JP5794753B2 - Positive electrode for secondary battery - Google Patents

Positive electrode for secondary battery Download PDF

Info

Publication number
JP5794753B2
JP5794753B2 JP2008312339A JP2008312339A JP5794753B2 JP 5794753 B2 JP5794753 B2 JP 5794753B2 JP 2008312339 A JP2008312339 A JP 2008312339A JP 2008312339 A JP2008312339 A JP 2008312339A JP 5794753 B2 JP5794753 B2 JP 5794753B2
Authority
JP
Japan
Prior art keywords
carbon
positive electrode
carbon black
mass
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008312339A
Other languages
Japanese (ja)
Other versions
JP2010108889A (en
Inventor
拓志 坂下
拓志 坂下
藤澤 宏樹
宏樹 藤澤
川崎 卓
卓 川崎
澤井 岳彦
岳彦 澤井
慎治 齊藤
慎治 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008312339A priority Critical patent/JP5794753B2/en
Publication of JP2010108889A publication Critical patent/JP2010108889A/en
Application granted granted Critical
Publication of JP5794753B2 publication Critical patent/JP5794753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は二次電池用正極に関するものである。   The present invention relates to a positive electrode for a secondary battery.

リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウム二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。
近年ではこのリチウム二次電池のさらなる高容量化が求められる一方、パワー系用途の電池として電池抵抗の低減に伴う大電流充放電性能の向上が求められている。この点で従来では電池反応物質であるリチウム金属酸化物正極材や炭素系負極材自体の高容量化、またはこれら反応物質粒子の小粒径化、粒子比表面積や電池設計による電極面積の増加、さらにはセパレータの薄形化による液拡散抵抗の低減等の工夫がなされてきた。しかし、一方では小粒径化や比表面積の増加によりバインダーの増加を招き、結果として高容量化に逆行したり、さらには正・負極材が集電体である金属箔から剥離・脱落して電池内部短絡を生じ、電池の電圧低下や発熱暴走などのリチウム二次電池の安全性が損なわれることがあった。そこで箔との結着性増加させるためにバインダー種類を変更したりしていた(特許文献1)。また、リチウムイオン電池の大電流充放電化に対しては電極抵抗の低減を目的にカーボン導電材を用いて工夫するものがある(特許文献2,3,4)。
A lithium secondary battery in which a negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to a lithium battery in which a negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
In recent years, while further increasing the capacity of this lithium secondary battery is demanded, as a battery for power applications, there is a demand for improvement in large current charge / discharge performance accompanying reduction in battery resistance. In this regard, the lithium metal oxide positive electrode material and the carbon-based negative electrode material itself that are battery reactants in the past have been increased in capacity, or the particle size of these reactant particles has been reduced, the electrode surface area has increased due to particle specific surface area and battery design, Furthermore, some contrivances such as reduction of liquid diffusion resistance by thinning the separator have been made. However, on the other hand, the binder is increased by reducing the particle size and increasing the specific surface area. As a result, the capacity increases and the positive and negative electrode materials are peeled off from the metal foil as the current collector. A battery internal short circuit may occur, and the safety of the lithium secondary battery, such as battery voltage drop or heat runaway, may be impaired. Therefore, in order to increase the binding property with the foil, the binder type has been changed (Patent Document 1). In addition, there is a device that uses a carbon conductive material to reduce the electrode resistance with respect to the large current charge / discharge of a lithium ion battery (Patent Documents 2, 3, and 4).

しかしながら、これまでに提案されてきたバインダー変更と言う手段では、容量という観点では増大できるが、抵抗低減による大電流充放電特性の改善という点では不十分であり、ニカド電池やニッケル水素電池等の二次電池と比較して、リチウム二次電池の大きな性能障壁であった大電流充放電が必要とされる電動工具やハイブリッドカー用途への展開が困難である。また、大電流による充放電サイクルを繰り返すと正・負極材の膨張収縮により正・負極間粒子の導電パスが損なわれ、結果、早期に大電流が流せなくなる。一方、近年安全性とコスト重視の観点からリチウムイオン電池用の正極材としてオリビン形リン酸鉄リチウムが注目されつつあるが、この材料は材料自体の抵抗が大きく、その低抵抗化が大きな問題である(文献番号5,6)。
特開平5−226004号公報 特開2005−19399号 特開2001−126733号 特開2003−168429号 特表2000−509193号 特開平9−134724号 WO/2007/013678
However, the means of changing the binder that has been proposed so far can be increased in terms of capacity, but is insufficient in terms of improving large current charge / discharge characteristics by reducing resistance, such as a Nicad battery or a nickel metal hydride battery. Compared to a secondary battery, it is difficult to develop a power tool or a hybrid car that requires large current charge / discharge, which is a large performance barrier of a lithium secondary battery. In addition, when a charge / discharge cycle with a large current is repeated, the conductive path of the positive / negative electrode particles is damaged by the expansion / contraction of the positive / negative electrode material, and as a result, a large current cannot flow at an early stage. On the other hand, in recent years, olivine-type lithium iron phosphate has been attracting attention as a positive electrode material for lithium ion batteries from the viewpoint of safety and cost. However, this material has a large resistance and its low resistance is a big problem. Yes (literature numbers 5, 6).
JP-A-5-226004 JP-A-2005-19399 JP 2001-126733 A JP 2003-168429 A Special table 2000-509193 JP-A-9-134724 WO / 2007/013678

本発明は、このオリビン形リン酸鉄リチウムの低抵抗化と大電流充放電化に対処するためになされたもので、かつ大電流充放電を寿命中長きに渡って維持できるリチウム二次電池用の正極を提供することを目的とする。   The present invention was made in order to cope with the low resistance and large current charge / discharge of the olivine type lithium iron phosphate, and for the lithium secondary battery capable of maintaining the large current charge / discharge for a long period of time. An object of the present invention is to provide a positive electrode.

