JP5813910B2 - Method for producing positive electrode for lithium secondary battery and lithium secondary battery - Google Patents

Method for producing positive electrode for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP5813910B2
JP5813910B2 JP2008283952A JP2008283952A JP5813910B2 JP 5813910 B2 JP5813910 B2 JP 5813910B2 JP 2008283952 A JP2008283952 A JP 2008283952A JP 2008283952 A JP2008283952 A JP 2008283952A JP 5813910 B2 JP5813910 B2 JP 5813910B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
powder
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008283952A
Other languages
Japanese (ja)
Other versions
JP2010113874A (en
Inventor
阿部 英俊
英俊 阿部
智統 鈴木
智統 鈴木
聖志 金村
聖志 金村
光正 斎藤
光正 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan University
Original Assignee
Furukawa Battery Co Ltd
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Sumitomo Osaka Cement Co Ltd, Tokyo Metropolitan University filed Critical Furukawa Battery Co Ltd
Priority to JP2008283952A priority Critical patent/JP5813910B2/en
Priority to PCT/JP2009/069228 priority patent/WO2010053205A1/en
Publication of JP2010113874A publication Critical patent/JP2010113874A/en
Application granted granted Critical
Publication of JP5813910B2 publication Critical patent/JP5813910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用正極の製造法及びリチウム二次電池に関する。   The present invention relates to a method for producing a positive electrode for a lithium secondary battery and a lithium secondary battery.

リチウム金属、リチウム合金或いはリチウムイオンを吸蔵、放出可能な物質を負極活物質とするリチウム二次電池は高い電圧と優れた可逆性を特徴としている。
特に正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池は従来の鉛二次電池やニッケル-カドミウム二次電池などに比較し、軽量で放電容量も大きいことから、電子機器に広く使用されている。
現在、リチウムイオン二次電池の正極活物質として、主にLiCoO2、LiNiO2、LiMnO2或いはLiMn2O4などの金属酸化物系が用いられているが、特に、出力特性の向上や高い安定性の観点から、オリビン型リン酸Mリチウム(Mは遷移金属)系材料、就中、産出量が多く安全供給の面から、リン酸鉄リチウムが正極活物質として好ましく用いられており、例えば、下記特許文献1に開示されている。
該特許文献1には、その発明に係るオリビン型化合物などの正極活物質を用い正極を製造するため、その粉末に結着剤粉末と混合し、更にこれに導電性を付与するため、これにアセチレンブラックなどの導電性粉末を混合したものを有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布して製造することが開示されている。
特開平9-134725号公報
A lithium secondary battery using a negative electrode active material as a material capable of occluding and releasing lithium metal, a lithium alloy, or lithium ions is characterized by high voltage and excellent reversibility.
In particular, lithium ion secondary batteries using a composite oxide of lithium and transition metal as the positive electrode active material and a carbon-based material as the negative electrode active material are compared to conventional lead secondary batteries and nickel-cadmium secondary batteries. Because of its light weight and large discharge capacity, it is widely used in electronic equipment.
Currently, metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 or LiMn 2 O 4 are mainly used as positive electrode active materials for lithium ion secondary batteries. From the viewpoint of safety, olivine-type M lithium phosphate (M is a transition metal) -based material, in particular, from the aspect of high yield and safety supply, lithium iron phosphate is preferably used as the positive electrode active material, for example, It is disclosed in Patent Document 1 below.
In Patent Document 1, in order to produce a positive electrode using a positive electrode active material such as an olivine type compound according to the invention, the powder is mixed with a binder powder and further imparted with conductivity, It is disclosed that a mixture of conductive powders such as acetylene black is dispersed in a solvent such as an organic solvent to form a slurry and applied onto a metal substrate.
Japanese Laid-Open Patent Publication No. 9-13725

しかし乍ら、ナノ粒子など微細な一次粒子から成る正極活物質粉体又はカーボンなどの微細な導電性粒子を含む正極活物質合剤の粉体を、水又はCMCなどのバインダーを含む水溶液と混練して水性ペーストを調製し、得られた水性ペーストを金属箔などの集電用基板に塗布し、ブレードにより一定の厚さの塗工層を形成した後、乾燥してペースト式の正極板を製造する場合に、その水性ペーストの調製過程において、該正極活物質粉体の微細粒子が凝集し、その大きな凝集粒子がブレードに引っかかったり、その結果、塗工層の表面に筋引きを生ずることがしばしば起こり、製造作業に支障を来たすと共に正極の製造ロスをもたらした。そこで、該水性ペーストに含有するブレードに引っかかる大きな凝集粒子を除くため、該水性ペーストを所定の寸法の目開きを有するフィルターで圧送して濾過することを試みたところ、大きな凝集粒子により該フィルターの目詰まりを起こし、濾過に支障を来たし、濾過作業を停止せざるを得ない不都合を生じ、製造効率良く、円滑に良好な正極が得られないことが判明した。
更にまた、水性ペーストであるため、その塗工層は乾燥時に大きな体積変化を生じ、塗工層に無数の亀裂を生じたり、該塗工層が集電用基板から剥がれたり、その後の取り扱いの過程で脱落したりする不都合をもたらした。
このように、従来のリチウム二次電池用正極の製造法では、円滑且つ高能率に良好な塗工層が形成できないばかりでなく、その塗工層の厚さに限界があり、それ以上肉厚の塗工層をもつ体積効率の向上したリチウム二次電池用正極を得ることは不可能であった。
上記従来の技術に鑑み、円滑且つ高能率に良好な塗工層が形成できると共に、その塗工層の厚さを増大し体積効率の向上したリチウム二次電池用正極の製造を可能にすることが望まれる。
本発明は、上記の従来技術の課題を解決し、上記の目的を達成することに在る。
However, a cathode active material powder composed of fine primary particles such as nanoparticles or a cathode active material mixture powder containing fine conductive particles such as carbon is kneaded with water or an aqueous solution containing a binder such as CMC. An aqueous paste is prepared, and the obtained aqueous paste is applied to a current collecting substrate such as a metal foil, and a coating layer having a certain thickness is formed by a blade, followed by drying to obtain a paste-type positive electrode plate. When manufacturing, the fine particles of the positive electrode active material powder aggregate in the preparation process of the aqueous paste, and the large aggregated particles are caught on the blade, resulting in streaking on the surface of the coating layer. Often occurred, resulting in a hindrance to the manufacturing operation and a manufacturing loss of the positive electrode. Therefore, in order to remove large agglomerated particles caught on the blade contained in the aqueous paste, an attempt was made to filter and filter the aqueous paste with a filter having an opening having a predetermined size. It was found that clogging occurred, the filtration was hindered, the inconvenience was forced to stop the filtration operation, and a good positive electrode could not be obtained smoothly with good production efficiency.
Furthermore, since it is an aqueous paste, the coating layer undergoes a large volume change upon drying, causing numerous cracks in the coating layer, peeling off the coating layer from the current collecting substrate, and subsequent handling. It caused the inconvenience of dropping out in the process.
Thus, in the conventional method for producing a positive electrode for a lithium secondary battery, not only a smooth and highly efficient coating layer cannot be formed, but there is a limit to the thickness of the coating layer. It was impossible to obtain a positive electrode for a lithium secondary battery with an improved volumetric efficiency having a coating layer.
In view of the above-described conventional technology, a good coating layer can be formed smoothly and efficiently, and the thickness of the coating layer can be increased to enable production of a positive electrode for a lithium secondary battery with improved volume efficiency. Is desired.
The present invention is to solve the above problems of the prior art and achieve the above object.

