WO2012114502A1 - Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module - Google Patents
Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module Download PDFInfo
- Publication number
- WO2012114502A1 WO2012114502A1 PCT/JP2011/054262 JP2011054262W WO2012114502A1 WO 2012114502 A1 WO2012114502 A1 WO 2012114502A1 JP 2011054262 W JP2011054262 W JP 2011054262W WO 2012114502 A1 WO2012114502 A1 WO 2012114502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium ion
- ion secondary
- secondary battery
- olivine
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode for a lithium ion secondary battery using a non-aqueous electrolyte, and more particularly, to improvement of the positive electrode structure.
- PHEV plug-in hybrid vehicle
- PHEV uses energy charged by a household power source for traveling, and travels a certain distance only with a motor. Therefore, as the performance of the battery used for PHEV, high output and high battery in a short time necessary for hybrid vehicles Capacity and is required.
- the lithium ion secondary battery for PHEV becomes a large sized large capacity battery, ensuring safety is important.
- improvement of volume energy density and weight energy density is called for for size reduction and weight reduction of a battery.
- a positive electrode active material having high thermal stability and high safety is required.
- An olivine-type positive electrode active material (LiMPO 4 , M is a transition metal containing at least one of Fe and Mn as a positive electrode material of a lithium ion secondary battery for PHEV and is composed of Fe or Mn as a transition metal. Is called attention).
- M is a transition metal containing at least one of Fe and Mn as a positive electrode material of a lithium ion secondary battery for PHEV and is composed of Fe or Mn as a transition metal. Is called attention).
- the bond between oxygen and phosphorus in the crystal structure is strong, and oxygen is hardly released from the crystal structure at the time of overcharge, so the safety is high.
- the olivine positive electrode material has low electron conductivity and a low lithium ion diffusion coefficient into the positive electrode material.
- olivine positive electrode materials as a means for solving the above problems for practical use, the diffusibility of lithium ions is improved by making the material a high specific surface area, and conductivity is achieved by coating with carbon (carbon coating) It gives the sex.
- the carbon coating can impart conductivity, can suppress crystal growth, and can contribute to high specific surface area by reducing the primary particle size to a submicron size.
- olivine positive electrode material has the following problems in the point of volume energy density improvement.
- the true density of olivine Fe is 3.6 g / cc (g / cm 3 )
- it has the same volume energy density as a positive electrode material using a layered LiNiMnCoO 2 system having a true density of 5.1 g / cc.
- olivine positive electrode material becomes bulky.
- olivine positive electrode material is a material in which high volume density formation is difficult.
- the density is further reduced because the total amount of active material is reduced.
- the olivine positive electrode material since the olivine positive electrode material has a high specific surface area, the amount of binder per surface area required at the time of electrode formation is increased. However, in order to secure the battery capacity, it is desirable to reduce the amount of binder in the electrode composition and to increase the mass of the active material.
- the mixture layer peels off from this interface by consolidation by electrode press or roll rolling.
- consolidation of the electrode is essential to improve volumetric energy density, but it is necessary to suppress peeling of the mixture layer from the interface between the aluminum current collector and the mixture layer. is there.
- Patent Document 1 a method of improving the volume energy density and load characteristics by increasing the application capacity of the active material using a current collector having a surface roughness Ra of 0.1 ⁇ m or more with respect to high volumetric energy density of the olivine positive electrode Is disclosed.
- the discharge capacity retention rate at high discharge current is improved in the surface-roughened aluminum current collector.
- the composition of the electrode described in Patent Document 1 is an olivine positive electrode active material, a conductive carbon powder used as a conductive material, and a binder.
- peeling of the mixture layer can be suppressed to a certain extent by using an aluminum current collector having a surface roughened as in the technique described in Patent Document 1.
- peeling can not be sufficiently suppressed by simply using a surface-roughened aluminum current collector. Therefore, it is necessary to increase the amount of binder in order to suppress peeling, and there is a problem that the volume energy density of the electrode (which is an amount representing the capacity per volume of the electrode) decreases.
- An object of the present invention is to provide a positive electrode for a lithium ion secondary battery capable of improving the capacity per volume of the electrode, and a lithium ion secondary battery using the same.
- the positive electrode for a lithium ion secondary battery has the following features.
- a positive electrode for a lithium ion secondary battery which is a composite oxide having an olivine structure represented by 0 ⁇ a ⁇ 1.1, 0.9 ⁇ x ⁇ 1.1),
- the conductive material contains fibrous carbon, and a pit is formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon are in the pit.
- the lithium ion secondary battery positive electrode which can improve the capacity
- FIG. 2 is a cutaway cross-sectional view schematically showing a cylindrical lithium ion secondary battery. It is sectional drawing of the positive electrode for lithium ion secondary batteries.
- the inventors of the present invention conducted intensive studies to solve the above-mentioned problems, and as a result, the positive electrode active material constituting the positive electrode mixture, the member and composition of the conductive material and the binder, and also the base material of the mixture.
- the content of the positive electrode active material in the positive electrode is improved, and the density of the positive electrode is improved, and the energy density per unit volume (volume energy density) ) Found that improved.
- the capacity per volume of the electrode is represented by the electrode volume energy density.
- the positive electrode for a lithium ion secondary battery according to the present invention comprises a mixture layer containing a positive electrode active material, a conductive material, and a binder, and a current collector, and the positive electrode active material has the chemical formula Li a M x PO 4 (M is A transition metal containing at least one of Fe and Mn, which is a composite oxide having an olivine structure represented by 0 ⁇ a ⁇ 1.1, 0.9 ⁇ x ⁇ 1.1).
- the positive electrode active material (olivine positive electrode material) has a specific surface area of 10 m 2 / g or more and 30 m 2 / g or less (10 to 30 m 2 / g), and an average primary particle diameter of 0.05 ⁇ m or more and 0.3 ⁇ m
- the average secondary particle diameter is in the range of 0.2 to 1 ⁇ m (0.2 to 1 ⁇ m).
- the mean primary particle size and the mean secondary particle size are also referred to simply as the primary particle size and the secondary particle size, respectively.
- the conductive material is a mixture of carbon black and fibrous carbon.
- the current collector is made of an aluminum base having a defined surface roughness.
- the content of the positive electrode active material in the mixture layer is preferably 90% or more and 93% or less by weight, but is limited to this range Absent.
- the weight percentage of fibrous carbon in the conductive material is preferably 20% or more and less than 60%, but is not limited to this range.
- the electrode density is preferably 2.0 g / cc (g / cm 3 ) or more and 2.3 g / cc (g / cm 3 ) or less, but is not limited to this range.
- pits are formed on the surface of the aluminum base current collector, and the relationship between the pit diameter and the average secondary particle diameter of the olivine positive electrode material, and further, the effect of fibrous carbon used as a conductive material dispersed in the positive electrode is there.
- the "pit” is a hole formed on the surface of the aluminum base current collector, and the shape of the opening and the shape in the depth direction are arbitrary.
- the "pit diameter” is the maximum length (maximum width) of the opening at the pit opening.
- the average pit diameter which is the average of the pit diameters of the respective pits, is also simply referred to as the pit diameter.
- olivine positive electrode material Since a part of the positive electrode active material (olivine positive electrode material) and a part of fibrous carbon enter the pits, it is possible to increase the binding property of the interface between the current collector and the mixture layer by the anchor effect.
- the olivine positive electrode material that enters the pits may be either primary particles or secondary particles. However, the relationship between the pit diameter and the particle diameter of the olivine positive electrode material is determined by secondary particles having a large particle diameter.
- the relationship between the pit diameter and the average secondary particle diameter of the olivine positive electrode material is shown below.
- pits having a diameter of several ⁇ m and a depth of several ⁇ m can be formed on the surface of the base by surface treatment using an acid or an alkali.
- Secondary particles of the olivine positive electrode material intrude into the pits to generate an anchor effect, and the binding property of the interface between the current collector and the mixture layer is increased.
- the binding ability differs depending on the relative relationship between the pit diameter and the secondary particle diameter. For example, if the pit diameter and the secondary particle diameter are substantially the same, it is difficult for the secondary particles of the olivine positive electrode material to enter the pit. On the other hand, if the secondary particle diameter of the olivine positive electrode material is too small relative to the pit diameter, the anchor effect is reduced.
- the secondary particle diameter of the olivine positive electrode material suitable for the pit diameter on the surface of the current collector is specified as follows. That is, the average secondary particle diameter of the olivine positive electrode material is 0.2 ⁇ m or more and 1 ⁇ m or less, and the ratio of the average secondary particle diameter to the average pit diameter is 0.1 or more and 0.5 or less. It is assumed. According to this definition, the binding property of the interface between the current collector and the mixture layer can be increased and the density of the positive electrode can be increased by using an appropriate amount of olivine positive electrode material in the pit.
- the conductive material used for the positive electrode will be described.
- a conductive material is dispersed in the positive electrode in order to secure electron conductivity.
- the conductive material fine granular acetylene black and fibrous carbon can be mentioned.
- FIG. 3 is a cross-sectional view of a positive electrode for a lithium ion secondary battery according to the present invention, showing pits 2 formed on the surface of an aluminum base current collector 1, secondary particles 3 of an olivine positive electrode material and fibrous carbon. 4 is shown.
- FIG. 3 only secondary particles are shown as a representative among particles (primary particles and secondary particles) of the olivine positive electrode material. The same explanation applies to primary particles as to secondary particles.
- the secondary particles 3 of the olivine positive electrode material can enter into the pits 2.
- fibrous carbon 4 used as the conductive material is dispersed in the mixture slurry, fibrous carbon 4 also enters pit 2 and fibrous carbon 4 is distributed in the thickness direction of the mixture layer.
- fibrous carbon 4 is distributed in the thickness direction of the mixture layer.
- the fibrous carbon 4 and the olivine positive electrode material form an aggregate and can not enter the pit 2.
- the proportion of fibrous carbon 4 in the entire conductive material was defined as 20% or more and less than 60% by weight.
- fibrous carbons used herein include vapor grown carbon fibers, carbon nanotubes (CNTs) and carbon nanofibers (CNF). Although fibrous carbon has excellent properties, it is difficult to disperse in a mixture slurry and may form aggregates in the slurry. Since the aggregates in the slurry inhibit the mixture layer from becoming constant in the electrode coating process, a mixture composition in which no aggregates are formed is desirable.
- Acetylene black is fine particulate particles having a particle diameter of several tens of nm, and is excellent in dispersibility in a slurry. For this reason, it is effective in order to ensure the electronic conductivity in a positive electrode, suppressing formation of an aggregate.
- the ratio of fibrous carbon in the entire conductive material was 20% or more and less than 60% by weight.
- the addition amount of fibrous carbon is less than 20%, the above effect is small, and if it is 60% or more, a large amount of agglomerates in the slurry makes it difficult to form a positive electrode.
- the content of the positive electrode active material (olivine positive electrode material) occupied in the mixture layer is 90 to 93% by weight percentage, and even in a high density positive electrode having an electrode density of 2.0 to 2.3 g / cc, A positive electrode excellent in high volume energy density and high rate discharge can be obtained.
- the present invention aims to obtain a high-safety large-capacity large-capacity lithium ion secondary battery, and defines the positive electrode configuration of the olivine positive electrode material.
- the positive electrode for a lithium ion secondary battery, the lithium ion secondary battery, and the battery module according to the present invention have the following features.
- the conductive material contains fibrous carbon, and a pit is formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon are in the pit.
- the positive electrode active material has an average secondary particle diameter of 0.2 ⁇ m or more and 1 ⁇ m or less, and an average secondary particle diameter and an average pit diameter of pits It is preferable that the average secondary particle diameter / average pit diameter, which is the ratio thereof, be 0.1 or more and 0.5 or less.
- the surface roughness Ra of the current collector is preferably 0.3 ⁇ m or more and 1 ⁇ m or less.
- the weight percentage of fibrous carbon in the conductive material is 20% or more and less than 60%. preferable.
- the content of the positive electrode active material in the mixture layer is 90% or more and 93% or less by weight Is preferred.
- the electrode density is preferably 2.0 g / cc or more and 2.3 g / cc or less.
- the effects of the present invention can be obtained even if the conditions described in (2) to (6) are not necessarily satisfied as long as the conditions described in (1) are satisfied. be able to.
- the surface roughness Ra of the current collector is an average value for the entire current collector, and does not necessarily correspond one-to-one with the average pit diameter described in (2). That is, in addition to pits satisfying the condition of (2), in the case where a large number of fine pits not satisfying the condition of (2) exist, the surface roughness Ra may exceed 1 ⁇ m. Even in any case, the present invention is effective. Of course, if the conditions of (2) to (6) are satisfied in addition to the condition of (1), the effects of the present invention will be remarkable.
- a lithium ion secondary battery suitable for application to devices requiring high capacity and high safety, such as plug-in hybrid vehicles or electric vehicles.
- the positive electrode for lithium ion secondary batteries has an olivine positive electrode material (positive electrode active material) having the following features.
- the specific surface area of the olivine positive electrode material is 10 to 30 m 2 / g.
- the electrode resistance increases because the reaction area between the positive electrode material and the lithium ion is small.
- the specific surface area exceeds 30 m 2 / g, it is not possible to simultaneously achieve the improvement of the electrode density and the formation of a conductive network in the positive electrode.
- the olivine positive electrode material since the electron conductivity is low, if the conductive network can not be formed, the resistance becomes high and a desired discharge capacity can not be obtained.
- the average primary particle diameter of the olivine positive electrode material is 0.05 to 0.3 ⁇ m. If the average primary particle size is less than 0.05 ⁇ m, aggregates are formed at the time of electrode coating, resulting in coating failure. On the other hand, when the average primary particle size exceeds 0.3 ⁇ m, the reactivity of the positive electrode active material itself is reduced, and a desired discharge capacity can not be obtained.
- the average secondary particle diameter of the olivine positive electrode material is 0.2 to 1 ⁇ m. If the average secondary particle diameter is less than 0.2 ⁇ m, aggregates are formed at the time of electrode coating, resulting in coating failure. On the other hand, when the average secondary particle diameter is 1.1 ⁇ m or more, it is difficult to obtain a high density electrode for improving the battery capacity.
- the composition of the olivine cathode material has the formula Li a M x PO 4 (M is a transition metal containing at least one of Fe and Mn .0 ⁇ a ⁇ 1.1,0.9 ⁇ x ⁇ 1.1) It is a complex oxide having an olivine structure represented by
- the range of a indicating the composition of Li is 0 ⁇ a ⁇ 1.1, and the reason is shown below.
- the range of a showing the composition of Li was set to 0 ⁇ a ⁇ 1.1.
- the aluminum-based current collector of the positive electrode for a lithium ion secondary battery has the following features. That is, it is an aluminum base current collector having pits having a pit diameter of 2 to 7 ⁇ m on the surface and having a surface roughness Ra of 0.3 to 1 ⁇ m according to JIS 2001. Since the relationship between the pit diameter on the aluminum base material surface and the secondary particle diameter of the positive electrode material has been described above, the surface roughness Ra defined in the present invention will be described below.
- the surface roughness Ra of the aluminum base current collector is desirably 0.3 ⁇ m or more and 1 ⁇ m or less.
- Roughening can be performed by sand blasting on an aluminum base current collector or etching with acid or alkali.
- Method for producing olivine positive electrode material Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed so as to have a molar ratio of 2: 2: 1.0, and this is calcined under a nitrogen atmosphere at 300 ° C. The precursor was obtained. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain an olivine positive electrode material.
- the lithium ion secondary battery may be any type of cylindrical type, laminated type, coin type, card type and the like, and is not particularly limited. In this specification, a method of manufacturing a cylindrical lithium ion secondary battery is described as an example.
- NMP N-methyl-2-pyrrolidinone
- PVDF polyvinylidene fluoride
- a conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material which is a negative electrode active material. After adding PVDF or a rubber-based binder (SBR etc.) dissolved in NMP as a binder to this, it knead
- PVDF or a rubber-based binder (SBR etc.) dissolved in NMP as a binder to this, it knead
- SBR etc. rubber-based binder
- the positive electrode plate and the negative electrode plate are dried after the slurry is applied to both sides of the electrode. Furthermore, it is densified by rolling and cut into a desired shape to produce an electrode. Next, lead pieces for flowing current to these electrodes are formed. A porous insulating material separator is sandwiched between the positive electrode and the negative electrode, and after being wound, it is inserted into a battery can made of stainless steel or aluminum. Next, after the lead pieces and the battery can are connected, a non-aqueous electrolytic solution is injected, and finally, the battery can is sealed to obtain a lithium ion secondary battery.
