JPWO2012114502A1 - Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module - Google Patents

Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module Download PDF

Info

Publication number
JPWO2012114502A1
JPWO2012114502A1 JP2013500792A JP2013500792A JPWO2012114502A1 JP WO2012114502 A1 JPWO2012114502 A1 JP WO2012114502A1 JP 2013500792 A JP2013500792 A JP 2013500792A JP 2013500792 A JP2013500792 A JP 2013500792A JP WO2012114502 A1 JPWO2012114502 A1 JP WO2012114502A1
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
ion secondary
secondary battery
olivine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013500792A
Other languages
Japanese (ja)
Inventor
豊隆 湯浅
豊隆 湯浅
小林 満
満 小林
宰 小川
宰 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Publication of JPWO2012114502A1 publication Critical patent/JPWO2012114502A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明の目的は、電極の体積当たりの容量を向上できるリチウムイオン二次電池用正極、及びこれを用いたリチウムイオン二次電池を提供することである。本発明によるリチウムイオン二次電池用正極は、正極活物質(3)、導電材及びバインダを含む合剤層と、合剤層が表面に形成された集電体(1)とを備え、正極活物質(3)が化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であり、導電材は繊維状炭素(4)を含み、集電体(1)の表面にはピット(2)が形成され、正極活物質(3)の一部と繊維状炭素(4)の一部はピット(2)に入り込んでいることを特徴とする。The objective of this invention is providing the positive electrode for lithium ion secondary batteries which can improve the capacity | capacitance per volume of an electrode, and a lithium ion secondary battery using the same. A positive electrode for a lithium ion secondary battery according to the present invention includes a positive electrode active material (3), a mixture layer containing a conductive material and a binder, and a current collector (1) having a mixture layer formed on the surface thereof. The active material (3) has an olivine structure represented by the chemical formula LiaMxPO4 (M is a transition metal containing at least one of Fe and Mn. 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1). It is a composite oxide, the conductive material contains fibrous carbon (4), pits (2) are formed on the surface of the current collector (1), a part of the positive electrode active material (3) and fibrous carbon ( Part of 4) is characterized by entering the pit (2).

Description

本発明は、非水電解液を用いたリチウムイオン二次電池用の正極に関し、より詳細には、正極構造の改善に関する。   The present invention relates to a positive electrode for a lithium ion secondary battery using a non-aqueous electrolyte, and more particularly to improvement of the positive electrode structure.

自動車の更なるエネルギー効率向上のため、プラグインハイブリッド自動車(以下「PHEV」と略す)の開発が求められている。PHEVは家庭用電源で充電したエネルギーを走行に使用し、ある程度の距離をモータのみで走行するため、PHEVに使用される電池の性能として、ハイブリッド自動車に必要な短時間での高出力と高い電池容量とが求められている。   In order to further improve the energy efficiency of automobiles, development of plug-in hybrid automobiles (hereinafter abbreviated as “PHEV”) is required. PHEV uses energy charged by a household power source for running and runs only a motor for a certain distance, so the battery used in PHEV has high output and high battery in a short time required for hybrid vehicles Capacity is required.

以上のように、PHEVで必要とされる電池特性では、高容量化とともに高出力化が重要となる。このため、PHEV用リチウムイオン二次電池は、大型大容量電池となるので、安全性の確保が重要となる。車載用の大型大容量リチウムイオン二次電池では、電池の小型軽量化のため、体積エネルギー密度及び重量エネルギー密度の向上が求められている。また、大型大容量リチウムイオン二次電池では、貯蔵するエネルギーが大きいため、熱安定性が高く高安全な正極活物質が求められている。   As described above, in the battery characteristics required for PHEV, it is important to increase the output as well as increase the capacity. For this reason, since the lithium ion secondary battery for PHEV becomes a large sized large capacity battery, ensuring safety | security is important. In a large-capacity large-capacity lithium ion secondary battery for in-vehicle use, an improvement in volume energy density and weight energy density is required in order to reduce the size and weight of the battery. In addition, since a large-capacity lithium-ion secondary battery stores a large amount of energy, a positive electrode active material having high thermal stability and high safety is required.

PHEV用リチウムイオン二次電池の正極材料として、遷移金属としてFeまたはMnで構成されるオリビン構造の正極活物質(LiMPO、MはFeとMnの少なくとも一方を含む遷移金属。以下「オリビン正極材」と称する)が注目されている。オリビン正極材では、結晶構造中の酸素と燐の結合が強く、過充電時に結晶構造から酸素が放出されにくいため、安全性が高い。しかしながら、オリビン正極材は、電子伝導性が低く、また、正極材中へのリチウムイオン拡散係数が低いことが報告されている。As a positive electrode material for a lithium ion secondary battery for PHEV, a positive electrode active material having an olivine structure composed of Fe or Mn as a transition metal (LiMPO 4 , M is a transition metal containing at least one of Fe and Mn. ")" Is attracting attention. The olivine cathode material is highly safe because the bond between oxygen and phosphorus in the crystal structure is strong and oxygen is not easily released from the crystal structure during overcharge. However, it has been reported that the olivine positive electrode material has low electronic conductivity and a low lithium ion diffusion coefficient into the positive electrode material.

オリビン正極材に対しては、実用化のために上記課題の解決手段として、材料を高比表面積とすることでリチウムイオンの拡散性を改善するとともに、炭素で被覆すること(炭素被覆)により導電性を付与している。炭素被覆をすると、導電性を付与できるとともに、結晶成長を抑制し、一次粒子をサブミクロンの大きさとする小粒径化による高比表面積化に寄与できる。   For the olivine cathode material, as a means for solving the above problems for practical use, the material has a high specific surface area to improve the diffusibility of lithium ions and to be conductive by coating with carbon (carbon coating). Has been given sex. When carbon coating is applied, conductivity can be imparted, crystal growth can be suppressed, and the primary surface can be contributed to a high specific surface area by reducing the particle size to a submicron size.

以上のオリビン正極材は、体積エネルギー密度向上の点で、以下の課題がある。例えば、オリビンFeの真密度は3.6g/cc(g/cm)であるので、真密度が5.1g/ccである層状LiNiMnCoO系を用いた正極材と同程度の体積エネルギー密度を得るためには、オリビン正極材は嵩高くなる。このため、オリビン正極材は、高体積密度化が困難な材料である。加えて、炭素被覆されたオリビン正極材では、全体に占める活物質量が減るため、さらに密度が低下する。また、上述のようにオリビン正極材は高比表面積であるので、電極形成時に必要とされる表面積当たりのバインダ量が増加する。しかしながら、電池容量を確保するためには、電極組成中のバインダ量を低減し、活物質量を増やすことが望ましい。The above olivine positive electrode material has the following problems in terms of improving the volume energy density. For example, since the true density of olivine Fe is 3.6 g / cc (g / cm 3 ), the volume energy density is about the same as that of a positive electrode material using a layered LiNiMnCoO 2 system having a true density of 5.1 g / cc. In order to obtain, the olivine positive electrode material becomes bulky. For this reason, the olivine positive electrode material is a material that is difficult to increase in volume density. In addition, the carbon-coated olivine positive electrode material further reduces the density because the amount of active material in the whole is reduced. In addition, since the olivine positive electrode material has a high specific surface area as described above, the amount of binder per surface area required during electrode formation increases. However, in order to ensure battery capacity, it is desirable to reduce the amount of binder in the electrode composition and increase the amount of active material.

一般に、高容量電池では体積エネルギー密度の向上のため、正極中の正極活物質含率の向上を図るとともに、正極活物質、導電材及びバインダで構成される合剤層の厚みを向上させる必要がある。オリビン正極の作製では、溶媒に分散されたオリビン正極材、導電材及びバインダで構成されるスラリーをアルミ集電体上に塗布した後、これを乾燥させて正極を得る。合剤層が厚い電極の場合、この乾燥工程で、バインダ樹脂が溶剤の蒸発とともに表層に移動する現象が顕著となる。このため、アルミ集電体と合剤層の界面でバインダ量が減少する。バインダ量が減少すると、電極プレスまたはロール圧延加工による圧密化で、この界面から合剤層が剥離する。以上のように、オリビン正極では、体積エネルギー密度向上のために電極の圧密化が必須であるが、アルミ集電体と合剤層の界面からの合剤層の剥離を抑制することが必要である。   Generally, in a high capacity battery, in order to improve the volume energy density, it is necessary to improve the positive electrode active material content in the positive electrode and to increase the thickness of the mixture layer composed of the positive electrode active material, the conductive material, and the binder. is there. In the preparation of the olivine positive electrode, a slurry composed of an olivine positive electrode material, a conductive material and a binder dispersed in a solvent is applied on an aluminum current collector, and then dried to obtain a positive electrode. In the case of an electrode having a thick mixture layer, the phenomenon that the binder resin moves to the surface layer along with the evaporation of the solvent becomes significant in this drying step. For this reason, the amount of binder decreases at the interface between the aluminum current collector and the mixture layer. When the amount of the binder decreases, the mixture layer peels from this interface by consolidation by electrode pressing or roll rolling. As described above, in the olivine positive electrode, it is essential to consolidate the electrode in order to improve the volume energy density, but it is necessary to suppress separation of the mixture layer from the interface between the aluminum current collector and the mixture layer. is there.

特許文献1では、オリビン正極の高体積エネルギー密度化に関して、表面粗さRaが0.1μm以上の集電体を用い、活物質の塗布容量を増やして、体積エネルギー密度及び負荷特性を向上させる方法を開示している。特に、負荷特性の向上に関しては、表面粗化したアルミ集電体では高放電電流時の放電容量維持率が向上したことが開示されている。特許文献1に記載の電極の組成は、オリビン正極活物質、導電材として用いる導電性カーボン粉末、及び結着剤である。   In Patent Document 1, for increasing the volume energy density of the olivine positive electrode, a method of improving the volume energy density and load characteristics by using a current collector having a surface roughness Ra of 0.1 μm or more and increasing the coating capacity of the active material. Is disclosed. In particular, regarding the improvement of the load characteristics, it is disclosed that the surface-roughened aluminum current collector has improved the discharge capacity maintenance rate at a high discharge current. The composition of the electrode described in Patent Document 1 is an olivine positive electrode active material, a conductive carbon powder used as a conductive material, and a binder.

