JP2012036048A - Process of producing vanadium lithium phosphate carbon composite - Google Patents

Process of producing vanadium lithium phosphate carbon composite Download PDF

Info

Publication number
JP2012036048A
JP2012036048A JP2010178881A JP2010178881A JP2012036048A JP 2012036048 A JP2012036048 A JP 2012036048A JP 2010178881 A JP2010178881 A JP 2010178881A JP 2010178881 A JP2010178881 A JP 2010178881A JP 2012036048 A JP2012036048 A JP 2012036048A
Authority
JP
Japan
Prior art keywords
lithium
source
phosphate
slurry
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010178881A
Other languages
Japanese (ja)
Other versions
JP5612392B2 (en
Inventor
Kiyoshi Yamada
清 山田
Mari Aikawa
茉里 合川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Fuji Heavy Industries Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2010178881A priority Critical patent/JP5612392B2/en
Publication of JP2012036048A publication Critical patent/JP2012036048A/en
Application granted granted Critical
Publication of JP5612392B2 publication Critical patent/JP5612392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process of producing a vanadium lithium phosphate carbon composite useful for a positive active material for lithium secondary batteries.SOLUTION: There is provided the process of producing the vanadium lithium phosphate carbon composite composed of a vanadium lithium phosphate having a NASICON structure and an electroconductive carbon material. The process comprises the first step of preparing a slurry wherein a vanadium source, a source of the electroconductive carbon material, and an Me source added as necessary, (Me donates a metal element or a transition metal element having an atomic number of not less than 11 except for V) are dispersed in an aqueous solution of lithium phosphate, the second step of obtaining a reaction precursor by spray-drying the slurry, and the third step of firing the reaction precursor at 600-1,300°C in an inert gas environment or in a reducing environment.

Description

本発明は、リチウム二次電池の正極活物質として有用なリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体の製造方法に関するものである。   The present invention relates to a process for producing a lithium vanadium phosphate carbon composite comprising lithium vanadium phosphate useful as a positive electrode active material for a lithium secondary battery and a conductive carbon material.

携帯機器,ノート型パソコン,電気自動車,ハイブリッド自動車向けの電池としてリチウムイオン電池が活用されている。リチウムイオン電池は一般に高容量,高エネルギー密度に優れているとされ,現在その正極にはLiCoOが主に使用されているが,Coの資源問題からLiMnO,LiNiOなどの開発も盛んに行われている。
現在,さらなる代替材料としてLiFePOが着目され各機関で研究開発が進んでいる。Feは資源的に優れ,これを用いたLiFePOはエネルギー密度がやや低いものの,高温特性に優れていることから電動車両向けのリチウムイオン電池用正極材料として期待されている。
しかし,LiFePOは動作電圧がやや低く,Feに代わりにVを用いたナシコン(NASICON;Na Super Ionic Conductor)構造を有するリン酸バナジウムリチウム(Li(PO)が着目されている。
Lithium ion batteries are used as batteries for portable devices, notebook computers, electric vehicles, and hybrid vehicles. Lithium ion batteries are generally said to be excellent in high capacity and high energy density. Currently, LiCoO 2 is mainly used for the positive electrode, but LiMnO 2 , LiNiO 2, etc. are also actively developed due to Co resource problems. Has been done.
Currently, LiFePO 4 is attracting attention as a further alternative material, and research and development is progressing in each organization. Fe is excellent in resources, and LiFePO 4 using this is expected to be a positive electrode material for a lithium ion battery for electric vehicles because it has a low energy density but is excellent in high temperature characteristics.
However, LiFePO 4 has a slightly low operating voltage, and lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) having a NASICON (Na Super Ionic Conductor) structure using V instead of Fe has attracted attention. Yes.