- a battery module in which a plurality of batteries are connected in series can be mentioned.
- the battery module using the lithium ion secondary battery of the present invention can have a high capacity.
- Example 1 ⁇ Fabrication of olivine cathode material> Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate which have been finely ground in a ball mill for 3 hours are mixed in a molar ratio of 2: 2: 1.0, and this is mixed with nitrogen at 300 ° C. It was calcined under an atmosphere to obtain a precursor. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C., to obtain an olivine positive electrode material (1) made of carbon-coated LiFePO 4 . The amount of carbon coated was 2 wt%.
- the olivine positive electrode material (1) was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and after counting signals at the time of desorption with a He / N 2 mixed gas, the specific surface area was calculated by the BET method. As a result, the specific surface area of the secondary particles was 30 m 2 / g.
- the olivine positive electrode material (1) which is a positive electrode active material was disperse
- a positive electrode plate was produced by the following procedure. A solution of a binder dissolved in NMP as a solvent, an olivine positive electrode material (1), acetylene black which is a carbon-based conductive material having an average particle diameter of 35 nm, and VGCF (registered trademark. Diameter: 150 nm) which is vapor grown carbon fiber. , Fiber length: 10 to 20 ⁇ m) to prepare a positive electrode mixture slurry. At this time, the two conductive materials were equal in weight ratio. Therefore, the weight percentage of fibrous carbon in the conductive material is 50%.
- the olivine positive electrode material (1), the carbon-based conductive material, and the binder were mixed so as to have a ratio of 91: 4: 5, respectively, as represented by a weight percentage ratio. Therefore, the content of the positive electrode active material (olivine positive electrode material) of the positive electrode occupied in the mixture layer is 91% by weight.
- the surface roughness Ra of the aluminum sheet (aluminum base current collector) used here was evaluated according to JIS 2001 using a surface roughness measuring machine (Mitsutoyo, SURFTEST SV-2100).
- This test battery was initialized three times by repeating charging and discharging up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3C. Furthermore, after performing constant current constant voltage charging for 5 hours with an upper limit voltage of 3.6V equivalent to 0.3C, constant current discharge up to a lower limit voltage of 2.0V equivalent to 0.3C is performed to obtain a discharge capacity I asked.
- the volumetric energy density (unit: mAh / cc (mAh / cm 3 )) of the electrode was calculated. After dividing the discharge capacity by the mixture weight of this electrode (the total weight of the olivine positive electrode material, the conductive material and the binder), the electrode density (2.2 g / cc) and the content of the positive electrode active material (91% by weight) The product was taken as volume energy density. This value represents the energy per unit volume and is an indicator of the high packing of the battery.
- Example 1 in Table 1 shows the ratio of the average secondary particle diameter to the average pit diameter (average secondary particle diameter / average pit diameter) of the olivine positive electrode material (positive electrode active material) as a result of evaluation of this positive electrode.
- the discharge capacity retention rate was determined by dividing the discharge capacity (B) by the discharge capacity (A).
- the volumetric energy density was 285 mAh / cc (285 mAh / cm 3 ), and the discharge capacity retention rate was 0.98, both of which were good.
- a negative electrode plate was produced.
- the negative electrode mixture slurry was prepared by dissolving and mixing the negative electrode active material graphite carbon material in NMP as a binder. At this time, the dry weight ratio of the graphite carbon material to the binder was made to be 92: 8.
- the slurry was uniformly applied to a rolled copper foil having a thickness of 10 ⁇ m. Thereafter, compression molding was performed by a roll press machine, cutting was performed so as to have an application width of 5.6 cm and an application length of 64 cm, and a copper foil lead piece was welded to produce a negative electrode plate.
- FIG. 2 is a cutaway cross-sectional view schematically showing the produced cylindrical lithium ion secondary battery.
- the cylindrical lithium ion secondary battery was manufactured in the following procedure using the positive electrode plate and negative electrode plate which were produced as mentioned above.
- the separator 9 was disposed between the positive electrode plate 7 and the negative electrode plate 8 so that the positive electrode plate 7 and the negative electrode plate 8 were not in direct contact with each other, and wound to fabricate an electrode group.
- the lead piece (positive electrode lead piece) 13 of the positive electrode plate 7 and the lead piece (negative electrode lead piece) 11 of the negative electrode plate 8 were positioned on the opposite end faces of the electrode assembly. Furthermore, the arrangement of the positive electrode plate 7 and the negative electrode plate 8 prevents the mixture application portion of the positive electrode from protruding from the mixture application portion of the negative electrode.
- the separator 9 used here was a microporous polypropylene film 25 ⁇ m thick and 5.8 cm wide.
- the sealing lid 12 doubles as a positive electrode current terminal.
- the non-aqueous electrolytic solution was injected into the battery can 10 in which the electrode group was disposed.
- the non-aqueous electrolytic solution was prepared by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2.
- EC ethylene carbonate
- DMC dimethyl carbonate
- the sealing lid 12 has a cleavage valve which is split when the pressure in the battery rises and releases the pressure in the battery.
- the insulating plate 14 was disposed between the sealing lid 12 and the electrode group, and between the can bottom of the battery can 10 and the electrode group.
- This cylindrical battery was initialized three times by charging and discharging up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3C. Furthermore, charging / discharging to the upper limit voltage 3.6V and the lower limit voltage 2.0V was performed at 0.3 C, and the battery discharge capacity was measured. The battery discharge capacity was 1.3 Ah.
- the capacity could be increased.
- FIG. 1 shows the results of examining the relationship between the surface roughness Ra and the electrode density by changing the surface roughness Ra of the aluminum base current collector in the electrode configuration of Example 1.
- Ra is 1 ⁇ m
- the electrode is densified as the surface roughness Ra increases.
- the surface roughness Ra was 1.2 ⁇ m
- the interface between the mixture layer and the current collector became uneven, and the electrode density was lowered due to the occurrence of peeling.
- Example 2 In Example 1, the surface roughness Ra of the aluminum-based current collector is changed to 0.3 ⁇ m, the average secondary particle diameter of the olivine positive electrode material is changed to 0.2 ⁇ m, and the other conditions are the same as in Example 1. And evaluation of the battery. In Example 2, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.1.
- the electrode density was slightly reduced to 2.0 g / cc (g / cm 3 ).
- the electrode volume energy density it was 240 mAh / cc (mAh / cm 3 ), and the discharge capacity retention rate was 0.95.
- the results are shown in the row of Example 2 in Table 1.
- Example 3 In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 1 ⁇ m, the average secondary particle diameter of the olivine positive electrode material is changed to 1 ⁇ m, and the other processes are the same as in Example 1. The evaluation of In Example 3, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.2.
- Comparative Example 1 In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 ⁇ m. In Comparative Example 1, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
- Comparative Example 2 In Example 1, the surface roughness Ra of the aluminum-based current collector was changed to 1.1 ⁇ m, and in the same manner as in Example 1 except for the above, preparation of a positive electrode and evaluation of a battery were performed. In Comparative Example 2, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material is set to 0.15.
- Example 4 In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 0.3 ⁇ m, the average secondary particle diameter of the olivine positive electrode material is changed to 1 ⁇ m, and the other processes are performed in the same manner as in Example 1 to prepare a positive electrode. And the battery was evaluated. In Example 4, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.5.
- Comparative Example 3 In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the average secondary particle diameter of the olivine positive electrode material was changed to 0.48 ⁇ m. In Comparative Example 3, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was set to 0.09.
- Example 5 In Example 1, preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 20%.
- the electrode density is slightly increased to 2.3 g / cc.
- the discharge capacity retention rate was 0.95. Since the amount of fibrous carbon added decreased, the discharge retention rate slightly decreased. The results are shown in the row of Example 5 in Table 1.
- Example 4 preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 10%.
- Example 1 Comparative Example 5 In Example 1, the weight percentage of fibrous carbon in the conductive material was changed to 60%, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
- Example 6 In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 90%.
- Example 7 In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 93%.
- Example 6 preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 89%.
- the electrode density slightly increased to 2.3 g / cc.
- the electrode volume energy density it was 230 mAh / cc, and the discharge capacity retention rate was 0.70. Due to the low content of the olivine cathode material, the desired high volumetric energy density could not be achieved. The results are shown in the row of Comparative Example 6 in Table 1.
- Example 7 preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 94%.
- Example 8 In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 0.1 ⁇ m, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
- Example 9 In Example 1, the average secondary particle diameter of the olivine positive electrode material is changed to 1.1 ⁇ m, the ratio of the average secondary particle diameter to the average pit diameter is changed to 0.2, and the other conditions are the same as in Example 1. And evaluation of the battery. As the average secondary particle size increased, the ratio of the average secondary particle size to the average pit size also slightly increased.
- the electrode density decreased to 1.9 g / cc because the average secondary particle size of the olivine positive electrode material increased. Moreover, as a result of evaluating an electrode volume energy density, it was set to 209 mAh / cc, and the discharge capacity maintenance factor was 0.66. The results are shown in the row of Comparative Example 9 in Table 1.
- Example 8 instead of the olivine positive electrode material LiFePO 4 produced in Example 1, an olivine positive electrode material represented by a composition formula LiMn 0.8 Fe 0.2 PO 4 was produced. The preparation method is described below.
- the obtained calcined body was once crushed in an agate mortar, again put into an alumina crucible, and subjected to main firing at 700 ° C. for 10 hours under an argon flow of 0.3 L / min. After the main firing, the obtained powder was crushed in an agate mortar, and the particle size was adjusted with a 40 ⁇ m mesh sieve to obtain an olivine positive electrode material represented by the composition formula LiMn 0.8 Fe 0.2 PO 4 .
- Example 2 a positive electrode was produced and evaluated.
- the electrode density was 2 g / cc because LiMn 0.8 Fe 0.2 PO 4 has a lower true density compared to LiFePO 4 .
- Example 8 a cylindrical lithium ion secondary battery as a test battery was produced, and the battery was evaluated.
- the charging voltage was 4.1V.
- the electrode volume energy density it was 257 mAh / cc, and the discharge capacity retention rate was 0.97.
- the results are shown in the row of Example 8 in Table 1.
- Comparative Example 10 In Example 8, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 ⁇ m. In Comparative Example 10, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
- the present invention can be applied to devices that require high capacity, such as electric vehicles and plug-in hybrid vehicles.
- SYMBOLS 1 Aluminum base material collector, 2 ... pit, 3 ... secondary particle of olivine positive electrode material, 4: ... fibrous carbon, 7: ... positive electrode plate, 8 ... negative electrode plate, 9 ... separator, 10 ... battery can, 11 ... Negative electrode lead piece, 12: Sealing lid, 13: Positive electrode lead piece, 14: Insulating plate, 15: Packing.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
The purpose of the present invention is to provide: a positive electrode for lithium-ion rechargeable batteries which is capable of improving capacity per electrode volume; and a lithium-ion rechargeable battery that uses the positive electrode. This positive electrode for lithium-ion rechargeable batteries is characterized in that a positive electrode active material (3), a mixed layer containing a conductive material and a binder, and a current collector (1), upon the surface of which the mixed layer is formed, are provided; the positive electrode active material (3) is a complex oxide having an olivine structure represented by the chemical formula LiaMxPO4 (where M is a transition metal containing Fe and/or Mn, 0 < a ≤ 1.1, and 0.9 ≤ x ≤ 1.1); and the conductive material contains fibrous carbon (4), pits (2) are formed on the surface of the current collector (1); and part of the positive electrode active material (3) and part of the fibrous carbon (4) are placed in the pits (2).
Description
本発明は、非水電解液を用いたリチウムイオン二次電池用の正極に関し、より詳細には、正極構造の改善に関する。
The present invention relates to a positive electrode for a lithium ion secondary battery using a non-aqueous electrolyte, and more particularly, to improvement of the positive electrode structure.
自動車の更なるエネルギー効率向上のため、プラグインハイブリッド自動車(以下「PHEV」と略す)の開発が求められている。PHEVは家庭用電源で充電したエネルギーを走行に使用し、ある程度の距離をモータのみで走行するため、PHEVに使用される電池の性能として、ハイブリッド自動車に必要な短時間での高出力と高い電池容量とが求められている。
Development of a plug-in hybrid vehicle (hereinafter referred to as "PHEV") is required to further improve the energy efficiency of the vehicle. PHEV uses energy charged by a household power source for traveling, and travels a certain distance only with a motor. Therefore, as the performance of the battery used for PHEV, high output and high battery in a short time necessary for hybrid vehicles Capacity and is required.
以上のように、PHEVで必要とされる電池特性では、高容量化とともに高出力化が重要となる。このため、PHEV用リチウムイオン二次電池は、大型大容量電池となるので、安全性の確保が重要となる。車載用の大型大容量リチウムイオン二次電池では、電池の小型軽量化のため、体積エネルギー密度及び重量エネルギー密度の向上が求められている。また、大型大容量リチウムイオン二次電池では、貯蔵するエネルギーが大きいため、熱安定性が高く高安全な正極活物質が求められている。
As described above, in the battery characteristics required for PHEVs, it is important to increase the output as well as to increase the capacity. For this reason, since the lithium ion secondary battery for PHEV becomes a large sized large capacity battery, ensuring safety is important. In the large sized large capacity lithium ion secondary battery for vehicles, improvement of volume energy density and weight energy density is called for for size reduction and weight reduction of a battery. In addition, in a large-sized large-capacity lithium ion secondary battery, since the energy to be stored is large, a positive electrode active material having high thermal stability and high safety is required.
PHEV用リチウムイオン二次電池の正極材料として、遷移金属としてFeまたはMnで構成されるオリビン構造の正極活物質(LiMPO4、MはFeとMnの少なくとも一方を含む遷移金属。以下「オリビン正極材」と称する)が注目されている。オリビン正極材では、結晶構造中の酸素と燐の結合が強く、過充電時に結晶構造から酸素が放出されにくいため、安全性が高い。しかしながら、オリビン正極材は、電子伝導性が低く、また、正極材中へのリチウムイオン拡散係数が低いことが報告されている。
An olivine-type positive electrode active material (LiMPO 4 , M is a transition metal containing at least one of Fe and Mn as a positive electrode material of a lithium ion secondary battery for PHEV and is composed of Fe or Mn as a transition metal. Is called attention). In the olivine positive electrode material, the bond between oxygen and phosphorus in the crystal structure is strong, and oxygen is hardly released from the crystal structure at the time of overcharge, so the safety is high. However, it is reported that the olivine positive electrode material has low electron conductivity and a low lithium ion diffusion coefficient into the positive electrode material.
オリビン正極材に対しては、実用化のために上記課題の解決手段として、材料を高比表面積とすることでリチウムイオンの拡散性を改善するとともに、炭素で被覆すること(炭素被覆)により導電性を付与している。炭素被覆をすると、導電性を付与できるとともに、結晶成長を抑制し、一次粒子をサブミクロンの大きさとする小粒径化による高比表面積化に寄与できる。
With regard to olivine positive electrode materials, as a means for solving the above problems for practical use, the diffusibility of lithium ions is improved by making the material a high specific surface area, and conductivity is achieved by coating with carbon (carbon coating) It gives the sex. The carbon coating can impart conductivity, can suppress crystal growth, and can contribute to high specific surface area by reducing the primary particle size to a submicron size.
