JP2012033438A - Cathode for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents

Cathode for lithium ion secondary battery and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2012033438A
JP2012033438A JP2010174078A JP2010174078A JP2012033438A JP 2012033438 A JP2012033438 A JP 2012033438A JP 2010174078 A JP2010174078 A JP 2010174078A JP 2010174078 A JP2010174078 A JP 2010174078A JP 2012033438 A JP2012033438 A JP 2012033438A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010174078A
Other languages
Japanese (ja)
Inventor
Toyotaka Yuasa
豊隆 湯浅
Mitsuru Kobayashi
満 小林
Tsukasa Ogawa
宰 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010174078A priority Critical patent/JP2012033438A/en
Publication of JP2012033438A publication Critical patent/JP2012033438A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cathode for a lithium secondary battery which allows the achievement of a higher capacity, and to provide a lithium ion secondary battery using the same.SOLUTION: The cathode for a lithium secondary battery comprises: an anode active material of a complex oxide having an olivine structure expressed by the chemical formula of LiMPO(where 0<a≤1.2, 0.9≤x≤1.1, M is a transition metal including Fe or Mn), a conductive material and a binder. In the cathode, the content of the anode active material is between 91 and 93 wt.% inclusive; the specific surface area of the anode active material is 10-30 m/g; the conductive material contains fibrous carbon; the binder consists of a mixture of polyvinylidene fluoride and polyamide; the content of the binder in the cathode is between 3 and 6 wt.% inclusive; the content of the polyamide in the mixture of the polyvinylidene fluoride and the polyamide is between 38 and 70 wt.% inclusive; and the density of the cathode is between 1.9 and 2.2 g/cc inclusive.

Description

本発明は、非水電解液を用いた大型リチウム二次電池用正極電極、及びその製造方法に関し、より詳細には、正極構造の改善に関する。   The present invention relates to a positive electrode for a large-sized lithium secondary battery using a non-aqueous electrolyte and a method for producing the same, and more particularly to improvement of the positive electrode structure.

自動車の更なるエネルギー効率向上のため、プラグインハイブリッド自動車(以下PHEVと略す)の開発が求められている。PHEVは家庭用電源で充電したエネルギーで走行した後、ハイブリッド自動車として使用されるため、電池性能としてハイブリッド自動車に必要な10秒間の出力とともに電池容量が求められている。以上のように、PHEVで必要とされる電池特性では、高容量化とともに高出力化が重要となる。このため、PHEV用リチウム二次電池は大型大容量電池となるため安全性の確保が重要となる。車載用大型大容量リチウム二次電池では、電池の小型軽量化のため、体積エネルギー密度及び重量エネルギー密度の向上が求められている。また、大型大容量リチウム二次電池では貯蔵するエネルギーが大きいため、熱安定性の高く高安全な正極活物質が求められている。   In order to further improve the energy efficiency of automobiles, the development of plug-in hybrid automobiles (hereinafter abbreviated as PHEV) is required. Since the PHEV is used as a hybrid vehicle after running on energy charged by a household power source, the battery capacity is required as well as the 10-second output required for the hybrid vehicle as battery performance. As described above, in the battery characteristics required for PHEV, it is important to increase the output as well as increase the capacity. For this reason, since the lithium secondary battery for PHEV becomes a large sized large capacity battery, ensuring safety | security is important. In a large-capacity lithium secondary battery for in-vehicle use, an improvement in volume energy density and weight energy density is required in order to reduce the size and weight of the battery. In addition, since a large-scale, large-capacity lithium secondary battery stores a large amount of energy, a highly active and safe cathode active material is required.

一般に、遷移金属としてFe或いはMnで構成されるオリビン構造の正極活物質(LiMPO4,MはFe或いはMnを含む遷移金属で、以下、オリビン正極材と略す)では、結晶構造中の酸素と燐の結合が強く、過充電時に結晶構造から酸素が放出されにくいため安全性が高い。しかしながら、オリビン正極活物質は電子伝導性が低く、また、正極活物質中へのリチウムイオン拡散係数が低いことが報告されている。オリビン正極活物質を実用化するため、材料を高比表面積とすることでリチウムイオンの拡散性を改善するとともに炭素被覆により導電性が付与されている。ここで、炭素被覆は、導電性の付与とともに、結晶成長を抑制し、一次粒子をサブミクロンとした小粒径化による高比表面積化に寄与できる。 In general, a positive electrode active material having an olivine structure composed of Fe or Mn as a transition metal (LiMPO 4 , M is a transition metal containing Fe or Mn, hereinafter abbreviated as an olivine positive electrode material), oxygen and phosphorus in the crystal structure. The bond is strong and oxygen is not easily released from the crystal structure during overcharge, which is highly safe. However, it has been reported that the olivine positive electrode active material has low electronic conductivity and a low lithium ion diffusion coefficient into the positive electrode active material. In order to put the olivine positive electrode active material into practical use, the material has a high specific surface area to improve the diffusibility of lithium ions, and the carbon coating provides conductivity. Here, the carbon coating can contribute to the increase in specific surface area by imparting conductivity, suppressing crystal growth, and reducing the primary particle size to a submicron size.

以上のオリビン正極活物質は体積エネルギー密度向上で以下の課題がある。例えば、オリビンFeの場合、真密度が3.6g/ccで、層状LiNiMnCoO2系の5.1g/ccよりも嵩高く、オリビン正極活物質は高体積密度化が困難な材料である。さらに、炭素被覆されたオリビン正極活物質ではさらに密度が低下する。 The above olivine positive electrode active materials have the following problems in improving the volume energy density. For example, in the case of olivine Fe, the true density is 3.6 g / cc, which is higher than 5.1 g / cc of the layered LiNiMnCoO 2 system, and the olivine positive electrode active material is a material that is difficult to increase in volume density. Further, the density is further reduced in the carbon-coated olivine positive electrode active material.

また、オリビン正極活物質は高比表面積、かつ、微細一次粒子で構成されるため、以下のように電極作製が難しい正極活物質である。微細一次粒子で構成される正極活物質の場合、高比表面積の活物質粒子間を接合するため、比表面積当りで必要とされるバインダ量が増大するが、これにより正極中の活物質含有率が低下して正極の体積エネルギー密度が低下する。このため、高結着性バインダによる正極部材間の接合が求められている。また、オリビン正極活物質は表面を炭素で被覆されているため、表面エネルギーが高く、電極作製に用いるスラリー中で凝集を引き起こしやすい。以上のように、オリビン正極活物質を用いた正極の高エネルギー密度化では、高結着性を有し、かつ、スラリー中で凝集を引き起こさないバインダが望ましい。   Moreover, since an olivine positive electrode active material is comprised with a high specific surface area and a fine primary particle, it is a positive electrode active material with difficult electrode preparation as follows. In the case of a positive electrode active material composed of fine primary particles, the amount of binder required per specific surface area increases because active material particles having a high specific surface area are joined together. Decreases, and the volumetric energy density of the positive electrode decreases. For this reason, joining between the positive electrode members by a high binding binder is required. Further, since the surface of the olivine positive electrode active material is coated with carbon, the surface energy is high, and aggregation is likely to occur in the slurry used for electrode preparation. As described above, in order to increase the energy density of the positive electrode using the olivine positive electrode active material, it is desirable to use a binder that has high binding properties and does not cause aggregation in the slurry.