特開2004−335344号公報JP 2004-335344 A

特許文献1に記載の技術のように表面粗化したアルミ集電体を用いると、合剤層の剥離をある程度は抑制できると考えられる。しかし、単に表面粗化したアルミ集電体を用いるだけでは、十分に剥離を抑制できない。従って、剥離の抑制のためにバインダ量を増加させる必要があり、電極の体積エネルギー密度(電極の体積当たりの容量を表す量である)が低下するという課題がある。   If an aluminum current collector having a roughened surface as in the technique described in Patent Document 1 is used, it is considered that peeling of the mixture layer can be suppressed to some extent. However, it is not possible to sufficiently suppress peeling by simply using a roughened aluminum current collector. Therefore, it is necessary to increase the amount of the binder in order to suppress peeling, and there is a problem in that the volume energy density of the electrode (which is an amount representing the capacity per volume of the electrode) decreases.

本発明の目的は、電極の体積当たりの容量を向上できるリチウムイオン二次電池用正極、及びこれを用いたリチウムイオン二次電池を提供することである。   The objective of this invention is providing the positive electrode for lithium ion secondary batteries which can improve the capacity | capacitance per volume of an electrode, and a lithium ion secondary battery using the same.

本発明によるリチウムイオン二次電池用正極は、次のような特徴を有する。正極活物質、導電材及びバインダを含む合剤層と、前記合剤層が表面に形成された集電体とを備え、前記正極活物質が化学式LiPO(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、前記導電材は繊維状炭素を含み、前記集電体の表面にはピットが形成され、前記正極活物質の一部と前記繊維状炭素の一部は前記ピットに入り込んでいる。The positive electrode for a lithium ion secondary battery according to the present invention has the following characteristics. A mixture layer including a positive electrode active material, a conductive material, and a binder; and a current collector formed on the surface of the mixture layer, wherein the positive electrode active material has a chemical formula Li a M x PO 4 (M is Fe and Transition metal containing at least one of Mn. 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) In the positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure, The conductive material includes fibrous carbon, pits are formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon enter the pits.

本発明によれば、電極の体積当たりの容量を向上できるリチウムイオン二次電池用正極と、これを用いたリチウムイオン二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode for lithium ion secondary batteries which can improve the capacity | capacitance per volume of an electrode, and a lithium ion secondary battery using the same can be provided.

アルミ基材集電体の表面粗さRaと電極密度の関係を示す図である。It is a figure which shows the relationship between surface roughness Ra of an aluminum base material electrical power collector, and an electrode density. 円筒型リチウムイオン二次電池を模式的に示す切り欠き断面図である。It is a notch sectional view which shows typically a cylindrical lithium ion secondary battery. リチウムイオン二次電池用正極の断面図である。It is sectional drawing of the positive electrode for lithium ion secondary batteries.

本発明者らは、前述の課題を解決するため鋭意研究を行った結果、正極合剤を構成する正極活物質、導電材及びバインダの部材と配合組成、さらには、合剤の基材としても用いるアルミ基材集電体の表面粗さを検討することにより、正極内での正極活物質の含有率が向上し、かつ、正極の密度が向上し、単位体積当たりのエネルギー密度(体積エネルギー密度)が向上することを見出した。電極の体積当たりの容量は、電極体積エネルギー密度で表される。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the positive electrode active material, the conductive material, and the binder composition and the composition of the positive electrode mixture, and further, as the base material of the mixture By examining the surface roughness of the aluminum base current collector to be used, the content of the positive electrode active material in the positive electrode is improved, and the density of the positive electrode is improved. The energy density per unit volume (volume energy density) ) Was found to improve. The capacity per volume of the electrode is represented by the electrode volume energy density.

本発明によるリチウムイオン二次電池用正極は、正極活物質、導電材及びバインダを含む合剤層と、集電体とを備え、正極活物質は、化学式LiPO(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物である。A positive electrode for a lithium ion secondary battery according to the present invention includes a mixture layer including a positive electrode active material, a conductive material and a binder, and a current collector. The positive electrode active material has a chemical formula Li a M x PO 4 (M is Transition metal containing at least one of Fe and Mn, which is a complex oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1).

正極活物質(オリビン正極材)は、比表面積が10m/g以上、30m/g以下(10〜30m/g)の範囲であり、平均一次粒子径が0.05μm以上、0.3μm以下(0.05〜0.3μm)の範囲であり、平均二次粒子径が0.2μm以上、1μm以下(0.2〜1μm)の範囲である。なお、本明細書では、平均一次粒子径及び平均二次粒子径のことを、それぞれ単に一次粒子径及び二次粒子径とも称する。導電材は、カーボンブラックと繊維状炭素を混合したものである。集電体は、表面粗さを規定したアルミ基材からなる。The positive electrode active material (olivine positive electrode material) has a specific surface area of 10 m 2 / g or more and 30 m 2 / g or less (10 to 30 m 2 / g), and an average primary particle diameter of 0.05 μm or more and 0.3 μm. The average secondary particle diameter is 0.2 μm or more and 1 μm or less (0.2 to 1 μm). In the present specification, the average primary particle diameter and the average secondary particle diameter are also simply referred to as primary particle diameter and secondary particle diameter, respectively. The conductive material is a mixture of carbon black and fibrous carbon. The current collector is made of an aluminum base material having a specified surface roughness.

さらに、本発明によるリチウムイオン二次電池用正極は、合剤層に占める正極活物質の含有量が重量百分率で90%以上、93%以下であるのが好ましいが、この範囲に限られるものではない。導電材に占める繊維状炭素の重量百分率は、20%以上、60%未満であるのが好ましいが、この範囲に限られるものではない。電極密度は、2.0g/cc(g/cm)以上、2.3g/cc(g/cm)以下であるのが好ましいが、この範囲に限られるものではない。Further, in the positive electrode for a lithium ion secondary battery according to the present invention, the content of the positive electrode active material in the mixture layer is preferably 90% or more and 93% or less by weight percentage, but is not limited to this range. Absent. The weight percentage of fibrous carbon in the conductive material is preferably 20% or more and less than 60%, but is not limited to this range. The electrode density is preferably 2.0 g / cc (g / cm 3 ) or more and 2.3 g / cc (g / cm 3 ) or less, but is not limited to this range.

電池の高容量化には、正極の厚膜化、正極中の正極活物質の高含率化及び正極の高密度化が必要である。微細一次粒子で構成されるオリビン正極材を用いてこの正極仕様を達成するためには、高い結着性を有する正極構成が必要である。バインダの検討による結着性向上も考えられるが、本発明では、前述のように集電体と合剤層との界面の結着性に着目した。一般に、アルミ集電体の表面を粗面化し、集電体と合剤層との界面の結着性を向上させる試みがなされている。本発明では、微細一次粒子で構成されるオリビン正極材について、以下の観点から結着性の向上を検討した。即ち、アルミ基材集電体の表面にピットを形成し、ピット径とオリビン正極材の平均二次粒子径との関係、さらに、正極中に分散した、導電材として用いる繊維状炭素の効果である。   In order to increase the capacity of the battery, it is necessary to increase the thickness of the positive electrode, to increase the content of the positive electrode active material in the positive electrode, and to increase the density of the positive electrode. In order to achieve this positive electrode specification using an olivine positive electrode material composed of fine primary particles, a positive electrode configuration having high binding properties is required. Although the binding property can be improved by examining the binder, the present invention focuses on the binding property at the interface between the current collector and the mixture layer as described above. In general, attempts have been made to roughen the surface of an aluminum current collector to improve the binding property at the interface between the current collector and the mixture layer. In the present invention, the improvement of the binding property of the olivine positive electrode material composed of fine primary particles was examined from the following viewpoints. That is, by forming pits on the surface of the aluminum base current collector, the relationship between the pit diameter and the average secondary particle diameter of the olivine positive electrode material, and the effect of fibrous carbon used as a conductive material dispersed in the positive electrode is there.

「ピット」とは、アルミ基材集電体の表面に形成された穴のことであり、開口部の形状と深さ方向の形状は任意とする。「ピット径」とは、ピットの開口部における開口の最大長さ(最大幅)のことである。本明細書では、各ピットのピット径の平均である平均ピット径のことを、単にピット径とも称する。   The “pit” is a hole formed in the surface of the aluminum base current collector, and the shape of the opening and the shape in the depth direction are arbitrary. The “pit diameter” is the maximum length (maximum width) of the opening at the opening of the pit. In this specification, the average pit diameter that is the average of the pit diameters of the pits is also simply referred to as a pit diameter.

ピットに正極活物質(オリビン正極材)の一部と繊維状炭素の一部が入り込むことで、アンカー効果により集電体と合剤層との界面の結着性を増すことができる。ピットの中に入るオリビン正極材は、一次粒子と二次粒子のどちらでもよい。但し、ピット径とオリビン正極材の粒子径との関係は、粒子径の大きい二次粒子により定める。   By allowing a part of the positive electrode active material (olivine positive electrode material) and a part of the fibrous carbon to enter the pit, the binding property at the interface between the current collector and the mixture layer can be increased by the anchor effect. The olivine cathode material that enters the pit may be either primary particles or secondary particles. However, the relationship between the pit diameter and the particle diameter of the olivine cathode material is determined by secondary particles having a large particle diameter.

ピット径とオリビン正極材の平均二次粒子径の関係について以下に示す。一般に、アルミ基材を用いた集電体では、酸またはアルカリを用いる表面処理により、基材表面にピット径が数μm、深さが数μmのピットを形成することができる。このピットの中にオリビン正極材の二次粒子が入り込み、アンカー効果が発生し、集電体と合剤層との界面の結着性が増す。ここで、ピット径と二次粒子径の相対関係により、結着性が異なる。例えば、ピット径と二次粒子径がほぼ同一なら、オリビン正極材の二次粒子はピットに入ることが困難となる。一方、ピット径に対してオリビン正極材の二次粒子径が小さすぎれば、アンカー効果が低減してしまう。   The relationship between the pit diameter and the average secondary particle diameter of the olivine cathode material is shown below. Generally, in a current collector using an aluminum substrate, pits having a pit diameter of several μm and a depth of several μm can be formed on the surface of the substrate by surface treatment using acid or alkali. The secondary particles of the olivine positive electrode material enter into the pits, an anchor effect is generated, and the binding property of the interface between the current collector and the mixture layer is increased. Here, the binding property varies depending on the relative relationship between the pit diameter and the secondary particle diameter. For example, if the pit diameter and the secondary particle diameter are almost the same, it becomes difficult for the secondary particles of the olivine cathode material to enter the pit. On the other hand, if the secondary particle diameter of the olivine positive electrode material is too small with respect to the pit diameter, the anchor effect is reduced.