以上のオリビン正極材は、体積エネルギー密度向上の点で、以下の課題がある。例えば、オリビンFeの真密度は3.6g/cc(g/cm3)であるので、真密度が5.1g/ccである層状LiNiMnCoO2系を用いた正極材と同程度の体積エネルギー密度を得るためには、オリビン正極材は嵩高くなる。このため、オリビン正極材は、高体積密度化が困難な材料である。加えて、炭素被覆されたオリビン正極材では、全体に占める活物質量が減るため、さらに密度が低下する。また、上述のようにオリビン正極材は高比表面積であるので、電極形成時に必要とされる表面積当たりのバインダ量が増加する。しかしながら、電池容量を確保するためには、電極組成中のバインダ量を低減し、活物質量を増やすことが望ましい。
The above olivine positive electrode material has the following problems in the point of volume energy density improvement. For example, since the true density of olivine Fe is 3.6 g / cc (g / cm 3 ), it has the same volume energy density as a positive electrode material using a layered LiNiMnCoO 2 system having a true density of 5.1 g / cc. In order to obtain, olivine positive electrode material becomes bulky. For this reason, olivine positive electrode material is a material in which high volume density formation is difficult. In addition, in the carbon-coated olivine positive electrode material, the density is further reduced because the total amount of active material is reduced. Further, as described above, since the olivine positive electrode material has a high specific surface area, the amount of binder per surface area required at the time of electrode formation is increased. However, in order to secure the battery capacity, it is desirable to reduce the amount of binder in the electrode composition and to increase the mass of the active material.
一般に、高容量電池では体積エネルギー密度の向上のため、正極中の正極活物質含率の向上を図るとともに、正極活物質、導電材及びバインダで構成される合剤層の厚みを向上させる必要がある。オリビン正極の作製では、溶媒に分散されたオリビン正極材、導電材及びバインダで構成されるスラリーをアルミ集電体上に塗布した後、これを乾燥させて正極を得る。合剤層が厚い電極の場合、この乾燥工程で、バインダ樹脂が溶剤の蒸発とともに表層に移動する現象が顕著となる。このため、アルミ集電体と合剤層の界面でバインダ量が減少する。バインダ量が減少すると、電極プレスまたはロール圧延加工による圧密化で、この界面から合剤層が剥離する。以上のように、オリビン正極では、体積エネルギー密度向上のために電極の圧密化が必須であるが、アルミ集電体と合剤層の界面からの合剤層の剥離を抑制することが必要である。
Generally, in high-capacity batteries, it is necessary to improve the content of the positive electrode active material in the positive electrode and to improve the thickness of the mixture layer composed of the positive electrode active material, the conductive material, and the binder to improve volume energy density. is there. In the preparation of an olivine positive electrode, a slurry composed of an olivine positive electrode material dispersed in a solvent, a conductive material and a binder is applied on an aluminum current collector, and then dried to obtain a positive electrode. When the mixture layer is a thick electrode, in this drying step, the phenomenon that the binder resin moves to the surface layer as the solvent evaporates becomes remarkable. As a result, the amount of binder decreases at the interface between the aluminum current collector and the mixture layer. When the amount of binder is reduced, the mixture layer peels off from this interface by consolidation by electrode press or roll rolling. As described above, in the olivine positive electrode, consolidation of the electrode is essential to improve volumetric energy density, but it is necessary to suppress peeling of the mixture layer from the interface between the aluminum current collector and the mixture layer. is there.
特許文献1では、オリビン正極の高体積エネルギー密度化に関して、表面粗さRaが0.1μm以上の集電体を用い、活物質の塗布容量を増やして、体積エネルギー密度及び負荷特性を向上させる方法を開示している。特に、負荷特性の向上に関しては、表面粗化したアルミ集電体では高放電電流時の放電容量維持率が向上したことが開示されている。特許文献1に記載の電極の組成は、オリビン正極活物質、導電材として用いる導電性カーボン粉末、及び結着剤である。
In Patent Document 1, a method of improving the volume energy density and load characteristics by increasing the application capacity of the active material using a current collector having a surface roughness Ra of 0.1 μm or more with respect to high volumetric energy density of the olivine positive electrode Is disclosed. In particular, with regard to the improvement of load characteristics, it is disclosed that the discharge capacity retention rate at high discharge current is improved in the surface-roughened aluminum current collector. The composition of the electrode described in Patent Document 1 is an olivine positive electrode active material, a conductive carbon powder used as a conductive material, and a binder.
特許文献1に記載の技術のように表面粗化したアルミ集電体を用いると、合剤層の剥離をある程度は抑制できると考えられる。しかし、単に表面粗化したアルミ集電体を用いるだけでは、十分に剥離を抑制できない。従って、剥離の抑制のためにバインダ量を増加させる必要があり、電極の体積エネルギー密度(電極の体積当たりの容量を表す量である)が低下するという課題がある。
It is considered that peeling of the mixture layer can be suppressed to a certain extent by using an aluminum current collector having a surface roughened as in the technique described in Patent Document 1. However, peeling can not be sufficiently suppressed by simply using a surface-roughened aluminum current collector. Therefore, it is necessary to increase the amount of binder in order to suppress peeling, and there is a problem that the volume energy density of the electrode (which is an amount representing the capacity per volume of the electrode) decreases.
本発明の目的は、電極の体積当たりの容量を向上できるリチウムイオン二次電池用正極、及びこれを用いたリチウムイオン二次電池を提供することである。
An object of the present invention is to provide a positive electrode for a lithium ion secondary battery capable of improving the capacity per volume of the electrode, and a lithium ion secondary battery using the same.
本発明によるリチウムイオン二次電池用正極は、次のような特徴を有する。正極活物質、導電材及びバインダを含む合剤層と、前記合剤層が表面に形成された集電体とを備え、前記正極活物質が化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、前記導電材は繊維状炭素を含み、前記集電体の表面にはピットが形成され、前記正極活物質の一部と前記繊維状炭素の一部は前記ピットに入り込んでいる。
The positive electrode for a lithium ion secondary battery according to the present invention has the following features. A positive electrode active material, a mixture layer containing a conductive material and a binder, and a current collector having the mixture layer formed on the surface, the positive electrode active material has a chemical formula Li a M x PO 4 (where M is Fe and A transition metal containing at least one of Mn.A positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1), The conductive material contains fibrous carbon, and a pit is formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon are in the pit.
本発明によれば、電極の体積当たりの容量を向上できるリチウムイオン二次電池用正極と、これを用いたリチウムイオン二次電池を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery positive electrode which can improve the capacity | capacitance per volume of an electrode, and a lithium ion secondary battery using the same can be provided.
本発明者らは、前述の課題を解決するため鋭意研究を行った結果、正極合剤を構成する正極活物質、導電材及びバインダの部材と配合組成、さらには、合剤の基材としても用いるアルミ基材集電体の表面粗さを検討することにより、正極内での正極活物質の含有率が向上し、かつ、正極の密度が向上し、単位体積当たりのエネルギー密度(体積エネルギー密度)が向上することを見出した。電極の体積当たりの容量は、電極体積エネルギー密度で表される。
The inventors of the present invention conducted intensive studies to solve the above-mentioned problems, and as a result, the positive electrode active material constituting the positive electrode mixture, the member and composition of the conductive material and the binder, and also the base material of the mixture. By examining the surface roughness of the aluminum base current collector used, the content of the positive electrode active material in the positive electrode is improved, and the density of the positive electrode is improved, and the energy density per unit volume (volume energy density) ) Found that improved. The capacity per volume of the electrode is represented by the electrode volume energy density.
本発明によるリチウムイオン二次電池用正極は、正極活物質、導電材及びバインダを含む合剤層と、集電体とを備え、正極活物質は、化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物である。
The positive electrode for a lithium ion secondary battery according to the present invention comprises a mixture layer containing a positive electrode active material, a conductive material, and a binder, and a current collector, and the positive electrode active material has the chemical formula Li a M x PO 4 (M is A transition metal containing at least one of Fe and Mn, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1).
正極活物質(オリビン正極材)は、比表面積が10m2/g以上、30m2/g以下(10~30m2/g)の範囲であり、平均一次粒子径が0.05μm以上、0.3μm以下(0.05~0.3μm)の範囲であり、平均二次粒子径が0.2μm以上、1μm以下(0.2~1μm)の範囲である。なお、本明細書では、平均一次粒子径及び平均二次粒子径のことを、それぞれ単に一次粒子径及び二次粒子径とも称する。導電材は、カーボンブラックと繊維状炭素を混合したものである。集電体は、表面粗さを規定したアルミ基材からなる。
The positive electrode active material (olivine positive electrode material) has a specific surface area of 10 m 2 / g or more and 30 m 2 / g or less (10 to 30 m 2 / g), and an average primary particle diameter of 0.05 μm or more and 0.3 μm The average secondary particle diameter is in the range of 0.2 to 1 μm (0.2 to 1 μm). In the present specification, the mean primary particle size and the mean secondary particle size are also referred to simply as the primary particle size and the secondary particle size, respectively. The conductive material is a mixture of carbon black and fibrous carbon. The current collector is made of an aluminum base having a defined surface roughness.
さらに、本発明によるリチウムイオン二次電池用正極は、合剤層に占める正極活物質の含有量が重量百分率で90%以上、93%以下であるのが好ましいが、この範囲に限られるものではない。導電材に占める繊維状炭素の重量百分率は、20%以上、60%未満であるのが好ましいが、この範囲に限られるものではない。電極密度は、2.0g/cc(g/cm3)以上、2.3g/cc(g/cm3)以下であるのが好ましいが、この範囲に限られるものではない。
Furthermore, in the positive electrode for a lithium ion secondary battery according to the present invention, the content of the positive electrode active material in the mixture layer is preferably 90% or more and 93% or less by weight, but is limited to this range Absent. The weight percentage of fibrous carbon in the conductive material is preferably 20% or more and less than 60%, but is not limited to this range. The electrode density is preferably 2.0 g / cc (g / cm 3 ) or more and 2.3 g / cc (g / cm 3 ) or less, but is not limited to this range.
電池の高容量化には、正極の厚膜化、正極中の正極活物質の高含率化及び正極の高密度化が必要である。微細一次粒子で構成されるオリビン正極材を用いてこの正極仕様を達成するためには、高い結着性を有する正極構成が必要である。バインダの検討による結着性向上も考えられるが、本発明では、前述のように集電体と合剤層との界面の結着性に着目した。一般に、アルミ集電体の表面を粗面化し、集電体と合剤層との界面の結着性を向上させる試みがなされている。本発明では、微細一次粒子で構成されるオリビン正極材について、以下の観点から結着性の向上を検討した。即ち、アルミ基材集電体の表面にピットを形成し、ピット径とオリビン正極材の平均二次粒子径との関係、さらに、正極中に分散した、導電材として用いる繊維状炭素の効果である。
In order to increase the capacity of the battery, it is necessary to increase the thickness of the positive electrode, increase the content of the positive electrode active material in the positive electrode, and increase the density of the positive electrode. In order to achieve this positive electrode specification using an olivine positive electrode material composed of fine primary particles, a positive electrode configuration having high binding properties is required. Although it is conceivable to improve the binding property by examining the binder, in the present invention, attention was paid to the binding property of the interface between the current collector and the mixture layer as described above. In general, attempts have been made to roughen the surface of the aluminum current collector to improve the binding property of the interface between the current collector and the mixture layer. In the present invention, the improvement of the binding property of the olivine positive electrode material composed of fine primary particles was studied from the following viewpoints. That is, pits are formed on the surface of the aluminum base current collector, and the relationship between the pit diameter and the average secondary particle diameter of the olivine positive electrode material, and further, the effect of fibrous carbon used as a conductive material dispersed in the positive electrode is there.
「ピット」とは、アルミ基材集電体の表面に形成された穴のことであり、開口部の形状と深さ方向の形状は任意とする。「ピット径」とは、ピットの開口部における開口の最大長さ(最大幅)のことである。本明細書では、各ピットのピット径の平均である平均ピット径のことを、単にピット径とも称する。
The "pit" is a hole formed on the surface of the aluminum base current collector, and the shape of the opening and the shape in the depth direction are arbitrary. The "pit diameter" is the maximum length (maximum width) of the opening at the pit opening. In the present specification, the average pit diameter, which is the average of the pit diameters of the respective pits, is also simply referred to as the pit diameter.
ピットに正極活物質(オリビン正極材)の一部と繊維状炭素の一部が入り込むことで、アンカー効果により集電体と合剤層との界面の結着性を増すことができる。ピットの中に入るオリビン正極材は、一次粒子と二次粒子のどちらでもよい。但し、ピット径とオリビン正極材の粒子径との関係は、粒子径の大きい二次粒子により定める。
Since a part of the positive electrode active material (olivine positive electrode material) and a part of fibrous carbon enter the pits, it is possible to increase the binding property of the interface between the current collector and the mixture layer by the anchor effect. The olivine positive electrode material that enters the pits may be either primary particles or secondary particles. However, the relationship between the pit diameter and the particle diameter of the olivine positive electrode material is determined by secondary particles having a large particle diameter.
ピット径とオリビン正極材の平均二次粒子径の関係について以下に示す。一般に、アルミ基材を用いた集電体では、酸またはアルカリを用いる表面処理により、基材表面にピット径が数μm、深さが数μmのピットを形成することができる。このピットの中にオリビン正極材の二次粒子が入り込み、アンカー効果が発生し、集電体と合剤層との界面の結着性が増す。ここで、ピット径と二次粒子径の相対関係により、結着性が異なる。例えば、ピット径と二次粒子径がほぼ同一なら、オリビン正極材の二次粒子はピットに入ることが困難となる。一方、ピット径に対してオリビン正極材の二次粒子径が小さすぎれば、アンカー効果が低減してしまう。
The relationship between the pit diameter and the average secondary particle diameter of the olivine positive electrode material is shown below. Generally, in a current collector using an aluminum base, pits having a diameter of several μm and a depth of several μm can be formed on the surface of the base by surface treatment using an acid or an alkali. Secondary particles of the olivine positive electrode material intrude into the pits to generate an anchor effect, and the binding property of the interface between the current collector and the mixture layer is increased. Here, the binding ability differs depending on the relative relationship between the pit diameter and the secondary particle diameter. For example, if the pit diameter and the secondary particle diameter are substantially the same, it is difficult for the secondary particles of the olivine positive electrode material to enter the pit. On the other hand, if the secondary particle diameter of the olivine positive electrode material is too small relative to the pit diameter, the anchor effect is reduced.
このため、本発明では、集電体表面のピット径に適したオリビン正極材の二次粒子径を、以下のように規定した。即ち、オリビン正極材の平均二次粒子径は、0.2μm以上、1μm以下であり、平均ピット径との比である平均二次粒子径/平均ピット径が0.1以上、0.5以下であるとした。この規定により、ピットに入った適切な量のオリビン正極材で、集電体と合剤層との界面の結着性を増すことができるとともに、正極の高密度化が可能である。
For this reason, in the present invention, the secondary particle diameter of the olivine positive electrode material suitable for the pit diameter on the surface of the current collector is specified as follows. That is, the average secondary particle diameter of the olivine positive electrode material is 0.2 μm or more and 1 μm or less, and the ratio of the average secondary particle diameter to the average pit diameter is 0.1 or more and 0.5 or less. It is assumed. According to this definition, the binding property of the interface between the current collector and the mixture layer can be increased and the density of the positive electrode can be increased by using an appropriate amount of olivine positive electrode material in the pit.
次に、正極中に分散した繊維状炭素の効果を説明するため、正極に用いる導電材について述べる。正極では、電子伝導性を確保するため、導電材を正極中に分散させる。導電材としては、微細な粒状のアセチレンブラック及び繊維状炭素が挙げられる。
Next, in order to explain the effect of fibrous carbon dispersed in the positive electrode, the conductive material used for the positive electrode will be described. In the positive electrode, a conductive material is dispersed in the positive electrode in order to secure electron conductivity. As the conductive material, fine granular acetylene black and fibrous carbon can be mentioned.
図3を用いて、正極中に分散させた繊維状炭素の効果について以下に示す。図3は、本発明によるリチウムイオン二次電池用正極の断面図であり、アルミ基材集電体1の表面に形成されたピット2と、オリビン正極材の二次粒子3と、繊維状炭素4を示している。図3では、オリビン正極材の粒子(一次粒子と二次粒子)のうち、代表して二次粒子のみを示している。一次粒子についても、二次粒子と同様の説明があてはまる。
The effect of fibrous carbon dispersed in the positive electrode is shown below using FIG. FIG. 3 is a cross-sectional view of a positive electrode for a lithium ion secondary battery according to the present invention, showing pits 2 formed on the surface of an aluminum base current collector 1, secondary particles 3 of an olivine positive electrode material and fibrous carbon. 4 is shown. In FIG. 3, only secondary particles are shown as a representative among particles (primary particles and secondary particles) of the olivine positive electrode material. The same explanation applies to primary particles as to secondary particles.