正極活物質の高含有率化に関して特許文献1では以下に開示されている。正極形成用塗工液における、活物質粒子の分散状態を改良し、長時間の保存による活物質粒子の凝集及び沈殿を防止するとともに、活物質の高含有率化を行うことが開示されている。ここでは、平均粒径1−20μmの大粒径正極活物質と平均粒径5−100nmの小粒径正極活物質を混合した後、導電材として天然黒鉛,人造黒鉛などのグラファイト類,カーボンブラック類及び導電性繊維状炭素を1種或いは必要に応じて2種以上組み合わせて混合し、更に、バインダとしてフッ素樹脂,アラミド樹脂,ポリアミドを1種或いは必要に応じて2種以上組み合わせた塗工液を用い、活物質含有率を80%以上、好ましくは80−90%とした正極について記載されている。ここで、繊維状炭素としては気相成長繊維状炭素,シングルウォール或いはマルチウォールカーボンナノチューブ(以下、SWCNT及びMWCNTと略す)が挙げられる。特許文献1では小粒径及び大粒径正極活物質の混合で高含有率正極を構成するものであり、オリビン正極活物質のほとんどサブミクロン一次粒子のみで構成される正極に関する発明と異なる。すなわち、特許文献1では、大粒径正極活物質を充填した空隙に小粒径正極活物質を充填して正極活物質含有率を向上させるものである。   Patent Document 1 discloses the following regarding increasing the content of the positive electrode active material. It is disclosed to improve the dispersion state of active material particles in the positive electrode forming coating liquid, prevent aggregation and precipitation of active material particles due to long-term storage, and increase the active material content. . Here, after mixing a large particle size positive electrode active material having an average particle size of 1-20 μm and a small particle size positive electrode active material having an average particle size of 5-100 nm, graphite such as natural graphite and artificial graphite, carbon black as a conductive material Coating liquid in which one kind or two or more kinds of conductive fibrous carbon are mixed in combination, and further, a fluorine resin, an aramid resin, or a polyamide is used as a binder, or two or more kinds are combined as necessary. And a positive electrode with an active material content of 80% or more, preferably 80-90%. Here, examples of the fibrous carbon include vapor grown fibrous carbon, single wall or multi-wall carbon nanotubes (hereinafter abbreviated as SWCNT and MWCNT). In Patent Document 1, a high content positive electrode is formed by mixing a small particle size and a large particle size positive electrode active material, which is different from the invention relating to a positive electrode composed of almost only submicron primary particles of an olivine positive electrode active material. That is, in Patent Document 1, the voids filled with the large particle size positive electrode active material are filled with the small particle size positive electrode active material to improve the positive electrode active material content.

特開2009−146788号公報JP 2009-146788 A

本発明の目的は、高容量化を達成するリチウム二次電池用正極、及びこれを用いたリチウムイオン二次電池を提供することにある。   The objective of this invention is providing the positive electrode for lithium secondary batteries which achieves high capacity | capacitance, and a lithium ion secondary battery using the same.

本発明の概要は以下の通りである。   The outline of the present invention is as follows.

(1)化学式LiaxPO4(0<a≦1.2、0.9≦x≦1.1、MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物の正極活物質と、導電材及びバインダとを少なくとも含む非水系リチウムイオン二次電池用正極において、該正極における該正極活物質の含有率が重量百分率で91%以上93%以下、該正極活物質の比表面積が10−30m2/gであり、かつ、該導電材が繊維状炭素を含有し、該バインダはポリフッ化ビニリデン及びポリアミドの混合体であり、かつ、該正極における含有率が重量百分率で3%以上6%以下であり、ポリフッ化ビニリデン及びポリアミドの混合体中のポリアミドの重量百分率が38%以上70%以下であり、該正極の密度が1.9g/cc以上2.2g/cc以下であることを特徴とする非水系リチウムイオン二次電池用正極。 (1) It has an olivine structure represented by the chemical formula Li a M x PO 4 (0 <a ≦ 1.2, 0.9 ≦ x ≦ 1.1, where M is a transition metal containing either Fe or Mn). In a positive electrode for a non-aqueous lithium ion secondary battery including at least a positive electrode active material of a composite oxide, a conductive material, and a binder, the content of the positive electrode active material in the positive electrode is 91% to 93% by weight, The specific surface area of the positive electrode active material is 10-30 m 2 / g, the conductive material contains fibrous carbon, the binder is a mixture of polyvinylidene fluoride and polyamide, and the content in the positive electrode Is 3% to 6% by weight, the weight percentage of polyamide in the mixture of polyvinylidene fluoride and polyamide is 38% to 70%, and the density of the positive electrode is 1.9 g / cc to 2. 2g / cc or less Non-aqueous lithium ion secondary battery positive electrode characterized by and.

(2)(1)に記載の正極に用いる全導電材に占める繊維状炭素の含有率が重量百分率で20%以上60%以下である正極材料を用いることを特徴とする非水系リチウムイオン二次電池用正極。   (2) A non-aqueous lithium ion secondary characterized by using a positive electrode material in which the content of fibrous carbon in the total conductive material used for the positive electrode according to (1) is 20% or more and 60% or less by weight. Battery positive electrode.

(3)(1)(2)に記載の非水系リチウムイオン二次電池用正極を用いたリチウムイオン二次電池において、エネルギー密度が100Wh/Kg以上150Wh/Kg以下であることを特徴とする非水系リチウムイオン二次電池。   (3) In the lithium ion secondary battery using the positive electrode for a non-aqueous lithium ion secondary battery according to (1) (2), the energy density is 100 Wh / Kg or more and 150 Wh / Kg or less. Water-based lithium ion secondary battery.

(4)(1)(2)に記載の非水系リチウムイオン二次電池用正極を用いたラミネート型リチウムイオン二次電池において、充放電時のレートを3Cとしたサイクル試験を50回行った後、電池の膨れが初期厚みの10%以下であることを特徴とするラミネート型リチウムイオン二次電池。   (4) In a laminate type lithium ion secondary battery using the positive electrode for a non-aqueous lithium ion secondary battery described in (1) and (2), after performing a cycle test 50 times with a charge / discharge rate of 3C A laminate-type lithium ion secondary battery, wherein the swelling of the battery is 10% or less of the initial thickness.

(5)(3)に記載の非水系リチウムイオン二次電池、または/及び(4)に記載のラミネート型リチウムイオン二次電池を電気的に複数接続したことを特徴とする電池モジュール。   (5) A battery module comprising a plurality of non-aqueous lithium ion secondary batteries according to (3) and / or a laminate type lithium ion secondary battery according to (4) electrically connected.

本発明によれば、プラグインハイブリッド車、または電気自動車などの高容量・高安全が必要とされる機器応用に適したリチウム二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium secondary battery suitable for the apparatus application which needs high capacity | capacitance and high safety | security, such as a plug-in hybrid vehicle or an electric vehicle, can be provided.

高体積エネルギー密度正極で使用されるバインダ中の高結着性バインダ重量百分率と放電容量の関係を示す。The relationship between the high binding binder weight percentage in the binder used with a high volume energy density positive electrode and discharge capacity is shown. 本発明の円筒型リチウム二次電池の切り欠き断面図である。It is a notch sectional view of the cylindrical lithium secondary battery of the present invention.

本発明者らは、前記課題を解決するため鋭意研究を行った結果、正極を構成する正極活物質,導電材及びバインダの部材及び配合組成を検討することにより、正極内での正極活物質含有率が向上し、かつ、正極の密度が向上し、単位体積当たりのエネルギー密度が向上することを見出した。   As a result of intensive studies to solve the above problems, the present inventors have studied the positive electrode active material, the conductive material, and the binder material and the composition of the positive electrode constituting the positive electrode, thereby including the positive electrode active material in the positive electrode. It has been found that the rate is improved, the density of the positive electrode is improved, and the energy density per unit volume is improved.

すなわち、本発明は、化学式LiaxPO4(0<a≦1.2、0.9≦x≦1.1、MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物の正極活物質、導電材及びバインダで構成される正極において、比表面積が10〜30m2/gの範囲の正極活物質,カーボンブラックと繊維状炭素を混合した導電材に占める繊維状炭素の重量百分率が30〜60の導電材,ポリフッ化ビニリデン(以下、PVDFと略す)及びポリアミドの混合体に占めるポリアミドの重量百分率が38〜70のバインダを用いて正極を構成し、この正極を用いてリチウム二次電池とすることで上記課題を解決することができることを見出した。 That is, the present invention relates to an olivine represented by the chemical formula Li a M x PO 4 (0 <a ≦ 1.2, 0.9 ≦ x ≦ 1.1, where M is a transition metal containing either Fe or Mn). In a positive electrode composed of a composite oxide positive electrode active material having a structure, a conductive material and a binder, a positive electrode active material having a specific surface area in the range of 10 to 30 m 2 / g, a conductive material in which carbon black and fibrous carbon are mixed. A positive electrode is formed using a binder in which the weight percentage of the fibrous carbon accounts for 30 to 60% of the conductive material, polyvinylidene fluoride (hereinafter abbreviated as PVDF), and the weight percentage of polyamide in the mixture of the polyamide is 38 to 70, It discovered that the said subject could be solved by setting it as a lithium secondary battery using this positive electrode.

さらに本発明は、上記正極で正極活物質の含有量が重量百分率で91以上93以下、導電材の含有率が重量百分率で5以下であり、正極密度が1.9g/cc以上2.2g/cc以下になるように正極を構成し、この正極を用いてリチウム二次電池とすることで上記課題を解決することができることを見出した。   Further, according to the present invention, in the positive electrode, the content of the positive electrode active material is 91 to 93 by weight percentage, the content of the conductive material is 5 or less by weight, and the positive electrode density is 1.9 g / cc to 2.2 g / wt. It has been found that the above problem can be solved by forming a positive electrode so as to be cc or less and using this positive electrode as a lithium secondary battery.