リン酸バナジウムリチウムの製造方法としては、例えば、リチウム源、バナジウム源及びリン源を粉砕混合し、得られる均一混合物をピレット状に成形し、次いでこの成形品を焼成する方法が提案されている(例えば、特許文献1及び2参照。)。また、下記特許文献3には酸化バナジウム(V)を水酸化リチウムを含む水溶液に溶解し、さらにリン源と炭素及び/又は不揮発性有機化合物を添加し、得られる原料溶液を乾燥して前駆体を得、この前駆体を不活性雰囲気にて熱処理してLi(POと導電性炭素材料との複合体を得る方法が提案されている。 As a method for producing lithium vanadium phosphate, for example, a method is proposed in which a lithium source, a vanadium source and a phosphorus source are pulverized and mixed, the resulting uniform mixture is formed into a pellet, and then the molded product is fired ( For example, see Patent Documents 1 and 2.) In Patent Document 3 below, vanadium oxide (V) is dissolved in an aqueous solution containing lithium hydroxide, a phosphorus source and carbon and / or a nonvolatile organic compound are added, and the resulting raw material solution is dried to obtain a precursor. And a method of obtaining a composite of Li 3 V 2 (PO 4 ) 3 and a conductive carbon material by heat-treating this precursor in an inert atmosphere has been proposed.

特表2001−500665号公報Special Table 2001-2001655 gazette 特表2002−530835号公報Japanese translation of PCT publication No. 2002-530835 特開2008−052970号公報JP 2008-052970 A

Li(POは、理論容量が197mAhg−1という高いものであることが知られている。
しかしながら、従来のLi(POを正極活物質として用いたリチウム二次電池は、放電容量が低く、Li(POを正極活物質として用いたリチウム二次電池において、更なる放電容量の向上が望まれている。
Li 3 V 2 (PO 4 ) 3 is known to have a theoretical capacity as high as 197 mAhg −1 .
However, the conventional lithium secondary battery using Li 3 V 2 (PO 4 ) 3 as the positive electrode active material has a low discharge capacity, and the lithium secondary battery using Li 3 V 2 (PO 4 ) 3 as the positive electrode active material. In a battery, further improvement in discharge capacity is desired.

従って、本発明の目的は、リチウム二次電池の正極活物質として有用で、リチウム二次電池の正極活物質として用いたときに、リチウム二次電池に高い放電容量等の優れた電池性能を付与することができるリン酸バナジウムリチウム炭素複合体の製造方法を提供することにある。   Therefore, the object of the present invention is useful as a positive electrode active material of a lithium secondary battery, and when used as a positive electrode active material of a lithium secondary battery, imparts excellent battery performance such as a high discharge capacity to the lithium secondary battery. An object of the present invention is to provide a method for producing a lithium vanadium phosphate carbon composite that can be used.

本発明者らは、上記課題に鑑みて鋭意研究を重ねた結果、特定の工程を経て得られるリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体を正極活物質とするリチウム二次電池は、特に放電容量が高く、更にサイクル特性に優れたものになることを見出し本発明を完成するに到った。  As a result of intensive research in view of the above problems, the present inventors have made lithium vanadium phosphate-carbon composites composed of a lithium vanadium phosphate and a conductive carbon material obtained through a specific process as a positive electrode active material. The secondary battery has been found to have a particularly high discharge capacity and excellent cycle characteristics, and the present invention has been completed.

即ち、本発明は、ナシコン構造を有するリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体の製造方法であって、
リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源(MeはV以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を分散させたスラリーを調製する第1工程、次に該スラリーを噴霧乾燥して反応前駆体を得る第2工程、次に該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で600〜1300℃で焼成する第3工程を、有することを特徴とするリン酸バナジウムリチウム炭素複合体の製造方法を提供するものである。
That is, the present invention is a method for producing a lithium vanadium phosphate carbon composite comprising a lithium vanadium phosphate having a NASICON structure and a conductive carbon material,
A slurry is prepared in which a vanadium source, a conductive carbon material source, and a Me source added as necessary (Me represents a metal element having a atomic number of 11 or more or a transition metal element other than V) are dispersed in an aqueous lithium phosphate solution. A first step, then a second step in which the slurry is spray-dried to obtain a reaction precursor, and then a third step in which the reaction precursor is calcined at 600 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere. The present invention provides a method for producing a lithium vanadium phosphate carbon composite characterized by comprising:

