1 (en) 2011-05-13 2014-06-04 Shin-Etsu Chemical Co., Ltd. Preparation of particulate positive electrode material for lithium ion cells
JP6249388B2 (en) * 2011-07-28 2017-12-20 株式会社村田製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP5811695B2 (en) * 2011-08-30 2015-11-11 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and method for producing the same
JP6077206B2 (en) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, ELECTRODE, LITHIUM ION BATTERY
JP6216965B2 (en) 2012-01-31 2017-10-25 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
JP2014179291A (en) 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd Electrode material, and electrode, and lithium ion battery
JP2014201459A (en) * 2013-04-02 2014-10-27 Jfeケミカル株式会社 Method for producing lithium iron phosphate
WO2015170561A1 (en) * 2014-05-07 2015-11-12 エリーパワー株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5892270B1 (en) 2015-01-30 2016-03-23 住友大阪セメント株式会社 Method for producing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6079848B1 (en) * 2015-09-30 2017-02-15 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY
JP6156537B1 (en) 2016-03-28 2017-07-05 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6176381B1 (en) * 2016-09-30 2017-08-09 住友大阪セメント株式会社 Lithium ion secondary battery and positive electrode material for lithium ion secondary battery
JP6497462B1 (en) * 2018-03-30 2019-04-10 住友大阪セメント株式会社 Lithium ion battery electrode material and lithium ion battery
CN110589902A (en) * 2019-07-23 2019-12-20 河南科隆新能源股份有限公司 Preparation method of composite cladding doped nickel-cobalt-manganese precursor material
JP7494647B2 (en) 2019-09-09 2024-06-04 東レ株式会社 Positive electrodes for lithium-ion secondary batteries
CN114824253B (en) * 2022-04-24 2024-03-15 中南大学 Granulating method for spherical particles of lithium ion battery anode material
CN116632176B (en) * 2023-07-24 2024-07-02 深圳海辰储能科技有限公司 Positive electrode plate, preparation method thereof and lithium battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218170B2 (en) * 1995-09-06 2001-10-15 キヤノン株式会社 Lithium secondary battery and method of manufacturing lithium secondary battery
CA2270771A1 (en) * 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
CA2320661A1 (en) * 2000-09-26 2002-03-26 Hydro-Quebec New process for synthesizing limpo4 materials with olivine structure
JP4043852B2 (en) * 2002-06-07 2008-02-06 住友大阪セメント株式会社 Method for producing electrode material
JP4043853B2 (en) * 2002-06-07 2008-02-06 住友大阪セメント株式会社 Method for producing electrode material
JP3661945B2 (en) * 2002-07-24 2005-06-22 ソニー株式会社 Positive electrode for secondary battery and secondary battery provided with the same
JP4297406B2 (en) * 2002-07-31 2009-07-15 三井造船株式会社 Method for producing secondary battery positive electrode material and secondary battery

Also Published As

Publication number Publication date
JP2006032241A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4794833B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
TWI536646B (en) Negative electrode material for lithium-ion secondary battery and method of producing the same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4804045B2 (en) Method for producing lithium iron composite oxide
EP2522625B1 (en) Preparation of particulate positive electrode material for lithium ion cells
KR20110088504A (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP7480284B2 (en) Spheroidized carbon-based negative electrode active material, its manufacturing method, negative electrode including the same, and lithium secondary battery
CN113363483A (en) Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
CN109962221B (en) Composite positive electrode material, positive plate, preparation method of positive plate and lithium ion battery
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
CA3018852C (en) Electrode material for lithium ion battery and lithium ion battery
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
CN114649530A (en) Preparation method of nanometer lithium manganese iron phosphate material of vanadium-titanium doped composite carbon nanotube and nanometer lithium manganese iron phosphate material
JP2016149340A (en) Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
JP5881943B2 (en) Lithium secondary battery
KR101795778B1 (en) Silicon carbon composite for anode active material, method for preparing the same and lithium secondary battery the same
JP2015028955A (en) Lithium secondary battery
JP5196365B2 (en) Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5682276B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022019314A1 (en) Lithium vanadium oxide particle group, granulated body of lithium vanadium oxide, and electricity storage device
WO2019186828A1 (en) Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4794833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250