本発明は、請求項1に記載の通り、最大粒径5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧部材で加圧崩壊し乍ら20〜120μmの目開きを持つフィルターを通す裏ごし処理を行って最大粒径5〜120μmの造粒粒子又は凝集粒子を含む正極活物質粉体を含有する裏ごしペーストを得、得られた裏ごしペーストをブレードにより集電用基板に所望の厚さに塗工し、乾燥することを特徴とするリチウム二次電池用正極の製造法に存する。
更に本発明は、請求項2に記載の通り、前記正極活物質粉体に最大粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを調製した後、前記裏ごし処理を行うことを特徴とする請求項1に記載のリチウム二次電池用正極の製造法に存する
According to the present invention, as described in claim 1, an aqueous paste is prepared by kneading a positive electrode active material powder containing granulated particles or aggregated particles having a maximum particle size of 5 μm or more with water or an aqueous binder solution. The large agglomerated particles contained in the aqueous paste are pressurized and disintegrated with a pressure member, and are then passed through a filter having an opening of 20 to 120 μm to contain granulated particles or agglomerated particles having a maximum particle size of 5 to 120 μm. Production of a positive electrode for a lithium secondary battery, comprising obtaining a back paste containing a positive electrode active material powder, applying the obtained back paste to a current collecting substrate with a blade to a desired thickness, and drying the paste. Lies in the law.
Further, according to the present invention, as described in claim 2, after preparing an aqueous paste of a mixed powder obtained by mixing the positive electrode active material powder with a positive electrode active material powder composed of fine particles having a maximum particle size of less than 5 μm. 2. The method for producing a positive electrode for a lithium secondary battery according to claim 1, wherein the back treatment is performed .

請求項1に係る発明によれば、上記の該裏ごし処理により、20〜120μmの目開きを持つフィルターの目詰まりを生ずることなく、良好な裏ごし効率を維持し円滑且つ迅速に濾過することができると共に、ブレードに引っかかることなく且つ表面に筋引きを生ずることなく良質の塗工層を所定の厚さの塗工層を集電用基板上に得られ、特に、後記に明らかにするように、裏ごしペーストに含有する5μm〜120μmの範囲の造粒粒子又は凝集粒子は漆喰として作用するので、該塗工層は、乾燥時に亀裂を生ぜず且つ集電用基板から剥離しない安定良好な塗工層が得られるばかりでなく従来に比し著しく増大した体積効率の増大した肉厚の塗工層から成るリチウム二次電池用正極が得られる。
請求項2に係る発明によれば、造粒粒子又は凝集粒子を含む正極活物質に粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを用い、請求項1に記載のように、20〜120μmの目開きのフィルターを通して得られた裏ごしペーストを塗工層とした場合でも、後記に明らかにするように、粒径5μm以上の粒子の漆喰作用により、混在する5μm未満の微細粒子を結着維持し、請求項1の発明と同様に乾燥時に亀裂や集電用基板からの剥離のない肉厚の塗工層が得られる。
請求項3に係る発明によれば、後記に明らかにするように、カーボンを含まない正極活物質を正極とした電極に比し、放電容量の大きな電池をもたらすリチウム二次電池用正極を製造することができる。
請求項4に係る発明によれば、電池特性の良好なリチウム二次電池が得られる。
According to the first aspect of the invention, the above-described scouring treatment allows smooth and rapid filtration while maintaining good scouring efficiency without causing clogging of a filter having an opening of 20 to 120 μm. In addition, a coating layer having a predetermined thickness can be obtained on the current collecting substrate without being caught on the blade and without causing a striation on the surface, in particular, as will be clarified later. Since granulated particles or agglomerated particles in the range of 5 μm to 120 μm contained in the back paste acts as stucco, the coating layer does not cause cracks when dried and does not peel off from the current collecting substrate. In addition, a positive electrode for a lithium secondary battery comprising a thick coating layer having an increased volume efficiency and a significantly increased volume efficiency as compared with the prior art can be obtained.
According to the invention of claim 2, using a mixed powder aqueous paste obtained by mixing a positive electrode active material powder composed of fine particles having a particle size of less than 5 μm with a positive electrode active material containing granulated particles or agglomerated particles, As described in claim 1, even when the back paste obtained through a filter having an opening of 20 to 120 μm is used as a coating layer, as will be clarified later, due to the stucco action of particles having a particle size of 5 μm or more. In addition, the fine particles of less than 5 μm that are mixed are bound and maintained, and a thick coating layer that does not crack or peel from the current collecting substrate when dried can be obtained in the same manner as the invention of claim 1.
According to the invention of claim 3, as will be clarified later, a positive electrode for a lithium secondary battery that produces a battery having a large discharge capacity as compared with an electrode using a positive electrode active material not containing carbon as a positive electrode is produced. be able to.
According to the invention of claim 4, a lithium secondary battery having good battery characteristics can be obtained.