オリビン正極材の二次粒子3は、ピット2の中に入ることができる。ここで、導電材として用いる繊維状炭素4が合剤スラリー中に分散されていれば、繊維状炭素4もピット2の中に入り、繊維状炭素4が合剤層の厚さ方向に分布して合剤の結着性を向上させることが可能となる。しかしながら、導電材に含まれる繊維状炭素4が多すぎる場合は、繊維状炭素4とオリビン正極材が凝集体を形成し、ピット2に入ることができない。また、繊維状炭素4が少ない場合は、繊維状炭素4によるアンカー効果が低減してしまう。このため、全導電材に含まれる繊維状炭素4の含有量を規定することが必要である。全導電材に占める繊維状炭素4の割合は、重量百分率で20%以上、60%未満と規定した。
The secondary particles 3 of the olivine positive electrode material can enter into the pits 2. Here, if fibrous carbon 4 used as the conductive material is dispersed in the mixture slurry, fibrous carbon 4 also enters pit 2 and fibrous carbon 4 is distributed in the thickness direction of the mixture layer. Thus, it is possible to improve the binding property of the combination. However, when the amount of fibrous carbon 4 contained in the conductive material is too large, the fibrous carbon 4 and the olivine positive electrode material form an aggregate and can not enter the pit 2. When the amount of fibrous carbon 4 is small, the anchoring effect of the fibrous carbon 4 is reduced. For this reason, it is necessary to define the content of fibrous carbon 4 contained in all the conductive materials. The proportion of fibrous carbon 4 in the entire conductive material was defined as 20% or more and less than 60% by weight.
ここで用いる具体的な繊維状炭素としては、気相成長カーボン繊維、カーボンナノチューブ(CNT)及びカーボンナノファイバー(CNF)が挙げられる。繊維状炭素は、優れた特性を有するが、合剤スラリー中に分散させることが難しく、スラリー中で凝集物を形成することがある。スラリー中の凝集物は、電極塗布工程で合剤層を一定にすることを阻害するため、凝集物が形成されない合剤組成が望ましい。
Specific fibrous carbons used herein include vapor grown carbon fibers, carbon nanotubes (CNTs) and carbon nanofibers (CNF). Although fibrous carbon has excellent properties, it is difficult to disperse in a mixture slurry and may form aggregates in the slurry. Since the aggregates in the slurry inhibit the mixture layer from becoming constant in the electrode coating process, a mixture composition in which no aggregates are formed is desirable.
次に、アセチレンブラックの効果について以下に示す。アセチレンブラックは、粒径数十nmの微細な粒状粒子で、スラリー中の分散性に優れている。このため、凝集物の形成を抑制しながら、正極中の電子導電性を確保するために有効である。
Next, the effects of acetylene black are shown below. Acetylene black is fine particulate particles having a particle diameter of several tens of nm, and is excellent in dispersibility in a slurry. For this reason, it is effective in order to ensure the electronic conductivity in a positive electrode, suppressing formation of an aggregate.
このような繊維状炭素及びアセチレンブラックの特性を考慮し、全導電材に占める繊維状炭素の割合が重量百分率で20%以上、60%未満であることを規定した。ここで、繊維状炭素の添加量が20%未満であれば上記の効果が少なく、60%以上であればスラリー中の凝集物が多いため正極の作成が困難となる。
In consideration of such characteristics of fibrous carbon and acetylene black, it was specified that the ratio of fibrous carbon in the entire conductive material was 20% or more and less than 60% by weight. Here, if the addition amount of fibrous carbon is less than 20%, the above effect is small, and if it is 60% or more, a large amount of agglomerates in the slurry makes it difficult to form a positive electrode.
以上の電極構成により、合剤層に占める正極活物質(オリビン正極材)の含有量が重量百分率で90~93%、電極密度が2.0~2.3g/ccの高密度正極においても、高体積エネルギー密度及び高率放電に優れた正極を得ることができる。
With the above electrode configuration, the content of the positive electrode active material (olivine positive electrode material) occupied in the mixture layer is 90 to 93% by weight percentage, and even in a high density positive electrode having an electrode density of 2.0 to 2.3 g / cc, A positive electrode excellent in high volume energy density and high rate discharge can be obtained.
本発明は、以上のように、高安全の大型大容量リチウムイオン二次電池を得ることを目的とし、オリビン正極材の正極構成を規定したものである。
As described above, the present invention aims to obtain a high-safety large-capacity large-capacity lithium ion secondary battery, and defines the positive electrode configuration of the olivine positive electrode material.
本発明によるリチウムイオン二次電池用正極、リチウムイオン二次電池、及び電池モジュールは、以下のような特徴を持つ。
(1)正極活物質、導電材及びバインダを含む合剤層と、合剤層が表面に形成された集電体とを備え、正極活物質が化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、導電材は繊維状炭素を含み、集電体の表面にはピットが形成され、正極活物質の一部と繊維状炭素の一部はピットに入り込んでいる。
(2)(1)に記載のリチウムイオン二次電池用正極において、正極活物質は、平均二次粒子径が0.2μm以上、1μm以下であり、平均二次粒子径とピットの平均ピット径との比である平均二次粒子径/平均ピット径は、0.1以上、0.5以下であるのが好ましい。
(3)(1)または(2)に記載のリチウムイオン二次電池用正極において、集電体の表面粗さRaは、0.3μm以上、1μm以下であるのが好ましい。
(4)(1)から(3)のいずれか1つに記載のリチウムイオン二次電池用正極において、導電材に占める繊維状炭素の重量百分率は、20%以上、60%未満であるのが好ましい。
(5)(1)から(4)のいずれか1つに記載のリチウムイオン二次電池用正極において、合剤層に占める正極活物質の含有量は、重量百分率で90%以上、93%以下であるのが好ましい。
(6)(1)から(5)のいずれか1つに記載のリチウムイオン二次電池用正極において、電極密度が2.0g/cc以上、2.3g/cc以下であるのが好ましい。
(7)(1)~(6)のいずれか1つに記載のリチウムイオン二次電池用正極を用いるリチウムイオン二次電池。
(8)(7)に記載のリチウムイオン二次電池が電気的に複数接続された電池モジュール。 The positive electrode for a lithium ion secondary battery, the lithium ion secondary battery, and the battery module according to the present invention have the following features.
(1) A mixture layer containing a positive electrode active material, a conductive material and a binder, and a current collector having the mixture layer formed on the surface, the positive electrode active material has a chemical formula Li a M x PO 4 (M is Fe A transition metal containing at least one of the following: and Mn, in a positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) The conductive material contains fibrous carbon, and a pit is formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon are in the pit.
(2) In the positive electrode for a lithium ion secondary battery according to (1), the positive electrode active material has an average secondary particle diameter of 0.2 μm or more and 1 μm or less, and an average secondary particle diameter and an average pit diameter of pits It is preferable that the average secondary particle diameter / average pit diameter, which is the ratio thereof, be 0.1 or more and 0.5 or less.
(3) In the positive electrode for a lithium ion secondary battery according to (1) or (2), the surface roughness Ra of the current collector is preferably 0.3 μm or more and 1 μm or less.
(4) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (3), the weight percentage of fibrous carbon in the conductive material is 20% or more and less than 60%. preferable.
(5) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (4), the content of the positive electrode active material in the mixture layer is 90% or more and 93% or less by weight Is preferred.
(6) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (5), the electrode density is preferably 2.0 g / cc or more and 2.3 g / cc or less.
(7) A lithium ion secondary battery using the positive electrode for a lithium ion secondary battery according to any one of (1) to (6).
(8) A battery module in which a plurality of lithium ion secondary batteries according to (7) are electrically connected.
(1)正極活物質、導電材及びバインダを含む合剤層と、合剤層が表面に形成された集電体とを備え、正極活物質が化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、導電材は繊維状炭素を含み、集電体の表面にはピットが形成され、正極活物質の一部と繊維状炭素の一部はピットに入り込んでいる。
(2)(1)に記載のリチウムイオン二次電池用正極において、正極活物質は、平均二次粒子径が0.2μm以上、1μm以下であり、平均二次粒子径とピットの平均ピット径との比である平均二次粒子径/平均ピット径は、0.1以上、0.5以下であるのが好ましい。
(3)(1)または(2)に記載のリチウムイオン二次電池用正極において、集電体の表面粗さRaは、0.3μm以上、1μm以下であるのが好ましい。
(4)(1)から(3)のいずれか1つに記載のリチウムイオン二次電池用正極において、導電材に占める繊維状炭素の重量百分率は、20%以上、60%未満であるのが好ましい。
(5)(1)から(4)のいずれか1つに記載のリチウムイオン二次電池用正極において、合剤層に占める正極活物質の含有量は、重量百分率で90%以上、93%以下であるのが好ましい。
(6)(1)から(5)のいずれか1つに記載のリチウムイオン二次電池用正極において、電極密度が2.0g/cc以上、2.3g/cc以下であるのが好ましい。
(7)(1)~(6)のいずれか1つに記載のリチウムイオン二次電池用正極を用いるリチウムイオン二次電池。
(8)(7)に記載のリチウムイオン二次電池が電気的に複数接続された電池モジュール。 The positive electrode for a lithium ion secondary battery, the lithium ion secondary battery, and the battery module according to the present invention have the following features.
(1) A mixture layer containing a positive electrode active material, a conductive material and a binder, and a current collector having the mixture layer formed on the surface, the positive electrode active material has a chemical formula Li a M x PO 4 (M is Fe A transition metal containing at least one of the following: and Mn, in a positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1) The conductive material contains fibrous carbon, and a pit is formed on the surface of the current collector, and a part of the positive electrode active material and a part of the fibrous carbon are in the pit.
(2) In the positive electrode for a lithium ion secondary battery according to (1), the positive electrode active material has an average secondary particle diameter of 0.2 μm or more and 1 μm or less, and an average secondary particle diameter and an average pit diameter of pits It is preferable that the average secondary particle diameter / average pit diameter, which is the ratio thereof, be 0.1 or more and 0.5 or less.
(3) In the positive electrode for a lithium ion secondary battery according to (1) or (2), the surface roughness Ra of the current collector is preferably 0.3 μm or more and 1 μm or less.
(4) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (3), the weight percentage of fibrous carbon in the conductive material is 20% or more and less than 60%. preferable.
(5) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (4), the content of the positive electrode active material in the mixture layer is 90% or more and 93% or less by weight Is preferred.
(6) In the positive electrode for a lithium ion secondary battery according to any one of (1) to (5), the electrode density is preferably 2.0 g / cc or more and 2.3 g / cc or less.
(7) A lithium ion secondary battery using the positive electrode for a lithium ion secondary battery according to any one of (1) to (6).
(8) A battery module in which a plurality of lithium ion secondary batteries according to (7) are electrically connected.
以上の特徴(1)~(6)については、(1)に記載の条件を満たしていれば、(2)~(6)に記載の条件を必ずしも満たさなくても、本発明の効果を得ることができる。例えば、集電体の表面粗さRaは、集電体全体についての平均値であり、(2)に記載の平均ピット径と一対一に対応しているとは限らない。即ち、(2)の条件を満たすようなピットに加えて、(2)の条件を満たさない微細なピットが多数存在する場合では、表面粗さRaが1μmを越える場合もあり得るが、このような場合でも本発明は有効である。もちろん、(1)の条件に加えて(2)~(6)の条件を満たせば、本発明の効果は顕著に現れる。
With regard to the above features (1) to (6), the effects of the present invention can be obtained even if the conditions described in (2) to (6) are not necessarily satisfied as long as the conditions described in (1) are satisfied. be able to. For example, the surface roughness Ra of the current collector is an average value for the entire current collector, and does not necessarily correspond one-to-one with the average pit diameter described in (2). That is, in addition to pits satisfying the condition of (2), in the case where a large number of fine pits not satisfying the condition of (2) exist, the surface roughness Ra may exceed 1 μm. Even in any case, the present invention is effective. Of course, if the conditions of (2) to (6) are satisfied in addition to the condition of (1), the effects of the present invention will be remarkable.
本発明によれば、プラグインハイブリッド自動車、または電気自動車などの高容量かつ高安全が必要とされる機器への応用に適したリチウムイオン二次電池を提供できる。
According to the present invention, it is possible to provide a lithium ion secondary battery suitable for application to devices requiring high capacity and high safety, such as plug-in hybrid vehicles or electric vehicles.
以下、本発明によるリチウムイオン二次電池用正極の例について、詳細に説明する。
Hereinafter, examples of the positive electrode for a lithium ion secondary battery according to the present invention will be described in detail.
〔リチウムイオン二次電池用正極の材料〕
リチウムイオン二次電池用正極は、以下の特徴を有するオリビン正極材(正極活物質)を有する。 [Material of positive electrode for lithium ion secondary battery]
The positive electrode for lithium ion secondary batteries has an olivine positive electrode material (positive electrode active material) having the following features.
リチウムイオン二次電池用正極は、以下の特徴を有するオリビン正極材(正極活物質)を有する。 [Material of positive electrode for lithium ion secondary battery]
The positive electrode for lithium ion secondary batteries has an olivine positive electrode material (positive electrode active material) having the following features.
オリビン正極材の比表面積は10~30m2/gである。ここで、比表面積が10m2/g未満では、正極材とリチウムイオンとの反応面積が少ないために電極抵抗が上昇する。比表面積が30m2/gを超える場合には、電極密度の向上と正極内の導電ネットワーク形成を同時に達成することができない。特に、オリビン正極材の場合は電子伝導性が低いため、導電ネットワークが形成できなければ高抵抗となり、所望の放電容量を得ることができない。
The specific surface area of the olivine positive electrode material is 10 to 30 m 2 / g. Here, when the specific surface area is less than 10 m 2 / g, the electrode resistance increases because the reaction area between the positive electrode material and the lithium ion is small. When the specific surface area exceeds 30 m 2 / g, it is not possible to simultaneously achieve the improvement of the electrode density and the formation of a conductive network in the positive electrode. In particular, in the case of the olivine positive electrode material, since the electron conductivity is low, if the conductive network can not be formed, the resistance becomes high and a desired discharge capacity can not be obtained.
オリビン正極材の平均一次粒子径は0.05~0.3μmである。平均一次粒子径が0.05μm未満では、電極塗布時に凝集物を形成し、塗工不良となる。一方、平均一次粒子径が0.3μmを越えてしまうと、正極活物質自体の反応性が低下して、所望の放電容量が得られない。
The average primary particle diameter of the olivine positive electrode material is 0.05 to 0.3 μm. If the average primary particle size is less than 0.05 μm, aggregates are formed at the time of electrode coating, resulting in coating failure. On the other hand, when the average primary particle size exceeds 0.3 μm, the reactivity of the positive electrode active material itself is reduced, and a desired discharge capacity can not be obtained.
オリビン正極材の平均二次粒子径は0.2~1μmである。平均二次粒子径が0.2μm未満であれば、電極塗布時に凝集物を形成し、塗工不良となる。一方、平均二次粒子径が1.1μm以上では、電池容量向上のための高密度電極を得ることが難しい。
The average secondary particle diameter of the olivine positive electrode material is 0.2 to 1 μm. If the average secondary particle diameter is less than 0.2 μm, aggregates are formed at the time of electrode coating, resulting in coating failure. On the other hand, when the average secondary particle diameter is 1.1 μm or more, it is difficult to obtain a high density electrode for improving the battery capacity.