電池の高容量化では正極の厚膜化,正極中の正極活物質の高含率化及び正極の高密度化が必要で、微細一次粒子で構成されるオリビンFe材を用いて上記正極仕様を達成するためには高結着性のバインダが必要で、PVDFの数倍の結着性を有していることが知られているポリアミドが望ましい。また、ポリアミドは耐熱性を有し、この特性は以下のように高耐熱性電極の形成に有利である。   In order to increase the capacity of the battery, it is necessary to increase the thickness of the positive electrode, to increase the content of the positive electrode active material in the positive electrode, and to increase the density of the positive electrode. In order to achieve this, a binder with a high binding property is required, and a polyamide known to have a binding property several times that of PVDF is desirable. Polyamide has heat resistance, and this characteristic is advantageous for forming a high heat-resistant electrode as follows.

前述したように、オリビン正極材は電子伝導性が低く電極抵抗が高いため、高率放電を行った場合に電極が発熱する。このため、本発明で用いる結晶化温度が300℃を超えるポリアミドが望ましい。また、オリビン正極材は、前述したように、ほとんどサブミクロン一次粒子で構成され、さらに、表面に炭素が被覆されている。このため、正極活物質及び正極で水分を吸着しやすい。電極作製プロセスで吸着した水分を除去するために100℃以上の真空熱処理が必要である。オリビンここで、PVDFは融点が134℃以上であり、バインダとしてPVDFのみを用いた電極では、ほぼ完全に正極から水分を取り除くため130℃以上まで加熱することができない。一方、ポリアミドの融点は187℃であり、140℃の熱処理で完全に水分を除去することができる。水分を除去できない正極をリチウム二次電池に用いた場合、電解液中のLiPF6と水分の反応によりHFが発生し、電池外装の膨張に至る。以上の理由から前述した発明の正極構成に至った。 As described above, since the olivine positive electrode material has low electron conductivity and high electrode resistance, the electrode generates heat when high rate discharge is performed. For this reason, the polyamide whose crystallization temperature used by this invention exceeds 300 degreeC is desirable. Further, as described above, the olivine positive electrode material is almost composed of submicron primary particles, and the surface thereof is covered with carbon. For this reason, it is easy to adsorb | suck a water | moisture content with a positive electrode active material and a positive electrode. Vacuum heat treatment at 100 ° C. or higher is necessary to remove moisture adsorbed in the electrode manufacturing process. Here, PVDF has a melting point of 134 ° C. or higher, and an electrode using only PVDF as a binder can hardly be heated to 130 ° C. or higher because moisture is almost completely removed from the positive electrode. On the other hand, the melting point of polyamide is 187 ° C., and moisture can be completely removed by heat treatment at 140 ° C. When a positive electrode that cannot remove moisture is used in a lithium secondary battery, HF is generated by the reaction of LiPF 6 in the electrolyte and moisture, leading to expansion of the battery exterior. For the above reasons, the positive electrode configuration of the invention described above has been reached.

上記のように、ポリアミドは正極形成で有望な特性を有しているが、電極の柔軟性が低下する場合がある。このため、電極加工においてマイクロクラックが入らず、放電特性を維持できる組成が重要となる。   As described above, polyamide has promising properties for forming a positive electrode, but the flexibility of the electrode may decrease. For this reason, the composition which does not enter a micro crack in electrode processing and can maintain discharge characteristics becomes important.

以上のように、高安全の大型大容量リチウム二次電池を得ることを目的とし、オリビン正極材の正極構成を本発明は規定したものである。   As described above, the present invention defines the positive electrode structure of the olivine positive electrode material for the purpose of obtaining a high-safety large-capacity lithium secondary battery.

次にリチウム二次電池の構成部材について詳述する。   Next, constituent members of the lithium secondary battery will be described in detail.

〔リチウム二次電池用正極材料〕
本発明のリチウム二次電池用正極は以下の特徴を有するオリビン正極材で構成されている。即ち、オリビン正極材の比表面積は10−30m2/gである。ここで、比表面積が10m2/g未満では、正極材とリチウムイオンとの反応面積が少ないために電極抵抗が上昇し、比表面積が30m2/gを超える場合には、正極密度の向上と正極内の導電ネットワーク形成を同時に達成することができない。特に、オリビン正極材の場合、電子伝導性が低いため、導電ネットワークが形成できなければ高抵抗となり所望の放電容量を得ることができない。上記オリビン正極材の組成は、化学式LiaxPO4(0<a≦1.2、0.9≦x≦1.1、MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物である。
[Positive electrode material for lithium secondary batteries]
The positive electrode for a lithium secondary battery of the present invention is composed of an olivine positive electrode material having the following characteristics. That is, the specific surface area of the olivine positive electrode material is 10-30 m < 2 > / g. Here, when the specific surface area is less than 10 m 2 / g, the electrode resistance increases because the reaction area between the positive electrode material and lithium ions is small, and when the specific surface area exceeds 30 m 2 / g, the positive electrode density is improved. Conductive network formation in the positive electrode cannot be achieved simultaneously. In particular, in the case of the olivine positive electrode material, since the electron conductivity is low, if a conductive network cannot be formed, the resistance becomes high and a desired discharge capacity cannot be obtained. The composition of the olivine positive electrode material is represented by the chemical formula Li a M x PO 4 (0 <a ≦ 1.2, 0.9 ≦ x ≦ 1.1, where M is a transition metal containing either Fe or Mn). It is a complex oxide having an olivine structure.

次に、本発明のリチウム二次電池用正極のバインダは以下の特徴を有する。即ち、バインダにおいてPVDF及びポリアミドの混合体中のポリアミド重量百分率が38−70である。一般に、PVDFとポリアミドは非相溶性であるが、混合方法により2種類の高分子が互いに連続相である共連続構造を形成する場合がある。このため、本発明ではPVDFとポリアミドを上記組成範囲及び140〜190℃の範囲で加熱混合し、正極に用いたものである。PVDF及びポリアミドの混合体中のポリアミド重量百分率が38−70であれば、正極中に耐熱バインダであるポリアミドの含有量が高いため結着性の高いバインダが得られ、オリビン正極材の含有量が91以上93以下の重量百分率で、かつ、電極密度が1.9g/cc以上2.2g/cc以下の正極において放電容量向上が認められた。また、この正極は耐熱性が優れるため、150℃、2時間の真空熱処理を行うことが可能となり、後述するカールフィッシャー法で電極中水分を測定した結果、120ppm以下であった。一方、ポリアミド重量百分率が38未満であれば、結着性が不足し、上記仕様の正極で放電容量が低下した。また、水分除去のための条件は120℃であり、カールフィッシャー法による水分量は240ppmであった。   Next, the binder of the positive electrode for lithium secondary batteries of the present invention has the following characteristics. That is, the weight percentage of polyamide in the mixture of PVDF and polyamide in the binder is 38-70. In general, PVDF and polyamide are incompatible, but there are cases where two types of polymers form a co-continuous structure in which they are continuous phases by a mixing method. Therefore, in the present invention, PVDF and polyamide are heated and mixed in the above composition range and in the range of 140 to 190 ° C. and used for the positive electrode. If the weight percentage of the polyamide in the PVDF and polyamide mixture is 38-70, a high binder content is obtained because the polyamide, which is a heat-resistant binder, is high in the positive electrode, and the content of the olivine positive electrode material is high. An improvement in discharge capacity was observed in the positive electrode having a weight percentage of 91 to 93 and an electrode density of 1.9 g / cc to 2.2 g / cc. Moreover, since this positive electrode was excellent in heat resistance, it was possible to perform a vacuum heat treatment at 150 ° C. for 2 hours. As a result of measuring moisture in the electrode by the Karl Fischer method described later, it was 120 ppm or less. On the other hand, when the polyamide weight percentage was less than 38, the binding property was insufficient, and the discharge capacity was reduced in the positive electrode having the above specifications. The condition for removing water was 120 ° C., and the water content by the Karl Fischer method was 240 ppm.

以下に、オリビン正極材の物性評価手法として、比表面積評価法及び正極の含有水分量を測定するカールフィッシャー法について説明する。   The specific surface area evaluation method and the Karl Fischer method for measuring the water content of the positive electrode will be described below as physical property evaluation methods for the olivine positive electrode material.