本発明の二次電池用正極は、負極と正極とが、セパレータを介して積層あるいは捲回されることにより形成される電極群と、上記電極群が浸漬される電解液とを備えてなるリチウム二次電池において、繊維状炭素が平均直径5〜100nmのカーボンナノチューブであり、繊維状炭素とカーボンブラックが連結されてなるカーボンブラック複合体であって、JIS K 1469で規定される灰分が1.0質量%以下であるカーボンブラック複合体と、一次粒径が10〜150nmであり、電気抵抗がJIS K 1469で規定されている手法にて測定した場合に、2〜10Ωcmとなるように表面に炭素膜がコートされているオリビン形リン酸鉄リチウム粒子とを含有してなる、リチウム二次電池用の正極であって、前記カーボンブラック複合体を1〜30質量%含有してなることを特徴とするリチウムイオン二次電池用正極である。 The positive electrode for a secondary battery of the present invention is a lithium comprising an electrode group formed by laminating or winding a negative electrode and a positive electrode via a separator, and an electrolyte solution in which the electrode group is immersed. in the secondary battery, the fibrous carbon is a carbon nanotube having an average diameter of 5 to 100 nm, a carbon black composite fibrous carbon and carbon black ing coupled, ash defined by JIS K 1469 is 1 A carbon black composite having a mass ratio of 0.0 mass% or less, a surface having a primary particle size of 10 to 150 nm and an electric resistance of 2 to 10 Ωcm when measured by a method defined in JIS K 1469 carbon film comprising the olivine-type lithium iron phosphate particles that are coated, a positive electrode for a lithium secondary battery, the carbon black double Body which is a positive electrode for a lithium ion secondary battery, characterized by containing 1 to 30 wt%.

本発明の二次電池用正極は、負極と正極とが、セパレータを介して積層あるいは捲回されることにより形成される電極群と、上記電極群が浸漬される電解液とを備えてなるリチウム二次電池において、繊維状炭素が平均直径20nmのカーボンナノチューブ、または、平均直径20nmのカーボンナノチューブと平均直径100nmの気相成長炭素繊維であり、繊維状炭素とカーボンブラックが連結されてなり、かつJIS K 1469で規定される灰分が1.0質量%以下であるカーボンブラック複合体質量%と粒径が80nm、JIS K 1469で規定される電気抵抗がΩcmであるオリビン形リン酸鉄リチウムを含有してなることを特徴とするリチウムイオン二次電池用正極である。
The positive electrode for a secondary battery of the present invention is a lithium comprising an electrode group formed by laminating or winding a negative electrode and a positive electrode via a separator, and an electrolyte solution in which the electrode group is immersed. In the secondary battery, the fibrous carbon is a carbon nanotube having an average diameter of 20 nm, or a carbon nanotube having an average diameter of 20 nm and a vapor-grown carbon fiber having an average diameter of 100 nm, and the fibrous carbon and carbon black are connected, and An olivine-type iron phosphate having 2 % by mass of a carbon black composite having an ash content defined by JIS K 1469 of 1.0% by mass or less, a particle size of 80 nm, and an electrical resistance defined by JIS K 1469 of 5 Ωcm A positive electrode for a lithium ion secondary battery comprising lithium.

本発明の正極により電極内の電子伝導ネットワークが向上し、正極電極抵抗が低減され、大電流充放電が可能となる。
また、当該正極板は充放電中に正極粒子が膨張収縮しても、正極粒子と導電材との接触性が向上維持され、急激な容量や出力の低下防止を可能にする。
The positive electrode of the present invention improves the electron conduction network in the electrode, reduces the positive electrode resistance, and enables large current charge / discharge.
In addition, even if the positive electrode particles expand and contract during charge and discharge, the positive electrode plate maintains improved contact between the positive electrode particles and the conductive material, and can prevent a sudden decrease in capacity and output.

以下、本発明を詳細に説明する。
本発明のリチウム二次電池用の正極は、導電材としてカーボンブラック複合体なるものを用いて、このカーボンブラック複合体は繊維状炭素とカーボンブラックとが連結結合されたものから構成されており、カーボンブラック複合体がJIS K 1469で規定される灰分が1.0質量%以下であることを特徴とする。さらに当該複合体がオリビン形リン酸鉄リチウムとともに複合一体化されたもの、あるいはカーボン複合体が混合されたものの少なくともいずれか一方の場合において当該構成物が含有されたことを特徴とし、含有状態を特に規定するものではない。そして当該オリビン形リン酸鉄リチウムは、粒径が10〜150nmであること、好ましくは50〜120nmであること、また当該オリビン形リン酸鉄リチウムの電気抵抗がJIS K 1469で規定されている手法にて測定した場合に、2〜10Ωcm、好ましくは、3〜6Ωcmであること、さらにはカーボンブラック複合体を1〜30重量%、好ましくは1〜10重量%含有してなるリチウムイオン二次電池用正極電極である。ところで、電池の充放電時の抵抗に大きく寄与する電池構成材としては、正極電極が主たるものであり、本発明品の正極電極により電極内の電子伝導ネットワークが向上し、正極電極抵抗が低減され、大電流充放電が可能となる。
また、当該正極板は充放電中に正極粒子が膨張収縮しても、正極粒子と導電材との接触性が向上維持され、急激な容量や出力の低下防止を可能にする。
オリビン形リン酸鉄リチウム粒子の電気抵抗は、カーボンコート等により低減することができる。
Hereinafter, the present invention will be described in detail.
The positive electrode for the lithium secondary battery of the present invention uses a carbon black composite as a conductive material, and this carbon black composite is composed of a combination of fibrous carbon and carbon black connected, The carbon black composite is characterized by having an ash content defined by JIS K 1469 of 1.0% by mass or less. Furthermore, the composition is contained in at least one of the case where the composite is composite-integrated with olivine-type lithium iron phosphate or the case where a carbon composite is mixed. It is not specified. The olivine-type lithium iron phosphate has a particle diameter of 10 to 150 nm, preferably 50 to 120 nm, and the electric resistance of the olivine-type lithium iron phosphate is defined by JIS K 1469. 2 to 10 Ωcm, preferably 3 to 6 Ωcm, and 1 to 30% by weight, preferably 1 to 10% by weight of a carbon black composite. This is a positive electrode for use. By the way, as a battery constituent material that greatly contributes to the resistance at the time of charging / discharging of the battery, a positive electrode is mainly used, and the positive electrode of the present invention improves the electron conduction network in the electrode and reduces the positive electrode resistance. , Large current charging / discharging becomes possible.
In addition, even if the positive electrode particles expand and contract during charge and discharge, the positive electrode plate maintains improved contact between the positive electrode particles and the conductive material, and can prevent a sudden decrease in capacity and output.
The electric resistance of the olivine-type lithium iron phosphate particles can be reduced by carbon coating or the like.