本発明のリチウム二次電池用正極の製造法に用いる原料である正極活物質としては、上記の背景技術に記載した種々の正極活物質を用いることができるが、特に、オリビン型リン酸Mリチウム(Mは遷移金属)系の正極活物質、就中、産出量が多く安価に供給できる鉄を組成材料とするリン酸鉄リチウム或いはリン酸鉄リチウムの鉄の一部を他の元素で置換したものを用いることが好ましい。この場合、特に出力特性を向上せしめるため、ナノ粒子のものに製造したものが好ましく用いられる。しかし乍ら、かかるナノ粒子(一次粒子)から成る正極活物質を導電性向上のため通常添加されるカーボンなどの導電剤粉と共に水又はCMCなどのバインダーの水溶液で練って水性ペーストとし、これを集電用基板に塗布、乾燥してペースト式正極を製造するときに生ずる上記した種々の不都合を解消するため、本発明は、先ず、かかる微細な粒子から成る正極活物質粉体を、公知の造粒法又は凝集法により造粒粒子又は凝集粒子とする。
造粒法としては、ヘンシェルミキサーを用いる方法、ハイブリタイザーを用いる方法、一旦小粒径粉で均一な従来の水性ペーストを作製してから乾燥して、乾燥塊を粉砕分級する方法、カーボン源と共に不活性又は還元雰囲気下で焼成する固相合成法で得られた塊状生成物を粉砕分級する方法等が挙げられる。
凝集法としては、粒子同士の摩擦による静電凝集法がある。
As the positive electrode active material which is a raw material used in the method for producing a positive electrode for a lithium secondary battery of the present invention, various positive electrode active materials described in the background art can be used, and in particular, olivine-type M lithium phosphate (M is a transition metal) -based positive electrode active material, especially iron iron with a high yield and low-cost supply, lithium iron phosphate or some iron of lithium iron phosphate was replaced with other elements It is preferable to use one. In this case, in order to improve the output characteristics, those produced in the form of nanoparticles are preferably used. However, a positive electrode active material composed of such nanoparticles (primary particles) is kneaded with water or an aqueous solution of a binder such as CMC together with a conductive agent powder such as carbon, which is usually added to improve conductivity, to obtain an aqueous paste. In order to eliminate the above-mentioned various disadvantages that occur when a paste-type positive electrode is produced by applying and drying on a current collecting substrate, the present invention firstly discloses a positive electrode active material powder composed of such fine particles. Granulated particles or aggregated particles are obtained by a granulation method or an aggregation method.
A granulation method includes a method using a Henschel mixer, a method using a hybridizer, a method of once producing a conventional aqueous paste that is uniform with a small particle size powder and then drying, pulverizing and classifying the dried mass, and a carbon source Examples thereof include a method of pulverizing and classifying a bulk product obtained by a solid phase synthesis method in which baking is performed under an inert or reducing atmosphere.
As the aggregation method, there is an electrostatic aggregation method by friction between particles.

次に、このようにして得られた造粒粒子又は/及び凝集粒子から成る正極活物質粉体又はカーボン含有の正極活物質粉体を水又はバインダー水溶液と練って水性ペーストを調製し、これを集電用基板にブレードで一定の厚さに塗布し、その塗工層を乾燥してリチウム電池用正極板を製造することを試みたところ、水性ペースト調製中に生成した大きな造粒粒子や凝集粒子が該ブレードに引っかかったり、或いは塗工層の表面に筋引きを生じ、適正な塗工層が得られず、正極板の製造ロスをもたらした。
そこで、該水性ペーストを圧送により特定の目開きのフィルターで濾過することを試みたところ、該フィルターの目開きより大きな造粒粒子や凝集粒子により該フィルターの目詰まりを起こし、正極板の製造が円滑且つ高能率に行うことができないことを知見した。
Next, the positive electrode active material powder or the carbon-containing positive electrode active material powder composed of the granulated particles and / or agglomerated particles thus obtained is kneaded with water or an aqueous binder solution to prepare an aqueous paste. When we tried to produce a positive electrode plate for a lithium battery by coating the current collector substrate with a blade to a certain thickness and drying the coating layer, large granulated particles and agglomerates generated during the preparation of the aqueous paste Particles were caught on the blade or streaked on the surface of the coating layer, and an appropriate coating layer was not obtained, resulting in production loss of the positive electrode plate.
Therefore, when the aqueous paste was filtered with a filter having a specific opening by pumping, the filter was clogged with granulated particles or agglomerated particles larger than the opening of the filter. It has been found that it cannot be carried out smoothly and efficiently.