本発明によれば、工業的に有利な方法でリチウム二次電池の正極活物質として有用なリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体を提供することができる。また、本発明の製造方法で得られるリン酸バナジウムリチウム炭素複合体を正極活物質とするリチウム二次電池は、特に放電容量が高く、サイクル特性に優れたものになる。   ADVANTAGE OF THE INVENTION According to this invention, the vanadium lithium phosphate carbon composite which consists of an electroconductive carbon material and lithium vanadium phosphate useful as a positive electrode active material of a lithium secondary battery by an industrially advantageous method can be provided. In addition, a lithium secondary battery using the vanadium phosphate lithium carbon composite obtained by the production method of the present invention as a positive electrode active material has a particularly high discharge capacity and excellent cycle characteristics.

実施例1の第2工程で得られた反応前駆体のSEM写真。3 is an SEM photograph of the reaction precursor obtained in the second step of Example 1. FIG. 実施例1で得られたリン酸バナジウムリチウム炭素複合体試料のSEM写真。2 is an SEM photograph of the vanadium phosphate lithium carbon composite sample obtained in Example 1. FIG. 実施例1〜2及び比較例1〜2で得られたリン酸バナジウムリチウム炭素複合体試料の粉末X線回折図。The powder X-ray-diffraction figure of the vanadium-lithium-phosphate carbon composite sample obtained in Examples 1-2 and Comparative Examples 1-2.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明の製造方法で得られるリン酸バナジウムリチウム炭素複合体は、ナシコン構造を有するリン酸バナジウムリチウム(以下、単に「リン酸バナジウムリチウム」と呼ぶ。)と導電性炭素材料からなるものである。
本発明において、前記リン酸バナジウムリチウムは、下記一般式(1)
Li(PO (1)
(式中、xは2.5以上3.5以下、yは1.8以上2.2以下を示す。)で表わされるもの、或いは前記一般式(1)で表わされるリン酸バナジウムリチウムに、必要によりMe元素(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)をドープして含有させたリン酸バナジウムリチウムを含む。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The lithium vanadium phosphate carbon composite obtained by the production method of the present invention is composed of lithium vanadium phosphate having a NASICON structure (hereinafter simply referred to as “lithium vanadium phosphate”) and a conductive carbon material.
In the present invention, the lithium vanadium phosphate is represented by the following general formula (1):
Li x V y (PO 4 ) 3 (1)
(Wherein x represents 2.5 or more and 3.5 or less, y represents 1.8 or more and 2.2 or less), or lithium vanadium phosphate represented by the general formula (1), It contains lithium vanadium phosphate that is doped with a Me element (Me represents a metal element or a transition metal element having an atomic number of 11 or more other than V) as necessary.

本発明の前記リン酸バナジウムリチウム炭素複合体の製造方法は、リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を分散させたスラリーを調製する第1工程、次に該スラリーを噴霧乾燥して反応前駆体を得る第2工程、次に該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で600〜1300℃で焼成する第3工程を有することを特徴とするものである。   The method for producing the lithium vanadium phosphate carbon composite according to the present invention includes a vanadium source, a conductive carbon material source, and a Me source added as necessary to a lithium phosphate aqueous solution (Me is a metal having an atomic number of 11 or more other than V). A first step of preparing a slurry in which an element or a transition metal element is dispersed), then a second step of spray-drying the slurry to obtain a reaction precursor, and then the reaction precursor in an inert gas atmosphere It has the 3rd process baked at 600-1300 degreeC in inside or a reducing atmosphere, It is characterized by the above-mentioned.

本発明に係る第1工程は、リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源を均一に分散させたスラリー(C)を調製する工程である。   The first step according to the present invention is a step of preparing a slurry (C) in which a vanadium source, a conductive carbon material source, and a Me source added as necessary are uniformly dispersed in an aqueous lithium phosphate solution.