正極材の比表面積評価法を以下に示す。予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中、300℃で30分間乾燥させる。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出する。 The method for evaluating the specific surface area of the positive electrode material is shown below. The sample cell is previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell is attached to the measurement unit, and the specific surface area is calculated by the BET method after counting signals at the time of desorption with the He / N 2 mixed gas.

正極の含有水分量測定方法を以下に示す。窒素ガスをフローした150℃の加熱炉に測定サンプルを入れ1分間保持する。そして、フローした窒素ガスをカールフィッシャー水分計の測定セルに導入し、水分を測定する。ここで、滴定終点までの積分値を含有水分量とする。   The method for measuring the water content of the positive electrode is shown below. A measurement sample is put in a heating furnace at 150 ° C. in which nitrogen gas is flowed and held for 1 minute. Then, the flowd nitrogen gas is introduced into a measurement cell of a Karl Fischer moisture meter, and moisture is measured. Here, the integrated value up to the titration end point is taken as the moisture content.

〔オリビン正極材料の製造方法〕
微細に粉砕したシュウ酸鉄二水和物,リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことでオリビン正極材を得ることができる。
[Manufacturing method of olivine cathode material]
Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed at a molar ratio of 2: 2: 1.0 and calcined in a nitrogen atmosphere at 300 ° C. Thus, a precursor was obtained. Thereafter, the precursor and polyvinyl alcohol are mixed and heat-treated for 8 hours in a nitrogen atmosphere at 700 ° C., whereby an olivine positive electrode material can be obtained.

〔リチウムイオン二次電池の製造方法〕
本発明のリチウムイオン二次電池は、円筒型,積層型,コイン型,カード型等のいずれでもよく、特に限定されないが、例として、以下にラミネート型リチウムイオン二次電池の製造方法を説明する。
[Production method of lithium ion secondary battery]
The lithium ion secondary battery of the present invention may be any of a cylindrical type, a laminated type, a coin type, a card type, and the like, and is not particularly limited. As an example, a method for manufacturing a laminated type lithium ion secondary battery will be described below. .

(1)正極の作製方法
上述のようにして作製したオリビン正極材に、アセチレンブラック及び繊維状炭素、等の導電材を添加して混合する。本発明で用いるオリビン正極材は高比表面積で電極作製時に用いる有機溶媒の吸液性が高い。このため、予め有機溶媒であるN−メチル−2−ピロリジノン(以下、NMPと略す)を正極活物質と混合して正極活物質にNMPを吸液させた後、正極活物質に導電材を分散させる。この後、この混合物にNMPなどの溶媒に溶解させたバインダを加えて混練し、正極スラリーを得る。ここでバインダとして、PVDFとポリアミド140〜190℃の範囲で加熱混合した混合バインダを用いる。次に、このスラリーをアルミニウム金属箔上に塗布した後、乾燥して正極板を作製する。
(1) Method for Producing Positive Electrode A conductive material such as acetylene black and fibrous carbon is added to and mixed with the olivine positive electrode material produced as described above. The olivine positive electrode material used in the present invention has a high specific surface area and a high liquid absorption property of an organic solvent used for electrode preparation. For this reason, N-methyl-2-pyrrolidinone (hereinafter abbreviated as NMP), which is an organic solvent, is mixed with the positive electrode active material in advance to absorb NMP in the positive electrode active material, and then the conductive material is dispersed in the positive electrode active material. Let Thereafter, a binder dissolved in a solvent such as NMP is added to the mixture and kneaded to obtain a positive electrode slurry. Here, a mixed binder obtained by heating and mixing PVDF and polyamide in the range of 140 to 190 ° C. is used as the binder. Next, after apply | coating this slurry on aluminum metal foil, it dries and produces a positive electrode plate.

(2)負極の作製方法
負極活物質である非晶質炭素材に、アセチレンブラック及び炭素繊維などの導電材を加え、混合する。これに結着剤としてNMPに溶解したPVDF或いはゴム系バインダー(SBR等)を加えた後に混練し、負極スラリーを得る。次に、このスラリーを銅箔上に塗布した後、乾燥して正極板を作製する。
(2) Method for Fabricating Negative Electrode A conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material that is a negative electrode active material. To this, PVDF or a rubber binder (SBR or the like) dissolved in NMP is added as a binder and then kneaded to obtain a negative electrode slurry. Next, after apply | coating this slurry on copper foil, it dries and produces a positive electrode plate.

(3)電池の形成方法
上記正極及び負極板は、電極の両面にスラリーを塗布した後に乾燥する。さらに、圧延加工により緻密化し、所望の形状に裁断して電極を作製する。次に、これらの電極に電流を流すためのリード片を形成する。これら正極及び負極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。次に、リード片と電池缶を接続した後、非水系電解液を注入し、最後に、電池缶を封缶してリチウムイオン二次電池を得る。
(3) Battery Formation Method The positive electrode and the negative electrode plate are dried after the slurry is applied to both surfaces of the electrode. Further, it is densified by rolling and cut into a desired shape to produce an electrode. Next, lead pieces for passing a current through these electrodes are formed. A porous insulating material separator is sandwiched between the positive electrode and the negative electrode, wound, and then inserted into a battery can molded of stainless steel or aluminum. Next, after connecting the lead piece and the battery can, a non-aqueous electrolyte is injected, and finally the battery can is sealed to obtain a lithium ion secondary battery.

また、ラミネート型電池では、正極及び負極を幅83mm、高さ115mmに切りだした。その際、電流端子と接合するタブ(正極,負極活物質が塗布されていない未塗布部の集電体)を幅15mm、高さ4mm残した。正極のタブ部分にはアルミ製の電流端子を、負極タブ部分にはニッケル製電流端子をそれぞれ接合した。セパレータは電極より数ミリ大きくカットした。これらを積層した後、電解液を注入した後、アルミ箔の両面をポリプロピレンなどで被覆したアルミラミネートシートを外装材とし、これを熱溶着して封止した。   In the laminate type battery, the positive electrode and the negative electrode were cut to a width of 83 mm and a height of 115 mm. At that time, the tab (current collector in the uncoated portion where the positive electrode and the negative electrode active material were not applied) to be joined to the current terminal was left 15 mm wide and 4 mm high. An aluminum current terminal was joined to the positive tab portion, and a nickel current terminal was joined to the negative tab portion. The separator was cut several millimeters larger than the electrode. After laminating them, the electrolyte solution was injected, and then an aluminum laminate sheet in which both sides of the aluminum foil were covered with polypropylene or the like was used as an exterior material, which was thermally welded and sealed.

このラミネート型電池を0.3Cのレートで充電放電を3回繰り返して初期化した後、2Cの充放電レートでサイクル試験を行い、この後のラミネート型電池厚みの膨張を評価した。初期の厚さをサイクル後の厚さで除した変化率を「ラミネートセル厚さ膨張率」と定義した。   The laminate type battery was initialized by repeating charge / discharge three times at a rate of 0.3C, and then subjected to a cycle test at a charge / discharge rate of 2C to evaluate the subsequent expansion of the thickness of the laminate type battery. The rate of change obtained by dividing the initial thickness by the thickness after the cycle was defined as “laminate cell thickness expansion coefficient”.

(4)電池のモジュール化
上記リチウムイオン二次電池を使用する形態として、複数個の電池を直列に接続したリチウムイオン電池モジュールが挙げられる。本発明のリチウムイオン二次電池を用いた電池モジュールは、高容量化することができる。
(4) Modularization of a battery As a form using the said lithium ion secondary battery, the lithium ion battery module which connected the some battery in series is mentioned. The battery module using the lithium ion secondary battery of the present invention can be increased in capacity.

(実施例)
以下、本発明を実施例により具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。
(Example)
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but these examples do not limit the scope of the present invention.

〔実施例1〕
<オリビン正極材の作製>
ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物,リン酸二水素アンモニウム及び炭酸リチウムをモル比で、2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆LiFePO正極材のオリビン正極材(1)を得た。ここで、被覆した炭素量は4wt%であった。
[Example 1]
<Production of olivine cathode material>
Iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate, which were finely pulverized for 3 hours in a ball mill, were mixed at a molar ratio of 2: 2: 1.0. The precursor was obtained by calcination in an atmosphere. Thereafter, the precursor and polyvinyl alcohol were mixed and heat-treated for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain an olivine positive electrode material (1) as a carbon-coated LiFePO 4 positive electrode material. Here, the amount of carbon covered was 4 wt%.