上記の現象につき種々試験研究の結果、該水性ペーストを調製過程で、造粒粒子や凝集粒子が凝集して大きな凝集粒団となり、少なくとも120μm以上の大きな凝集粒子を生じた場合に、これらの大きな凝集粒子がブレードに引っかかり、筋引きを生じさせ、或いはフィルターの目を詰めることを知見した。本発明は、この知見に基づきなされたもので、上記のように調製された水性ペーストを目開き20〜120μmの範囲のフィルターで裏ごし処理することにより、上記の不都合を解消し得ると共に、集電用基板上に従来では不可能であった肉厚の塗工層が得られ且つ該塗工層を構成する造粒粒子又は凝集粒子は強い漆喰作用を有するため、その乾燥時に従来生じていた亀裂や該集電用基板からの剥離のない安定堅牢な塗工層が形成されたリチウム二次電池用正極板が得られた。茲で、裏ごし処理とは、該水性ペーストを上記のフィルターを通すに当たり、該水性ペーストをへらなどの加圧部材で加圧し凝集粒団を崩壊し乍ら、換言すれば、ほぐし乍ら濾過し、粒径120μm以下の造粒粒子又は凝集粒子の裏ごしペーストを得ることを意味する。尚、フィルターとして、目開き20μm未満のフィルターを用いた場合には、裏ごし効率が著しく低下するので、高能率な裏ごし作業を行うには、20μm以上の目開きを有するフィルターを用いる必要がある。   As a result of various test studies on the above phenomenon, when the aqueous paste is prepared, granulated particles or aggregated particles are aggregated into large aggregated aggregates, and large aggregated particles of at least 120 μm are produced. It has been found that the agglomerated particles get caught on the blade, causing stringing or clogging the filter. The present invention has been made on the basis of this finding, and the above-mentioned inconvenience can be solved by treating the aqueous paste prepared as described above with a filter having a mesh size of 20 to 120 μm. Since a thick coating layer, which was impossible in the past, was obtained on the substrate for use, and the granulated particles or agglomerated particles constituting the coating layer have a strong stucco action, cracks that have conventionally occurred during drying In addition, a positive electrode plate for a lithium secondary battery was obtained in which a stable and robust coating layer without peeling from the current collecting substrate was formed. Boiling treatment means that when the aqueous paste is passed through the filter, the aqueous paste is pressurized with a pressure member such as a spatula to break up aggregated aggregates, in other words, loosen and filtered. It means that a paste paste of granulated particles or aggregated particles having a particle size of 120 μm or less is obtained. In addition, when a filter having an opening of less than 20 μm is used as the filter, the filtering efficiency is remarkably lowered. Therefore, a filter having an opening of 20 μm or more needs to be used in order to perform highly efficient backing work.

次に、本発明の実施例を含む詳細な試験例及び比較試験例につき以下詳述する。
試験例1
正極活物質の製造:
オリビン型リン酸鉄リチウムを、均一なナノ粒子を酸化の影響を抑制して作製可能な水熱法により以下のように合成した。
リン酸鉄リチウムは次のようにして得た。リン酸リチウム486g、及び2価の鉄化合物としての2価の塩化鉄4水和物795gを、オートクレーブ中に蒸留水2000mlと入れ、アルゴンガス置換した後に密閉した。この耐圧容器を180℃のオイルバス中で、48時間反応させた。室温まで放冷した後、内容物を取り出し、100℃で乾燥させて粉末試料を得た。得られた粉末はX線回折パターンにより、リン酸鉄リチウムであり、走査型電子顕微鏡(SEM)観察から、20nmから200nmの一次粒子の粒径を有していることが確認された。この粉体を粉体aと表示する。
Next, detailed test examples and comparative test examples including examples of the present invention will be described in detail below.
Test example 1
Production of cathode active material:
The olivine-type lithium iron phosphate was synthesized as follows by a hydrothermal method capable of producing uniform nanoparticles while suppressing the influence of oxidation.
Lithium iron phosphate was obtained as follows. 486 g of lithium phosphate and 795 g of divalent iron chloride tetrahydrate as a divalent iron compound were placed in an autoclave with 2000 ml of distilled water, and after replacing with argon gas, the mixture was sealed. The pressure vessel was reacted in an oil bath at 180 ° C. for 48 hours. After cooling to room temperature, the contents were taken out and dried at 100 ° C. to obtain a powder sample. From the X-ray diffraction pattern, the obtained powder was lithium iron phosphate, and it was confirmed by scanning electron microscope (SEM) observation that it had a primary particle size of 20 nm to 200 nm. This powder is denoted as powder a.

正極活物質粉体の造粒:
得られたリン酸鉄リチウム粉体a 10gと炭素源としてショ糖を主成分として転化糖が添加された市販の砂糖1gとを混合した。この混合物に蒸留水を10ml投入して、良く混合後、100℃で2時間乾燥し、その乾燥粉を磁製ルツボに入れ、真空ガス置換炉に投入した。窒素ガスで充分に置換後、真空状態にして、300℃で2時間の仮焼成後、600℃で3時間の焼処理を実施した。次いで、これを室温まで放冷後に、ルツボを取り出して中の試料を採取した。試料は塊状であり、これをコーヒーミルで粉砕後に目開き5,8,50及び100ミクロンの夫々の篩を通して分級し、造粒粒子から成る夫々の粉体を得た。その夫々の粉体を粉体b、粉体c、粉体d及び粉体eと表示する。各粉体には、熱重量分析によるカーボン含有量の測定では1.5%のカーボンを含有していることが確認された。夫々の粉体b,c,d,eは、上記の各目開きに応じて、夫々粒径3,5,40,90ミクロンを最大とする造粒粒子集団であることを確認した。
Granulation of positive electrode active material powder:
10 g of the obtained lithium iron phosphate powder a was mixed with 1 g of commercially available sugar containing sucrose as a main component and invert sugar added thereto. 10 ml of distilled water was added to this mixture, and after mixing well, it was dried at 100 ° C. for 2 hours. The dried powder was put into a porcelain crucible and put into a vacuum gas replacement furnace. After thoroughly replaced by nitrogen gas in the vacuum state, after calcination for 2 hours at 300 ° C., it was carried out baked formation for 3 hours at 600 ° C.. Subsequently, after cooling this to room temperature, the crucible was taken out and the sample inside was taken. The sample was agglomerated, and after pulverizing with a coffee mill, it was classified through respective sieves with openings of 5, 8, 50 and 100 microns to obtain respective powders composed of granulated particles. The respective powders are denoted as powder b, powder c, powder d, and powder e. Each powder was confirmed to contain 1.5% carbon by measuring the carbon content by thermogravimetric analysis. It was confirmed that each of the powders b, c, d, and e was a granulated particle group having a maximum particle size of 3, 5, 40, and 90 microns according to each opening.