カーボンブラック複合体は繊維状炭素とカーボンブラックとが連結されたものである。繊維状炭素とカーボンブラックの連結とは単なる接触ではなく、炭素質で物理的に融着していることを意味し、通常の機械的操作では容易に分離されることなく、連結された繊維状炭素とカーボンブラック間で接触抵抗なしで電子が自由に移動できるものである。そのため、活物質と混合した際もカーボンブラック複合体のまま存在し、良好な分散性が得られると同時に高導電性が保たれる。繊維状炭素単独では、活物質等やその他の材料と混合する場合、配向や繊維同士の絡み合いのため、良好な分散性を得ることが困難であり、導電性にバラツキが生じる。カーボンブラックと繊維状炭素を単純に混合した場合は形状が異なるため更にバラツキが大きくなるが、本発明のカーボンブラック複合体は導電性の安定性に優れていることが特長の一つである。ここで繊維状炭素は1〜50質量%であることが好ましい。繊維状炭素が1質量%未満であると、十分な導電性が得られず、50質量%を超えるとカーボンブラックとの連結が十分でなくなると同時に、繊維状炭素の凝集などのため分散性が著しく低下する。   The carbon black composite is obtained by connecting fibrous carbon and carbon black. The connection between fibrous carbon and carbon black is not just a contact, it means that the carbon is physically fused, and it is not easily separated by normal mechanical operation, but the connected fibrous Electrons can move freely between carbon and carbon black without contact resistance. Therefore, even when mixed with an active material, the carbon black composite remains as it is, and good dispersibility can be obtained and at the same time high conductivity can be maintained. When fibrous carbon alone is mixed with an active material or other materials, it is difficult to obtain good dispersibility due to orientation and entanglement between fibers, resulting in variations in conductivity. When carbon black and fibrous carbon are simply mixed, the shape is different and the variation further increases. However, one feature of the carbon black composite of the present invention is that it has excellent conductivity stability. Here, the fibrous carbon is preferably 1 to 50% by mass. When the fibrous carbon is less than 1% by mass, sufficient conductivity cannot be obtained, and when it exceeds 50% by mass, the connection with the carbon black is not sufficient, and at the same time, the dispersibility is due to aggregation of the fibrous carbon. It drops significantly.

本発明で使用される繊維状炭素とは、炭素繊維(カーボンファイバー)、気相成長炭素繊維、カーボンナノチューブ、カーボンナノファイバー等である。本発明においては繊維状炭素を適宜選択可能であるが、繊維状炭素は活物質との電子のやり取りを効果的に行うため、活物質の粒径に対して繊維状炭素は小さい方が好ましい。例えば、活物質の平均粒径が20μm未満であれば、平均直径が100nm以下のものが好ましい。また、繊維状炭素の平均直径はある程度の強度を持たせるため5nm以上が好適である。
更には、2種類以上の繊維状炭素を組み合わせて使用することも可能である。例えば、平均直径20nmのカーボンナノチューブと100nmの気相成長炭素繊維を組み合わせれば、毛細血管と動脈の関係となり、更に効果的な電子授受及び移動も可能となる。この場合も平均直径の小さい方の繊維状炭素は活物質の粒径に対して小さい方が好ましく、平均直径が大きい方の繊維状炭素の配合量は平均直径が小さい方の繊維状炭素100質量部に対して100質量部以下であることが好ましい。
The fibrous carbon used in the present invention is carbon fiber (carbon fiber), vapor-grown carbon fiber, carbon nanotube, carbon nanofiber, or the like. In the present invention, fibrous carbon can be selected as appropriate. However, since fibrous carbon effectively exchanges electrons with the active material, it is preferable that the fibrous carbon is smaller than the particle size of the active material. For example, when the average particle diameter of the active material is less than 20 μm, the average diameter is preferably 100 nm or less. The average diameter of the fibrous carbon is preferably 5 nm or more in order to give a certain level of strength.
Furthermore, it is also possible to use a combination of two or more types of fibrous carbon. For example, a combination of carbon nanotubes with an average diameter of 20 nm and vapor grown carbon fibers with a thickness of 100 nm provides a relationship between capillaries and arteries, and enables more effective electron exchange and movement. Also in this case, the fibrous carbon having the smaller average diameter is preferably smaller than the particle diameter of the active material, and the amount of fibrous carbon having the larger average diameter is 100 masses of fibrous carbon having the smaller average diameter. It is preferable that it is 100 mass parts or less with respect to a part.