<比表面積測定方法>
上記オリビン正極材(1)を、予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中、300℃で30分間乾燥させた。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出した。その結果、二次粒子の比表面積は30m2/gであった。
<Specific surface area measurement method>
The olivine positive electrode material (1) was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and the specific surface area was calculated by the BET method after counting signals at the time of desorption with the He / N 2 mixed gas. As a result, the specific surface area of the secondary particles was 30 m 2 / g.

<正極中水分測定方法>
窒素ガスをフローした150℃の加熱炉に測定サンプルを入れ1分間保持する。そして、フローした窒素ガスをカールフィッシャー水分計の測定セルに導入し、水分を測定する。ここで、滴定終点までの積分値を含有水分量とする。
<Method of measuring moisture in positive electrode>
A measurement sample is put in a heating furnace at 150 ° C. in which nitrogen gas is flowed and held for 1 minute. Then, the flowd nitrogen gas is introduced into a measurement cell of a Karl Fischer moisture meter, and moisture is measured. Here, the integrated value up to the titration end point is taken as the moisture content.

<混合バインダの作製方法>
NMPに溶解した8重量百分率のPVDFとNMPに溶解した5重量百分率のポリアミド溶液でポリアミドの固形分重量が全バインダ固形分重量の52重量百分率となるように秤量した。この混合体を160℃で加熱しながら高速ミキサーを用い、10000回転で撹拌し、混合バインダとした。
<Production method of mixed binder>
Weighed 8 wt% PVDF dissolved in NMP and 5 wt% polyamide solution dissolved in NMP so that the solids weight of the polyamide would be 52 wt% of the total binder solids weight. While this mixture was heated at 160 ° C., the mixture was stirred at 10,000 revolutions using a high speed mixer to obtain a mixing binder.

<正極の作製>
オリビン正極材(1)を用い、正極板を以下の手順で作製した。あらかじめ上記混合バインダを溶媒のNMPに溶解した溶液と、オリビン正極材(1)と平均粒子径35nmの炭素系導電材であるアセチレンブラックと気相成長繊維状炭素(直径:150nm、繊維長:10−20μm)を混合して正極合剤スラリーを作製した。このとき、2種の導電材は重量比で等量とし、オリビン正極材(1),炭素系導電材及びバインダを重量百分率比で表してそれぞれ、91:4:5の割合となるように混合した。このスラリーを、厚み20μmのアルミシート上に均一に塗布した後、100℃で乾燥し、プレスにて約1.5ton/cm2で加圧し、膜厚約60μmの塗膜を形成し、電極密度2.1g/cm3の正極板7を得た。次に、この電極の水分を除去するため、真空熱処理を140℃、2時間行った。
<Preparation of positive electrode>
Using the olivine positive electrode material (1), a positive electrode plate was prepared by the following procedure. A solution prepared by dissolving the above mixed binder in NMP as a solvent in advance, an olivine cathode material (1), acetylene black as a carbon-based conductive material having an average particle diameter of 35 nm, and vapor-grown fibrous carbon (diameter: 150 nm, fiber length: 10 −20 μm) was mixed to prepare a positive electrode mixture slurry. At this time, the two kinds of conductive materials are equal in weight ratio, and the olivine positive electrode material (1), the carbon-based conductive material, and the binder are expressed in weight percentage ratios, and are mixed in a ratio of 91: 4: 5, respectively. did. This slurry is uniformly applied onto an aluminum sheet having a thickness of 20 μm, dried at 100 ° C., and pressed with a press at about 1.5 ton / cm 2 to form a coating film with a thickness of about 60 μm. A positive electrode plate 7 of 2.1 g / cm 3 was obtained. Next, in order to remove moisture from the electrode, vacuum heat treatment was performed at 140 ° C. for 2 hours.

<正極の評価>
正極板7をφ15に打ち抜き、対極及び参照極を金属リチウムとし、試験用電池を作製した。このとき、電解液には1.0モルのLiPF6を電解質としたエチルカーボネートとジメチルカーボネートの混合溶媒を用いた。
<Evaluation of positive electrode>
The positive electrode plate 7 was punched into φ15, and the counter electrode and the reference electrode were made of metallic lithium to produce a test battery. At this time, a mixed solvent of ethyl carbonate and dimethyl carbonate using 1.0 mol of LiPF 6 as an electrolyte was used as the electrolytic solution.

この試験用電池を0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3C相当で上限電圧3.6V、5時間の定電流定電圧充電を行った後、0.3C相当で下限電圧2.0Vまでの定電流放電を実施し、放電容量を求めた。次に、電極の体積エネルギー密度を算出するため、この電極の合剤重量(オリビン正極材,導電材及びバインダ重量の合計)で放電容量を除した後、電極密度2.1g/cm3と正極活物質含有量91重量百分率の積をとり、体積エネルギー密度(mAh/cc)とした。この値は、単位体積当たりのエネルギーを表わし、電池の高充填化の指標となる。この実施例1における電極評価の結果として、表1にオリビンFe正極材の比表面積,電極密度,正極活物質含有量,バインダ含有量,混合バインダ中のポリアミド含有量及び電極体積エネルギー密度を示す。 This test battery was initialized by repeating charging and discharging at 0.3 C to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V three times. Further, after performing constant current and constant voltage charging at an upper limit voltage of 3.6 V for 5 hours at an equivalent of 0.3 C, a constant current discharge was performed up to a lower limit voltage of 2.0 V at an equivalent of 0.3 C to obtain the discharge capacity. . Next, in order to calculate the volumetric energy density of the electrode, the discharge capacity is divided by the mixture weight of the electrode (the total weight of the olivine positive electrode material, conductive material and binder), and then the electrode density 2.1 g / cm 3 and the positive electrode The product of the active material content of 91% by weight was taken as the volume energy density (mAh / cc). This value represents the energy per unit volume and serves as an index for increasing the battery charge. As a result of the electrode evaluation in Example 1, Table 1 shows the specific surface area, electrode density, positive electrode active material content, binder content, polyamide content in the mixed binder, and electrode volume energy density of the olivine Fe positive electrode material.

<正極の水分含有量評価>
Φ15の電極を前述の水分含有量評価法で測定した結果を表1に示す。測定の結果、実施例1では115ppmであった。
<Evaluation of water content of positive electrode>
Table 1 shows the results obtained by measuring the Φ15 electrode by the water content evaluation method described above. As a result of the measurement, it was 115 ppm in Example 1.

<ラミネート型電池による電池膨張評価>
ラミネート型電池では、正極及び負極を幅83mm、高さ115mmに切りだした。その際、電流端子と接合するタブ(正極,負極活物質が塗布されていない未塗布部の集電体)を幅15mm、高さ4mm残した。正極のタブ部分にはアルミ製の電流端子を、負極タブ部分にはニッケル製電流端子をそれぞれ接合した。セパレータは電極より数ミリ大きくカットした。これらを積層した後、電解液を注入した後、アルミ箔の両面をポリプロピレンなどで被覆したアルミラミネートシートを外装材とし、これを熱溶着して封止した。
<Battery expansion evaluation with laminate type battery>
In the laminate type battery, the positive electrode and the negative electrode were cut to a width of 83 mm and a height of 115 mm. At that time, the tab (current collector in the uncoated portion where the positive electrode and the negative electrode active material were not applied) to be joined to the current terminal was left 15 mm wide and 4 mm high. An aluminum current terminal was joined to the positive tab portion, and a nickel current terminal was joined to the negative tab portion. The separator was cut several millimeters larger than the electrode. After laminating them, the electrolyte solution was injected, and then an aluminum laminate sheet in which both sides of the aluminum foil were covered with polypropylene or the like was used as an exterior material, which was thermally welded and sealed.

このラミネート型電池を0.3Cのレートで充電放電を3回繰り返して初期化した後、2Cの充放電レートでサイクル試験を行い、この後のラミネート型電池厚みの膨張を評価した結果を表1に示す。その結果、実施例1においてはラミネートセル厚さ膨張率は3%であった。   The laminate type battery was initialized by repeating charge / discharge three times at a rate of 0.3 C, then subjected to a cycle test at a charge and discharge rate of 2 C, and the results of evaluating the subsequent expansion of the thickness of the laminate type battery are shown in Table 1. Shown in As a result, in Example 1, the laminate cell thickness expansion coefficient was 3%.

Figure 2012033438
Figure 2012033438

<円筒型電池評価>
円筒型電池を作製するため、オリビン正極材(1)を用いた正極板7を塗布幅5.4cm、塗布長さ60cmとなるよう切断し、電流を取り出すためにアルミニウム箔製のリード片を溶接し正極板を作製した。
<Cylindrical battery evaluation>
In order to produce a cylindrical battery, the positive electrode plate 7 using the olivine positive electrode material (1) was cut to a coating width of 5.4 cm and a coating length of 60 cm, and an aluminum foil lead piece was welded to take out the current. A positive electrode plate was produced.