正極の製造:
上記の粉体b〜eの夫々につき、該粉体と導電剤としてアセチレンブラック、CMC水溶液、水分散性バインダーを質量比100:10:2:5で配合し、プラネタリ方式のミキサーで混練し、水性ペーストを調製した。該水性ペースト中の固形分は50%であった。該水性ペーストを目開き40ミクロンのスクリーンで裏ごし処理した。かくして、上記の4種類の粉体B,C,D,Eの各裏ごしペーストを得た。次いで、各裏ごしペーストをドクターブレード方式の簡易塗工機で厚さ15ミクロンの集電用アルミニウム箔に100g/m2になるように塗工し、次いで、100℃の温度で10分間乾燥し、4種類の電極B,C,D,Eを製造した。
更に、上記のナノ粒子から成る粉体aと上記の造粒粒子から成る粉体dを質量比1:1の割合で配合した混合粉体を調製した。この混合粉体を粉体adと表示する。該粉体adにつき、上記の電極の製造法と同じ条件で電極を製造した。この電極を電極ADと表示する。
Positive electrode manufacturing:
For each of the powders b to e, acetylene black, a CMC aqueous solution, and a water dispersible binder as a conductive agent are blended at a mass ratio of 100: 10: 2: 5, and kneaded with a planetary mixer. An aqueous paste was prepared. The solid content in the aqueous paste was 50%. The aqueous paste was treated with a 40-micron screen. Thus, each of the above four types of powders B, C, D and E was obtained. Next, each back paste was applied to a current collecting aluminum foil with a thickness of 15 microns with a doctor blade type simple coating machine to 100 g / m 2 , and then dried at a temperature of 100 ° C. for 10 minutes, Four kinds of electrodes B, C, D, E were manufactured.
Further, a mixed powder was prepared by blending the powder a composed of the above nanoparticles and the powder d composed of the granulated particles in a mass ratio of 1: 1. This mixed powder is denoted as powder ad. For the powder ad, an electrode was produced under the same conditions as in the above electrode production method. This electrode is denoted as electrode AD.

試験例2
カーボン被覆正極活物質の製造:
試験例1で製造した正極活物質粉体a 10gに、窒素雰囲気中、600℃でショ糖を加熱分解して生成した蒸気を作用させ、カーボンを気相析出法により粒径20nm〜200nmの粒子表面に析出させた正極活物質粉体を得た。この粉体には、熱重量分析によるカーボン含有量の測定では1.5%のカーボンを含有していることが確認された。このカーボン被覆正極活物質粉体を得た。該粉体を粉体fと表示する。
Test example 2
Production of carbon coated cathode active material:
Vapor generated by thermally decomposing sucrose at 600 ° C. in a nitrogen atmosphere is allowed to act on positive electrode active material powder a 10 g produced in Test Example 1, and particles having a particle size of 20 nm to 200 nm by vapor deposition. A positive electrode active material powder deposited on the surface was obtained. This powder was confirmed to contain 1.5% carbon by measuring the carbon content by thermogravimetric analysis. This carbon-coated positive electrode active material powder was obtained. The powder is denoted as powder f.

正極活物質粉体の造粒:
上記の粉体fに1%CMC水溶液を5cc投入して乳鉢で混練後に取り出し、乾燥機内で100℃で30分乾燥した。乾燥後の塊をコーヒーミルで粉砕後、目開き20ミクロンの篩を通した粒径15ミクロンを最大とする造粒粒子から成る粉体を得た。この粉体を粉体gと表示する。
Granulation of positive electrode active material powder:
5 cc of a 1% CMC aqueous solution was added to the powder f and kneaded in a mortar, followed by drying at 100 ° C. for 30 minutes in a dryer. The lump after drying was pulverized with a coffee mill, and then a powder composed of granulated particles having a maximum particle size of 15 microns was obtained through a sieve having an opening of 20 microns. This powder is denoted as powder g.

正極の製造:
上記のようにして得た粉体g単独及び粉体gと試験例1の正極活物質粉体aとを質量比1:1の割合で配合した混合粉体を調製した。該混合粉体を粉体gaと表示する。該粉体g及び該粉体gaにつき、夫々、試験例1と同様に、夫々の水性ペーストを調製し、目開き40ミクロンのスクリーンで裏ごしし、該アルミ箔に100g/m2になるように塗工し、100℃の温度で10分間乾燥し、夫々の電極を製造した。前者の電極を電極Gと表示し、後者の電極を電極GAと表示する。
Positive electrode manufacturing:
Powders g and powder g obtained as described above were mixed with the positive electrode active material powder a of Test Example 1 in a mass ratio of 1: 1 to prepare a mixed powder. The mixed powder is denoted as powder ga. For each of the powder g and the powder ga, each aqueous paste was prepared in the same manner as in Test Example 1, and backed with a 40-micron screen, so that the aluminum foil was 100 g / m 2. Each electrode was manufactured by coating and drying at a temperature of 100 ° C. for 10 minutes. The former electrode is denoted as electrode G, and the latter electrode is denoted as electrode GA.