このため、本発明では、集電体表面のピット径に適したオリビン正極材の二次粒子径を、以下のように規定した。即ち、オリビン正極材の平均二次粒子径は、0.2μm以上、1μm以下であり、平均ピット径との比である平均二次粒子径/平均ピット径が0.1以上、0.5以下であるとした。この規定により、ピットに入った適切な量のオリビン正極材で、集電体と合剤層との界面の結着性を増すことができるとともに、正極の高密度化が可能である。   For this reason, in this invention, the secondary particle diameter of the olivine positive electrode material suitable for the pit diameter of the collector surface was prescribed | regulated as follows. That is, the average secondary particle diameter of the olivine positive electrode material is 0.2 μm or more and 1 μm or less, and the average secondary particle diameter / average pit diameter, which is a ratio to the average pit diameter, is 0.1 or more and 0.5 or less. It was said that. According to this regulation, it is possible to increase the binding property of the interface between the current collector and the mixture layer and to increase the density of the positive electrode with an appropriate amount of the olivine positive electrode material entering the pits.

次に、正極中に分散した繊維状炭素の効果を説明するため、正極に用いる導電材について述べる。正極では、電子伝導性を確保するため、導電材を正極中に分散させる。導電材としては、微細な粒状のアセチレンブラック及び繊維状炭素が挙げられる。   Next, in order to explain the effect of fibrous carbon dispersed in the positive electrode, a conductive material used for the positive electrode will be described. In the positive electrode, a conductive material is dispersed in the positive electrode in order to ensure electronic conductivity. Examples of the conductive material include fine granular acetylene black and fibrous carbon.

図3を用いて、正極中に分散させた繊維状炭素の効果について以下に示す。図3は、本発明によるリチウムイオン二次電池用正極の断面図であり、アルミ基材集電体1の表面に形成されたピット2と、オリビン正極材の二次粒子3と、繊維状炭素4を示している。図3では、オリビン正極材の粒子(一次粒子と二次粒子)のうち、代表して二次粒子のみを示している。一次粒子についても、二次粒子と同様の説明があてはまる。   The effect of fibrous carbon dispersed in the positive electrode will be described below with reference to FIG. FIG. 3 is a cross-sectional view of a positive electrode for a lithium ion secondary battery according to the present invention, in which pits 2 formed on the surface of an aluminum base current collector 1, secondary particles 3 of an olivine positive electrode material, and fibrous carbon 4 is shown. In FIG. 3, only the secondary particles are representatively shown among the particles (primary particles and secondary particles) of the olivine positive electrode material. For the primary particles, the same explanation as for the secondary particles applies.

オリビン正極材の二次粒子3は、ピット2の中に入ることができる。ここで、導電材として用いる繊維状炭素4が合剤スラリー中に分散されていれば、繊維状炭素4もピット2の中に入り、繊維状炭素4が合剤層の厚さ方向に分布して合剤の結着性を向上させることが可能となる。しかしながら、導電材に含まれる繊維状炭素4が多すぎる場合は、繊維状炭素4とオリビン正極材が凝集体を形成し、ピット2に入ることができない。また、繊維状炭素4が少ない場合は、繊維状炭素4によるアンカー効果が低減してしまう。このため、全導電材に含まれる繊維状炭素4の含有量を規定することが必要である。全導電材に占める繊維状炭素4の割合は、重量百分率で20%以上、60%未満と規定した。   The secondary particles 3 of the olivine cathode material can enter the pits 2. Here, if the fibrous carbon 4 used as the conductive material is dispersed in the mixture slurry, the fibrous carbon 4 also enters the pit 2, and the fibrous carbon 4 is distributed in the thickness direction of the mixture layer. Thus, the binding property of the mixture can be improved. However, when too much fibrous carbon 4 is contained in the conductive material, the fibrous carbon 4 and the olivine cathode material form an aggregate and cannot enter the pit 2. Moreover, when there is little fibrous carbon 4, the anchor effect by fibrous carbon 4 will reduce. For this reason, it is necessary to prescribe | regulate content of the fibrous carbon 4 contained in all the electrically conductive materials. The proportion of the fibrous carbon 4 in the total conductive material was defined as 20% or more and less than 60% by weight percentage.

ここで用いる具体的な繊維状炭素としては、気相成長カーボン繊維、カーボンナノチューブ(CNT)及びカーボンナノファイバー(CNF)が挙げられる。繊維状炭素は、優れた特性を有するが、合剤スラリー中に分散させることが難しく、スラリー中で凝集物を形成することがある。スラリー中の凝集物は、電極塗布工程で合剤層を一定にすることを阻害するため、凝集物が形成されない合剤組成が望ましい。   Specific fibrous carbon used here includes vapor grown carbon fiber, carbon nanotube (CNT) and carbon nanofiber (CNF). Fibrous carbon has excellent properties, but is difficult to disperse in the mixture slurry and may form aggregates in the slurry. Aggregates in the slurry hinder the formation of a mixture layer in the electrode application step, and therefore a mixture composition in which no aggregates are formed is desirable.

次に、アセチレンブラックの効果について以下に示す。アセチレンブラックは、粒径数十nmの微細な粒状粒子で、スラリー中の分散性に優れている。このため、凝集物の形成を抑制しながら、正極中の電子導電性を確保するために有効である。   Next, the effect of acetylene black is shown below. Acetylene black is a fine granular particle having a particle diameter of several tens of nanometers and is excellent in dispersibility in a slurry. For this reason, it is effective for ensuring the electronic conductivity in the positive electrode while suppressing the formation of aggregates.

このような繊維状炭素及びアセチレンブラックの特性を考慮し、全導電材に占める繊維状炭素の割合が重量百分率で20%以上、60%未満であることを規定した。ここで、繊維状炭素の添加量が20%未満であれば上記の効果が少なく、60%以上であればスラリー中の凝集物が多いため正極の作成が困難となる。   Considering the characteristics of such fibrous carbon and acetylene black, it was specified that the proportion of fibrous carbon in the total conductive material was 20% or more and less than 60% in weight percentage. Here, if the amount of fibrous carbon added is less than 20%, the above effect is small, and if it is 60% or more, there are many aggregates in the slurry, making it difficult to produce a positive electrode.

以上の電極構成により、合剤層に占める正極活物質(オリビン正極材)の含有量が重量百分率で90〜93%、電極密度が2.0〜2.3g/ccの高密度正極においても、高体積エネルギー密度及び高率放電に優れた正極を得ることができる。   With the above electrode configuration, the content of the positive electrode active material (olivine positive electrode material) in the mixture layer is 90 to 93% by weight, and the high density positive electrode has an electrode density of 2.0 to 2.3 g / cc. A positive electrode excellent in high volume energy density and high rate discharge can be obtained.

本発明は、以上のように、高安全の大型大容量リチウムイオン二次電池を得ることを目的とし、オリビン正極材の正極構成を規定したものである。   As described above, an object of the present invention is to define a positive electrode configuration of an olivine positive electrode material for the purpose of obtaining a high-safety large-capacity lithium ion secondary battery.

本発明によるリチウムイオン二次電池用正極、リチウムイオン二次電池、及び電池モジュールは、以下のような特徴を持つ。
(1)正極活物質、導電材及びバインダを含む合剤層と、合剤層が表面に形成された集電体とを備え、正極活物質が化学式LiPO(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、導電材は繊維状炭素を含み、集電体の表面にはピットが形成され、正極活物質の一部と繊維状炭素の一部はピットに入り込んでいる。
(2)(1)に記載のリチウムイオン二次電池用正極において、正極活物質は、平均二次粒子径が0.2μm以上、1μm以下であり、平均二次粒子径とピットの平均ピット径との比である平均二次粒子径/平均ピット径は、0.1以上、0.5以下であるのが好ましい。
(3)(1)または(2)に記載のリチウムイオン二次電池用正極において、集電体の表面粗さRaは、0.3μm以上、1μm以下であるのが好ましい。
(4)(1)から(3)のいずれか1つに記載のリチウムイオン二次電池用正極において、導電材に占める繊維状炭素の重量百分率は、20%以上、60%未満であるのが好ましい。
(5)(1)から(4)のいずれか1つに記載のリチウムイオン二次電池用正極において、合剤層に占める正極活物質の含有量は、重量百分率で90%以上、93%以下であるのが好ましい。
(6)(1)から(5)のいずれか1つに記載のリチウムイオン二次電池用正極において、電極密度が2.0g/cc以上、2.3g/cc以下であるのが好ましい。
(7)(1)〜(6)のいずれか1つに記載のリチウムイオン二次電池用正極を用いるリチウムイオン二次電池。
(8)(7)に記載のリチウムイオン二次電池が電気的に複数接続された電池モジュール。
The positive electrode for a lithium ion secondary battery, the lithium ion secondary battery, and the battery module according to the present invention have the following characteristics.
(1) A mixture layer including a positive electrode active material, a conductive material and a binder, and a current collector having a mixture layer formed on a surface thereof, wherein the positive electrode active material has a chemical formula Li a M x PO 4 (M is Fe And a transition metal containing at least one of Mn, in a positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) The conductive material contains fibrous carbon, pits are formed on the surface of the current collector, and part of the positive electrode active material and part of the fibrous carbon enter the pits.
(2) In the positive electrode for a lithium ion secondary battery according to (1), the positive electrode active material has an average secondary particle diameter of 0.2 μm or more and 1 μm or less, and the average secondary particle diameter and the average pit diameter of pits The average secondary particle diameter / average pit diameter, which is the ratio of the above, is preferably 0.1 or more and 0.5 or less.
(3) In the positive electrode for a lithium ion secondary battery according to (1) or (2), the current collector has a surface roughness Ra of preferably 0.3 μm or more and 1 μm or less.
(4) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (3), the weight percentage of fibrous carbon in the conductive material is 20% or more and less than 60%. preferable.
(5) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (4), the content of the positive electrode active material in the mixture layer is 90% or more and 93% or less by weight percentage. Is preferred.
(6) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (5), the electrode density is preferably 2.0 g / cc or more and 2.3 g / cc or less.
(7) A lithium ion secondary battery using the positive electrode for a lithium ion secondary battery according to any one of (1) to (6).
(8) A battery module in which a plurality of the lithium ion secondary batteries according to (7) are electrically connected.