次に、正極板と組み合わせて円筒型電池を作製するため、負極板を作製した。負極活物質の黒鉛炭素材を結着剤のNMPに溶解して混合した負極合材スラリーを作製した。このとき、黒鉛炭素材と結着剤の乾燥重量比が92:8となるようにした。このスラリーを10μmの圧延銅箔に均一に塗布した。その後、ロールプレス機により圧縮整形し、塗布幅5.6cm、塗布長さ64cmとなるよう切断し、銅箔製のリード片を溶接して負極板を作製した。   Next, in order to produce a cylindrical battery in combination with the positive electrode plate, a negative electrode plate was produced. A negative electrode mixture slurry was prepared by dissolving and mixing the graphite carbon material of the negative electrode active material in NMP of the binder. At this time, the dry weight ratio of the graphite carbon material and the binder was set to 92: 8. This slurry was uniformly applied to a 10 μm rolled copper foil. Then, it was compressed and shaped by a roll press machine, cut to a coating width of 5.6 cm and a coating length of 64 cm, and a copper foil lead piece was welded to prepare a negative electrode plate.

上述のようにして作製した正極板と負極板を用いて、図2に模式的に示す円筒型電池を以下の手順で作製した。始めに、正極板7と負極板8が直接接触しないように間にセパレータ9を配置して捲回して電極群を作製した。このとき、正極板リード片13と負極板リード片11とが電極群の互いに反対側の両端面に位置するようにした。さらに、正極板7と負極板8の配置で、正極の合材塗布部が負極の合材塗布部からはみ出すことがないようにした。また、ここで用いたセパレータ9は厚さ25μm、幅5.8cmの微多孔性ポリプロピレンフィルムとした。次に、電極群をSUS製の電池缶10に挿入し、負極板リード片11を缶底部に溶接し、正極電流端子を兼ねる密閉蓋部12に正極リード片13を溶接した。この電極群を配置した電池缶10に非水電解液(エチレンカーボネート(EC)、ジメチルカーボネート(DMC)の体積比で1:2の混合溶媒に1.0モル/リットルのLiPF6を溶解させたもの)を注入した後、パッキン15を取り付けた密閉蓋部12を電池缶10にかしめて密閉し、直径18mm、長さ65mmの円筒型電池とした。ここで、密閉蓋部12には電池内の圧力が上昇すると開裂して電池内部の圧力を逃がす開裂弁があり、密閉蓋部12と電極群の間に絶縁板14を配した。 A cylindrical battery schematically shown in FIG. 2 was produced by the following procedure using the positive electrode plate and the negative electrode plate produced as described above. First, a separator 9 was placed between the positive electrode plate 7 and the negative electrode plate 8 so that they were not in direct contact with each other, and wound to produce an electrode group. At this time, the positive electrode plate lead piece 13 and the negative electrode plate lead piece 11 were positioned on the opposite end surfaces of the electrode group. Further, the arrangement of the positive electrode plate 7 and the negative electrode plate 8 prevents the positive electrode mixture application portion from protruding from the negative electrode mixture application portion. The separator 9 used here was a microporous polypropylene film having a thickness of 25 μm and a width of 5.8 cm. Next, the electrode group was inserted into a battery can 10 made of SUS, the negative electrode plate lead piece 11 was welded to the bottom of the can, and the positive electrode lead piece 13 was welded to the sealing lid portion 12 also serving as a positive electrode current terminal. In a battery can 10 in which this electrode group is arranged, 1.0 mol / liter LiPF 6 was dissolved in a mixed solvent of 1: 2 by volume ratio of nonaqueous electrolyte (ethylene carbonate (EC) and dimethyl carbonate (DMC)). After that, the sealing lid portion 12 to which the packing 15 was attached was caulked and sealed to the battery can 10 to obtain a cylindrical battery having a diameter of 18 mm and a length of 65 mm. Here, the sealing lid portion 12 has a cleavage valve that cleaves when the pressure in the battery rises to release the pressure inside the battery, and an insulating plate 14 is disposed between the sealing lid portion 12 and the electrode group.

この小型円筒型電池を0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を行い、電池放電容量を測定した。電池容量は1.3Ahであった。   This small cylindrical battery was initialized by repeating charging and discharging at 0.3 C up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V three times. Further, charge and discharge were performed up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3 C, and the battery discharge capacity was measured. The battery capacity was 1.3 Ah.

以上のように、正極板7を用いた円筒型電池では電池を高出力させることができた。   As described above, the cylindrical battery using the positive electrode plate 7 was able to output the battery at a high output.

次に、この電池を直列に10本接続し、高出力化させた電池モジュールを得ることができた。   Next, 10 batteries were connected in series to obtain a battery module with high output.

〔実施例2〕
実施例1の<混合バインダの作製方法>において、ポリアミドの固形分重量が全バインダ固形分重量の38重量百分率となるように秤量した。バインダの混合方法,電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、267mAh/ccであった。これらの結果を表1の実施例2に示す。
[Example 2]
In <Method for producing mixed binder> in Example 1, the polyamide was weighed so that the solid content weight of the polyamide was 38% by weight of the total binder solid content weight. The binder mixing method, electrode preparation method, and battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 267 mAh / cc. These results are shown in Example 2 of Table 1.

〔実施例3〕
実施例1の<混合バインダの作製方法>において、ポリアミドの固形分重量が全バインダ固形分重量の70重量百分率となるように秤量した。バインダの混合方法,電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、267mAh/ccであった。これらの結果を表1の実施例3に示す。
Example 3
In <Method for producing mixed binder> in Example 1, the polyamide was weighed so that the solid content weight of the polyamide was 70% by weight of the total binder solid content weight. The binder mixing method, electrode preparation method, and battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 267 mAh / cc. These results are shown in Example 3 of Table 1.

〔比較例1〕
実施例1において、PVDFバインダのみを用いて電極を作製した。ここで、電極作製方法の真空熱処理で120℃、2時間の真空熱処理を行った以外は実施例1と同様である。電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、222mAh/ccであった。電極を観察した結果、剥離が認められた。また、実施例1と同様に正極含有水分量を評価した結果、300ppmであった。さらに、実施例1と同様にラミネートセル厚さ膨張率を評価した結果、13%で膨張した。これらの結果を表1の比較例1に示す。
[Comparative Example 1]
In Example 1, an electrode was produced using only a PVDF binder. Here, it is the same as that of Example 1 except that the vacuum heat treatment was performed at 120 ° C. for 2 hours by the vacuum heat treatment of the electrode manufacturing method. The battery evaluation method was performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 222 mAh / cc. As a result of observing the electrode, peeling was observed. Moreover, as a result of evaluating the positive electrode containing water content similarly to Example 1, it was 300 ppm. Furthermore, as a result of evaluating the laminate cell thickness expansion rate in the same manner as in Example 1, it expanded at 13%. These results are shown in Comparative Example 1 of Table 1.

〔比較例2〕
実施例1の<混合バインダの作製方法>において、ポリアミドの固形分重量が全バインダ固形分重量の21重量百分率となるように秤量した。バインダの混合方法は実施例1と同様に行った。ここで、電極作製方法の真空熱処理で120℃、2時間の真空熱処理を行った以外は実施例1と同様である。電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、231mAh/ccであった。電極を観察した結果、剥離が認められた。また、実施例1と同様に正極含有水分量を評価した結果、290ppmであった。さらに、実施例1と同様にラミネートセル厚さ膨張率を評価した結果、12%で膨張した。これらの結果を表1の比較例2に示す。
[Comparative Example 2]
In <Method for producing mixed binder> in Example 1, the polyamide was weighed so that the solid weight of the polyamide was 21% by weight of the total solid weight of the binder. The method for mixing the binder was the same as in Example 1. Here, it is the same as that of Example 1 except that the vacuum heat treatment was performed at 120 ° C. for 2 hours by the vacuum heat treatment of the electrode manufacturing method. The battery evaluation method was performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 231 mAh / cc. As a result of observing the electrode, peeling was observed. Further, the positive electrode-containing water content was evaluated in the same manner as in Example 1. As a result, it was 290 ppm. Furthermore, as a result of evaluating the laminate cell thickness expansion rate in the same manner as in Example 1, it expanded at 12%. These results are shown in Comparative Example 2 of Table 1.