本発明で使用されるカーボンブラックとは、電極全体の導電性を保つとともに、活物質の膨張・収縮の緩衝材としての役割を担い、例えば、サーマルブラック、ファーネスブラック、ランプブラック、チャンネルブラック、アセチレンブラック等が挙げられる。中でもアセチレンブラックは、アセチレンガスの熱分解という還元雰囲気での反応あることから繊維状炭素を導入して複合化する場合は、燃焼ロスが少なく、好適である。   The carbon black used in the present invention maintains the conductivity of the entire electrode and plays a role as a buffer for expansion / contraction of the active material. For example, thermal black, furnace black, lamp black, channel black, acetylene Black etc. are mentioned. Among these, acetylene black is preferable because it has a reaction in a reducing atmosphere called thermal decomposition of acetylene gas, and therefore, when fibrous carbon is introduced and combined, there is little combustion loss.

カーボンブラック複合体の製造方法は、繊維状炭素とカーボンブラックが連結しているものである。その製造方法は、特に限定されないが、例えば、炭化水素熱分解中に繊維状炭素を導入し複合化する方法、WO/2007/013678号公報に記載されているように、アセチレンガスの熱分解中、及び/又はアセチレンガスを熱分解させた状態で、繊維状炭素化触媒を含む炭化水素を供給し、複合化する方法などが挙げられる。また、繊維状炭素とカーボンブラックを炭化水素やアルコールなどの炭素化原料液中に分散させ、炭素化原料液を液状またはガス化した状態で加熱等の操作により炭素化し、繊維状炭素とカーボンブラックを連結させても良い。このカーボンブラック複合体はJIS K 1469で規定される灰分が1.0質量%以下である。灰分は主に繊維状炭素製造時の触媒や不純物の金属(例えばFe、Ni等)やその酸化物からなり、灰分が1.0質量%を超えると、例えばLiイオン二次電池とした場合、充電時に負極上への金属の析出が起こり、充放電容量が低下するばかりか、セパレータを突き破り短絡して発火する危険性がある。 In the method for producing a carbon black composite, fibrous carbon and carbon black are connected. Although the production method is not particularly limited, for example, a method of introducing and combining fibrous carbon during hydrocarbon pyrolysis, as described in WO / 2007/013678, during pyrolysis of acetylene gas And / or a method in which a hydrocarbon containing a fibrous carbonization catalyst is supplied and combined in a state where the acetylene gas is thermally decomposed. In addition, fibrous carbon and carbon black are dispersed in a carbonization raw material liquid such as hydrocarbon or alcohol, and carbonized by an operation such as heating in a liquid or gasified state of the carbonized raw material liquid. May be connected. This carbon black composite has an ash content defined by JIS K 1469 of 1.0% by mass or less. The ash is mainly composed of a catalyst at the time of fibrous carbon production, impurities metals (for example, Fe, Ni, etc.) and oxides thereof, and when the ash content exceeds 1.0% by mass, for example, a Li ion secondary battery, There is a risk that metal deposits on the negative electrode during charging and the charge / discharge capacity decreases, and there is a risk of ignition by breaking through the separator and short-circuiting.

本発明の正極電極を用いたリチウム二次電池に使用できるセパレータは、正極および負極を電気的に絶縁して電解液を保持するものである。上記セパレータは合成樹脂製などを挙げることができ、その具体例としては、ポリエチレンやポリプロピレンなどを挙げることができる。電解液の保持性が良いことから、多孔性フィルムを用いることが好ましい。   The separator which can be used for the lithium secondary battery using the positive electrode of the present invention is to electrically insulate the positive electrode and the negative electrode to hold the electrolytic solution. Examples of the separator include a synthetic resin, and specific examples thereof include polyethylene and polypropylene. It is preferable to use a porous film because the electrolyte retainability is good.

また本発明正極電極を用いたリチウム二次電池において、当該電極群が浸漬される電解液としては、リチウム塩を含む非水電解液またはイオン伝導ポリマーなどを用いることが好ましい。   In the lithium secondary battery using the positive electrode of the present invention, it is preferable to use a non-aqueous electrolyte containing a lithium salt or an ion conductive polymer as the electrolyte into which the electrode group is immersed.

リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等が挙げられる。また、上記非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム(LiPF)、ホウ四フッ化リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiSOCF)等が挙げられる。 Examples of the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolyte containing a lithium salt include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Is mentioned. Examples of lithium salts that can be dissolved in the nonaqueous solvent include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium trifluoromethanesulfonate (LiSO 3 CF 4 ), and the like. .

以下、実施例及び比較例により、本発明に係るリチウム二次電池用正極電極を詳細に説明する。しかし、本発明はその要旨をこえない限り、以下の実施例に限定されるものではない。本発明における正極電極およびコイン電池作製方法の一例を以下に示す。   Hereinafter, the positive electrode for a lithium secondary battery according to the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist. An example of the positive electrode and coin battery manufacturing method in the present invention is shown below.