リン酸リチウム水溶液は、市販のリン酸リチウムを水に溶解して調製したものであってもよいし、自ら製造したものであってもよい。また、リン酸リチウム水溶液の濃度は、5〜40重量%、好ましくは20〜40重量%であると、室温においてもリン酸リチウム結晶の析出が起こらない観点から好ましい。   The lithium phosphate aqueous solution may be prepared by dissolving commercially available lithium phosphate in water, or may be produced by itself. The concentration of the lithium phosphate aqueous solution is preferably 5 to 40% by weight, more preferably 20 to 40% by weight, from the viewpoint that precipitation of lithium phosphate crystals does not occur even at room temperature.

リン酸リチウム水溶液を製造する方法としては、(1)リン酸水溶液に、炭酸リチウム或いは水酸化リチウムを添加して反応を行う方法(例えば、特開昭63−243965号公報参照)、或いは(2)炭酸リチウム或いは水酸化リチウムを含む溶液へ、リン酸水溶液を添加して反応を行う方法(例えば、特開2004−359538号公報参照)等を用いることができる。   As a method for producing a lithium phosphate aqueous solution, (1) a method in which lithium carbonate or lithium hydroxide is added to a phosphoric acid aqueous solution to carry out the reaction (for example, see JP-A-63-243965), or (2 ) A method of performing a reaction by adding an aqueous phosphoric acid solution to a solution containing lithium carbonate or lithium hydroxide (for example, see JP-A-2004-359538) can be used.

本製造方法において、リン酸リチウム水溶液を調製する方法は、前記(1)の方法を用いることが急激な反応発熱による突沸の可能性が避けられ,かつ余分な水分の使用を避けられる観点から特に好ましい。   In this production method, the method for preparing the lithium phosphate aqueous solution is particularly from the viewpoint that the use of the method (1) avoids the possibility of bumping due to rapid reaction heat generation and avoids the use of excess water. preferable.

以下、(1)のリン酸リチウム水溶液の調製方法について説明する。
反応操作は、所定の濃度のリン酸水溶液を調製し、このリン酸水溶液に所定量の炭酸リチウム或いは水酸化リチウムから選ばれるリチウム化合物を添加することにより反応が行われる。
リン酸水溶液の濃度は25重量%以上、好ましくは35〜85重量%であると取り扱いと水分除去に必要なエネルギーが少なくすむことから好ましい。
次いで、10〜60℃、好ましくは15〜55℃に保持したリン酸水溶液へ、リチウム化合物を添加する。
リチウム化合物の添加量は、リン酸水溶液中のP原子に対するリチウム化合物のLi原子のモル比(P/Li)で0.70〜1.30、好ましくは0.83〜1.17になるように添加することが効率的に反応を行うことができ、また、最終生成物として単相のリン酸バナジウムリチウムが得られやすくなり,該リン酸バナジウムリチウム複合体を正極活物質として用いたリチウム二次電池の放電容量も高いものにすることができる観点から好ましい。
リチウム化合物とリン酸との反応は、攪拌下に30分以上、好ましくは1〜5時間反応を行うことによりリン酸リチウム水溶液を容易に得ることができる。
Hereinafter, the method for preparing the lithium phosphate aqueous solution (1) will be described.
The reaction is carried out by preparing an aqueous phosphoric acid solution having a predetermined concentration and adding a predetermined amount of a lithium compound selected from lithium carbonate or lithium hydroxide to the aqueous phosphoric acid solution.
The concentration of the aqueous phosphoric acid solution is preferably 25% by weight or more, and preferably 35 to 85% by weight because energy required for handling and water removal is reduced.
Subsequently, a lithium compound is added to the phosphoric acid aqueous solution kept at 10 to 60 ° C., preferably 15 to 55 ° C.
The addition amount of the lithium compound is 0.70 to 1.30, preferably 0.83 to 1.17, in terms of the molar ratio (P / Li) of the lithium atom of the lithium compound to the P atom in the phosphoric acid aqueous solution. Addition enables efficient reaction, and facilitates obtaining single-phase lithium vanadium phosphate as a final product. A lithium secondary using the lithium vanadium phosphate composite as a positive electrode active material It is preferable from the viewpoint that the discharge capacity of the battery can be increased.
The reaction between the lithium compound and phosphoric acid can be easily obtained by carrying out the reaction for 30 minutes or longer, preferably 1 to 5 hours with stirring.