〔比較例3〕
実施例1において、ポリアミドバインダのみを用いて電極を作製した。ここで、電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、225mAh/ccであった。電極を観察した結果、クラックが認められた。これらの結果を表1の比較例3に示す。
[Comparative Example 3]
In Example 1, an electrode was produced using only a polyamide binder. Here, the electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1, and the electrode volume energy density was evaluated. As a result, it was 225 mAh / cc. As a result of observing the electrodes, cracks were observed. These results are shown in Comparative Example 3 of Table 1.

実施例1,2,3及び比較例1,2,3の混合バインダ中のポリアミドバインダ重量百分率を電極体積エネルギー密度の結果をまとめ、図1に示した。ここで、縦軸は、実施例1の体積エネルギー密度で規格化したものである。   The polyamide binder weight percentage in the mixed binders of Examples 1, 2, 3 and Comparative Examples 1, 2, 3 is shown in FIG. Here, the vertical axis is normalized by the volume energy density of Example 1.

〔実施例4〕
実施例1の、<正極の作製>において、オリビン正極材(1),炭素系導電材及びバインダを重量百分率比で表してそれぞれ、93:3:4の割合となるように混合した。電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、290mAh/ccであった。実施例1と同様に正極含有水分量を評価した結果、117ppmであった。さらに、実施例1と同様にラミネートセル厚さ膨張率を評価した結果、3%で膨張した。また、実施例1と同様に18650型電池を作製し、電池容量を測定した結果、1.4Ahであった。これらの結果を表1の実施例4に示す。
Example 4
In <Preparation of Positive Electrode> in Example 1, the olivine positive electrode material (1), the carbon-based conductive material, and the binder were mixed in a weight percentage ratio of 93: 3: 4, respectively. The electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 290 mAh / cc. As a result of evaluating the water content of the positive electrode in the same manner as in Example 1, it was 117 ppm. Furthermore, as a result of evaluating the laminate cell thickness expansion rate in the same manner as in Example 1, it expanded at 3%. Moreover, it was 1.4 Ah as a result of producing a 18650 type battery similarly to Example 1, and measuring a battery capacity. These results are shown in Example 4 of Table 1.

〔比較例5〕
実施例1の、<正極の作製>において、電極密度を2.3g/ccとし、他の電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、150mAh/ccであった。電極を観察した結果、剥離が認められた。これらの結果を表1の比較例5に示す。
[Comparative Example 5]
In <Preparation of positive electrode> in Example 1, the electrode density was 2.3 g / cc, and other electrode preparation methods and battery evaluation methods were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, 150 mAh / Cc. As a result of observing the electrode, peeling was observed. These results are shown in Comparative Example 5 of Table 1.

〔比較例6〕
実施例1の<正極の作製>において、オリビン正極材(1),炭素系導電材及びバインダを重量百分率比で表してそれぞれ、94:1:5の割合となるように混合した。電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、120mAh/ccであった。電極には剥離が認められた。これらの結果を表1の比較例6に示す。
[Comparative Example 6]
In <Preparation of Positive Electrode> in Example 1, the olivine positive electrode material (1), the carbon-based conductive material and the binder were mixed in a weight percentage ratio of 94: 1: 5. The electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 120 mAh / cc. Peeling was observed on the electrode. These results are shown in Comparative Example 6 of Table 1.

〔比較例7〕
実施例1の<オリビン正極材の作製>において、焼成温度を680℃、20時間とし、他は同じ条件でオリビン正極材を作製した。比表面積を測定した結果、40m2/gであった。電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、120mAh/ccであった。比表面積の大きなオリビン正極材料を用いたため、電極には剥離が認められた。また、高比表面積正極材のため、電極密度は1.7g/ccまでしか上がらなかった。これらの結果を表1の比較例7に示す。
[Comparative Example 7]
In <Production of olivine positive electrode material> of Example 1, an olivine positive electrode material was produced under the same conditions except that the firing temperature was 680 ° C. for 20 hours. It was 40 m < 2 > / g as a result of measuring a specific surface area. The electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 120 mAh / cc. Since an olivine cathode material having a large specific surface area was used, peeling was observed on the electrode. Further, because of the high specific surface area positive electrode material, the electrode density increased only to 1.7 g / cc. These results are shown in Comparative Example 7 of Table 1.

〔実施例5〕
実施例1の<オリビン正極材の作製>において、焼成温度を750℃、8時間とし、他は同じ条件でオリビン正極材を作製した。比表面積を測定した結果、10m2/gであった。電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、258mAh/ccであった。これらの結果を表1の実施例5に示す。
Example 5
In <Production of olivine positive electrode material> in Example 1, the olivine positive electrode material was produced under the same conditions except that the firing temperature was 750 ° C. for 8 hours. It was 10 m < 2 > / g as a result of measuring a specific surface area. The electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 258 mAh / cc. These results are shown in Example 5 of Table 1.

〔比較例8〕
実施例1の<オリビン正極材の作製>において、焼成温度を760℃、20時間とし、他は同じ条件でオリビン正極材を作製した。比表面積を測定した結果、9m2/gであった。電極作製方法,電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、210mAh/ccであった。オリビン正極材の場合、高比表面積で反応性が向上して高放電容量となるため、低比表面積の正極材では放電容量が得られなかった。これらの結果を表1の比較例8に示す。
[Comparative Example 8]
In <Production of olivine positive electrode material> of Example 1, an olivine positive electrode material was produced under the same conditions except that the firing temperature was 760 ° C. for 20 hours. It was 9 m < 2 > / g as a result of measuring a specific surface area. The electrode preparation method and the battery evaluation method were performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 210 mAh / cc. In the case of the olivine positive electrode material, the reactivity is improved at a high specific surface area and a high discharge capacity is obtained. Therefore, the discharge capacity cannot be obtained with a positive electrode material having a low specific surface area. These results are shown in Comparative Example 8 of Table 1.

以上の結果、表1に示した通り、各実施例においては良好な結果が得られたものの、比較例においては、十分な特性が得られない一部の項目があった。   As a result, as shown in Table 1, although good results were obtained in the respective examples, there were some items in which sufficient characteristics could not be obtained in the comparative examples.

〔実施例6〕
実施例1の<正極の作製>において、炭素系導電材としてアセチレンブラックと気相成長繊維状炭素を用いた。この繊維状炭素の代わりに平均直径10〜150nm、平均長さ1〜10μmのMWCNTを用いて電極を作製した。電池評価方法は実施例1と同様に行い、電極体積エネルギー密度を評価した結果、282mAh/ccであった。この結果を表1の実施例7に示す。
Example 6
In <Preparation of Positive Electrode> in Example 1, acetylene black and vapor-grown fibrous carbon were used as the carbon-based conductive material. An electrode was prepared using MWCNT having an average diameter of 10 to 150 nm and an average length of 1 to 10 μm instead of the fibrous carbon. The battery evaluation method was performed in the same manner as in Example 1. As a result of evaluating the electrode volume energy density, it was 282 mAh / cc. The results are shown in Example 7 in Table 1.

〔実施例7〕
実施例1の<オリビン正極材の作製>の代わりに下記の組成式LiMn0.8Fe0.2PO4で表わされるオリビン正極材を作製した。
Example 7
It was prepared olivine cathode material represented by the composition formula LiMn 0.8 Fe 0.2 PO 4 below in place of the Example 1 <Preparation of olivine cathode material>.

7.2gのNH42PO4と、2.27gのLiOH・H2Oと、9gのMnC24・2H2Oと、2.25gのFeC24・2H2Oとを混合し、これにスクロースを12質量%となるように加え、ジルコニア製ポットにジルコニア製粉砕用ボールを投入し、遊星型ボールミルを用いて混合した。この混合粉体をアルミナ製ルツボに投入し、0.3L/minのアルゴン流下で、400℃で10時間仮焼成を行った。 Mixing 7.2 g NH 4 H 2 PO 4 , 2.27 g LiOH.H 2 O, 9 g MnC 2 O 4 .2H 2 O, and 2.25 g FeC 2 O 4 .2H 2 O Then, sucrose was added to 12% by mass, and zirconia grinding balls were put into a zirconia pot and mixed using a planetary ball mill. This mixed powder was put into an alumina crucible and calcined at 400 ° C. for 10 hours under an argon flow of 0.3 L / min.