なお、オリビン正極材の組成は、化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物である。ここで、Liの組成を示すaの範囲を0<a≦1.1とし、以下にその理由を示す。電極を構成するオリビン正極材中のLi含有量は、正極の充電状態により0<a≦1.0となる。さらに、オリビン正極材にLiが過剰で、MサイトにLiが入る場合もあるため、Liの組成を示すaの範囲を0<a≦1.1とした。また、遷移金属Mの組成を示すxの範囲を0.9≦x≦1.1としたのは、Liが過剰になった場合を考慮して0.9≦xとし、遷移金属Mが過剰になった場合を考慮してx≦1.1としたためである。
The composition of the olivine cathode material has the formula Li a M x PO 4 (M is a transition metal containing at least one of Fe and Mn .0 <a ≦ 1.1,0.9 ≦ x ≦ 1.1) It is a complex oxide having an olivine structure represented by Here, the range of a indicating the composition of Li is 0 <a ≦ 1.1, and the reason is shown below. Li content in the olivine positive electrode material which comprises an electrode becomes 0 <a <= 1.0 according to the charge condition of a positive electrode. Furthermore, since Li may be excessive in the olivine positive electrode material and Li may enter the M site, the range of a showing the composition of Li was set to 0 <a ≦ 1.1. In addition, the range of x representing the composition of the transition metal M is 0.9 ≦ x ≦ 1.1 in consideration of the case where Li is excessive, and is 0.9 ≦ x, and the transition metal M is excessive It is because it is referred to as x <= 1.1 in consideration of the case where it became.
次に、リチウムイオン二次電池用正極のアルミ基材集電体は、以下の特徴を有する。即ち、表面にピット径が2~7μmのピットを有し、JIS2001に従う表面粗さRaが0.3~1μmのアルミ基材集電体である。アルミ基材表面上のピット径と正極材の二次粒子径との関係については前述したため、本発明で規定する表面粗さRaについて以下に述べる。
Next, the aluminum-based current collector of the positive electrode for a lithium ion secondary battery has the following features. That is, it is an aluminum base current collector having pits having a pit diameter of 2 to 7 μm on the surface and having a surface roughness Ra of 0.3 to 1 μm according to JIS 2001. Since the relationship between the pit diameter on the aluminum base material surface and the secondary particle diameter of the positive electrode material has been described above, the surface roughness Ra defined in the present invention will be described below.
Raが0.3μm未満の場合、アルミ基材集電体の表面上に形成されるピットの密度が低く、正極合剤とアルミ基材集電体との界面に働くアンカー効果が小さい。このため、所望の電極密度の正極を得ることができず、圧密化加工で剥離が発生してしまう。一方、Raが1μmを超える場合は、アルミ基材集電体の深さ方向に形成されたピットとピットの高密度化とにより、アルミ基材集電体の強度が低下し、電極作製プロセスで電極の破断が発生し、電極作製の歩留まりが低下する。このため、アルミ基材集電体の表面粗さRaは、0.3μm以上、1μm以下が望ましい。
When Ra is less than 0.3 μm, the density of pits formed on the surface of the aluminum-based current collector is low, and the anchor effect acting on the interface between the positive electrode mixture and the aluminum-based current collector is small. For this reason, the positive electrode of desired electrode density can not be obtained, but peeling will generate | occur | produce in consolidation process. On the other hand, when Ra exceeds 1 μm, the strength of the aluminum base current collector is lowered due to the pits formed in the depth direction of the aluminum base current collector and the density of the pits, so The breakage of the electrode occurs, and the yield of electrode fabrication decreases. Therefore, the surface roughness Ra of the aluminum base current collector is desirably 0.3 μm or more and 1 μm or less.
次に、アルミ基材集電体上への粗面化プロセスについて述べる。アルミ基材集電体へのサンドブラストや、酸またはアルカリによるエッチングで、粗面化を行うことができる。アンカー効果に有効なピットをアルミ基材集電体上に形成するためには、エッチング処理、または、エッチング処理と他の処理方法(例えば、サンドブラスト)を組み合わせて粗面化を行うのが望ましい。
Next, the roughening process on the aluminum base current collector will be described. Roughening can be performed by sand blasting on an aluminum base current collector or etching with acid or alkali. In order to form pits effective for the anchor effect on the aluminum base current collector, it is desirable to perform roughening by etching or a combination of etching and another processing method (for example, sand blast).
オリビン正極、電池及びモジュールの作製方法の概略を以下に示す。
An outline of the method for producing the olivine positive electrode, the battery and the module is shown below.
〔オリビン正極材料の製造方法〕
微細に粉砕したシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことでオリビン正極材を得た。 [Method for producing olivine positive electrode material]
Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed so as to have a molar ratio of 2: 2: 1.0, and this is calcined under a nitrogen atmosphere at 300 ° C. The precursor was obtained. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain an olivine positive electrode material.
微細に粉砕したシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことでオリビン正極材を得た。 [Method for producing olivine positive electrode material]
Finely pulverized iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate are mixed so as to have a molar ratio of 2: 2: 1.0, and this is calcined under a nitrogen atmosphere at 300 ° C. The precursor was obtained. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C. to obtain an olivine positive electrode material.
〔リチウムイオン二次電池の製造方法〕
リチウムイオン二次電池は、円筒型、積層型、コイン型、及びカード型等のうちいずれの型でもよく、特に限定されない。本明細書では、例として、円筒型リチウムイオン二次電池の製造方法を説明する。 [Method of manufacturing lithium ion secondary battery]
The lithium ion secondary battery may be any type of cylindrical type, laminated type, coin type, card type and the like, and is not particularly limited. In this specification, a method of manufacturing a cylindrical lithium ion secondary battery is described as an example.
リチウムイオン二次電池は、円筒型、積層型、コイン型、及びカード型等のうちいずれの型でもよく、特に限定されない。本明細書では、例として、円筒型リチウムイオン二次電池の製造方法を説明する。 [Method of manufacturing lithium ion secondary battery]
The lithium ion secondary battery may be any type of cylindrical type, laminated type, coin type, card type and the like, and is not particularly limited. In this specification, a method of manufacturing a cylindrical lithium ion secondary battery is described as an example.
1)正極の作製方法
上述のようにして作製したオリビン正極材に、アセチレンブラック及び繊維状炭素等の導電材を添加して混合する。本明細書で述べるオリビン正極材は、高比表面積であり、電極作製時に用いる有機溶媒の吸液性が高い。このため、予め有機溶媒であるN-メチル-2-ピロリジノン(以下、「NMP」と略す)を正極活物質と混合して正極活物質にNMPを吸液させた後、正極活物質に導電材を分散させる。この後、この混合物にNMPなどの溶媒に溶解させたバインダを加えて混練し、正極スラリーを得る。ここでバインダとして、ポリフッ化ビニリデン(以下、「PVDF」と略す)を用いる。次に、このスラリーをアルミニウム基材集電体上に塗布した後、乾燥して正極板を作製する。 1) Production Method of Positive Electrode A conductive material such as acetylene black and fibrous carbon is added to and mixed with the olivine positive electrode material produced as described above. The olivine positive electrode material described in the present specification has a high specific surface area, and the liquid absorbability of the organic solvent used at the time of producing the electrode is high. For this reason, N-methyl-2-pyrrolidinone (hereinafter abbreviated as "NMP"), which is an organic solvent, is mixed with the positive electrode active material in advance and the positive electrode active material absorbs NMP, and then the conductive material is made the positive electrode active material. Distribute Thereafter, a binder dissolved in a solvent such as NMP is added to the mixture, and the mixture is kneaded to obtain a positive electrode slurry. Here, polyvinylidene fluoride (hereinafter, abbreviated as "PVDF") is used as a binder. Next, this slurry is applied onto an aluminum base current collector and then dried to prepare a positive electrode plate.
上述のようにして作製したオリビン正極材に、アセチレンブラック及び繊維状炭素等の導電材を添加して混合する。本明細書で述べるオリビン正極材は、高比表面積であり、電極作製時に用いる有機溶媒の吸液性が高い。このため、予め有機溶媒であるN-メチル-2-ピロリジノン(以下、「NMP」と略す)を正極活物質と混合して正極活物質にNMPを吸液させた後、正極活物質に導電材を分散させる。この後、この混合物にNMPなどの溶媒に溶解させたバインダを加えて混練し、正極スラリーを得る。ここでバインダとして、ポリフッ化ビニリデン(以下、「PVDF」と略す)を用いる。次に、このスラリーをアルミニウム基材集電体上に塗布した後、乾燥して正極板を作製する。 1) Production Method of Positive Electrode A conductive material such as acetylene black and fibrous carbon is added to and mixed with the olivine positive electrode material produced as described above. The olivine positive electrode material described in the present specification has a high specific surface area, and the liquid absorbability of the organic solvent used at the time of producing the electrode is high. For this reason, N-methyl-2-pyrrolidinone (hereinafter abbreviated as "NMP"), which is an organic solvent, is mixed with the positive electrode active material in advance and the positive electrode active material absorbs NMP, and then the conductive material is made the positive electrode active material. Distribute Thereafter, a binder dissolved in a solvent such as NMP is added to the mixture, and the mixture is kneaded to obtain a positive electrode slurry. Here, polyvinylidene fluoride (hereinafter, abbreviated as "PVDF") is used as a binder. Next, this slurry is applied onto an aluminum base current collector and then dried to prepare a positive electrode plate.
2)負極の作製方法
負極活物質である非晶質炭素材に、アセチレンブラック及び炭素繊維などの導電材を加え、混合する。これに結着剤としてNMPに溶解したPVDFまたはゴム系バインダー(SBR等)を加えた後に混練し、負極スラリーを得る。次に、このスラリーを銅箔上に塗布した後、乾燥して負極板を作製する。 2) Production Method of Negative Electrode A conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material which is a negative electrode active material. After adding PVDF or a rubber-based binder (SBR etc.) dissolved in NMP as a binder to this, it knead | mixes, and obtains a negative electrode slurry. Next, this slurry is applied onto a copper foil and then dried to prepare a negative electrode plate.
負極活物質である非晶質炭素材に、アセチレンブラック及び炭素繊維などの導電材を加え、混合する。これに結着剤としてNMPに溶解したPVDFまたはゴム系バインダー(SBR等)を加えた後に混練し、負極スラリーを得る。次に、このスラリーを銅箔上に塗布した後、乾燥して負極板を作製する。 2) Production Method of Negative Electrode A conductive material such as acetylene black and carbon fiber is added to and mixed with an amorphous carbon material which is a negative electrode active material. After adding PVDF or a rubber-based binder (SBR etc.) dissolved in NMP as a binder to this, it knead | mixes, and obtains a negative electrode slurry. Next, this slurry is applied onto a copper foil and then dried to prepare a negative electrode plate.
3)電池の形成方法
正極板及び負極板は、電極の両面にスラリーを塗布した後に乾燥する。さらに、圧延加工により緻密化し、所望の形状に裁断して電極を作製する。次に、これらの電極に電流を流すためのリード片を形成する。これら正極及び負極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。次に、リード片と電池缶を接続した後、非水系電解液を注入し、最後に、電池缶を封缶してリチウムイオン二次電池を得る。 3) Method of Forming Battery The positive electrode plate and the negative electrode plate are dried after the slurry is applied to both sides of the electrode. Furthermore, it is densified by rolling and cut into a desired shape to produce an electrode. Next, lead pieces for flowing current to these electrodes are formed. A porous insulating material separator is sandwiched between the positive electrode and the negative electrode, and after being wound, it is inserted into a battery can made of stainless steel or aluminum. Next, after the lead pieces and the battery can are connected, a non-aqueous electrolytic solution is injected, and finally, the battery can is sealed to obtain a lithium ion secondary battery.
正極板及び負極板は、電極の両面にスラリーを塗布した後に乾燥する。さらに、圧延加工により緻密化し、所望の形状に裁断して電極を作製する。次に、これらの電極に電流を流すためのリード片を形成する。これら正極及び負極の間に多孔質絶縁材のセパレータを挟みこみ、これを捲回した後、ステンレスやアルミニウムで成型された電池缶に挿入する。次に、リード片と電池缶を接続した後、非水系電解液を注入し、最後に、電池缶を封缶してリチウムイオン二次電池を得る。 3) Method of Forming Battery The positive electrode plate and the negative electrode plate are dried after the slurry is applied to both sides of the electrode. Furthermore, it is densified by rolling and cut into a desired shape to produce an electrode. Next, lead pieces for flowing current to these electrodes are formed. A porous insulating material separator is sandwiched between the positive electrode and the negative electrode, and after being wound, it is inserted into a battery can made of stainless steel or aluminum. Next, after the lead pieces and the battery can are connected, a non-aqueous electrolytic solution is injected, and finally, the battery can is sealed to obtain a lithium ion secondary battery.
4)電池のモジュール化
上記リチウムイオン二次電池を使用する形態例の1つとして、複数個の電池を直列に接続した電池モジュールが挙げられる。本発明のリチウムイオン二次電池を用いた電池モジュールは、高容量化することができる。 4) Modularization of Battery As one of the embodiments using the above lithium ion secondary battery, a battery module in which a plurality of batteries are connected in series can be mentioned. The battery module using the lithium ion secondary battery of the present invention can have a high capacity.
上記リチウムイオン二次電池を使用する形態例の1つとして、複数個の電池を直列に接続した電池モジュールが挙げられる。本発明のリチウムイオン二次電池を用いた電池モジュールは、高容量化することができる。 4) Modularization of Battery As one of the embodiments using the above lithium ion secondary battery, a battery module in which a plurality of batteries are connected in series can be mentioned. The battery module using the lithium ion secondary battery of the present invention can have a high capacity.
〔実施例〕
以下、本発明を実施例により具体的に説明するが、以下の実施例は本発明の範囲を限定するものではない。なお、以下の実施例では、オリビン正極材を構成する遷移金属Mとして、Feのみを用いた場合とFeとMnを用いた場合について述べる。遷移金属MとしてMnのみを用いても、以下の実施例と同様の効果を得ることができる。これは、遷移金属MとしてMnのみを用いたオリビン正極材は、遷移金属MとしてFeのみを用いたオリビン正極材やFeとMnを用いたオリビン正極材と同様の結晶構造を持つからである。 〔Example〕
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the following examples do not limit the scope of the present invention. In the following examples, the case of using only Fe and the case of using Fe and Mn as the transition metal M constituting the olivine positive electrode material will be described. Even when only Mn is used as the transition metal M, the same effect as that of the following embodiment can be obtained. This is because the olivine cathode material using only Mn as the transition metal M has the same crystal structure as the olivine cathode material using only Fe as the transition metal M and the olivine cathode material using Fe and Mn.
以下、本発明を実施例により具体的に説明するが、以下の実施例は本発明の範囲を限定するものではない。なお、以下の実施例では、オリビン正極材を構成する遷移金属Mとして、Feのみを用いた場合とFeとMnを用いた場合について述べる。遷移金属MとしてMnのみを用いても、以下の実施例と同様の効果を得ることができる。これは、遷移金属MとしてMnのみを用いたオリビン正極材は、遷移金属MとしてFeのみを用いたオリビン正極材やFeとMnを用いたオリビン正極材と同様の結晶構造を持つからである。 〔Example〕
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the following examples do not limit the scope of the present invention. In the following examples, the case of using only Fe and the case of using Fe and Mn as the transition metal M constituting the olivine positive electrode material will be described. Even when only Mn is used as the transition metal M, the same effect as that of the following embodiment can be obtained. This is because the olivine cathode material using only Mn as the transition metal M has the same crystal structure as the olivine cathode material using only Fe as the transition metal M and the olivine cathode material using Fe and Mn.
〔実施例1〕
<オリビン正極材の作製>
ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFePO4からなるオリビン正極材(1)を得た。被覆した炭素量は2wt%であった。 Example 1
<Fabrication of olivine cathode material>
Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate which have been finely ground in a ball mill for 3 hours are mixed in a molar ratio of 2: 2: 1.0, and this is mixed with nitrogen at 300 ° C. It was calcined under an atmosphere to obtain a precursor. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C., to obtain an olivine positive electrode material (1) made of carbon-coated LiFePO 4 . The amount of carbon coated was 2 wt%.
<オリビン正極材の作製>
ボールミルで3時間の微細粉砕を行ったシュウ酸鉄二水和物、リン酸二水素アンモニウム及び炭酸リチウムを、モル比で2:2:1.0となるように混合し、これを300℃の窒素雰囲気下で仮焼して前駆体を得た。その後、前駆体とポリビニルアルコールを混合し、700℃の窒素雰囲気下で8時間の熱処理を行うことで炭素被覆されたLiFePO4からなるオリビン正極材(1)を得た。被覆した炭素量は2wt%であった。 Example 1
<Fabrication of olivine cathode material>
Iron oxalate dihydrate, ammonium dihydrogen phosphate and lithium carbonate which have been finely ground in a ball mill for 3 hours are mixed in a molar ratio of 2: 2: 1.0, and this is mixed with nitrogen at 300 ° C. It was calcined under an atmosphere to obtain a precursor. Thereafter, the precursor and polyvinyl alcohol were mixed, and heat treatment was performed for 8 hours in a nitrogen atmosphere at 700 ° C., to obtain an olivine positive electrode material (1) made of carbon-coated LiFePO 4 . The amount of carbon coated was 2 wt%.