<正極電極の作製>
正極活物質としてオリビン形リン酸鉄リチウムを、結着剤としてポリフッ化ビニリデンを用いた。これに分散溶媒としてN−メチルピロリドンを添加、混練した正極合剤(スラリー)を作製した。当該正極合剤スラリーを厚さ20μmのアルミニウム箔両面に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用正極電極を得た。
ただし、当該オリビン形リン酸鉄リチウムの一次粒径が5,10,80,150および200nmのものを準備し、特に仕様に明記していない限り基準として80nmのものを用いた。また、当該オリビン形リン酸鉄リチウムは単独では抵抗が大きいため、一般的に粒子表面に導電性カーボンを被覆して抵抗低減を図っている。この被覆に対しては今回、炭化ガスによる蒸着手法を用いたが、その手法を特定するものではなく、カーボンコートした後の活物質粒子の電気抵抗値(JIS K 1469)規定するものであり、1,2,5,10および13Ωcmのものを作製して電極作製に用いた。特に仕様に明記していない限り基準として5Ωcmのものを実施・比較例に用いた。
次に、当該発明の電極抵抗低減に寄与させるカーボンブラック複合体の作製方法について記す。ただし、複合体に用いるカーボンブラックや繊維状炭素の種類または複合体化させる手法については本発明の要旨を越えない限り、以下に記すものに限定されるものではない。本実施例ではカーボンブラックとしてアセチレンブラック(平均一次粒子径35nm)を用い、繊維状炭素としてカーボンナノチューブ(平均直径20nm)を用いた。複合体を作製する方法として以下の焼成方法を用いた。アセチレンブラックとカーボンナノチューブを質量比1:1でエタノール(関東化学社製試薬:純度99.5%)に1質量%混合したスラリーを、電気炉内において窒素(10L/min)流通下、1500℃で焼成し、カーボンブラック複合体を得た。また、カーボンコートされたオリビン形リン酸鉄リチウムに対して当該カーボンブラック複合体を単に所定重量部混合する場合は別として、さらにカーボンコートされたオリビン形リン酸鉄リチウムと以下の焼成方法によって複合一体化させたものも本発明の実施例11として用いた。カーボンブラック複合体とオリビン型リン酸鉄リチウムをエタノール(前述)に1質量%混合したスラリーを、電気炉内において窒素(10L/min)流通下、600℃で焼成し、複合一体化させたものを得た。特に仕様に明記していない限り基準としてカーボンブラック複合体2質量%、カーボンコートされたオリビン形リン酸鉄リチウム90質量%、ポリフッ化ビニリデン8質量%のものを用いた。また、実施例12は、繊維状炭素としてカーボンナノチューブ(平均直径20nm)及び気相成長炭素繊維(平均直径100nm)を質量比1:1で混合したものを用いた他は、実施例11と同様の評価を行った。
<Preparation of positive electrode>
Olivine-type lithium iron phosphate was used as the positive electrode active material, and polyvinylidene fluoride was used as the binder. A positive electrode mixture (slurry) in which N-methylpyrrolidone was added and kneaded as a dispersion solvent was prepared. The positive electrode mixture slurry was applied to both sides of an aluminum foil having a thickness of 20 μm, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery.
However, primary olivine-type lithium iron phosphate particles having a primary particle size of 5, 10, 80, 150 and 200 nm were prepared, and those having a primary particle size of 80 nm were used unless otherwise specified. In addition, since the olivine type lithium iron phosphate alone has a large resistance, the particle surface is generally coated with conductive carbon to reduce the resistance. For this coating, a vapor deposition method using carbonized gas was used this time, but this method is not specified, and the electrical resistance value of the active material particles after carbon coating (JIS K 1469) is defined. Those having 1, 2, 5, 10 and 13 Ωcm were prepared and used for electrode preparation. Unless otherwise specified in the specification, 5 Ωcm as a reference was used in the implementation and comparative examples.
Next, a method for producing a carbon black composite that contributes to reducing the electrode resistance of the invention will be described. However, the type of carbon black or fibrous carbon used for the composite or the method for forming the composite is not limited to the following, as long as the gist of the present invention is not exceeded. In this example, acetylene black (average primary particle diameter 35 nm) was used as carbon black, and carbon nanotubes (average diameter 20 nm) were used as fibrous carbon. The following firing method was used as a method for producing the composite. A slurry obtained by mixing 1% by mass of acetylene black and carbon nanotubes in ethanol (reagent: purity 99.5%, manufactured by Kanto Chemical Co.) at a mass ratio of 1: 1 is 1500 ° C. under a flow of nitrogen (10 L / min) in an electric furnace. Was baked to obtain a carbon black composite. In addition, when the carbon black composite is simply mixed with a predetermined amount by weight of the carbon-coated olivine-type lithium iron phosphate, the carbon-coated olivine-type lithium iron phosphate is combined with the following calcination method. What was integrated was also used as Example 11 of the present invention. A slurry in which 1% by mass of a carbon black composite and olivine type lithium iron phosphate is mixed with ethanol (as described above) is baked at 600 ° C. in a flow of nitrogen (10 L / min) in an electric furnace so as to be combined and integrated. Got. Unless otherwise specified in the specification, 2% by mass of carbon black composite, 90% by mass of carbon-coated olivine-type lithium iron phosphate, and 8% by mass of polyvinylidene fluoride were used as standards. Example 12 was the same as Example 11 except that carbon nanotubes (average diameter 20 nm) and vapor-grown carbon fibers (average diameter 100 nm) were mixed as the fibrous carbon in a mass ratio of 1: 1. Was evaluated.