比較試験例1
上記のナノ粒子から成る粉体aにつき、試験例1と同様に、アセチレンブラック、CMC水溶液、水分散性バインダーを質量比100:10:2:5で混練して成る固形分50%の水性ペーストを調製した後、該水性ペーストを直径1mmのメディアを使用したビーズミルで該水性ペースト中に含まれる大きな凝集粒子の細砕分散を実施した。得られた微細粒子から成る該水性ペーストを試験例1と同様にアルミ箔に100g/m2になるように塗工し、100℃の温度で10分間乾燥して電極を製造した。該電極を電極Aと表示する。
比較試験例2
上記のナノ粒子から成るカーボン被覆正極活物質粉体fにつき、比較試験例1と同様にして微細粒子から成る水性ペーストを作製し、同様に塗工して正極を製造した。該電極を電極Fと表示する。
Comparative test example 1
For powder a comprising the above nanoparticles, as in Test Example 1, 50% solids aqueous paste obtained by kneading acetylene black, CMC aqueous solution, and water-dispersible binder in a mass ratio of 100: 10: 2: 5 After preparing the aqueous paste, the agglomerated particles contained in the aqueous paste were pulverized and dispersed in a bead mill using a media having a diameter of 1 mm. The obtained aqueous paste composed of fine particles was applied to an aluminum foil at 100 g / m 2 in the same manner as in Test Example 1 and dried at a temperature of 100 ° C. for 10 minutes to produce an electrode. This electrode is denoted as electrode A.
Comparative test example 2
For the carbon-coated positive electrode active material powder f composed of the nanoparticles described above, an aqueous paste composed of fine particles was prepared in the same manner as in Comparative Test Example 1, and coated in the same manner to produce a positive electrode. This electrode is denoted as electrode F.

上記のようにして製造した電極B,C,D,E,AD,G,GA,A,F及び比較用電極A,Fの夫々の塗工層の表面亀裂及び剥離の有無の状況を調べた。その結果を下記表1に示す。   The surface of each coating layer of the electrodes B, C, D, E, AD, G, GA, A, F and the comparative electrodes A, F manufactured as described above was examined for the presence or absence of peeling. . The results are shown in Table 1 below.

Figure 0005813910
Figure 0005813910

上記表1から明らかなように、最大粒径3ミクロン以下の微細粒子から成る正極活物質粉体bの裏ごしペースト及び粉体a,粉体fの水性ペーストを夫々100g/m2で塗工した厚い塗工層を形成した電極B,A,Fでは、乾燥により該塗工層の表面に細かい無数の亀裂が発生したり、アルミ箔からの剥離を生じ、その後の取り扱い時には、アルミ箔から塗工層の一部の脱落を生じ、目的とする体積効率の向上したリチウム二次電池用正極の製造は不可能であった。
これに対し、最大粒径が5ミクロン以上を含む造粒粒子から成る正極活物質粉体c,d,e,ad,g,gaの夫々の水性ペーストを、上記の試験例1及び2により100g/m2で塗工した厚い塗工層を形成した電極C,D,E,AD,G,GAでは、乾燥による塗工層の表面亀裂や剥離は全くなく、表1には記載しなかったが、筋引きも勿論ない良好な肉厚の塗工層が該集電用基板に強固に結着された体積効率が著しく向上したリチウム二次電池用正極が円滑良好に製造できた。
多くの試験を行った結果、最大粒径5ミクロンを含む造粒粒子から成る正極活物質粉体により、上記の良好な肉厚の塗工層が確実に得られることを確認した。
また、表1から明らかなように、5ミクロン未満の微細粒径のみから成る粉体bを用いた電極Bの塗工層は亀裂や剥離を生ずるが、電極AD又はGAのように、一次粒子から成る正極活物質粉体を単独ではなく、漆喰作用の大きな5ミクロン以上の造粒粒子から成る粉体に混ぜて裏ごしペーストとし塗工するときは、亀裂や剥離のない良好な塗工層が得られることが判明し、このことから、上記の粉体bを単独でなく5ミクロン以上の造粒粒子に1:1の割合で混ぜたものを電極ADやGAと同様に製造するときは、粒径5ミクロン以上の造粒粒子の漆喰作用により、亀裂や剥離のない塗工層をもつ電極が得られることも確認した。
As is apparent from Table 1 above, the back paste of the positive electrode active material powder b and the aqueous paste of the powder a and powder f, each consisting of fine particles having a maximum particle size of 3 microns or less, were applied at 100 g / m 2 respectively. In the electrodes B, A, and F formed with a thick coating layer, the surface of the coating layer is infinitely cracked or peeled off from the aluminum foil due to drying. It was impossible to produce a positive electrode for a lithium secondary battery having a desired volumetric efficiency due to a part of the work layer falling off.
On the other hand, each of the positive electrode active material powders c, d, e, ad, g, and ga composed of granulated particles having a maximum particle size of 5 microns or more is 100 g according to Test Examples 1 and 2 above. In the electrodes C, D, E, AD, G, and GA that formed a thick coating layer coated with / m 2, there was no surface crack or peeling of the coating layer due to drying, and it was not listed in Table 1 However, a positive electrode for a lithium secondary battery having a significantly improved volumetric efficiency in which a coating layer having a good thickness without streaks is firmly bonded to the current collecting substrate can be produced smoothly and satisfactorily.
As a result of many tests, it was confirmed that the above-mentioned coating layer having a good thickness was reliably obtained by the positive electrode active material powder composed of granulated particles having a maximum particle size of 5 microns.
In addition, as is apparent from Table 1, the coating layer of electrode B using powder b consisting only of a fine particle size of less than 5 microns cracks and peels, but primary particles like electrode AD or GA. When a positive electrode active material powder made of is mixed with a powder made of granulated particles of 5 microns or more with a large stucco effect, and applied as a back paste, a good coating layer without cracks or peeling will be produced. From this, it was found that when the same thing as the electrode AD or GA is manufactured by mixing the above powder b with granulated particles of 5 microns or more in a ratio of 1: 1 instead of alone. It was also confirmed that an electrode having a coating layer without cracks or peeling was obtained by the stucco action of granulated particles having a particle size of 5 microns or more.