以上の特徴(1)〜(6)については、(1)に記載の条件を満たしていれば、(2)〜(6)に記載の条件を必ずしも満たさなくても、本発明の効果を得ることができる。例えば、集電体の表面粗さRaは、集電体全体についての平均値であり、(2)に記載の平均ピット径と一対一に対応しているとは限らない。即ち、(2)の条件を満たすようなピットに加えて、(2)の条件を満たさない微細なピットが多数存在する場合では、表面粗さRaが1μmを越える場合もあり得るが、このような場合でも本発明は有効である。もちろん、(1)の条件に加えて(2)〜(6)の条件を満たせば、本発明の効果は顕著に現れる。   About the above characteristics (1)-(6), if the conditions as described in (1) are satisfy | filled, even if the conditions as described in (2)-(6) are not necessarily satisfied, the effect of this invention is acquired. be able to. For example, the surface roughness Ra of the current collector is an average value for the entire current collector, and does not necessarily correspond one-to-one with the average pit diameter described in (2). That is, in addition to the pits satisfying the condition (2), when there are many fine pits that do not satisfy the condition (2), the surface roughness Ra may exceed 1 μm. Even in this case, the present invention is effective. Of course, if the conditions (2) to (6) are satisfied in addition to the condition (1), the effect of the present invention is remarkably exhibited.

本発明によれば、プラグインハイブリッド自動車、または電気自動車などの高容量かつ高安全が必要とされる機器への応用に適したリチウムイオン二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery suitable for the application to apparatus with high capacity | capacitance and high safety | security required, such as a plug-in hybrid vehicle or an electric vehicle, can be provided.

以下、本発明によるリチウムイオン二次電池用正極の例について、詳細に説明する。   Hereinafter, the example of the positive electrode for lithium ion secondary batteries by this invention is demonstrated in detail.

〔リチウムイオン二次電池用正極の材料〕
リチウムイオン二次電池用正極は、以下の特徴を有するオリビン正極材(正極活物質)を有する。
[Material of positive electrode for lithium ion secondary battery]
The positive electrode for lithium ion secondary batteries has an olivine positive electrode material (positive electrode active material) having the following characteristics.

オリビン正極材の比表面積は10〜30m/gである。ここで、比表面積が10m/g未満では、正極材とリチウムイオンとの反応面積が少ないために電極抵抗が上昇する。比表面積が30m/gを超える場合には、電極密度の向上と正極内の導電ネットワーク形成を同時に達成することができない。特に、オリビン正極材の場合は電子伝導性が低いため、導電ネットワークが形成できなければ高抵抗となり、所望の放電容量を得ることができない。The specific surface area of the olivine positive electrode material is 10 to 30 m 2 / g. Here, when the specific surface area is less than 10 m 2 / g, the electrode resistance increases because the reaction area between the positive electrode material and the lithium ions is small. When the specific surface area exceeds 30 m 2 / g, it is impossible to simultaneously achieve improvement in electrode density and formation of a conductive network in the positive electrode. In particular, in the case of the olivine positive electrode material, since the electron conductivity is low, if a conductive network cannot be formed, the resistance becomes high and a desired discharge capacity cannot be obtained.

オリビン正極材の平均一次粒子径は0.05〜0.3μmである。平均一次粒子径が0.05μm未満では、電極塗布時に凝集物を形成し、塗工不良となる。一方、平均一次粒子径が0.3μmを越えてしまうと、正極活物質自体の反応性が低下して、所望の放電容量が得られない。   The average primary particle diameter of the olivine positive electrode material is 0.05 to 0.3 μm. If the average primary particle size is less than 0.05 μm, aggregates are formed during electrode application, resulting in poor coating. On the other hand, if the average primary particle diameter exceeds 0.3 μm, the reactivity of the positive electrode active material itself is lowered and a desired discharge capacity cannot be obtained.

オリビン正極材の平均二次粒子径は0.2〜1μmである。平均二次粒子径が0.2μm未満であれば、電極塗布時に凝集物を形成し、塗工不良となる。一方、平均二次粒子径が1.1μm以上では、電池容量向上のための高密度電極を得ることが難しい。   The average secondary particle diameter of the olivine positive electrode material is 0.2 to 1 μm. If the average secondary particle diameter is less than 0.2 μm, aggregates are formed during electrode application, resulting in poor coating. On the other hand, when the average secondary particle diameter is 1.1 μm or more, it is difficult to obtain a high-density electrode for improving battery capacity.

なお、オリビン正極材の組成は、化学式LiPO(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物である。ここで、Liの組成を示すaの範囲を0<a≦1.1とし、以下にその理由を示す。電極を構成するオリビン正極材中のLi含有量は、正極の充電状態により0<a≦1.0となる。さらに、オリビン正極材にLiが過剰で、MサイトにLiが入る場合もあるため、Liの組成を示すaの範囲を0<a≦1.1とした。また、遷移金属Mの組成を示すxの範囲を0.9≦x≦1.1としたのは、Liが過剰になった場合を考慮して0.9≦xとし、遷移金属Mが過剰になった場合を考慮してx≦1.1としたためである。The composition of the olivine positive electrode material is chemical formula Li a M x PO 4 (M is a transition metal containing at least one of Fe and Mn. 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) Is a complex oxide having an olivine structure represented by Here, the range of a indicating the composition of Li is set to 0 <a ≦ 1.1, and the reason is described below. The Li content in the olivine positive electrode material constituting the electrode is 0 <a ≦ 1.0 depending on the state of charge of the positive electrode. Furthermore, since Li may be excessive in the olivine cathode material and Li may enter the M site, the range of a indicating the composition of Li is set to 0 <a ≦ 1.1. In addition, the range of x indicating the composition of the transition metal M is set to 0.9 ≦ x ≦ 1.1 in consideration of the case where Li becomes excessive, 0.9 ≦ x, and the transition metal M is excessive. This is because x ≦ 1.1 in consideration of the case where

次に、リチウムイオン二次電池用正極のアルミ基材集電体は、以下の特徴を有する。即ち、表面にピット径が2〜7μmのピットを有し、JIS2001に従う表面粗さRaが0.3〜1μmのアルミ基材集電体である。アルミ基材表面上のピット径と正極材の二次粒子径との関係については前述したため、本発明で規定する表面粗さRaについて以下に述べる。   Next, the aluminum base current collector of the positive electrode for a lithium ion secondary battery has the following characteristics. That is, the aluminum base current collector has pits with a pit diameter of 2 to 7 μm on the surface and a surface roughness Ra according to JIS2001 of 0.3 to 1 μm. Since the relationship between the pit diameter on the surface of the aluminum substrate and the secondary particle diameter of the positive electrode material has been described above, the surface roughness Ra defined in the present invention will be described below.

Raが0.3μm未満の場合、アルミ基材集電体の表面上に形成されるピットの密度が低く、正極合剤とアルミ基材集電体との界面に働くアンカー効果が小さい。このため、所望の電極密度の正極を得ることができず、圧密化加工で剥離が発生してしまう。一方、Raが1μmを超える場合は、アルミ基材集電体の深さ方向に形成されたピットとピットの高密度化とにより、アルミ基材集電体の強度が低下し、電極作製プロセスで電極の破断が発生し、電極作製の歩留まりが低下する。このため、アルミ基材集電体の表面粗さRaは、0.3μm以上、1μm以下が望ましい。   When Ra is less than 0.3 μm, the density of pits formed on the surface of the aluminum base current collector is low, and the anchor effect acting on the interface between the positive electrode mixture and the aluminum base current collector is small. For this reason, a positive electrode having a desired electrode density cannot be obtained, and peeling occurs in the consolidation process. On the other hand, when Ra exceeds 1 μm, the strength of the aluminum base current collector decreases due to the pits formed in the depth direction of the aluminum base current collector and the high density of the pits. Electrode breakage occurs and the yield of electrode fabrication decreases. For this reason, the surface roughness Ra of the aluminum base current collector is desirably 0.3 μm or more and 1 μm or less.

次に、アルミ基材集電体上への粗面化プロセスについて述べる。アルミ基材集電体へのサンドブラストや、酸またはアルカリによるエッチングで、粗面化を行うことができる。アンカー効果に有効なピットをアルミ基材集電体上に形成するためには、エッチング処理、または、エッチング処理と他の処理方法(例えば、サンドブラスト)を組み合わせて粗面化を行うのが望ましい。   Next, a roughening process on the aluminum base current collector will be described. Surface roughening can be performed by sandblasting the aluminum base current collector or etching with acid or alkali. In order to form pits effective for the anchor effect on the aluminum base current collector, it is desirable to perform roughening by etching treatment or a combination of etching treatment and other treatment methods (for example, sandblasting).

オリビン正極、電池及びモジュールの作製方法の概略を以下に示す。   An outline of a method for producing the olivine positive electrode, battery, and module is shown below.

〔オリビン正極材料の製造方法〕
微細に粉砕したシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことでオリビン正極材を得た。
[Manufacturing method of olivine cathode material]
Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed at a molar ratio of 2: 2: 1.0, and calcined in a nitrogen atmosphere at 300 ° C. Thus, a precursor was obtained. Then, the precursor and polyvinyl alcohol were mixed, and the olivine positive electrode material was obtained by performing heat processing for 8 hours in 700 degreeC nitrogen atmosphere.

〔リチウムイオン二次電池の製造方法〕
リチウムイオン二次電池は、円筒型、積層型、コイン型、及びカード型等のうちいずれの型でもよく、特に限定されない。本明細書では、例として、円筒型リチウムイオン二次電池の製造方法を説明する。
[Production method of lithium ion secondary battery]
The lithium ion secondary battery may be any of a cylindrical type, a stacked type, a coin type, a card type, and the like, and is not particularly limited. In this specification, the manufacturing method of a cylindrical lithium ion secondary battery is demonstrated as an example.

1)正極の作製方法
上述のようにして作製したオリビン正極材に、アセチレンブラック及び繊維状炭素等の導電材を添加して混合する。本明細書で述べるオリビン正極材は、高比表面積であり、電極作製時に用いる有機溶媒の吸液性が高い。このため、予め有機溶媒であるN−メチル−2−ピロリジノン(以下、「NMP」と略す)を正極活物質と混合して正極活物質にNMPを吸液させた後、正極活物質に導電材を分散させる。この後、この混合物にNMPなどの溶媒に溶解させたバインダを加えて混練し、正極スラリーを得る。ここでバインダとして、ポリフッ化ビニリデン(以下、「PVDF」と略す)を用いる。次に、このスラリーをアルミニウム基材集電体上に塗布した後、乾燥して正極板を作製する。
1) Method for producing positive electrode A conductive material such as acetylene black and fibrous carbon is added to and mixed with the olivine positive electrode material produced as described above. The olivine positive electrode material described in the present specification has a high specific surface area, and has a high liquid absorption property of an organic solvent used for electrode preparation. Therefore, N-methyl-2-pyrrolidinone (hereinafter abbreviated as “NMP”), which is an organic solvent, is mixed with the positive electrode active material in advance to absorb NMP in the positive electrode active material, and then the conductive material is used as the positive electrode active material. To disperse. Thereafter, a binder dissolved in a solvent such as NMP is added to the mixture and kneaded to obtain a positive electrode slurry. Here, polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) is used as the binder. Next, after apply | coating this slurry on the aluminum base material electrical power collector, it dries and produces a positive electrode plate.