第1工程に係る前記バナジウム源としては、五酸化バナジウム、三酸化バナジウム、バナジン酸アンモニウム、オキシシュウ酸バナジウム等を用いることが出来る。この中、五酸化バナジウムが取り扱いが容易で、また、微細で且つ高純度なものが工業的に入手可能であり、他の原料との反応性にも優れている観点から好ましく用いられる。バナジウム源の好ましい物性は、平均粒子径が100μm以下、好ましくは5〜50μmであることが、均一混合が容易に可能になる観点で好ましい。   As the vanadium source in the first step, vanadium pentoxide, vanadium trioxide, ammonium vanadate, vanadium oxyoxalate, or the like can be used. Among these, vanadium pentoxide is preferably used from the viewpoint that it is easy to handle, and that a fine and high-purity one is industrially available and has excellent reactivity with other raw materials. A preferable physical property of the vanadium source is that the average particle diameter is 100 μm or less, preferably 5 to 50 μm, from the viewpoint of easy uniform mixing.

バナジウム源の添加量は、必要により添加されるMe源を添加しない場合は、バナジウム源中のV原子とリン酸リチウム中のP原子のモル比(V/P)で0.50〜0.80、好ましくは0.60〜0.73であることが最終生成物として単相のリン酸バナジウムリチウムが得られやすくなり,また、該リン酸バナジウムリチウム複合体を正極活物質として用いたリチウム二次電池の放電容量も高いものにすることができる観点から好ましい。   The addition amount of the vanadium source is 0.50 to 0.80 in terms of the molar ratio (V / P) of the V atom in the vanadium source and the P atom in the lithium phosphate when the Me source added as necessary is not added. It is easy to obtain a single-phase lithium vanadium phosphate as the final product, preferably 0.60 to 0.73, and a lithium secondary using the lithium vanadium phosphate composite as a positive electrode active material. It is preferable from the viewpoint that the discharge capacity of the battery can be increased.

本発明において、Me源はリン酸バナジウムリチウムの結晶構造を安定化し、サイクル特性等の電池性能をいっそう向上させることを目的として、必要により添加され、Me元素として前記一般式(1)で示されるリン酸バナジウムリチウムにドープして含有させるものである。本発明において、Me元素は、前記一般式(1)で示されるリン酸バナジウムリチウムのLiサイト又は/及びVサイトに置換されて存在する。
Me源中のMeはV以外の原子番号11以上の金属元素又は遷移金属元素を示し、好ましいMeとしては、Mg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo、Cu等が挙げられ、これらは1種又は2種以上で用いられる。
用いることができるMe源としては、Meを含む酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、炭酸塩、有機酸塩等が挙げられる。
また、Me源として固体状のものを使用する場合は、平均粒子径が100μm以下、好ましくは0.1〜50μmであることが、均一混合が容易に可能になる観点で好ましい。
In the present invention, the Me source is added as necessary for the purpose of stabilizing the crystal structure of lithium vanadium phosphate and further improving battery performance such as cycle characteristics, and is represented by the general formula (1) as a Me element. It is added to lithium vanadium phosphate. In the present invention, the Me element is substituted for the Li site or / and the V site of lithium vanadium phosphate represented by the general formula (1).
Me in the Me source represents a metal element or a transition metal element having an atomic number of 11 or more other than V, and preferred Me includes Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, Cu etc. are mentioned, These are used by 1 type (s) or 2 or more types.
Examples of the Me source that can be used include Me-containing oxides, hydroxides, halides, carbonates, nitrates, carbonates, and organic acid salts.
When a solid source is used as the Me source, the average particle size is preferably 100 μm or less, and preferably 0.1 to 50 μm from the viewpoint of easy uniform mixing.