リチウム二次電池の製造:
上記の本発明の電極B,C,D,AD,G,GAを2cm2の円盤状に打ち抜いたものを正極として用いた6種類のコイン型リチウム二次電池を下記詳述するように作製した。負極としては、次のように製造したものを用いた。即ち、人造黒鉛(平均粒径5μm、d002=0.337nm、Lc=58nm)及びポリフッ化ビニリデン(PVdF)を質量比95:5の割合で混合し、N-メチル-2-ピロリドン(NMP)を加えて充分混練し、負極ペーストを調製し、次いで、該負極ペーストを厚さ15μmの集電用銅箔上に塗布し、25℃の常温で自然乾燥後、更に減圧下130℃で12時間乾燥し、次いで、ロールプレスで圧延加工し、2cm2の円盤状に打ち抜いて負極を製造した。
セパレータとしては、厚み15μmの多孔質ポリエチレンフィルムから成る円形セパレータを用いた。
電解液としては、次のように調製したものを用いた。即ち、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解し、電解液を作製した。電解液中の水分量は15ppm未満とした。
各コイン型リチウム二次電池の作製に当たり、露点が-50℃以下の雰囲気下で、上記の正極、負極、電解液及びセパレータを常法により組み込み、正,負各極は集電体の付いた電槽缶に圧着し、直系25mm、厚さ1.6mmのコイン型リチウム二次電池を上記の6種類の電極C,D,E,AD,G,GAに対応する6種類の電池を作製した。これら電池を夫々電池C′,D′,E′,AD′,G′,GA′と表示する。
Production of lithium secondary battery:
Six types of coin-type lithium secondary batteries using the above-described electrodes B, C, D, AD, G, GA of the present invention punched into a 2 cm 2 disk as positive electrodes were prepared as described in detail below. . As the negative electrode, one produced as follows was used. That is, artificial graphite (average particle size 5 μm, d 002 = 0.337 nm, Lc = 58 nm) and polyvinylidene fluoride (PVdF) were mixed at a mass ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) was mixed. In addition, knead well to prepare a negative electrode paste, and then apply the negative electrode paste onto a 15 μm thick copper foil for current collection, air dry at room temperature of 25 ° C., and further dry at 130 ° C. under reduced pressure for 12 hours. Then, it was rolled with a roll press and punched into a 2 cm 2 disk shape to produce a negative electrode.
As the separator, a circular separator made of a porous polyethylene film having a thickness of 15 μm was used.
As the electrolytic solution, one prepared as follows was used. That is, LiPF 6 was dissolved at a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to prepare an electrolytic solution. The amount of water in the electrolyte was less than 15 ppm.
In the production of each coin-type lithium secondary battery, the positive electrode, negative electrode, electrolyte and separator were assembled in a conventional manner in an atmosphere with a dew point of -50 ° C or lower, and each positive and negative electrode was equipped with a current collector. Six types of batteries corresponding to the above-mentioned six types of electrodes C, D, E, AD, G, and GA were prepared by crimping the battery case to a coin-type lithium secondary battery having a direct line of 25 mm and a thickness of 1.6 mm. These batteries are denoted as batteries C ′, D ′, E ′, AD ′, G ′, and GA ′, respectively.

リチウム二次電池の放電特性試験:
上記の各電池を多数作製し、その夫々について、低率での充放電を10サイクル行い、10サイクル目の0.1CAの低率放電容量を測定した。このときの充電条件は、電流0.1CA、電圧3.8Vの定電流定電圧とし、放電条件は、電流0.1CA、終止電圧2.0Vの定電流放電とした。11サイクル目は高率放電試験を実施し、5CAの高率放電容量を測定した。容量は充填した活物質1g当たりの容量とした。尚、試験温度は全て25℃とした。その測定結果の平均値を下記表2に示す。
Lithium secondary battery discharge characteristics test:
A large number of each of the batteries described above was prepared, and each of the batteries was charged and discharged at a low rate for 10 cycles, and the low rate discharge capacity of 0.1 CA at the 10th cycle was measured. The charging conditions at this time were a constant current and a constant voltage with a current of 0.1 CA and a voltage of 3.8 V, and the discharging conditions were a constant current discharge with a current of 0.1 CA and a final voltage of 2.0 V. In the 11th cycle, a high rate discharge test was performed and a high rate discharge capacity of 5 CA was measured. The capacity was a capacity per 1 g of the filled active material. All test temperatures were 25 ° C. The average value of the measurement results is shown in Table 2 below.

Figure 0005813910
Figure 0005813910

上記表2から明らかなように、本発明の製造法で製造した上記の電極は、全て高い放電容量をもつリチウム二次電池をもたらすことが確認された。この場合、表面にカーボン被覆正極活物質を用いた電極G,GAを具備した電池G′,GA′は、カーボン被覆がないものに比し高い放電容量をもつことが確認された。   As is clear from Table 2 above, it was confirmed that all the electrodes produced by the production method of the present invention yielded a lithium secondary battery having a high discharge capacity. In this case, it was confirmed that the batteries G ′ and GA ′ having the electrodes G and GA using the carbon-coated positive electrode active material on the surface have a higher discharge capacity than those without the carbon coating.