2)負極の作製方法
負極活物質である非晶質炭素材に、アセチレンブラック及び炭素繊維などの導電材を加え、混合する。これに結着剤としてNMPに溶解したPVDFまたはゴム系バインダー(SBR等)を加えた後に混練し、負極スラリーを得る。次に、このスラリーを銅箔上に塗布した後、乾燥して負極板を作製する。
2) Method for producing negative electrode A conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material which is a negative electrode active material. To this, PVDF or a rubber-based binder (SBR or the like) dissolved in NMP is added as a binder and then kneaded to obtain a negative electrode slurry. Next, after apply | coating this slurry on copper foil, it dries and produces a negative electrode plate.

3)電池の形成方法
正極板及び負極板は、電極の両面にスラリーを塗布した後に乾燥する。さらに、圧延加工により緻密化し、所望の形状に裁断して電極を作製する。次に、これらの電極に電流を流すためのリード片を形成する。これら正極及び負極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。次に、リード片と電池缶を接続した後、非水系電解液を注入し、最後に、電池缶を封缶してリチウムイオン二次電池を得る。
3) Battery Formation Method The positive electrode plate and the negative electrode plate are dried after applying the slurry to both surfaces of the electrode. Further, it is densified by rolling and cut into a desired shape to produce an electrode. Next, lead pieces for passing a current through these electrodes are formed. A porous insulating material separator is sandwiched between the positive electrode and the negative electrode, wound, and then inserted into a battery can molded of stainless steel or aluminum. Next, after connecting the lead piece and the battery can, a non-aqueous electrolyte is injected, and finally the battery can is sealed to obtain a lithium ion secondary battery.

4)電池のモジュール化
上記リチウムイオン二次電池を使用する形態例の1つとして、複数個の電池を直列に接続した電池モジュールが挙げられる。本発明のリチウムイオン二次電池を用いた電池モジュールは、高容量化することができる。
4) Modularization of battery As one of the embodiments using the lithium ion secondary battery, there is a battery module in which a plurality of batteries are connected in series. The battery module using the lithium ion secondary battery of the present invention can be increased in capacity.

〔実施例〕
以下、本発明を実施例により具体的に説明するが、以下の実施例は本発明の範囲を限定するものではない。なお、以下の実施例では、オリビン正極材を構成する遷移金属Mとして、Feのみを用いた場合とFeとMnを用いた場合について述べる。遷移金属MとしてMnのみを用いても、以下の実施例と同様の効果を得ることができる。これは、遷移金属MとしてMnのみを用いたオリビン正極材は、遷移金属MとしてFeのみを用いたオリビン正極材やFeとMnを用いたオリビン正極材と同様の結晶構造を持つからである。
〔Example〕
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, a following example does not limit the scope of the present invention. In the following examples, the case where only Fe and the case where Fe and Mn are used will be described as the transition metal M constituting the olivine positive electrode material. Even if only Mn is used as the transition metal M, the same effects as in the following examples can be obtained. This is because the olivine positive electrode material using only Mn as the transition metal M has the same crystal structure as the olivine positive electrode material using only Fe as the transition metal M and the olivine positive electrode material using Fe and Mn.

〔実施例1〕
<オリビン正極材の作製>
ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFePOからなるオリビン正極材(1)を得た。被覆した炭素量は2wt%であった。
[Example 1]
<Production of olivine cathode material>
Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate, which were finely pulverized for 3 hours in a ball mill, were mixed at a molar ratio of 2: 2: 1.0. The precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and heat-treated for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain an olivine positive electrode material (1) made of carbon-coated LiFePO 4 . The amount of carbon coated was 2 wt%.

<比表面積の測定方法>
オリビン正極材(1)を、予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中で、300℃で30分間乾燥させた。次いで、試料セルを測定部に装着し、He/N混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出した。その結果、二次粒子の比表面積は30m/gであった。
<Method for measuring specific surface area>
The olivine positive electrode material (1) was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and the specific surface area was calculated by the BET method after counting the signals at the time of desorption with the He / N 2 mixed gas. As a result, the specific surface area of the secondary particles was 30 m 2 / g.

<二次粒子径の測定方法>
正極活物質であるオリビン正極材(1)をヘキサメタリン酸水溶液中に分散させ、レーザー光の散乱からオリビン正極材の平均二次粒子径(D50)を算出した。その結果、D50は0.8μmであった。平均ピット径を求めると5.3μmであったので、平均二次粒子径と平均ピット径の比(平均二次粒子径/平均ピット径)は、0.15となる。
<Method for measuring secondary particle size>
The olivine positive electrode material (1), which is a positive electrode active material, was dispersed in a hexametaphosphoric acid aqueous solution, and the average secondary particle diameter (D50) of the olivine positive electrode material was calculated from the scattering of laser light. As a result, D50 was 0.8 μm. Since the average pit diameter was 5.3 μm, the ratio of the average secondary particle diameter to the average pit diameter (average secondary particle diameter / average pit diameter) was 0.15.

<正極の作製>
オリビン正極材(1)を用い、正極板を以下の手順で作製した。バインダを溶媒のNMPに溶解した溶液と、オリビン正極材(1)と、平均粒子径が35nmの炭素系導電材であるアセチレンブラックと、気相成長カーボン繊維であるVGCF(登録商標。直径:150nm、繊維長:10〜20μm)を混合して、正極合剤スラリーを作製した。このとき、2種の導電材は、重量比で等量とした。従って、導電材に占める繊維状炭素の重量百分率は50%となる。
<Preparation of positive electrode>
Using the olivine positive electrode material (1), a positive electrode plate was prepared by the following procedure. A solution obtained by dissolving a binder in NMP as a solvent, an olivine positive electrode material (1), acetylene black which is a carbon-based conductive material having an average particle diameter of 35 nm, and VGCF (registered trademark, diameter: 150 nm) which is a vapor-grown carbon fiber. , Fiber length: 10 to 20 μm) was mixed to prepare a positive electrode mixture slurry. At this time, the two kinds of conductive materials were made equal in weight ratio. Accordingly, the weight percentage of fibrous carbon in the conductive material is 50%.

オリビン正極材(1)、炭素系導電材及びバインダは、重量百分率比で表して、それぞれ91:4:5の割合となるように混合した。従って、合剤層に占める正極の正極活物質(オリビン正極材)の含有量は、重量百分率で91%となる。   The olivine positive electrode material (1), the carbon-based conductive material, and the binder were mixed at a weight percentage ratio of 91: 4: 5. Therefore, the content of the positive electrode active material (olivine positive electrode material) of the positive electrode in the mixture layer is 91% by weight.

このスラリーを、厚さが30μm、表面粗さがRa=0.7μmのアルミシート(アルミ基材集電体)上に均一に塗布した後、100℃で乾燥し、プレスにて約1.5ton/cmで加圧し、膜厚が約60μmの塗膜を形成し、電極密度が2.2g/cc(g/cm)の正極板を得た。次に、この正極板の水分を除去するため、真空熱処理を140℃で2時間行った。This slurry was uniformly applied onto an aluminum sheet (aluminum base current collector) having a thickness of 30 μm and a surface roughness Ra = 0.7 μm, then dried at 100 ° C., and about 1.5 ton by press. / Cm 2 to form a coating film having a film thickness of about 60 μm, and a positive electrode plate having an electrode density of 2.2 g / cc (g / cm 3 ) was obtained. Next, in order to remove moisture from the positive electrode plate, vacuum heat treatment was performed at 140 ° C. for 2 hours.

ここで使用したアルミシート(アルミ基材集電体)の表面粗さRaは、表面粗さ測定機(株式会社ミツトヨ、SURFTEST SV−2100)を用い、JIS2001に従って評価した。   The surface roughness Ra of the aluminum sheet (aluminum base current collector) used here was evaluated according to JIS2001 using a surface roughness measuring machine (Mitutoyo Corporation, SURFTEST SV-2100).

<正極の評価>
正極板をφ15に打ち抜き、対極及び参照極を金属リチウムとし、試験用電池である円筒型リチウムイオン二次電池を作製した。このとき、電解液には1.0モルのLiPFを電解質としたエチルカーボネートとジメチルカーボネートの混合溶媒を用いた。
<Evaluation of positive electrode>
The positive electrode plate was punched to φ15, and the counter electrode and reference electrode were metallic lithium, and a cylindrical lithium ion secondary battery as a test battery was produced. At this time, a mixed solvent of ethyl carbonate and dimethyl carbonate using 1.0 mol of LiPF 6 as an electrolyte was used as the electrolytic solution.

この試験用電池を、0.3Cで上限電圧が3.6V、下限電圧が2.0Vまでの充放電を3回繰り返して、初期化した。さらに、0.3C相当で上限電圧が3.6Vで5時間の定電流定電圧充電を行った後、0.3C相当で下限電圧が2.0Vまでの定電流放電を実施し、放電容量を求めた。   This test battery was initialized by repeating charging and discharging up to 0.3 C at an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V three times. Furthermore, after performing constant current / constant voltage charging for 5 hours with an upper limit voltage of 3.6V corresponding to 0.3C, a constant current discharge corresponding to 0.3C up to a lower limit voltage of 2.0V was performed, and the discharge capacity was reduced. Asked.

次に、電極の体積エネルギー密度(単位はmAh/cc(mAh/cm))を算出した。この電極の合剤重量(オリビン正極材、導電材及びバインダの合計重量)で放電容量を除した後、電極密度(2.2g/cc)と正極活物質含有量(重量百分率で91%)の積をとり、体積エネルギー密度とした。この値は、単位体積当たりのエネルギーを表わし、電池の高充填化の指標となる。Next, the volume energy density (unit: mAh / cc (mAh / cm 3 )) of the electrode was calculated. After dividing the discharge capacity by the mixture weight of the electrode (total weight of olivine positive electrode material, conductive material and binder), the electrode density (2.2 g / cc) and the positive electrode active material content (91% by weight percentage) The product was taken as the volumetric energy density. This value represents the energy per unit volume and serves as an index for increasing the battery charge.