下表のように、各電極仕様に応じて、実施例〜実施例および比較例〜比較例の上記正極板と種々のカーボンブラック複合体添加量の正極板とを試作した。そしてそれぞれ作製した正極板を用いて2032形コイン電池を作製した。正極板に対する対極としては金属リチウムを用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布を用いた。電解液にはEC、MECを体積比で30:70 に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1mol/L 溶解したものを用いた。
電池の放電性能試験としては、電池を初充電後、充放電効率が100%近傍になるのを確認後、0.7mA/cmの電流密度にて定電流放電を2.1Vまで行った際の放電容量を測定し、正極活物質量で除した容量密度(mAh/g)を算出した。まずは、本発明に供するカーボンコートされたオリビン形リン酸鉄リチウム正極活物質自体の仕様(一次粒子径と活物質電気抵抗)、およびカーボンブラック複合体自体の灰分仕様の違いによる電池特性への影響について、放電性能を検討しその試験結果を表1に示した。
つぎに当該カーボンブラック複合体を種々の所定量正極板に含有させた際の放電容量密度を図1にまとめた。放電容量試験は上記同様に行った。
さらにサイクル性能試験として、充電は4.1V(3.5mA/cm制限電流)の定電流定電圧充電(0.175mA/cm時終了)で、放電は3.5mA/cmの定電流で2.1Vまで行い、休止をそれぞれの間に10分間行って50サイクル繰り返した際のサイクル試験1サイクル目の放電容量に対する容量比率を放電容量維持率として表し、表2に示した。
As shown in the table below, according to each electrode specification, the above-described positive plates of Examples to Examples and Comparative Examples to Comparative Examples and positive plates with various carbon black composite addition amounts were made as prototypes. And 2032 type coin battery was produced using each produced positive electrode plate. Metallic lithium was used as the counter electrode with respect to the positive electrode plate, and an olefin fiber non-woven fabric was used as a separator to electrically isolate them. As the electrolytic solution, a solution obtained by dissolving 1 mol / L of lithium hexafluorophosphate (LiPF6) in a solution in which EC and MEC were mixed at a volume ratio of 30:70 was used.
As a battery discharge performance test, after confirming that the charge / discharge efficiency was close to 100% after the initial charge of the battery, constant current discharge was performed up to 2.1 V at a current density of 0.7 mA / cm 2. Was measured, and the capacity density (mAh / g) divided by the amount of the positive electrode active material was calculated. First, the effect of the carbon-coated olivine-type lithium iron phosphate positive electrode active material itself used in the present invention on the battery characteristics due to the specifications (primary particle size and active material electrical resistance) and the ash content specification of the carbon black composite itself Table 1 shows the test results.
Next, the discharge capacity density when various predetermined amounts of the carbon black composite are contained in the positive electrode plate is summarized in FIG. The discharge capacity test was performed as described above.
As a further cycle performance test, charging 4.1V (3.5mA / cm 2 current limit) in the constant current constant voltage charging (0.175mA / cm 2 at termination), the discharge is 3.5mA / cm 2 constant current The capacity ratio with respect to the discharge capacity in the first cycle of the cycle test when 50 cycles were repeated with a pause of 10 minutes between them and 10 cycles between them was expressed as a discharge capacity retention rate and is shown in Table 2.

カーボンブラック複合体については、下記の方法により、物性を測定した。
(1)カーボンブラック複合体の繊維状炭素の平均直径については透過型電子顕微鏡(TEM)により、倍率3万倍で100本測定し、その平均値を平均直径とした。
(2)カーボンブラック複合体の灰分についてはJIS K 1469に従い測定した。
The physical properties of the carbon black composite were measured by the following method.
(1) The average diameter of the fibrous carbon of the carbon black composite was measured with a transmission electron microscope (TEM) at a magnification of 30,000, and the average value was taken as the average diameter.
(2) The ash content of the carbon black composite was measured according to JIS K 1469.