Me源を添加する場合には、ドープさせるMe元素の種類にもよるが、多くの場合、バナジウム源中のVとMe源中のMe原子の合計(V+Me=M)とリン源中のP原子のモル比(M/P)で0.5〜0.80、好ましくは0.60〜0.73で、Me/Vのモル比が0より大きく0.45以下、好ましくは0より大きく0.1以下となるようにMe源を添加することが好ましい。   When adding the Me source, depending on the type of Me element to be doped, in many cases, the sum of V in the vanadium source and the Me atom in the Me source (V + Me = M) and the P atom in the phosphorus source The molar ratio (M / P) is 0.5 to 0.80, preferably 0.60 to 0.73, and the molar ratio of Me / V is larger than 0 and not larger than 0.45, preferably larger than 0 and 0.00. It is preferable to add the Me source so that it becomes 1 or less.

使用できる導電性炭素材料源としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛や、人工黒鉛のような黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維等の炭素材料が挙げられる。また、その他導電性炭素材料源として第3工程での焼成により、炭素が析出するような有機化合物も用いることができる。炭素が析出するような有機化合物としては、例えば、軟ピッチから硬ピッチまでのコールタールピッチ;乾留液化油等の石炭系重質油、常圧残油、減圧残油の直流重質油、原油、ナフサ等の熱分解時に副生するエチレンタール等の分解系重質油の石油系重質油;アセナフチレン、デカシクレン、アントラセン、フェナントレン等の芳香族炭化水素;フェナジン、ビフェニル、テルフェニル等のポリフェニレン;ポリ塩化ビニル;ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール等の水溶性ポリマー、及びこれらの不溶化処理品;含窒素性のポリアクリロニトリル;ポリピロール等の有機高分子;含硫黄性のポリチオフェン、ポリスチレン等の有機高分子;でんぷん、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キチン、キトサン、サッカロース、スクロース等の糖類などの天然高分子;ポリフェニレンサルファイド、ポリフェニレンオキシド等の熱可塑性樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬化性樹脂の1種又は2種以上が挙げられる。   Examples of the conductive carbon material source that can be used include natural graphite such as scaly graphite, scaly graphite, and earthy graphite, and graphite such as artificial graphite; carbon black, acetylene black, ketjen black, channel black, furnace black Carbon blacks such as lamp black and thermal black; and carbon materials such as carbon fiber. In addition, an organic compound in which carbon is precipitated by firing in the third step can also be used as a conductive carbon material source. Examples of the organic compound from which carbon is precipitated include coal tar pitch from soft pitch to hard pitch; heavy coal oil such as dry distillation liquefied oil, normal pressure residual oil, DC heavy oil of reduced pressure residual oil, crude oil Petroleum heavy oils of cracked heavy oils such as ethylene tar produced as a by-product during thermal decomposition of naphtha, etc .; aromatic hydrocarbons such as acenaphthylene, decacyclene, anthracene, phenanthrene; polyphenylenes such as phenazine, biphenyl, terphenyl; Polyvinyl chloride; water-soluble polymers such as polyvinyl alcohol, polyvinyl butyral, and polyethylene glycol, and insolubilized products thereof; nitrogen-containing polyacrylonitrile; organic polymers such as polypyrrole; organic compounds such as sulfur-containing polythiophene and polystyrene Molecule: Starch, cellulose, lignin, mannan, polygalactose Natural polymers such as saccharides such as acid, chitin, chitosan, saccharose and sucrose; thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, and one or more thermosetting resins such as phenol-formaldehyde resin and imide resin Is mentioned.

本製造方法では、導電性炭素材料源は、1種であっても又は2種以上の併用であってもよい。これらのうち、炭素材料が好ましく、特にカーボンブラック、ケッチェンブラックが、微粒なものを工業的に容易に入手でき、また、得られるリン酸バナジウムリチウム炭素複合体を正極活物質として用いたリチウム二次電池は放電容量が高くなる観点においても好ましい。   In this production method, the conductive carbon material source may be one type or a combination of two or more types. Of these, carbon materials are preferred, and carbon black and ketjen black are particularly easily available in the form of fine particles, and the lithium vanadium lithium carbon composite obtained is used as a positive electrode active material. The secondary battery is also preferable from the viewpoint of increasing the discharge capacity.