表1の実施例1の行に、この正極の評価の結果として、オリビン正極材(正極活物質)の平均二次粒子径と平均ピット径の比(平均二次粒子径/平均ピット径)、アルミ基材集電体の表面粗さRa、導電材に占める繊維状炭素の重量百分率、平均二次粒子径、合剤層に占める正極活物質の含有量、電極密度、電極体積エネルギー密度、電流0.125mA/cmでの放電容量(A)、電流0.5mA/cmでの放電容量(B)、放電容量維持率(B/A)を示す。放電容量維持率は、放電容量(B)を放電容量(A)で除して求めた。体積エネルギー密度は285mAh/cc(285mAh/cm)で、放電容量維持率は0.98であり、どちらも良好であった。In the row of Example 1 in Table 1, as a result of the evaluation of this positive electrode, the ratio of the average secondary particle diameter and the average pit diameter of the olivine positive electrode material (positive electrode active material) (average secondary particle diameter / average pit diameter), Surface roughness Ra of aluminum base current collector, weight percentage of fibrous carbon in conductive material, average secondary particle diameter, content of positive electrode active material in mixture layer, electrode density, electrode volume energy density, current discharge capacity at 0.125mA / cm 2 (a), discharge capacity at current 0.5mA / cm 2 (B), shows the discharge capacity retention ratio of (B / a). The discharge capacity retention rate was obtained by dividing the discharge capacity (B) by the discharge capacity (A). The volume energy density was 285 mAh / cc (285 mAh / cm 3 ) and the discharge capacity retention rate was 0.98, both of which were good.

Figure 2012114502
<円筒型リチウムイオン二次電池の評価>
試験用電池である円筒型リチウムイオン二次電池を作製するため、オリビン正極材(1)を用いた正極板を、塗布幅が5.4cmで、塗布長さが60cmとなるよう切断した。電流を取り出すために、アルミニウム箔製のリード片を正極板に溶接した。
Figure 2012114502
<Evaluation of cylindrical lithium ion secondary battery>
In order to produce a cylindrical lithium ion secondary battery as a test battery, a positive electrode plate using the olivine positive electrode material (1) was cut so that the coating width was 5.4 cm and the coating length was 60 cm. In order to take out an electric current, the lead piece made from aluminum foil was welded to the positive electrode plate.

次に、正極板と組み合わせて円筒型リチウムイオン二次電池を作製するため、負極板を作製した。負極合剤スラリーは、負極活物質の黒鉛炭素材を結着剤のNMPに溶解して混合して作製した。このとき、黒鉛炭素材と結着剤の乾燥重量比が92:8となるようにした。このスラリーを厚さが10μmの圧延銅箔に均一に塗布した。その後、ロールプレス機により圧縮整形し、塗布幅が5.6cm、塗布長さが64cmとなるよう切断し、銅箔製のリード片を溶接して負極板を作製した。   Next, in order to produce a cylindrical lithium ion secondary battery in combination with the positive electrode plate, a negative electrode plate was produced. The negative electrode mixture slurry was prepared by dissolving and mixing a graphite carbon material as a negative electrode active material in NMP as a binder. At this time, the dry weight ratio of the graphite carbon material and the binder was set to 92: 8. This slurry was uniformly applied to a rolled copper foil having a thickness of 10 μm. Then, it was compressed and shaped by a roll press machine, cut so that the coating width was 5.6 cm and the coating length was 64 cm, and a lead piece made of copper foil was welded to produce a negative electrode plate.

図2は、作製した円筒型リチウムイオン二次電池を模式的に示す切り欠き断面図である。上述のようにして作製した正極板と負極板を用いて、円筒型リチウムイオン二次電池を以下の手順で作製した。   FIG. 2 is a cut-away sectional view schematically showing the produced cylindrical lithium ion secondary battery. Using the positive electrode plate and the negative electrode plate produced as described above, a cylindrical lithium ion secondary battery was produced in the following procedure.

始めに、正極板7と負極板8が直接接触しないように、正極板7と負極板8の間にセパレータ9を配置して捲回して電極群を作製した。このとき、正極板7のリード片(正極リード片)13と負極板8のリード片(負極リード片)11とが、電極群の互いに反対側の端面に位置するようにした。さらに、正極板7と負極板8の配置で、正極の合剤塗布部が負極の合剤塗布部からはみ出すことがないようにした。また、ここで用いたセパレータ9は、厚さ25μm、幅5.8cmの微多孔性ポリプロピレンフィルムとした。   First, a separator 9 was disposed between the positive electrode plate 7 and the negative electrode plate 8 so that the positive electrode plate 7 and the negative electrode plate 8 were not in direct contact, and the electrode group was produced. At this time, the lead piece (positive electrode lead piece) 13 of the positive electrode plate 7 and the lead piece (negative electrode lead piece) 11 of the negative electrode plate 8 were positioned on the opposite end surfaces of the electrode group. Further, the arrangement of the positive electrode plate 7 and the negative electrode plate 8 prevents the positive electrode mixture application part from protruding from the negative electrode mixture application part. The separator 9 used here was a microporous polypropylene film having a thickness of 25 μm and a width of 5.8 cm.

次に、電極群をSUS製の電池缶10に挿入し、負極リード片11を缶底部に溶接し、正極リード片13を密閉蓋部12に溶接した。密閉蓋部12は、正極電流端子を兼ねる。この電極群を配置した電池缶10に非水電解液を注入した。非水電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:2の混合溶媒に、1.0モル/リットルのLiPFを溶解させたものを用いた。その後、パッキン15を取り付けた密閉蓋部12を電池缶10にかしめて密閉し、直径18mm、長さ65mmの円筒型電池とした。Next, the electrode group was inserted into a battery can 10 made of SUS, the negative electrode lead piece 11 was welded to the bottom of the can, and the positive electrode lead piece 13 was welded to the sealing lid 12. The sealing lid 12 also serves as a positive electrode current terminal. A non-aqueous electrolyte was injected into the battery can 10 in which this electrode group was arranged. As the nonaqueous electrolytic solution, a solution in which 1.0 mol / liter of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2 was used. Thereafter, the sealing lid portion 12 to which the packing 15 was attached was caulked and sealed to the battery can 10 to obtain a cylindrical battery having a diameter of 18 mm and a length of 65 mm.

密閉蓋部12には、電池内の圧力が上昇すると開裂して電池内部の圧力を逃がす開裂弁がある。密閉蓋部12と電極群の間、及び電池缶10の缶底部と電極群の間に絶縁板14を配した。   The sealing lid portion 12 has a cleavage valve that cleaves when the pressure in the battery rises and releases the pressure inside the battery. An insulating plate 14 was disposed between the sealing lid 12 and the electrode group and between the can bottom of the battery can 10 and the electrode group.

この円筒型電池を、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を行い、電池放電容量を測定した。電池放電容量は1.3Ahであった。   This cylindrical battery was initialized by repeating charging and discharging up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3 C three times. Furthermore, charging / discharging to 0.3 C and upper limit voltage 3.6V and the lower limit voltage 2.0V was performed, and the battery discharge capacity was measured. The battery discharge capacity was 1.3 Ah.

以上のように、本実施例による正極を用いた円筒型リチウムイオン二次電池では、容量を高くすることができた。   As described above, the capacity of the cylindrical lithium ion secondary battery using the positive electrode according to this example could be increased.

次に、この円筒型リチウムイオン二次電池を直列に10本接続し、高容量化させた電池モジュールを得ることができた。   Next, 10 cylindrical lithium ion secondary batteries were connected in series to obtain a battery module with an increased capacity.

図1に、実施例1の電極構成で、アルミ基材集電体の表面粗さRaを変え、表面粗さRaと電極密度の関係を検討した結果を示す。Raが1μmまでは、表面粗さRaの増大につれて電極が高密度化する。しかし、表面粗さRaが1.2μmでは、合剤層と集電体の界面が不均一となり、剥離発生のため電極密度が低下した。   FIG. 1 shows the results of examining the relationship between the surface roughness Ra and the electrode density by changing the surface roughness Ra of the aluminum base current collector in the electrode configuration of Example 1. When Ra is up to 1 μm, the electrode density increases as the surface roughness Ra increases. However, when the surface roughness Ra was 1.2 μm, the interface between the mixture layer and the current collector became non-uniform, and the electrode density decreased due to the occurrence of peeling.

〔実施例2〕
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.1とした。
[Example 2]
In Example 1, the surface roughness Ra of the aluminum base current collector was changed to 0.3 μm, and the average secondary particle diameter of the olivine positive electrode material was changed to 0.2 μm. And the battery were evaluated. In Example 2, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was set to 0.1.

表面粗さRaを0.3μmとしたため、電極密度は若干低下して2.0g/cc(g/cm)となった。また、電極体積エネルギー密度を評価した結果、240mAh/cc(mAh/cm)となり、放電容量維持率は0.95であった。これらの結果を、表1の実施例2の行に示す。Since the surface roughness Ra was 0.3 μm, the electrode density slightly decreased to 2.0 g / cc (g / cm 3 ). Moreover, as a result of evaluating electrode volume energy density, it was set to 240 mAh / cc (mAh / cm < 3 >), and the discharge capacity maintenance factor was 0.95. These results are shown in the row of Example 2 in Table 1.

〔実施例3〕
実施例1において、アルミ基材集電体の表面粗さRaを1μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.2とした。
Example 3
In Example 1, the surface roughness Ra of the aluminum base current collector was changed to 1 μm, and the average secondary particle diameter of the olivine positive electrode material was changed to 1 μm. Was evaluated. In Example 3, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.2.

表面粗さRaを1μmとしたため、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、291mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例3の行に示す。   Since the surface roughness Ra was 1 μm, the electrode density increased slightly to 2.3 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was 291 mAh / cc and the discharge capacity maintenance factor was 0.97. These results are shown in the row of Example 3 in Table 1.

〔比較例1〕
実施例1において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例1では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。
[Comparative Example 1]
In Example 1, the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm, and the other processes were performed in the same manner as in Example 1 to produce a positive electrode and evaluate the battery. In Comparative Example 1, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was 0.6.

表面粗さRaを0.2μmとしたため、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、206mAh/ccとなり、放電容量維持率は0.66となって、電池特性が低下した。これらの結果を、表1の比較例1の行に示す。   Since the surface roughness Ra was 0.2 μm, the electrode density decreased to 1.9 g / cc. Moreover, as a result of evaluating electrode volume energy density, it became 206 mAh / cc, the discharge capacity maintenance factor became 0.66, and the battery characteristic fell. These results are shown in the row of Comparative Example 1 in Table 1.