得られた仮焼成体は、一度、メノウ乳鉢で解砕し、再度アルミナ製ルツボへ投入して、0.3L/minのアルゴン流下で、700℃で10時間本焼成を行った。本焼成後、得られた粉体をメノウ乳鉢で解砕し、40μmのメッシュの篩で粒度調整を行い、組成式LiMn0.8Fe0.2PO4で表される材料を得た。 The obtained calcined product was once crushed in an agate mortar, charged again into an alumina crucible, and subjected to main firing at 700 ° C. for 10 hours under an argon flow of 0.3 L / min. After the main firing, the obtained powder was crushed in an agate mortar, and the particle size was adjusted with a 40 μm mesh sieve to obtain a material represented by the composition formula LiMn 0.8 Fe 0.2 PO 4 .

次に、実施例1と同様の正極を作製した。LiMn0.8Fe0.2PO4はLiFePO4正極材と比較して真密度が低いため、電極密度は1.95g/ccであった。さらに実施例1と同様に電池評価を行った結果、電極体積エネルギー密度は262mAh/ccであった。 Next, the same positive electrode as Example 1 was produced. Since LiMn 0.8 Fe 0.2 PO 4 has a lower true density than the LiFePO 4 positive electrode material, the electrode density was 1.95 g / cc. Further, as a result of battery evaluation as in Example 1, the electrode volume energy density was 262 mAh / cc.

本発明によれば、電気自動車,プラグインハイブリッド車などの、高容量が必要とされる機器応用に適した高安全の大型リチウム二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the highly safe large sized lithium secondary battery suitable for the apparatus application which needs high capacity | capacitance, such as an electric vehicle and a plug-in hybrid vehicle, can be provided.

7 正極板
8 負極板
9 セパレータ
10 電池缶
11 負極板リード片
12 密閉蓋部
13 正極板リード片
14 絶縁板
15 パッキン
7 Positive electrode plate 8 Negative electrode plate 9 Separator 10 Battery can 11 Negative electrode plate lead piece 12 Sealing lid 13 Positive electrode plate lead piece 14 Insulating plate 15 Packing

Claims (5)

化学式LiaxPO4(0<a≦1.2、0.9≦x≦1.1、MはFe,Mnのいずれかを含む遷移金属)で表されるオリビン構造を有する複合酸化物の正極活物質と、導電材及びバインダとを少なくとも含む非水系リチウムイオン二次電池用正極において、
該正極における該正極活物質の含有率が重量百分率で91%以上93%以下、該正極活物質の比表面積が10−30m2/gであり、かつ、
該導電材が繊維状炭素を含有し、
該バインダはポリフッ化ビニリデン及びポリアミドの混合体であり、かつ、該正極における含有率が重量百分率で3%以上6%以下であり、
ポリフッ化ビニリデン及びポリアミドの混合体中のポリアミドの重量百分率が38%以上70%以下であり、
該正極の密度が1.9g/cc以上2.2g/cc以下であることを特徴とする非水系リチウムイオン二次電池用正極。
Composite oxide having an olivine structure represented by the chemical formula Li a M x PO 4 (0 <a ≦ 1.2, 0.9 ≦ x ≦ 1.1, where M is a transition metal containing either Fe or Mn) In the positive electrode for a non-aqueous lithium ion secondary battery comprising at least a positive electrode active material, a conductive material and a binder,
The positive electrode active material content in the positive electrode is 91% or more and 93% or less by weight percentage, the specific surface area of the positive electrode active material is 10-30 m 2 / g, and
The conductive material contains fibrous carbon;
The binder is a mixture of polyvinylidene fluoride and polyamide, and the content in the positive electrode is 3% or more and 6% or less by weight percentage,
The weight percentage of polyamide in the mixture of polyvinylidene fluoride and polyamide is 38% or more and 70% or less,
A positive electrode for a non-aqueous lithium ion secondary battery, wherein the density of the positive electrode is 1.9 g / cc or more and 2.2 g / cc or less.
請求項1に記載の非水系リチウムイオン二次電池用正極において、該正極の全導電材に占める繊維状炭素の含有率が重量百分率で20%以上60%以下であることを特徴とする非水系リチウムイオン二次電池用正極。   2. The positive electrode for a non-aqueous lithium ion secondary battery according to claim 1, wherein the content of fibrous carbon in the total conductive material of the positive electrode is 20% or more and 60% or less by weight percentage. Positive electrode for lithium ion secondary battery. 請求項1または2に記載の非水系リチウムイオン二次電池用正極を用いたリチウムイオン二次電池において、エネルギー密度が100Wh/Kg以上150Wh/Kg以下であることを特徴とする非水系リチウムイオン二次電池。   3. A lithium ion secondary battery using the positive electrode for a nonaqueous lithium ion secondary battery according to claim 1 or 2, wherein the energy density is 100 Wh / Kg or more and 150 Wh / Kg or less. Next battery. 請求項1または2に記載の非水系リチウムイオン二次電池用正極を用いたラミネート型リチウムイオン二次電池において、充放電時のレートを3Cとしたサイクル試験を50回行った後、電池の膨れが初期厚みの10%以下であることを特徴とするラミネート型リチウムイオン二次電池。   3. A laminate-type lithium ion secondary battery using the positive electrode for a non-aqueous lithium ion secondary battery according to claim 1 or 2, wherein the battery swells after 50 cycles of a cycle test with a charge / discharge rate of 3C. Is a laminate type lithium ion secondary battery characterized by having a thickness of 10% or less of the initial thickness. 請求項3に記載の非水系リチウムイオン二次電池、または/及び請求項4に記載のラミネート型リチウムイオン二次電池を電気的に複数接続したことを特徴とする電池モジュール。   A battery module comprising a plurality of non-aqueous lithium ion secondary batteries according to claim 3 and / or a laminate type lithium ion secondary battery according to claim 4 electrically connected thereto.
JP2010174078A 2010-08-03 2010-08-03 Cathode for lithium ion secondary battery and lithium ion secondary battery using the same Withdrawn JP2012033438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174078A JP2012033438A (en) 2010-08-03 2010-08-03 Cathode for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174078A JP2012033438A (en) 2010-08-03 2010-08-03 Cathode for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2012033438A true JP2012033438A (en) 2012-02-16

Family

ID=45846618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174078A Withdrawn JP2012033438A (en) 2010-08-03 2010-08-03 Cathode for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2012033438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176067A1 (en) * 2012-05-24 2013-11-28 株式会社 日立製作所 Positive electrode active material for non-aqueous secondary batteries
WO2013179909A1 (en) * 2012-05-31 2013-12-05 三菱マテリアル株式会社 Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
JP2015144104A (en) * 2014-01-31 2015-08-06 株式会社デンソー Nonaqueous electrolyte secondary battery
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
CN114335883A (en) * 2021-12-06 2022-04-12 河北金力新能源科技股份有限公司 Lithium ion battery diaphragm with high heat exchange stability and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176067A1 (en) * 2012-05-24 2013-11-28 株式会社 日立製作所 Positive electrode active material for non-aqueous secondary batteries
WO2013179909A1 (en) * 2012-05-31 2013-12-05 三菱マテリアル株式会社 Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
JP2015144104A (en) * 2014-01-31 2015-08-06 株式会社デンソー Nonaqueous electrolyte secondary battery
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
US10439209B2 (en) 2015-01-15 2019-10-08 Denso Corporation Electrode and non-aqueous electrolyte secondary battery
CN114335883A (en) * 2021-12-06 2022-04-12 河北金力新能源科技股份有限公司 Lithium ion battery diaphragm with high heat exchange stability and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5255138B2 (en) Electric storage device and positive electrode for electric storage device
WO2011039921A1 (en) Lithium secondary battery, and cathode for use in a lithium secondary battery
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP7279757B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5625007B2 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
CN113611827A (en) Sodium ion battery and preparation method thereof
JP5155498B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP5520906B2 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
KR20150047477A (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries using same, lithium secondary battery, and method for producing positive electrode active material for lithium secondary batteries
EP2808300A1 (en) Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN105720234A (en) Egative Electrode Material For Lithium Ion Battery
JPWO2014006948A1 (en) Nonaqueous solvent storage device
WO2020196610A1 (en) Composite particles and negative electrode material for lithium ion secondary batteries
WO2012114502A1 (en) Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
Youjie et al. Lithium titanate anode for high-performance lithium-ion batteries using octadecylamine and folic acid-functionalized graphene oxide for fabrication of ultrathin lithium titanate nanoflakes and modification of binder
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6747281B2 (en) Negative electrode active material, negative electrode active material manufacturing method, negative electrode and battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP2013206563A (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JPH06275270A (en) High-capacity nonaqueous secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105