<比表面積の測定方法>
オリビン正極材(1)を、予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中で、300℃で30分間乾燥させた。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出した。その結果、二次粒子の比表面積は30m2/gであった。 <Method of measuring specific surface area>
The olivine positive electrode material (1) was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and after counting signals at the time of desorption with a He / N 2 mixed gas, the specific surface area was calculated by the BET method. As a result, the specific surface area of the secondary particles was 30 m 2 / g.
オリビン正極材(1)を、予め120℃で乾燥させ、試料セルに充填し、これを窒素ガス中で、300℃で30分間乾燥させた。次いで、試料セルを測定部に装着し、He/N2混合ガスによる脱着時の信号をカウント後、BET法により比表面積を算出した。その結果、二次粒子の比表面積は30m2/gであった。 <Method of measuring specific surface area>
The olivine positive electrode material (1) was previously dried at 120 ° C., filled in a sample cell, and dried in nitrogen gas at 300 ° C. for 30 minutes. Next, the sample cell was attached to the measurement unit, and after counting signals at the time of desorption with a He / N 2 mixed gas, the specific surface area was calculated by the BET method. As a result, the specific surface area of the secondary particles was 30 m 2 / g.
<二次粒子径の測定方法>
正極活物質であるオリビン正極材(1)をヘキサメタリン酸水溶液中に分散させ、レーザー光の散乱からオリビン正極材の平均二次粒子径(D50)を算出した。その結果、D50は0.8μmであった。平均ピット径を求めると5.3μmであったので、平均二次粒子径と平均ピット径の比(平均二次粒子径/平均ピット径)は、0.15となる。 <Method of measuring secondary particle diameter>
The olivine positive electrode material (1) which is a positive electrode active material was disperse | distributed in hexametaphosphoric acid aqueous solution, and the average secondary particle diameter (D50) of the olivine positive electrode material was computed from scattering of a laser beam. As a result, D50 was 0.8 μm. Since the average pit diameter was determined to be 5.3 μm, the ratio of the average secondary particle diameter to the average pit diameter (average secondary particle diameter / average pit diameter) is 0.15.
正極活物質であるオリビン正極材(1)をヘキサメタリン酸水溶液中に分散させ、レーザー光の散乱からオリビン正極材の平均二次粒子径(D50)を算出した。その結果、D50は0.8μmであった。平均ピット径を求めると5.3μmであったので、平均二次粒子径と平均ピット径の比(平均二次粒子径/平均ピット径)は、0.15となる。 <Method of measuring secondary particle diameter>
The olivine positive electrode material (1) which is a positive electrode active material was disperse | distributed in hexametaphosphoric acid aqueous solution, and the average secondary particle diameter (D50) of the olivine positive electrode material was computed from scattering of a laser beam. As a result, D50 was 0.8 μm. Since the average pit diameter was determined to be 5.3 μm, the ratio of the average secondary particle diameter to the average pit diameter (average secondary particle diameter / average pit diameter) is 0.15.
<正極の作製>
オリビン正極材(1)を用い、正極板を以下の手順で作製した。バインダを溶媒のNMPに溶解した溶液と、オリビン正極材(1)と、平均粒子径が35nmの炭素系導電材であるアセチレンブラックと、気相成長カーボン繊維であるVGCF(登録商標。直径:150nm、繊維長:10~20μm)を混合して、正極合剤スラリーを作製した。このとき、2種の導電材は、重量比で等量とした。従って、導電材に占める繊維状炭素の重量百分率は50%となる。 <Fabrication of positive electrode>
Using the olivine positive electrode material (1), a positive electrode plate was produced by the following procedure. A solution of a binder dissolved in NMP as a solvent, an olivine positive electrode material (1), acetylene black which is a carbon-based conductive material having an average particle diameter of 35 nm, and VGCF (registered trademark. Diameter: 150 nm) which is vapor grown carbon fiber. , Fiber length: 10 to 20 μm) to prepare a positive electrode mixture slurry. At this time, the two conductive materials were equal in weight ratio. Therefore, the weight percentage of fibrous carbon in the conductive material is 50%.
オリビン正極材(1)を用い、正極板を以下の手順で作製した。バインダを溶媒のNMPに溶解した溶液と、オリビン正極材(1)と、平均粒子径が35nmの炭素系導電材であるアセチレンブラックと、気相成長カーボン繊維であるVGCF(登録商標。直径:150nm、繊維長:10~20μm)を混合して、正極合剤スラリーを作製した。このとき、2種の導電材は、重量比で等量とした。従って、導電材に占める繊維状炭素の重量百分率は50%となる。 <Fabrication of positive electrode>
Using the olivine positive electrode material (1), a positive electrode plate was produced by the following procedure. A solution of a binder dissolved in NMP as a solvent, an olivine positive electrode material (1), acetylene black which is a carbon-based conductive material having an average particle diameter of 35 nm, and VGCF (registered trademark. Diameter: 150 nm) which is vapor grown carbon fiber. , Fiber length: 10 to 20 μm) to prepare a positive electrode mixture slurry. At this time, the two conductive materials were equal in weight ratio. Therefore, the weight percentage of fibrous carbon in the conductive material is 50%.
オリビン正極材(1)、炭素系導電材及びバインダは、重量百分率比で表して、それぞれ91:4:5の割合となるように混合した。従って、合剤層に占める正極の正極活物質(オリビン正極材)の含有量は、重量百分率で91%となる。
The olivine positive electrode material (1), the carbon-based conductive material, and the binder were mixed so as to have a ratio of 91: 4: 5, respectively, as represented by a weight percentage ratio. Therefore, the content of the positive electrode active material (olivine positive electrode material) of the positive electrode occupied in the mixture layer is 91% by weight.
このスラリーを、厚さが30μm、表面粗さがRa=0.7μmのアルミシート(アルミ基材集電体)上に均一に塗布した後、100℃で乾燥し、プレスにて約1.5ton/cm2で加圧し、膜厚が約60μmの塗膜を形成し、電極密度が2.2g/cc(g/cm3)の正極板を得た。次に、この正極板の水分を除去するため、真空熱処理を140℃で2時間行った。
The slurry is uniformly coated on an aluminum sheet (aluminum base current collector) with a thickness of 30 μm and a surface roughness of Ra = 0.7 μm, and then dried at 100 ° C. Pressure was applied at / cm 2 to form a coating having a thickness of about 60 μm, and a positive electrode plate having an electrode density of 2.2 g / cc (g / cm 3 ) was obtained. Next, in order to remove the moisture of the positive electrode plate, vacuum heat treatment was performed at 140 ° C. for 2 hours.
ここで使用したアルミシート(アルミ基材集電体)の表面粗さRaは、表面粗さ測定機(株式会社ミツトヨ、SURFTEST SV-2100)を用い、JIS2001に従って評価した。
The surface roughness Ra of the aluminum sheet (aluminum base current collector) used here was evaluated according to JIS 2001 using a surface roughness measuring machine (Mitsutoyo, SURFTEST SV-2100).
<正極の評価>
正極板をφ15に打ち抜き、対極及び参照極を金属リチウムとし、試験用電池である円筒型リチウムイオン二次電池を作製した。このとき、電解液には1.0モルのLiPF6を電解質としたエチルカーボネートとジメチルカーボネートの混合溶媒を用いた。 <Evaluation of positive electrode>
The positive electrode plate was punched into φ15, and the counter electrode and the reference electrode were made of metallic lithium, to prepare a cylindrical lithium ion secondary battery as a test battery. At this time, a mixed solvent of ethyl carbonate and dimethyl carbonate in which 1.0 mol of LiPF 6 was used as an electrolyte was used as an electrolytic solution.
正極板をφ15に打ち抜き、対極及び参照極を金属リチウムとし、試験用電池である円筒型リチウムイオン二次電池を作製した。このとき、電解液には1.0モルのLiPF6を電解質としたエチルカーボネートとジメチルカーボネートの混合溶媒を用いた。 <Evaluation of positive electrode>
The positive electrode plate was punched into φ15, and the counter electrode and the reference electrode were made of metallic lithium, to prepare a cylindrical lithium ion secondary battery as a test battery. At this time, a mixed solvent of ethyl carbonate and dimethyl carbonate in which 1.0 mol of LiPF 6 was used as an electrolyte was used as an electrolytic solution.
この試験用電池を、0.3Cで上限電圧が3.6V、下限電圧が2.0Vまでの充放電を3回繰り返して、初期化した。さらに、0.3C相当で上限電圧が3.6Vで5時間の定電流定電圧充電を行った後、0.3C相当で下限電圧が2.0Vまでの定電流放電を実施し、放電容量を求めた。
This test battery was initialized three times by repeating charging and discharging up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3C. Furthermore, after performing constant current constant voltage charging for 5 hours with an upper limit voltage of 3.6V equivalent to 0.3C, constant current discharge up to a lower limit voltage of 2.0V equivalent to 0.3C is performed to obtain a discharge capacity I asked.
次に、電極の体積エネルギー密度(単位はmAh/cc(mAh/cm3))を算出した。この電極の合剤重量(オリビン正極材、導電材及びバインダの合計重量)で放電容量を除した後、電極密度(2.2g/cc)と正極活物質含有量(重量百分率で91%)の積をとり、体積エネルギー密度とした。この値は、単位体積当たりのエネルギーを表わし、電池の高充填化の指標となる。
Next, the volumetric energy density (unit: mAh / cc (mAh / cm 3 )) of the electrode was calculated. After dividing the discharge capacity by the mixture weight of this electrode (the total weight of the olivine positive electrode material, the conductive material and the binder), the electrode density (2.2 g / cc) and the content of the positive electrode active material (91% by weight) The product was taken as volume energy density. This value represents the energy per unit volume and is an indicator of the high packing of the battery.
表1の実施例1の行に、この正極の評価の結果として、オリビン正極材(正極活物質)の平均二次粒子径と平均ピット径の比(平均二次粒子径/平均ピット径)、アルミ基材集電体の表面粗さRa、導電材に占める繊維状炭素の重量百分率、平均二次粒子径、合剤層に占める正極活物質の含有量、電極密度、電極体積エネルギー密度、電流0.125mA/cm2での放電容量(A)、電流0.5mA/cm2での放電容量(B)、放電容量維持率(B/A)を示す。放電容量維持率は、放電容量(B)を放電容量(A)で除して求めた。体積エネルギー密度は285mAh/cc(285mAh/cm3)で、放電容量維持率は0.98であり、どちらも良好であった。
The row of Example 1 in Table 1 shows the ratio of the average secondary particle diameter to the average pit diameter (average secondary particle diameter / average pit diameter) of the olivine positive electrode material (positive electrode active material) as a result of evaluation of this positive electrode. Surface roughness Ra of aluminum base current collector, weight percentage of fibrous carbon in conductive material, average secondary particle diameter, content of positive electrode active material in mixture layer, electrode density, electrode volume energy density, current discharge capacity at 0.125mA / cm 2 (a), discharge capacity at current 0.5mA / cm 2 (B), shows the discharge capacity retention ratio of (B / a). The discharge capacity retention rate was determined by dividing the discharge capacity (B) by the discharge capacity (A). The volumetric energy density was 285 mAh / cc (285 mAh / cm 3 ), and the discharge capacity retention rate was 0.98, both of which were good.
試験用電池である円筒型リチウムイオン二次電池を作製するため、オリビン正極材(1)を用いた正極板を、塗布幅が5.4cmで、塗布長さが60cmとなるよう切断した。電流を取り出すために、アルミニウム箔製のリード片を正極板に溶接した。
In order to produce a cylindrical lithium ion secondary battery which is a test battery, the positive electrode plate using the olivine positive electrode material (1) was cut to have a coating width of 5.4 cm and a coating length of 60 cm. An aluminum foil lead piece was welded to the positive electrode plate in order to extract the current.
次に、正極板と組み合わせて円筒型リチウムイオン二次電池を作製するため、負極板を作製した。負極合剤スラリーは、負極活物質の黒鉛炭素材を結着剤のNMPに溶解して混合して作製した。このとき、黒鉛炭素材と結着剤の乾燥重量比が92:8となるようにした。このスラリーを厚さが10μmの圧延銅箔に均一に塗布した。その後、ロールプレス機により圧縮整形し、塗布幅が5.6cm、塗布長さが64cmとなるよう切断し、銅箔製のリード片を溶接して負極板を作製した。
Next, in order to produce a cylindrical lithium ion secondary battery in combination with a positive electrode plate, a negative electrode plate was produced. The negative electrode mixture slurry was prepared by dissolving and mixing the negative electrode active material graphite carbon material in NMP as a binder. At this time, the dry weight ratio of the graphite carbon material to the binder was made to be 92: 8. The slurry was uniformly applied to a rolled copper foil having a thickness of 10 μm. Thereafter, compression molding was performed by a roll press machine, cutting was performed so as to have an application width of 5.6 cm and an application length of 64 cm, and a copper foil lead piece was welded to produce a negative electrode plate.
図2は、作製した円筒型リチウムイオン二次電池を模式的に示す切り欠き断面図である。上述のようにして作製した正極板と負極板を用いて、円筒型リチウムイオン二次電池を以下の手順で作製した。
FIG. 2 is a cutaway cross-sectional view schematically showing the produced cylindrical lithium ion secondary battery. The cylindrical lithium ion secondary battery was manufactured in the following procedure using the positive electrode plate and negative electrode plate which were produced as mentioned above.
始めに、正極板7と負極板8が直接接触しないように、正極板7と負極板8の間にセパレータ9を配置して捲回して電極群を作製した。このとき、正極板7のリード片(正極リード片)13と負極板8のリード片(負極リード片)11とが、電極群の互いに反対側の端面に位置するようにした。さらに、正極板7と負極板8の配置で、正極の合剤塗布部が負極の合剤塗布部からはみ出すことがないようにした。また、ここで用いたセパレータ9は、厚さ25μm、幅5.8cmの微多孔性ポリプロピレンフィルムとした。
First, the separator 9 was disposed between the positive electrode plate 7 and the negative electrode plate 8 so that the positive electrode plate 7 and the negative electrode plate 8 were not in direct contact with each other, and wound to fabricate an electrode group. At this time, the lead piece (positive electrode lead piece) 13 of the positive electrode plate 7 and the lead piece (negative electrode lead piece) 11 of the negative electrode plate 8 were positioned on the opposite end faces of the electrode assembly. Furthermore, the arrangement of the positive electrode plate 7 and the negative electrode plate 8 prevents the mixture application portion of the positive electrode from protruding from the mixture application portion of the negative electrode. The separator 9 used here was a microporous polypropylene film 25 μm thick and 5.8 cm wide.
次に、電極群をSUS製の電池缶10に挿入し、負極リード片11を缶底部に溶接し、正極リード片13を密閉蓋部12に溶接した。密閉蓋部12は、正極電流端子を兼ねる。この電極群を配置した電池缶10に非水電解液を注入した。非水電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:2の混合溶媒に、1.0モル/リットルのLiPF6を溶解させたものを用いた。その後、パッキン15を取り付けた密閉蓋部12を電池缶10にかしめて密閉し、直径18mm、長さ65mmの円筒型電池とした。
Next, the electrode group was inserted into the battery can 10 made of SUS, the negative electrode lead piece 11 was welded to the can bottom, and the positive electrode lead piece 13 was welded to the sealing lid 12. The sealing lid 12 doubles as a positive electrode current terminal. The non-aqueous electrolytic solution was injected into the battery can 10 in which the electrode group was disposed. The non-aqueous electrolytic solution was prepared by dissolving 1.0 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2. Thereafter, the sealing lid 12 to which the packing 15 is attached is crimped to the battery can 10 and sealed to form a cylindrical battery having a diameter of 18 mm and a length of 65 mm.