〔比較例2〕
実施例1において、アルミ基材集電体の表面粗さRaを1.1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.15とした。
[Comparative Example 2]
In Example 1, the surface roughness Ra of the aluminum base current collector was changed to 1.1 μm, and the other processes were performed in the same manner as in Example 1 to produce a positive electrode and evaluate the battery. In Comparative Example 2, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was set to 0.15.

表面粗さRaを1.1μmとしたため、電極密度は高くなり2.4g/ccとなった。但し、電極加工時に、局所的に破断個所があった。このため、電極体積エネルギー密度を評価した結果、205mAh/ccとなり、放電容量維持率は0.67となって、電池特性が低下した。これらの結果を、表1の比較例2の行に示す。   Since the surface roughness Ra was 1.1 μm, the electrode density was increased to 2.4 g / cc. However, there was a local break at the time of electrode processing. For this reason, as a result of evaluating an electrode volume energy density, it became 205 mAh / cc, the discharge capacity maintenance factor became 0.67, and the battery characteristic fell. These results are shown in the row of Comparative Example 2 in Table 1.

〔実施例4〕
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例4では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.5とした。
Example 4
In Example 1, the surface roughness Ra of the aluminum base current collector was changed to 0.3 μm, and the average secondary particle diameter of the olivine positive electrode material was changed to 1 μm. And the battery was evaluated. In Example 4, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.5.

表面粗さRaを0.3μmとしたため、電極密度は若干低下して2.1g/ccとなった。また、電極体積エネルギー密度を評価した結果、258mAh/ccとなり、放電容量維持率は0.95であった。これらの結果を、表1の実施例4の行に示す。   Since the surface roughness Ra was 0.3 μm, the electrode density slightly decreased to 2.1 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 258 mAh / cc, and the discharge capacity maintenance factor was 0.95. These results are shown in the row of Example 4 in Table 1.

〔比較例3〕
実施例1において、オリビン正極材の平均二次粒子径を0.48μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.09とした。
[Comparative Example 3]
In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 0.48 μm, and the other processes were carried out in the same manner as in Example 1 to produce a positive electrode and evaluate the battery. In Comparative Example 3, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was 0.09.

平均二次粒子径と平均ピット径の比が低下したためアンカー効果が少なくなり、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、207mAh/ccとなり、放電容量維持率は0.65であった。これらの結果を、表1の比較例3の行に示す。   Since the ratio of the average secondary particle diameter to the average pit diameter was reduced, the anchor effect was reduced, and the electrode density was reduced to 1.9 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 207 mAh / cc, and the discharge capacity maintenance factor was 0.65. These results are shown in the row of Comparative Example 3 in Table 1.

〔実施例5〕
実施例1において、導電材に占める繊維状炭素の重量百分率を20%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
Example 5
In Example 1, the weight percentage of the fibrous carbon in the conductive material was changed to 20%, and the production of the positive electrode and the evaluation of the battery were performed in the same manner as in Example 1 except that.

アセチレンブラックは繊維状炭素であるVGCFと比較して嵩密度が高いため、電極密度は若干高くなって2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、290mAh/ccとなり、放電容量維持率は0.95であった。繊維状炭素の添加量が低下したため、放電維持率は若干低下した。これらの結果を、表1の実施例5の行に示す。   Since acetylene black has a higher bulk density than VGCF, which is fibrous carbon, the electrode density was slightly higher to 2.3 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was 290 mAh / cc and the discharge capacity maintenance factor was 0.95. Since the amount of fibrous carbon added decreased, the discharge maintenance ratio slightly decreased. These results are shown in the row of Example 5 in Table 1.

〔比較例4〕
実施例1において、導電材に占める繊維状炭素の重量百分率を10%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
[Comparative Example 4]
In Example 1, the weight percentage of the fibrous carbon in the conductive material was changed to 10%, and the production of the positive electrode and the evaluation of the battery were performed in the same manner as in Example 1 except that.

繊維状炭素が少ないためアンカー効果が減少し、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、208mAh/ccとなり、放電容量維持率は0.67であった。繊維状炭素の添加量が低下したため、放電維持率は若干低下した。これらの結果を、表1の比較例4の行に示す。   Since there was little fibrous carbon, the anchor effect decreased, and the electrode density decreased to 1.9 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 208 mAh / cc, and the discharge capacity maintenance factor was 0.67. Since the amount of fibrous carbon added decreased, the discharge maintenance ratio slightly decreased. These results are shown in the row of Comparative Example 4 in Table 1.

〔比較例5〕
実施例1において、導電材に占める繊維状炭素の重量百分率を60%に変更し、他は実施例1と同様にして、正極の作製を行った。
[Comparative Example 5]
In Example 1, the positive electrode was produced in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 60%.

繊維状炭素が多いためスラリーに凝集物が多く発生し、正極を形成することができなかった。この結果を、表1の比較例5の行に示す。   Since there were many fibrous carbons, many aggregates generate | occur | produced in the slurry and the positive electrode could not be formed. The results are shown in the row of Comparative Example 5 in Table 1.

〔実施例6〕
実施例1において、オリビン正極材の含有量を90%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
Example 6
In Example 1, the content of the olivine positive electrode material was changed to 90%, and the production of the positive electrode and the evaluation of the battery were performed in the same manner as in Example 1 except for that.

オリビン正極材の含有量が低下したため、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、290mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例6の行に示す。   Since the content of the olivine positive electrode material decreased, the electrode density slightly increased to 2.3 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was 290 mAh / cc and the discharge capacity maintenance factor was 0.97. These results are shown in the row of Example 6 in Table 1.

〔実施例7〕
実施例1において、オリビン正極材の含有量を93%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
Example 7
In Example 1, the content of the olivine positive electrode material was changed to 93%, and the production of the positive electrode and the battery were evaluated in the same manner as in Example 1 except for that.

オリビン正極材の含有量が上昇したために、電極密度は若干低下して2g/ccとなった。また、電極体積エネルギー密度を評価した結果、271mAh/ccとなり、放電容量維持率は0.94であった。これらの結果を、表1の実施例7の行に示す。   Since the content of the olivine positive electrode material increased, the electrode density slightly decreased to 2 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 271 mAh / cc and the discharge capacity maintenance factor was 0.94. These results are shown in the row of Example 7 in Table 1.

〔比較例6〕
実施例1において、オリビン正極材の含有量を89%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
[Comparative Example 6]
In Example 1, the content of the olivine positive electrode material was changed to 89%, and the production of the positive electrode and the evaluation of the battery were performed in the same manner as in Example 1 except for that.

オリビン正極材の含有量が低下したために、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、230mAh/ccとなり、放電容量維持率は0.70であった。オリビン正極材の含有量が低いため、所望の高体積エネルギー密度化を達成できなかった。これらの結果を、表1の比較例6の行に示す。   Since the content of the olivine positive electrode material decreased, the electrode density slightly increased to 2.3 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 230 mAh / cc, and the discharge capacity maintenance factor was 0.70. Since the content of the olivine positive electrode material was low, the desired high volume energy density could not be achieved. These results are shown in the row of Comparative Example 6 in Table 1.

〔比較例7〕
実施例1において、オリビン正極材の含有量を94%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。
[Comparative Example 7]
In Example 1, the content of the olivine positive electrode material was changed to 94%, and the production of the positive electrode and the evaluation of the battery were performed in the same manner as in Example 1 except for that.

オリビン正極材の含有量が上昇したために、電極密度は剥離により低くなって1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、208mAh/ccとなり、放電容量維持率は0.65であった。これらの結果を、表1の比較例7の行に示す。   Since the content of the olivine positive electrode material was increased, the electrode density was reduced by peeling to 1.9 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 208 mAh / cc, and the discharge capacity maintenance factor was 0.65. These results are shown in the row of Comparative Example 7 in Table 1.

〔比較例8〕
実施例1において、オリビン正極材の平均二次粒子径を0.1μmに変更し、他は実施例1と同様にして、正極の作製を行った。
[Comparative Example 8]
In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 0.1 μm, and the others were made in the same manner as in Example 1 to produce a positive electrode.

スラリーに凝集物が多く発生し、正極を形成することができなかった。この結果を、表1の比較例8の行に示す。   Many aggregates were generated in the slurry, and a positive electrode could not be formed. The results are shown in the row of Comparative Example 8 in Table 1.

〔比較例9〕
実施例1において、オリビン正極材の平均二次粒子径を1.1μmに、平均二次粒子径と平均ピット径の比を0.2に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。平均二次粒子径が増大したため、平均二次粒子径と平均ピット径の比も若干増大した。
[Comparative Example 9]
In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 1.1 μm, and the ratio of the average secondary particle diameter to the average pit diameter was changed to 0.2. And the battery were evaluated. Since the average secondary particle diameter increased, the ratio of the average secondary particle diameter to the average pit diameter also increased slightly.

オリビン正極材の平均二次粒子径が上昇したために、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、209mAh/ccとなり、放電容量維持率は0.66であった。これらの結果を、表1の比較例9の行に示す。   Since the average secondary particle diameter of the olivine positive electrode material was increased, the electrode density was decreased to 1.9 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 209 mAh / cc, and the discharge capacity maintenance factor was 0.66. These results are shown in the row of Comparative Example 9 in Table 1.

〔実施例8〕
実施例8では、実施例1で作製したオリビン正極材LiFePOの代わりに、組成式LiMn0.8Fe0.2POで表わされるオリビン正極材を作製した。作製方法を以下に述べる。
Example 8
In Example 8, instead of the olivine cathode material LiFePO 4 produced in Example 1, an olivine cathode material represented by the composition formula LiMn 0.8 Fe 0.2 PO 4 was produced. A manufacturing method will be described below.

7.2gのNHPOと、2.27gのLiOH・HOと、9gのMnC・2HOと、2.25gのFeC・2HOとを混合した。これにスクロースを12質量%となるように加え、ジルコニア製ポットにジルコニア製粉砕用ボールを投入し、遊星型ボールミルを用いて混合した。この混合粉体をアルミナ製るつぼに投入し、0.3L/minのアルゴン流下で、400℃で10時間の仮焼成を行った。Mix 7.2 g NH 4 H 2 PO 4 , 2.27 g LiOH.H 2 O, 9 g MnC 2 O 4 .2H 2 O and 2.25 g FeC 2 O 4 .2H 2 O did. Sucrose was added to this so that it might become 12 mass%, the ball | bowl for zirconia grinding | pulverization was thrown into the pot made from zirconia, and it mixed using the planetary ball mill. This mixed powder was put into an alumina crucible and pre-baked at 400 ° C. for 10 hours under an argon flow of 0.3 L / min.