Claims (2)

最大粒径5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧部材で加圧崩壊し乍ら20〜120μmの目開きを持つフィルターを通す裏ごし処理を行って最大粒径5〜120μmの造粒粒子又は凝集粒子を含む正極活物質粉体を含有する裏ごしペーストを得、得られた裏ごしペーストをブレードにより集電用基板に所望の厚さに塗工し、乾燥することを特徴とするリチウム二次電池用正極の製造法。 A positive electrode active material powder containing granulated particles or agglomerated particles having a maximum particle size of 5 μm or more is kneaded with water or an aqueous binder solution to prepare an aqueous paste, which is then pressed into large agglomerated particles contained in the aqueous paste. When the pressure collapses, a back paste is passed through a filter having an opening of 20 to 120 μm to obtain a back paste containing a positive electrode active material powder containing granulated particles or aggregated particles having a maximum particle size of 5 to 120 μm. A method of producing a positive electrode for a lithium secondary battery, wherein the obtained back paste is applied to a current collecting substrate with a blade to a desired thickness and dried. 前記正極活物質粉体に最大粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを調製した後、前記裏ごし処理を行うことを特徴とする請求項1に記載のリチウム二次電池用正極の製造法。   The backside treatment is performed after preparing an aqueous paste of a mixed powder obtained by mixing the positive electrode active material powder with a positive electrode active material powder composed of fine particles having a maximum particle size of less than 5 μm. 2. A method for producing a positive electrode for a lithium secondary battery according to 1.
JP2008283952A 2008-11-05 2008-11-05 Method for producing positive electrode for lithium secondary battery and lithium secondary battery Active JP5813910B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008283952A JP5813910B2 (en) 2008-11-05 2008-11-05 Method for producing positive electrode for lithium secondary battery and lithium secondary battery
PCT/JP2009/069228 WO2010053205A1 (en) 2008-11-05 2009-11-05 Method for manufacturing positive electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283952A JP5813910B2 (en) 2008-11-05 2008-11-05 Method for producing positive electrode for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010113874A JP2010113874A (en) 2010-05-20
JP5813910B2 true JP5813910B2 (en) 2015-11-17

Family

ID=42153009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283952A Active JP5813910B2 (en) 2008-11-05 2008-11-05 Method for producing positive electrode for lithium secondary battery and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5813910B2 (en)
WO (1) WO2010053205A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032206A1 (en) * 2010-07-26 2012-04-05 Süd-Chemie AG Gas phase coated lithium transition metal phosphate and process for its preparation
JP5755870B2 (en) * 2010-11-22 2015-07-29 シャープ株式会社 Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
JP5725350B2 (en) * 2011-07-29 2015-05-27 トヨタ自動車株式会社 Lithium secondary battery
JP2013069633A (en) * 2011-09-26 2013-04-18 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN104521055A (en) * 2012-03-16 2015-04-15 A123系统公司 Microwave drying of lithium-ion battery materials
JP5273274B1 (en) * 2012-04-27 2013-08-28 東洋インキScホールディングス株式会社 Lithium secondary battery electrode forming composition, secondary battery electrode
KR20150135434A (en) 2013-03-29 2015-12-02 가부시키가이샤 유에이씨제이 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2015005228A1 (en) * 2013-07-08 2015-01-15 新神戸電機株式会社 Lithium ion battery and manufacturing method therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635170B2 (en) * 1995-11-28 2005-04-06 松下電器産業株式会社 Battery electrode manufacturing method
JPH10188960A (en) * 1996-12-27 1998-07-21 Sony Corp Manufacture of non-aqueous electrolyte secondary battery
JP2000338785A (en) * 1999-05-27 2000-12-08 Dainippon Screen Mfg Co Ltd Wet type electrophotographic device
JP3921955B2 (en) * 2000-05-12 2007-05-30 株式会社デンソー Ceramic molding extrusion equipment
JP4146254B2 (en) * 2003-02-05 2008-09-10 松下電器産業株式会社 Battery electrode manufacturing apparatus and manufacturing method
JP4729716B2 (en) * 2003-02-20 2011-07-20 三菱化学株式会社 Lithium secondary battery negative electrode and lithium secondary battery
JP4765253B2 (en) * 2003-02-20 2011-09-07 三菱化学株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery negative electrode and lithium secondary battery
JP4794833B2 (en) * 2004-07-21 2011-10-19 日本コークス工業株式会社 Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4819342B2 (en) * 2004-11-08 2011-11-24 エレクセル株式会社 Positive electrode for lithium battery and lithium battery using the same
US8277977B2 (en) * 2007-01-16 2012-10-02 Zeon Corporation Binder composition, slurry for electrodes, electrode and nonaqueous electrolyte secondary battery
JP5195749B2 (en) * 2007-03-23 2013-05-15 日本ゼオン株式会社 Method for producing slurry for lithium ion secondary battery electrode

Also Published As

Publication number Publication date
WO2010053205A1 (en) 2010-05-14
JP2010113874A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5813910B2 (en) Method for producing positive electrode for lithium secondary battery and lithium secondary battery
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP6922035B2 (en) Method of manufacturing lithium secondary battery electrode
EP2911223A1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
JP5314264B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
TWI619294B (en) Powder, electrode and battery comprising such a powder
JP5941437B2 (en) Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN105307979B (en) Lithium titanate, its preparation method and use its electrical storage device
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
TW201444161A (en) Lithium transition metal phosphate secondary agglomerates and process for its manufacture
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
JP2018181707A (en) Negative electrode mixture material, negative electrode including the same, and all-solid lithium ion secondary battery including negative electrode hereof
TW201504138A (en) Lithium transition metal phosphate secondary agglomerates and process for its manufacture
CN110112408A (en) A kind of graphene-silicon composite and preparation method thereof, electrode material and battery
WO2005024980A1 (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
CN108432001A (en) Manufacturing method, positive active material, anode and the lithium rechargeable battery of positive active material
CN111162271A (en) Multi-element anode material, preparation method thereof and lithium ion battery
WO2015133586A1 (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
JP2021104921A (en) Composite material of prussian blue analogue and carbon black and positive electrode active material for potassium ion secondary battery
WO2020196610A1 (en) Composite particles and negative electrode material for lithium ion secondary batteries
WO2020230424A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and positive electrode for non-aqueous electrolyte secondary battery
JP6297285B2 (en) Activated carbon for hybrid capacitor and method for producing the same
JP6705122B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
TW201607125A (en) Negative electrode material for lithium-ion secondary batteries and method for manufacturing the same, negative electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
JP2023530510A (en) Negative electrode current collector for lithium metal battery, method for producing the same, and lithium metal battery including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5813910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350