密閉蓋部12には、電池内の圧力が上昇すると開裂して電池内部の圧力を逃がす開裂弁がある。密閉蓋部12と電極群の間、及び電池缶10の缶底部と電極群の間に絶縁板14を配した。
The sealing lid 12 has a cleavage valve which is split when the pressure in the battery rises and releases the pressure in the battery. The insulating plate 14 was disposed between the sealing lid 12 and the electrode group, and between the can bottom of the battery can 10 and the electrode group.
この円筒型電池を、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を3回繰り返して初期化した。さらに、0.3Cで上限電圧3.6V、下限電圧2.0Vまでの充放電を行い、電池放電容量を測定した。電池放電容量は1.3Ahであった。
This cylindrical battery was initialized three times by charging and discharging up to an upper limit voltage of 3.6 V and a lower limit voltage of 2.0 V at 0.3C. Furthermore, charging / discharging to the upper limit voltage 3.6V and the lower limit voltage 2.0V was performed at 0.3 C, and the battery discharge capacity was measured. The battery discharge capacity was 1.3 Ah.
以上のように、本実施例による正極を用いた円筒型リチウムイオン二次電池では、容量を高くすることができた。
As described above, in the cylindrical lithium ion secondary battery using the positive electrode according to this example, the capacity could be increased.
次に、この円筒型リチウムイオン二次電池を直列に10本接続し、高容量化させた電池モジュールを得ることができた。
Next, 10 cylindrical lithium ion secondary batteries were connected in series to obtain a battery module having a high capacity.
図1に、実施例1の電極構成で、アルミ基材集電体の表面粗さRaを変え、表面粗さRaと電極密度の関係を検討した結果を示す。Raが1μmまでは、表面粗さRaの増大につれて電極が高密度化する。しかし、表面粗さRaが1.2μmでは、合剤層と集電体の界面が不均一となり、剥離発生のため電極密度が低下した。
FIG. 1 shows the results of examining the relationship between the surface roughness Ra and the electrode density by changing the surface roughness Ra of the aluminum base current collector in the electrode configuration of Example 1. FIG. When Ra is 1 μm, the electrode is densified as the surface roughness Ra increases. However, when the surface roughness Ra was 1.2 μm, the interface between the mixture layer and the current collector became uneven, and the electrode density was lowered due to the occurrence of peeling.
〔実施例2〕
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.1とした。 Example 2
In Example 1, the surface roughness Ra of the aluminum-based current collector is changed to 0.3 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 0.2 μm, and the other conditions are the same as in Example 1. And evaluation of the battery. In Example 2, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.1.
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.1とした。 Example 2
In Example 1, the surface roughness Ra of the aluminum-based current collector is changed to 0.3 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 0.2 μm, and the other conditions are the same as in Example 1. And evaluation of the battery. In Example 2, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.1.
表面粗さRaを0.3μmとしたため、電極密度は若干低下して2.0g/cc(g/cm3)となった。また、電極体積エネルギー密度を評価した結果、240mAh/cc(mAh/cm3)となり、放電容量維持率は0.95であった。これらの結果を、表1の実施例2の行に示す。
Since the surface roughness Ra was 0.3 μm, the electrode density was slightly reduced to 2.0 g / cc (g / cm 3 ). In addition, as a result of evaluating the electrode volume energy density, it was 240 mAh / cc (mAh / cm 3 ), and the discharge capacity retention rate was 0.95. The results are shown in the row of Example 2 in Table 1.
〔実施例3〕
実施例1において、アルミ基材集電体の表面粗さRaを1μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.2とした。 [Example 3]
In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 1 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 1 μm, and the other processes are the same as in Example 1. The evaluation of In Example 3, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.2.
実施例1において、アルミ基材集電体の表面粗さRaを1μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.2とした。 [Example 3]
In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 1 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 1 μm, and the other processes are the same as in Example 1. The evaluation of In Example 3, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.2.
表面粗さRaを1μmとしたため、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、291mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例3の行に示す。
Since the surface roughness Ra was 1 μm, the electrode density slightly increased to 2.3 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 291 mAh / cc, and the discharge capacity retention rate was 0.97. The results are shown in the row of Example 3 in Table 1.
〔比較例1〕
実施例1において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例1では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。 Comparative Example 1
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm. In Comparative Example 1, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
実施例1において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例1では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。 Comparative Example 1
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm. In Comparative Example 1, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
表面粗さRaを0.2μmとしたため、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、206mAh/ccとなり、放電容量維持率は0.66となって、電池特性が低下した。これらの結果を、表1の比較例1の行に示す。
Since the surface roughness Ra was 0.2 μm, the electrode density decreased to 1.9 g / cc. Moreover, as a result of evaluating a volume energy density of electrodes, it was set to 206 mAh / cc, a discharge capacity maintenance rate was set to 0.66, and battery characteristics fell. The results are shown in the row of Comparative Example 1 in Table 1.
〔比較例2〕
実施例1において、アルミ基材集電体の表面粗さRaを1.1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.15とした。 Comparative Example 2
In Example 1, the surface roughness Ra of the aluminum-based current collector was changed to 1.1 μm, and in the same manner as in Example 1 except for the above, preparation of a positive electrode and evaluation of a battery were performed. In Comparative Example 2, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material is set to 0.15.
実施例1において、アルミ基材集電体の表面粗さRaを1.1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例2では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.15とした。 Comparative Example 2
In Example 1, the surface roughness Ra of the aluminum-based current collector was changed to 1.1 μm, and in the same manner as in Example 1 except for the above, preparation of a positive electrode and evaluation of a battery were performed. In Comparative Example 2, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material is set to 0.15.
表面粗さRaを1.1μmとしたため、電極密度は高くなり2.4g/ccとなった。但し、電極加工時に、局所的に破断個所があった。このため、電極体積エネルギー密度を評価した結果、205mAh/ccとなり、放電容量維持率は0.67となって、電池特性が低下した。これらの結果を、表1の比較例2の行に示す。
Since the surface roughness Ra was 1.1 μm, the electrode density increased to 2.4 g / cc. However, at the time of electrode processing, there were local breakages. Therefore, as a result of evaluating the electrode volume energy density, it was 205 mAh / cc, the discharge capacity retention rate was 0.67, and the battery characteristics were deteriorated. The results are shown in the row of Comparative Example 2 in Table 1.
〔実施例4〕
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例4では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.5とした。 Example 4
In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 0.3 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 1 μm, and the other processes are performed in the same manner as in Example 1 to prepare a positive electrode. And the battery was evaluated. In Example 4, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.5.
実施例1において、アルミ基材集電体の表面粗さRaを0.3μmに、オリビン正極材の平均二次粒子径を1μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。実施例4では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.5とした。 Example 4
In Example 1, the surface roughness Ra of the aluminum base current collector is changed to 0.3 μm, the average secondary particle diameter of the olivine positive electrode material is changed to 1 μm, and the other processes are performed in the same manner as in Example 1 to prepare a positive electrode. And the battery was evaluated. In Example 4, the ratio of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material (secondary particle diameter / average pit diameter) was set to 0.5.
表面粗さRaを0.3μmとしたため、電極密度は若干低下して2.1g/ccとなった。また、電極体積エネルギー密度を評価した結果、258mAh/ccとなり、放電容量維持率は0.95であった。これらの結果を、表1の実施例4の行に示す。
Since the surface roughness Ra was 0.3 μm, the electrode density slightly decreased to 2.1 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 258 mAh / cc, and the discharge capacity retention rate was 0.95. The results are shown in the row of Example 4 in Table 1.
〔比較例3〕
実施例1において、オリビン正極材の平均二次粒子径を0.48μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.09とした。 Comparative Example 3
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the average secondary particle diameter of the olivine positive electrode material was changed to 0.48 μm. In Comparative Example 3, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was set to 0.09.
実施例1において、オリビン正極材の平均二次粒子径を0.48μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例3では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.09とした。 Comparative Example 3
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the average secondary particle diameter of the olivine positive electrode material was changed to 0.48 μm. In Comparative Example 3, the ratio of the average secondary particle diameter to the average pit diameter (secondary particle diameter / average pit diameter) of the olivine positive electrode material was set to 0.09.
平均二次粒子径と平均ピット径の比が低下したためアンカー効果が少なくなり、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、207mAh/ccとなり、放電容量維持率は0.65であった。これらの結果を、表1の比較例3の行に示す。
Since the ratio of the average secondary particle diameter to the average pit diameter decreased, the anchoring effect decreased, and the electrode density decreased to 1.9 g / cc. Moreover, as a result of evaluating an electrode volume energy density, it was set to 207 mAh / cc, and the discharge capacity maintenance factor was 0.65. The results are shown in the row of Comparative Example 3 in Table 1.
〔実施例5〕
実施例1において、導電材に占める繊維状炭素の重量百分率を20%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 5]
In Example 1, preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 20%.
実施例1において、導電材に占める繊維状炭素の重量百分率を20%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 5]
In Example 1, preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 20%.
アセチレンブラックは繊維状炭素であるVGCFと比較して嵩密度が高いため、電極密度は若干高くなって2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、290mAh/ccとなり、放電容量維持率は0.95であった。繊維状炭素の添加量が低下したため、放電維持率は若干低下した。これらの結果を、表1の実施例5の行に示す。
Since the acetylene black has a bulk density higher than that of fibrous carbon, VGCF, the electrode density is slightly increased to 2.3 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 290 mAh / cc, and the discharge capacity retention rate was 0.95. Since the amount of fibrous carbon added decreased, the discharge retention rate slightly decreased. The results are shown in the row of Example 5 in Table 1.
〔比較例4〕
実施例1において、導電材に占める繊維状炭素の重量百分率を10%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 4
In Example 1, preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 10%.
実施例1において、導電材に占める繊維状炭素の重量百分率を10%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 4
In Example 1, preparation of a positive electrode and evaluation of a battery were performed in the same manner as in Example 1 except that the weight percentage of fibrous carbon in the conductive material was changed to 10%.
繊維状炭素が少ないためアンカー効果が減少し、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、208mAh/ccとなり、放電容量維持率は0.67であった。繊維状炭素の添加量が低下したため、放電維持率は若干低下した。これらの結果を、表1の比較例4の行に示す。
Since the amount of fibrous carbon was small, the anchoring effect decreased, and the electrode density decreased to 1.9 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 208 mAh / cc, and the discharge capacity retention rate was 0.67. Since the amount of fibrous carbon added decreased, the discharge retention rate slightly decreased. The results are shown in the row of Comparative Example 4 in Table 1.
〔比較例5〕
実施例1において、導電材に占める繊維状炭素の重量百分率を60%に変更し、他は実施例1と同様にして、正極の作製を行った。 Comparative Example 5
In Example 1, the weight percentage of fibrous carbon in the conductive material was changed to 60%, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
実施例1において、導電材に占める繊維状炭素の重量百分率を60%に変更し、他は実施例1と同様にして、正極の作製を行った。 Comparative Example 5
In Example 1, the weight percentage of fibrous carbon in the conductive material was changed to 60%, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
繊維状炭素が多いためスラリーに凝集物が多く発生し、正極を形成することができなかった。この結果を、表1の比較例5の行に示す。
Since a large amount of fibrous carbon was generated, a large amount of aggregates were generated in the slurry, and a positive electrode could not be formed. The results are shown in the row of Comparative Example 5 of Table 1.
〔実施例6〕
実施例1において、オリビン正極材の含有量を90%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 6]
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 90%.
実施例1において、オリビン正極材の含有量を90%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 6]
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 90%.
オリビン正極材の含有量が低下したため、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、290mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例6の行に示す。
Since the content of the olivine positive electrode material decreased, the electrode density slightly increased to 2.3 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 290 mAh / cc, and the discharge capacity retention rate was 0.97. The results are shown in the row of Example 6 in Table 1.
〔実施例7〕
実施例1において、オリビン正極材の含有量を93%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 7]
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 93%.
実施例1において、オリビン正極材の含有量を93%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 [Example 7]
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 93%.
オリビン正極材の含有量が上昇したために、電極密度は若干低下して2g/ccとなった。また、電極体積エネルギー密度を評価した結果、271mAh/ccとなり、放電容量維持率は0.94であった。これらの結果を、表1の実施例7の行に示す。
Since the content of the olivine positive electrode material increased, the electrode density slightly decreased to 2 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 271 mAh / cc, and the discharge capacity retention rate was 0.94. The results are shown in the row of Example 7 in Table 1.
〔比較例6〕
実施例1において、オリビン正極材の含有量を89%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 6
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 89%.
実施例1において、オリビン正極材の含有量を89%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 6
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 89%.
オリビン正極材の含有量が低下したために、電極密度は若干高くなり2.3g/ccとなった。また、電極体積エネルギー密度を評価した結果、230mAh/ccとなり、放電容量維持率は0.70であった。オリビン正極材の含有量が低いため、所望の高体積エネルギー密度化を達成できなかった。これらの結果を、表1の比較例6の行に示す。
As the content of the olivine positive electrode material decreased, the electrode density slightly increased to 2.3 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 230 mAh / cc, and the discharge capacity retention rate was 0.70. Due to the low content of the olivine cathode material, the desired high volumetric energy density could not be achieved. The results are shown in the row of Comparative Example 6 in Table 1.
〔比較例7〕
実施例1において、オリビン正極材の含有量を94%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 7
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 94%.
実施例1において、オリビン正極材の含有量を94%に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。 Comparative Example 7
In Example 1, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the content of the olivine positive electrode material was changed to 94%.
オリビン正極材の含有量が上昇したために、電極密度は剥離により低くなって1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、208mAh/ccとなり、放電容量維持率は0.65であった。これらの結果を、表1の比較例7の行に示す。
Since the content of the olivine positive electrode material increased, the electrode density decreased due to peeling and became 1.9 g / cc. In addition, as a result of evaluating the electrode volume energy density, it was 208 mAh / cc, and the discharge capacity retention rate was 0.65. The results are shown in the row of Comparative Example 7 in Table 1.
〔比較例8〕
実施例1において、オリビン正極材の平均二次粒子径を0.1μmに変更し、他は実施例1と同様にして、正極の作製を行った。 Comparative Example 8
In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 0.1 μm, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
実施例1において、オリビン正極材の平均二次粒子径を0.1μmに変更し、他は実施例1と同様にして、正極の作製を行った。 Comparative Example 8
In Example 1, the average secondary particle diameter of the olivine positive electrode material was changed to 0.1 μm, and the other processes were performed in the same manner as in Example 1 to fabricate a positive electrode.
スラリーに凝集物が多く発生し、正極を形成することができなかった。この結果を、表1の比較例8の行に示す。
A lot of aggregates were generated in the slurry, and the positive electrode could not be formed. The results are shown in the row of Comparative Example 8 in Table 1.
〔比較例9〕
実施例1において、オリビン正極材の平均二次粒子径を1.1μmに、平均二次粒子径と平均ピット径の比を0.2に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。平均二次粒子径が増大したため、平均二次粒子径と平均ピット径の比も若干増大した。 Comparative Example 9
In Example 1, the average secondary particle diameter of the olivine positive electrode material is changed to 1.1 μm, the ratio of the average secondary particle diameter to the average pit diameter is changed to 0.2, and the other conditions are the same as in Example 1. And evaluation of the battery. As the average secondary particle size increased, the ratio of the average secondary particle size to the average pit size also slightly increased.
実施例1において、オリビン正極材の平均二次粒子径を1.1μmに、平均二次粒子径と平均ピット径の比を0.2に変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。平均二次粒子径が増大したため、平均二次粒子径と平均ピット径の比も若干増大した。 Comparative Example 9
In Example 1, the average secondary particle diameter of the olivine positive electrode material is changed to 1.1 μm, the ratio of the average secondary particle diameter to the average pit diameter is changed to 0.2, and the other conditions are the same as in Example 1. And evaluation of the battery. As the average secondary particle size increased, the ratio of the average secondary particle size to the average pit size also slightly increased.
オリビン正極材の平均二次粒子径が上昇したために、電極密度は低下して1.9g/ccとなった。また、電極体積エネルギー密度を評価した結果、209mAh/ccとなり、放電容量維持率は0.66であった。これらの結果を、表1の比較例9の行に示す。
The electrode density decreased to 1.9 g / cc because the average secondary particle size of the olivine positive electrode material increased. Moreover, as a result of evaluating an electrode volume energy density, it was set to 209 mAh / cc, and the discharge capacity maintenance factor was 0.66. The results are shown in the row of Comparative Example 9 in Table 1.