得られた仮焼成体は、一度、メノウ乳鉢で解砕し、再度アルミナ製るつぼへ投入して、0.3L/minのアルゴン流下で、700℃で10時間の本焼成を行った。本焼成後、得られた粉体をメノウ乳鉢で解砕し、40μmのメッシュの篩で粒度調整を行い、組成式LiMn0.8Fe0.2POで表されるオリビン正極材を得た。The obtained calcined product was once crushed in an agate mortar, charged again into an alumina crucible, and subjected to main firing at 700 ° C. for 10 hours under an argon flow of 0.3 L / min. After the main firing, the obtained powder was crushed in an agate mortar, and the particle size was adjusted with a 40 μm mesh sieve to obtain an olivine positive electrode material represented by a composition formula LiMn 0.8 Fe 0.2 PO 4 . .

次に、実施例1と同様にして、正極を作製して評価した。LiMn0.8Fe0.2POはLiFePOと比較して真密度が低いため、電極密度は2g/ccとなった。Next, a positive electrode was produced and evaluated in the same manner as in Example 1. Since LiMn 0.8 Fe 0.2 PO 4 has a lower true density than LiFePO 4 , the electrode density was 2 g / cc.

次に、実施例1と同様にして、試験用電池である円筒型リチウムイオン二次電池を作製し、電池の評価を行った。但し、電池の評価では、充電電圧を4.1Vとした。電極体積エネルギー密度を評価した結果、257mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例8の行に示す。   Next, in the same manner as in Example 1, a cylindrical lithium ion secondary battery as a test battery was produced, and the battery was evaluated. However, in the battery evaluation, the charging voltage was 4.1V. As a result of evaluating the electrode volume energy density, it was 257 mAh / cc, and the discharge capacity retention rate was 0.97. These results are shown in the row of Example 8 in Table 1.

〔比較例10〕
実施例8において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例10では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。
[Comparative Example 10]
In Example 8, the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm, and the other processes were performed in the same manner as in Example 1 to produce a positive electrode and evaluate the battery. In Comparative Example 10, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was 0.6.

表面粗さRaを0.2μmとしたため、電極密度は低下して1.7g/ccとなった。また、電極体積エネルギー密度を評価した結果、206mAh/ccとなり、放電容量維持率は0.68であった。これらの結果を、表1の比較例10の行に示す。   Since the surface roughness Ra was 0.2 μm, the electrode density decreased to 1.7 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 206 mAh / cc, and the discharge capacity maintenance factor was 0.68. These results are shown in the row of Comparative Example 10 in Table 1.

本発明は、電気自動車やプラグインハイブリッド車などの、高容量が必要とされる機器に利用できる。   The present invention can be used for devices that require high capacity, such as electric vehicles and plug-in hybrid vehicles.

1…アルミ基材集電体、2…ピット、3…オリビン正極材の二次粒子、4…繊維状炭素、7…正極板、8…負極板、9…セパレータ、10…電池缶、11…負極リード片、12…密閉蓋部、13…正極リード片、14…絶縁板、15…パッキン。   DESCRIPTION OF SYMBOLS 1 ... Aluminum base material collector, 2 ... Pit, 3 ... Secondary particle of olivine positive electrode material, 4 ... Fibrous carbon, 7 ... Positive electrode plate, 8 ... Negative electrode plate, 9 ... Separator, 10 ... Battery can, 11 ... Negative electrode lead piece, 12 ... Sealing lid, 13 ... Positive electrode lead piece, 14 ... Insulating plate, 15 ... Packing.

Claims (8)

正極活物質、導電材及びバインダを含む合剤層と、前記合剤層が表面に形成された集電体とを備え、前記正極活物質が化学式LiPO(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、
前記導電材は、繊維状炭素を含み、
前記集電体の表面には、ピットが形成され、
前記正極活物質の一部と前記繊維状炭素の一部は、前記ピットに入り込んでいることを特徴とするリチウムイオン二次電池用正極。
A mixture layer including a positive electrode active material, a conductive material, and a binder; and a current collector formed on the surface of the mixture layer, wherein the positive electrode active material has a chemical formula Li a M x PO 4 (M is Fe and Transition metal containing at least one of Mn. 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) In the positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure,
The conductive material includes fibrous carbon,
Pits are formed on the surface of the current collector,
A positive electrode for a lithium ion secondary battery, wherein a part of the positive electrode active material and a part of the fibrous carbon enter the pit.
請求項1記載のリチウムイオン二次電池用正極において、
前記正極活物質は、平均二次粒子径が0.2μm以上、1μm以下であり、
前記平均二次粒子径と前記ピットの平均ピット径との比である平均二次粒子径/平均ピット径は、0.1以上、0.5以下であるリチウムイオン二次電池用正極。
The positive electrode for a lithium ion secondary battery according to claim 1,
The positive electrode active material has an average secondary particle size of 0.2 μm or more and 1 μm or less,
The positive electrode for a lithium ion secondary battery, wherein an average secondary particle diameter / average pit diameter, which is a ratio between the average secondary particle diameter and the average pit diameter of the pits, is 0.1 or more and 0.5 or less.
請求項1または2記載のリチウムイオン二次電池用正極において、
前記集電体は、表面粗さRaが0.3μm以上、1μm以下であるリチウムイオン二次電池用正極。
The positive electrode for a lithium ion secondary battery according to claim 1 or 2,
The current collector is a positive electrode for a lithium ion secondary battery having a surface roughness Ra of 0.3 μm or more and 1 μm or less.
請求項1から3のいずれか1項記載のリチウムイオン二次電池用正極において、
前記導電材に占める前記繊維状炭素の重量百分率は、20%以上、60%未満であるリチウムイオン二次電池用正極。
The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 3,
The positive electrode for a lithium ion secondary battery, wherein a weight percentage of the fibrous carbon in the conductive material is 20% or more and less than 60%.
請求項1から4のいずれか1項記載のリチウムイオン二次電池用正極において、
前記合剤層に占める前記正極活物質の含有量は、重量百分率で90%以上、93%以下であるリチウムイオン二次電池用正極。
The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 4,
The positive electrode for a lithium ion secondary battery, wherein the content of the positive electrode active material in the mixture layer is 90% or more and 93% or less by weight percentage.
請求項1から5のいずれか1項記載のリチウムイオン二次電池用正極において、
電極密度が2.0g/cc以上、2.3g/cc以下であるリチウムイオン二次電池用正極。
The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 5,
A positive electrode for a lithium ion secondary battery having an electrode density of 2.0 g / cc or more and 2.3 g / cc or less.
請求項1から6のいずれか1項記載のリチウムイオン二次電池用正極を用いることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the positive electrode for a lithium ion secondary battery according to any one of claims 1 to 6. 請求項7記載のリチウムイオン二次電池が電気的に複数接続されたことを特徴とする電池モジュール。   A battery module, wherein a plurality of lithium ion secondary batteries according to claim 7 are electrically connected.
JP2013500792A 2011-02-25 2011-02-25 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module Pending JPWO2012114502A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054262 WO2012114502A1 (en) 2011-02-25 2011-02-25 Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module

Publications (1)

Publication Number Publication Date
JPWO2012114502A1 true JPWO2012114502A1 (en) 2014-07-07

Family

ID=46720318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500792A Pending JPWO2012114502A1 (en) 2011-02-25 2011-02-25 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module

Country Status (2)

Country Link
JP (1) JPWO2012114502A1 (en)
WO (1) WO2012114502A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795895B2 (en) * 2011-07-22 2015-10-14 株式会社Uacj製箔 Positive electrode for secondary battery using current collector made of aluminum alloy, and method for producing positive electrode for secondary battery
JP5945401B2 (en) * 2011-11-24 2016-07-05 三菱アルミニウム株式会社 Method for producing positive electrode current collector foil of lithium ion secondary battery
JP6051038B2 (en) * 2012-12-26 2016-12-21 三菱アルミニウム株式会社 Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2014212030A (en) * 2013-04-18 2014-11-13 Jsr株式会社 Electrode for electricity storage device and method for producing the same, and electricity storage device
JP5914439B2 (en) * 2013-09-09 2016-05-11 富士フイルム株式会社 Aluminum base material for secondary battery current collector, method for producing aluminum base material for secondary battery current collector, secondary battery current collector, positive electrode, negative electrode and secondary battery
JP6199416B2 (en) * 2014-01-31 2017-09-20 富士フイルム株式会社 Aluminum plate manufacturing method, aluminum plate, current collector for power storage device, power storage device, soundproofing / sound absorbing material, electromagnetic wave shield, and building material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method
JP2005063955A (en) * 2003-07-28 2005-03-10 Showa Denko Kk High-density electrode and battery using electrode
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
JP2009043703A (en) * 2007-07-18 2009-02-26 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234565A (en) * 2005-03-18 2007-09-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method
JP2005063955A (en) * 2003-07-28 2005-03-10 Showa Denko Kk High-density electrode and battery using electrode
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
JP2006032241A (en) * 2004-07-21 2006-02-02 Mitsui Mining Co Ltd Positive electrode material for lithium ion secondary cell, its manufacturing method, and lithium ion secondary cell
JP2009043703A (en) * 2007-07-18 2009-02-26 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
WO2009078159A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
WO2012114502A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5625007B2 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
WO2011039921A1 (en) Lithium secondary battery, and cathode for use in a lithium secondary battery
US20180366729A1 (en) Electric storage device and positive electrode
JP5520906B2 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
EP2503626B1 (en) Positive-electrode material for a lithium ion secondary battery, and manufacturing method therefor
KR101980216B1 (en) Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
CN113611827A (en) Sodium ion battery and preparation method thereof
JP6596779B2 (en) COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, ELECTRODE MATERIAL FOR SECONDARY BATTERY, AND SECONDARY BATTERY
KR101309241B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
US20200227746A1 (en) Negative electrode active material for secondary battery, and secondary battery
WO2012114502A1 (en) Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
EP3896758B1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015002092A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing positive electrode active material for lithium ion secondary batteries
JPWO2018087928A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
KR20210094080A (en) Anode material for lithium ion secondary battery, manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US20220127146A1 (en) Carbon material for negative electrode of lithium ion secondary battery and method of producing the same, and negative electrode and lithium ion secondary battery using the carbon material
JP2017152363A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
KR20240076555A (en) Cathode active material for lithium secondary battery and lithium secondary battery including the same
CN117059798A (en) Double-layer coated doped lithium iron phosphate material and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007