Figure 0005794753
Figure 0005794753

表1の実施例と比較例より、本願発明は容量密度と容量維持率の両方が優れていることが判る。本発明のリチウムイオン二次電池用正極のオリビン形リン酸鉄リチウムの一次粒子径については、5nmの細かい粒子の場合には、理論上は比表面積が大きくなり活物質表面のLiイオンの電荷移動に関わる電気化学的反応サイトが増加し、結果容量が増加するものと考えられるが、粒子が細かくなるとオリビン形結晶構造が崩れ、表面の一部にアモルファス相が析出した。また、粒子が細かいために電極塗工する際の塗工スラリーの分散性が悪化して、塗工面の凹凸が顕著に見られた。このことにより、容量が低下する傾向にある。一方、粒子径が200nmでは、上述した電気化学的反応サイトが減少するために容量が低下する傾向にある。一次粒子径としては10〜150nmが好ましい。
オリビン形リン酸鉄リチウム粒子の電気抵抗は、電気抵抗が1.5Ωcmでは、活物質合剤中のカーボンコート量が多いために、活物質量が少なくなって容量は低下する傾向にある。一方、カーボンコート量の少ない13Ωcmの場合には、活物質量自体は多くなったものの電気抵抗が大きいために、電池放電時の電圧降下が大きく、容量が低下する傾向にある。電池抵抗としては2〜10Ωcmが好ましい。
カーボンブラック複合体に関しては、炭素原子成分が連結複合化しているためにその不純物である灰分量が抵抗や容量に起因すると考えられる。灰分が多いものは抵抗が大きくなると考えられ、容量が低下する傾向にある。カーボンブラック複合体のJIS K 1469で規定される灰分が1.0質量%以下であることが必要である。
つぎに上記カーボンブラック複合体とオリビン形リン酸鉄リチウムとの配合比率について検討した。図1に配合質量比に対する容量推移を示した。結果、1〜5質量%までは正極電極抵抗の低下により、容量の増加と飽和状態となり、5質量%を越えて30質量%までは徐々に低下するが、それを越えると活物質量の低減により急激に低下することがわかった。したがって配合比領域は1〜30質量%が好ましく、1〜10質量%がさらに好ましい。
さらに本発明のカーボンブラック複合体の含有状態による差異について検討し、比較例としてカーボンブラックをオリビン形リン酸鉄リチウム活物質に混合した正極電極の場合と比較した。表1より、比較例のカーボンブラック単体でも容量は維持可能であるが、サイクル寿命においてカーボンブラックとカーボンナノチューブ等の繊維状炭素を複合化したものを混合したものと比して、容量低下が大きいことがわかった。これは、充放電初期には、カーボンブラック単体でもオリビン形リン酸鉄リチウム活物質間の電子伝導ネットワークが形成されて容量が少なくならない。しかし充放電サイクルを繰り返すと、活物質の膨張収縮により活物質間の電子伝導ネットワークがそのまま維持されず、カーボンブラックと活物質との電子伝導接点が変化するためにネットワークの崩壊を生じ、容量低下を来したものと考える。これはさらに当該カーボンブラック複合体を当該活物質に混合したものに比べて、活物質と焼成手法等により一体複合化させて正極板を形成したものは、さらに容量やサイクル特性において優れたものとなることからも電子伝導ネットワークの維持がカーボンブラック複合体やさらには活物質との複合化により成されたものと考えられる。
From the examples and comparative examples in Table 1, it can be seen that the present invention is excellent in both capacity density and capacity retention. Regarding the primary particle diameter of the olivine-type lithium iron phosphate of the positive electrode for lithium ion secondary batteries of the present invention, in the case of fine particles of 5 nm, the specific surface area theoretically increases, and the charge transfer of Li ions on the active material surface It is thought that the electrochemical reaction sites related to the increase, resulting in an increase in capacity, but as the particles become finer, the olivine crystal structure collapsed and an amorphous phase precipitated on a part of the surface. Moreover, since the particles were fine, the dispersibility of the coating slurry at the time of electrode coating deteriorated, and the unevenness of the coated surface was noticeable. As a result, the capacity tends to decrease. On the other hand, when the particle diameter is 200 nm, the electrochemical reaction sites described above are reduced, and thus the capacity tends to be reduced. The primary particle size is preferably 10 to 150 nm.
When the electric resistance of the olivine-type lithium iron phosphate particles is 1.5 Ωcm, the amount of the active material tends to decrease because the amount of the carbon coating in the active material mixture is large. On the other hand, in the case of 13 Ωcm with a small amount of carbon coating, although the amount of active material itself is large, the electric resistance is large, so that the voltage drop during battery discharge is large and the capacity tends to decrease. The battery resistance is preferably 2 to 10 Ωcm.
With respect to the carbon black composite, it is considered that the amount of ash, which is an impurity, is attributed to resistance and capacity because the carbon atom components are connected and combined. A thing with much ash content is considered that resistance increases, and there exists a tendency for a capacity | capacitance to fall. The ash content defined by JIS K 1469 of the carbon black composite is required to be 1.0% by mass or less.
Next, the blending ratio of the carbon black composite and olivine-type lithium iron phosphate was examined. FIG. 1 shows the capacity transition with respect to the blending mass ratio. As a result, from 1 to 5% by mass, the capacity of the positive electrode increases and becomes saturated due to a decrease in the resistance of the positive electrode, and gradually decreases from 5% by mass to 30% by mass. It turned out that it falls rapidly. Therefore, the blending ratio region is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass.
Furthermore, the difference depending on the content of the carbon black composite of the present invention was examined, and as a comparative example, a comparison was made with a positive electrode in which carbon black was mixed with an olivine type lithium iron phosphate active material. From Table 1, the capacity can be maintained even with the carbon black alone of the comparative example, but the capacity reduction is larger than that obtained by mixing carbon black and a composite of fibrous carbon such as carbon nanotubes in the cycle life. I understood it. This is because, at the initial stage of charge / discharge, carbon black alone forms an electron conduction network between olivine-type lithium iron phosphate active materials, and the capacity is not reduced. However, if the charge / discharge cycle is repeated, the electron conduction network between the active materials is not maintained as it is due to the expansion and contraction of the active material, and the electron conduction contact between the carbon black and the active material changes, resulting in a collapse of the network and a decrease in capacity. I think that came. Compared to the mixture of the carbon black composite and the active material, the positive electrode plate formed by integrally combining the active material and the firing method is more excellent in capacity and cycle characteristics. From this, it is considered that the maintenance of the electron conduction network was achieved by the composite with the carbon black composite and further the active material.

本発明のリチウム二次電池用正極電極は、高容量であって、かつ大電流充放電が繰り返し可能であり、電動工具やハイブリッドカーなど大電流充放電が必要とされる用途に好適に利用できる。
The positive electrode for a lithium secondary battery of the present invention has a high capacity and can be repeatedly charged and discharged with a large current, and can be suitably used for applications requiring large current charging and discharging such as electric tools and hybrid cars. .

正極電極内でのカーボンブラック複合体含有量と容量密度の関係Relationship between carbon black composite content and capacity density in the positive electrode

Claims (3)