〔実施例8〕
実施例8では、実施例1で作製したオリビン正極材LiFePO4の代わりに、組成式LiMn0.8Fe0.2PO4で表わされるオリビン正極材を作製した。作製方法を以下に述べる。 Example 8
In Example 8, instead of the olivine positive electrode material LiFePO 4 produced in Example 1, an olivine positive electrode material represented by a composition formula LiMn 0.8 Fe 0.2 PO 4 was produced. The preparation method is described below.
実施例8では、実施例1で作製したオリビン正極材LiFePO4の代わりに、組成式LiMn0.8Fe0.2PO4で表わされるオリビン正極材を作製した。作製方法を以下に述べる。 Example 8
In Example 8, instead of the olivine positive electrode material LiFePO 4 produced in Example 1, an olivine positive electrode material represented by a composition formula LiMn 0.8 Fe 0.2 PO 4 was produced. The preparation method is described below.
7.2gのNH4H2PO4と、2.27gのLiOH・H2Oと、9gのMnC2O4・2H2Oと、2.25gのFeC2O4・2H2Oとを混合した。これにスクロースを12質量%となるように加え、ジルコニア製ポットにジルコニア製粉砕用ボールを投入し、遊星型ボールミルを用いて混合した。この混合粉体をアルミナ製るつぼに投入し、0.3L/minのアルゴン流下で、400℃で10時間の仮焼成を行った。
And NH 4 H 2 PO 4 in 7.2 g, and LiOH · H 2 O of 2.27 g, and MnC 2 O 4 · 2H 2 O of 9 g, and FeC 2 O 4 · 2H 2 O of 2.25g mixing did. Sucrose was added to this so that it might be 12 mass%, the zirconia grinding ball was thrown into the zirconia pot, and it mixed using the planetary ball mill. The mixed powder was put into an alumina crucible and subjected to temporary firing at 400 ° C. for 10 hours under an argon flow of 0.3 L / min.
得られた仮焼成体は、一度、メノウ乳鉢で解砕し、再度アルミナ製るつぼへ投入して、0.3L/minのアルゴン流下で、700℃で10時間の本焼成を行った。本焼成後、得られた粉体をメノウ乳鉢で解砕し、40μmのメッシュの篩で粒度調整を行い、組成式LiMn0.8Fe0.2PO4で表されるオリビン正極材を得た。
The obtained calcined body was once crushed in an agate mortar, again put into an alumina crucible, and subjected to main firing at 700 ° C. for 10 hours under an argon flow of 0.3 L / min. After the main firing, the obtained powder was crushed in an agate mortar, and the particle size was adjusted with a 40 μm mesh sieve to obtain an olivine positive electrode material represented by the composition formula LiMn 0.8 Fe 0.2 PO 4 .
次に、実施例1と同様にして、正極を作製して評価した。LiMn0.8Fe0.2PO4はLiFePO4と比較して真密度が低いため、電極密度は2g/ccとなった。
Next, in the same manner as in Example 1, a positive electrode was produced and evaluated. The electrode density was 2 g / cc because LiMn 0.8 Fe 0.2 PO 4 has a lower true density compared to LiFePO 4 .
次に、実施例1と同様にして、試験用電池である円筒型リチウムイオン二次電池を作製し、電池の評価を行った。但し、電池の評価では、充電電圧を4.1Vとした。電極体積エネルギー密度を評価した結果、257mAh/ccとなり、放電容量維持率は0.97であった。これらの結果を、表1の実施例8の行に示す。
Next, in the same manner as in Example 1, a cylindrical lithium ion secondary battery as a test battery was produced, and the battery was evaluated. However, in the evaluation of the battery, the charging voltage was 4.1V. As a result of evaluating the electrode volume energy density, it was 257 mAh / cc, and the discharge capacity retention rate was 0.97. The results are shown in the row of Example 8 in Table 1.
〔比較例10〕
実施例8において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例10では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。 Comparative Example 10
In Example 8, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm. In Comparative Example 10, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
実施例8において、アルミ基材集電体の表面粗さRaを0.2μmに変更し、他は実施例1と同様にして、正極の作製及び電池の評価を行った。比較例10では、オリビン正極材の平均二次粒子径と平均ピット径の比(二次粒子径/平均ピット径)を0.6とした。 Comparative Example 10
In Example 8, preparation of the positive electrode and evaluation of the battery were performed in the same manner as in Example 1 except that the surface roughness Ra of the aluminum base current collector was changed to 0.2 μm. In Comparative Example 10, the ratio (secondary particle diameter / average pit diameter) of the average secondary particle diameter to the average pit diameter of the olivine positive electrode material was set to 0.6.
表面粗さRaを0.2μmとしたため、電極密度は低下して1.7g/ccとなった。また、電極体積エネルギー密度を評価した結果、206mAh/ccとなり、放電容量維持率は0.68であった。これらの結果を、表1の比較例10の行に示す。
Since the surface roughness Ra was 0.2 μm, the electrode density decreased to 1.7 g / cc. Moreover, as a result of evaluating a electrode volume energy density, it was set to 206 mAh / cc, and the discharge capacity maintenance factor was 0.68. These results are shown in the row of Comparative Example 10 in Table 1.
本発明は、電気自動車やプラグインハイブリッド車などの、高容量が必要とされる機器に利用できる。
The present invention can be applied to devices that require high capacity, such as electric vehicles and plug-in hybrid vehicles.
1…アルミ基材集電体、2…ピット、3…オリビン正極材の二次粒子、4…繊維状炭素、7…正極板、8…負極板、9…セパレータ、10…電池缶、11…負極リード片、12…密閉蓋部、13…正極リード片、14…絶縁板、15…パッキン。
DESCRIPTION OF SYMBOLS 1 ... Aluminum base material collector, 2 ... pit, 3 ... secondary particle of olivine positive electrode material, 4: ... fibrous carbon, 7: ... positive electrode plate, 8 ... negative electrode plate, 9 ... separator, 10 ... battery can, 11 ... Negative electrode lead piece, 12: Sealing lid, 13: Positive electrode lead piece, 14: Insulating plate, 15: Packing.
Claims (8)
- 正極活物質、導電材及びバインダを含む合剤層と、前記合剤層が表面に形成された集電体とを備え、前記正極活物質が化学式LiaMxPO4(Mは、FeとMnのうち少なくとも一方を含む遷移金属。0<a≦1.1、0.9≦x≦1.1)で表されるオリビン構造を有する複合酸化物であるリチウムイオン二次電池用正極において、
前記導電材は、繊維状炭素を含み、
前記集電体の表面には、ピットが形成され、
前記正極活物質の一部と前記繊維状炭素の一部は、前記ピットに入り込んでいることを特徴とするリチウムイオン二次電池用正極。 A positive electrode active material, a mixture layer containing a conductive material and a binder, and a current collector having the mixture layer formed on the surface, the positive electrode active material has a chemical formula Li a M x PO 4 (where M is Fe and A transition metal containing at least one of Mn.A positive electrode for a lithium ion secondary battery, which is a composite oxide having an olivine structure represented by 0 <a ≦ 1.1, 0.9 ≦ x ≦ 1.1),
The conductive material contains fibrous carbon,
Pits are formed on the surface of the current collector,
A positive electrode for a lithium ion secondary battery, wherein a part of the positive electrode active material and a part of the fibrous carbon enter the pits. - 請求項1記載のリチウムイオン二次電池用正極において、
前記正極活物質は、平均二次粒子径が0.2μm以上、1μm以下であり、
前記平均二次粒子径と前記ピットの平均ピット径との比である平均二次粒子径/平均ピット径は、0.1以上、0.5以下であるリチウムイオン二次電池用正極。 In the positive electrode for a lithium ion secondary battery according to claim 1,
The positive electrode active material has an average secondary particle diameter of 0.2 μm or more and 1 μm or less,
A positive electrode for a lithium ion secondary battery, wherein an average secondary particle diameter / average pit diameter, which is a ratio of the average secondary particle diameter to the average pit diameter of the pits, is 0.1 or more and 0.5 or less. - 請求項1または2記載のリチウムイオン二次電池用正極において、
前記集電体は、表面粗さRaが0.3μm以上、1μm以下であるリチウムイオン二次電池用正極。 In the positive electrode for a lithium ion secondary battery according to claim 1 or 2,
The current collector is a positive electrode for a lithium ion secondary battery having a surface roughness Ra of 0.3 μm or more and 1 μm or less. - 請求項1から3のいずれか1項記載のリチウムイオン二次電池用正極において、
前記導電材に占める前記繊維状炭素の重量百分率は、20%以上、60%未満であるリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 3,
The positive electrode for a lithium ion secondary battery, wherein a weight percentage of the fibrous carbon in the conductive material is 20% or more and less than 60%. - 請求項1から4のいずれか1項記載のリチウムイオン二次電池用正極において、
前記合剤層に占める前記正極活物質の含有量は、重量百分率で90%以上、93%以下であるリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 4,
The positive electrode for a lithium ion secondary battery in which the content of the positive electrode active material in the mixture layer is 90% to 93% by weight. - 請求項1から5のいずれか1項記載のリチウムイオン二次電池用正極において、
電極密度が2.0g/cc以上、2.3g/cc以下であるリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 5,
The positive electrode for lithium ion secondary batteries whose electrode density is 2.0 g / cc or more and 2.3 g / cc or less. - 請求項1から6のいずれか1項記載のリチウムイオン二次電池用正極を用いることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery using the positive electrode for a lithium ion secondary battery according to any one of claims 1 to 6.
- 請求項7記載のリチウムイオン二次電池が電気的に複数接続されたことを特徴とする電池モジュール。 A battery module comprising a plurality of the lithium ion secondary batteries according to claim 7 electrically connected.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013500792A JPWO2012114502A1 (en) | 2011-02-25 | 2011-02-25 | Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module |
PCT/JP2011/054262 WO2012114502A1 (en) | 2011-02-25 | 2011-02-25 | Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/054262 WO2012114502A1 (en) | 2011-02-25 | 2011-02-25 | Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012114502A1 true WO2012114502A1 (en) | 2012-08-30 |
Family
ID=46720318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054262 WO2012114502A1 (en) | 2011-02-25 | 2011-02-25 | Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2012114502A1 (en) |
WO (1) | WO2012114502A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013026063A (en) * | 2011-07-22 | 2013-02-04 | Nippon Foil Mfg Co Ltd | Positive electrode for secondary battery with current collector made of aluminum alloy, and manufacturing method of positive electrode for secondary battery |
JP2013110049A (en) * | 2011-11-24 | 2013-06-06 | Mitsubishi Alum Co Ltd | Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery |
JP2014127333A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Alum Co Ltd | Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery |
JP2014212030A (en) * | 2013-04-18 | 2014-11-13 | Jsr株式会社 | Electrode for electricity storage device and method for producing the same, and electricity storage device |
CN104425827A (en) * | 2013-09-09 | 2015-03-18 | 富士胶片株式会社 | Aluminum material for current collector, current collector, anode, cathode, and secondary battery |
JPWO2015115531A1 (en) * | 2014-01-31 | 2017-03-23 | 富士フイルム株式会社 | Aluminum plate manufacturing method, aluminum plate, current collector for power storage device, and power storage device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234565A (en) * | 2005-03-18 | 2007-09-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2009043703A (en) * | 2007-07-18 | 2009-02-26 | Nissan Motor Co Ltd | Nonaqueous electrolyte secondary battery |
WO2009078159A1 (en) * | 2007-12-14 | 2009-06-25 | Panasonic Corporation | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4058680B2 (en) * | 2002-08-13 | 2008-03-12 | ソニー株式会社 | Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery |
JP3930002B2 (en) * | 2003-07-28 | 2007-06-13 | 昭和電工株式会社 | High density electrode and battery using the electrode |
JP4798750B2 (en) * | 2003-07-28 | 2011-10-19 | 昭和電工株式会社 | High density electrode and battery using the electrode |
JP4794833B2 (en) * | 2004-07-21 | 2011-10-19 | 日本コークス工業株式会社 | Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery |
-
2011
- 2011-02-25 WO PCT/JP2011/054262 patent/WO2012114502A1/en active Application Filing
- 2011-02-25 JP JP2013500792A patent/JPWO2012114502A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007234565A (en) * | 2005-03-18 | 2007-09-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2009043703A (en) * | 2007-07-18 | 2009-02-26 | Nissan Motor Co Ltd | Nonaqueous electrolyte secondary battery |
WO2009078159A1 (en) * | 2007-12-14 | 2009-06-25 | Panasonic Corporation | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013026063A (en) * | 2011-07-22 | 2013-02-04 | Nippon Foil Mfg Co Ltd | Positive electrode for secondary battery with current collector made of aluminum alloy, and manufacturing method of positive electrode for secondary battery |
JP2013110049A (en) * | 2011-11-24 | 2013-06-06 | Mitsubishi Alum Co Ltd | Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery |
JP2014127333A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Alum Co Ltd | Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery |
JP2014212030A (en) * | 2013-04-18 | 2014-11-13 | Jsr株式会社 | Electrode for electricity storage device and method for producing the same, and electricity storage device |
CN104425827A (en) * | 2013-09-09 | 2015-03-18 | 富士胶片株式会社 | Aluminum material for current collector, current collector, anode, cathode, and secondary battery |
KR20150029542A (en) * | 2013-09-09 | 2015-03-18 | 후지필름 가부시키가이샤 | Aluminum base for current collector, current collector, positive electrode, negative electrode and secondary battery |
JP2015053240A (en) * | 2013-09-09 | 2015-03-19 | 富士フイルム株式会社 | Aluminum base material for collector, collector, positive electrode, negative electrode, and secondary battery |
CN104425827B (en) * | 2013-09-09 | 2019-01-11 | 富士胶片株式会社 | Collector aluminium base, collector, anode, cathode and secondary cell |
KR102180259B1 (en) * | 2013-09-09 | 2020-11-18 | 후지필름 가부시키가이샤 | Aluminum base for current collector, current collector, positive electrode, negative electrode and secondary battery |
JPWO2015115531A1 (en) * | 2014-01-31 | 2017-03-23 | 富士フイルム株式会社 | Aluminum plate manufacturing method, aluminum plate, current collector for power storage device, and power storage device |
US10593989B2 (en) | 2014-01-31 | 2020-03-17 | Fujifilm Corporation | Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012114502A1 (en) | 2014-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111525099B (en) | Sodium ion battery | |
KR102293359B1 (en) | Anode Active Material for lithium secondary battery and Method for preparing the same | |
JP5625007B2 (en) | Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module | |
WO2011039921A1 (en) | Lithium secondary battery, and cathode for use in a lithium secondary battery | |
JP5520906B2 (en) | Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module | |
JP5255143B2 (en) | Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material | |
KR101980216B1 (en) | Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery | |
EP2525427A2 (en) | Electric storage device and positive electrode | |
KR101309241B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
WO2012144177A1 (en) | Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode | |
KR20140082988A (en) | Positive-electrode materials: methods for their preparation and use in lithium secondary batteries | |
US12107261B2 (en) | Negative electrode active material for lithium secondary battery and method for preparing the same | |
JP2009087682A (en) | Composite particle for electrode and electrochemical device | |
US9368792B2 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
JP5505480B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
EP2913299B1 (en) | Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
WO2012114502A1 (en) | Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module | |
JP2013110104A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode | |
KR102684809B1 (en) | Anode and Lithium Secondary Battery Comprising the Same | |
JP2013229301A (en) | Negative electrode and lithium ion secondary battery | |
KR101093242B1 (en) | Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same | |
JP2012033438A (en) | Cathode for lithium ion secondary battery and lithium ion secondary battery using the same | |
WO2023123979A1 (en) | Olivine composite positive-electrode material, preparation method and application thereof, and lithium-ion battery | |
KR101115390B1 (en) | Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same | |
US10193138B2 (en) | Glass-fiber containing composite materials for alkali metal-based batteries and methods of making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11859199 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013500792 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11859199 Country of ref document: EP Kind code of ref document: A1 |