繊維状炭素とカーボンブラックが連結されてなるカーボンブラック複合体であって、JIS K 1469で規定される灰分が1.0質量%以下であるカーボンブラック複合体と、一次粒径が10〜150nmであり、電気抵抗がJIS K 1469で規定されている手法にて測定した場合に、2〜10Ωcmとなるように表面に炭素膜がコートされているオリビン形リン酸鉄リチウム粒子とを含有してなる、リチウム二次電池用の正極であって、前記カーボンブラック複合体を1〜30質量%含有してなることを特徴とするリチウムイオン二次電池用正極。 A carbon black composite fibrous carbon and carbon black ing coupled, carbon black composite ash is defined in JIS K 1469 is equal to or less than 1.0 wt%, primary particle size of 10~150nm , and the when the electrical resistance was measured by the method specified in JIS K 1469, contains an olivine-type lithium iron phosphate particles carbon film on the surface so that 2~10Ωcm is coated A positive electrode for a lithium secondary battery, comprising 1 to 30% by mass of the carbon black composite . 前記繊維状炭素が平均直径20nmのカーボンナノチューブであり、前記カーボンブラック複合体が2質量%であり、前記オリビン形リン酸鉄リチウムが90質量%含有してなることを特徴とする請求項1記載のリチウムイオン二次電池用正極。 The fibrous carbon is a carbon nanotube having an average diameter of 20 nm, the carbon black composite is 2% by mass, and the olivine-type lithium iron phosphate is contained by 90% by mass. Positive electrode for lithium ion secondary battery. 前記繊維状炭素が平均直径20nmのカーボンナノチューブと平均直径100nmの気相成長炭素繊維であり、前記カーボンブラック複合体が2質量%であり、平均粒径が80nm、前記電気抵抗が5Ωcmである前記オリビン形リン酸鉄リチウムを90質量%含有してなることを特徴とする請求項1記載のリチウムイオン二次電池用正極。
The fibrous carbon is a carbon nanotube having an average diameter of 20 nm and a vapor-grown carbon fiber having an average diameter of 100 nm, the carbon black composite is 2% by mass, the average particle diameter is 80 nm, and the electric resistance is 5 Ωcm. 2. The positive electrode for a lithium ion secondary battery according to claim 1, comprising 90% by mass of olivine type lithium iron phosphate.
JP2008312339A 2008-09-30 2008-12-08 Positive electrode for secondary battery Active JP5794753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312339A JP5794753B2 (en) 2008-09-30 2008-12-08 Positive electrode for secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008252471 2008-09-30
JP2008252471 2008-09-30
JP2008312339A JP5794753B2 (en) 2008-09-30 2008-12-08 Positive electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2010108889A JP2010108889A (en) 2010-05-13
JP5794753B2 true JP5794753B2 (en) 2015-10-14

Family

ID=42298111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312339A Active JP5794753B2 (en) 2008-09-30 2008-12-08 Positive electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP5794753B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
WO2012165358A1 (en) * 2011-06-03 2012-12-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode
CA2754372A1 (en) 2011-10-04 2013-04-04 Hydro-Quebec Positive-electrode material for lithium-ion secondary battery and method of producing same
EP2781483B8 (en) 2011-11-15 2018-10-17 Denka Company Limited Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
KR101980796B1 (en) 2011-11-15 2019-05-21 덴카 주식회사 Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
CA2776205A1 (en) * 2012-05-08 2013-11-08 Hydro-Quebec Lithium-ion secondary battery and method of producing same
KR101738280B1 (en) 2012-09-04 2017-05-19 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
JP6253876B2 (en) * 2012-09-28 2017-12-27 日本ケミコン株式会社 Method for producing electrode material
CN103456965B (en) * 2013-07-25 2015-09-23 杭州金马能源科技有限公司 A kind of applicable ferrousphosphate lithium material conductive agent and preparation method thereof
CN103560246B (en) * 2013-11-25 2015-12-02 四川科能锂电有限公司 A kind of preparation method of lithium ion battery anode material lithium iron phosphate
JP5945753B2 (en) * 2014-05-08 2016-07-05 エス・イー・アイ株式会社 Lithium secondary battery
CN104821400B (en) * 2015-03-18 2017-01-25 江苏乐能电池股份有限公司 Safe conductive liquid for lithium iron phosphate and preparation method thereof
JP6243946B2 (en) * 2016-03-28 2017-12-06 太平洋セメント株式会社 Active material-containing particle mixture for non-aqueous electrolyte secondary battery and method for producing the same
CN108878887A (en) * 2018-07-13 2018-11-23 四川理工学院 A kind of lithium iron phosphate positive material conductive agent and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311597B2 (en) * 1996-09-12 2002-08-05 株式会社日立製作所 Secondary battery and its positive electrode
JP4843832B2 (en) * 2000-05-26 2011-12-21 三菱化学株式会社 Non-aqueous electrolyte and secondary battery using the same
JP4794833B2 (en) * 2004-07-21 2011-10-19 日本コークス工業株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2006059584A (en) * 2004-08-18 2006-03-02 Sony Corp Conductivity imparting agent and its manufacturing method, as well as battery
JP4737607B2 (en) * 2005-07-22 2011-08-03 テイカ株式会社 Method for producing carbon-olivine type lithium iron phosphate composite particles, and positive electrode material for lithium ion battery
JP5098146B2 (en) * 2005-10-14 2012-12-12 株式会社Gsユアサ Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP2008181850A (en) * 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5118877B2 (en) * 2007-04-27 2013-01-16 トヨタ自動車株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2010108889A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5794753B2 (en) Positive electrode for secondary battery
US8597835B2 (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
KR102336719B1 (en) Anode and Lithium Secondary Battery Comprising the Same
KR102382433B1 (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP5216936B1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY
JP2017123351A (en) Lithium ion secondary battery and manufacturing method for the same
JP7281570B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2016225290A (en) Lithium ion secondary battery
KR102235909B1 (en) Method for producing negative electrode active material, mixed negative electrode active material, and negative electrode active material
JP2006222073A (en) Nonaqueous secondary battery and method of manufacturing its anode
KR101739296B1 (en) Composite anode active material, anode and lithium battery containing the same, and preparation method thereof
KR20130129819A (en) Lithium ion secondary battery
CN114744183A (en) Negative electrode active material and method for producing same, mixed negative electrode active material, negative electrode, lithium ion secondary battery, and method for producing same
JP2016105349A (en) Nonaqueous electrolyte secondary battery
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
CN113054159B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017183236A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
CN113097445B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20240088378A1 (en) Lithium Secondary Battery
WO2024176607A1 (en) Positive electrode for power storage element, power storage element, and power storage device
WO2024176606A1 (en) Positive electrode mixture for power storage element, positive electrode for power storage element, power storage element, and power storage device
US20240120478A1 (en) Lithium Secondary Battery, Battery Module and Battery Pack
KR20200061127A (en) Negative electrode active material and preparation method thereof
JP2024043618A (en) Electrode and power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R151 Written notification of patent or utility model registration

Ref document number: 5794753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250