本製造方法で使用できる炭素材料の平均粒子径は、1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmである。また、炭素材料が繊維状である場合、該炭素材料の平均繊維径は、1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmである。炭素材料の平均粒子径又は平均繊維径が上記範囲内にあることにより、リン酸バナジウムリチウムの粒子に、導電性炭素材料を高分散させ易くなる。なお、本発明において、導電性炭素材料の平均粒子径又は平均繊維径は、走査型電子顕微鏡写真(SEM)から求められる平均粒子径又は平均繊維径であり、走査型電子顕微鏡写真中から、任意に抽出した20個の粒子の粒径又は繊維の繊維径の平均値である。   The average particle diameter of the carbon material that can be used in this production method is 1 μm or less, preferably 0.1 μm or less, and particularly preferably 0.01 to 0.1 μm. When the carbon material is fibrous, the average fiber diameter of the carbon material is 1 μm or less, preferably 0.1 μm or less, and particularly preferably 0.01 to 0.1 μm. When the average particle diameter or the average fiber diameter of the carbon material is within the above range, the conductive carbon material is easily highly dispersed in the lithium vanadium phosphate particles. In the present invention, the average particle diameter or the average fiber diameter of the conductive carbon material is an average particle diameter or an average fiber diameter determined from a scanning electron micrograph (SEM). The average value of the particle diameters of the 20 particles extracted or the fiber diameters of the fibers.

導電性炭素材料源の添加量は、生成されるリン酸バナジウムリチウムに対してC原子換算で0.1〜20質量%となるように添加することが好ましい。   The amount of the conductive carbon material source added is preferably 0.1 to 20% by mass in terms of C atoms with respect to the generated lithium vanadium phosphate.

焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が減少する傾向がある。そのため、第1工程において、生成されるリン酸バナジウムリチウム100質量部に対する導電性炭素材料源の配合量が、C原子換算で0.5〜40質量部、好ましくは5〜30質量部であると、実際に得られるリン酸バナジウムリチウム炭素複合体中のリン酸バナジウムリチウ100質量部に対する導電性炭素材料の配合量が、C原子換算で0.1〜20質量部、好ましくは1〜15質量部となり易い。生成されるリン酸バナジウムリチウム100質量部に対する導電性炭素材料源の配合量が、上記範囲内にあることにより、リン酸バナジウムリチウム炭素複合体をリチウム二次電池の正極活物質として用いた場合に、十分な導電性を付与することができるため、リチウム二次電池の内部抵抗を低くすることができ、且つ、質量或いは体積当たりの放電容量が高くなる。一方、生成されるリン酸バナジウムリチウム100質量部に対する導電性炭素材料源の配合量が、上記範囲未満だと、リン酸バナジウムリチウム炭素複合体をリチウム二次電池の正極活物質として用いた場合に、十分に導電性を付与することができなくなるため、リチウム二次電池の内部抵抗が高くなり易く、また、上記範囲を超えると、質量或いは体積当たりの放電容量が低くなり易い。   There is a tendency for the amount of C atoms contained in the conductive carbon material to decrease after firing compared to before firing. Therefore, in the first step, the compounding amount of the conductive carbon material source with respect to 100 parts by mass of lithium vanadium phosphate to be generated is 0.5 to 40 parts by mass, preferably 5 to 30 parts by mass in terms of C atoms. The blending amount of the conductive carbon material with respect to 100 parts by mass of vanadium phosphate lithium in the lithium vanadium phosphate carbon composite actually obtained is 0.1 to 20 parts by mass, preferably 1 to 15 parts by mass in terms of C atoms. It is easy to become. When the compounding amount of the conductive carbon material source with respect to 100 parts by mass of the generated lithium vanadium phosphate is within the above range, the lithium vanadium phosphate carbon composite is used as the positive electrode active material of the lithium secondary battery. Since sufficient conductivity can be imparted, the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume is increased. On the other hand, when the blending amount of the conductive carbon material source with respect to 100 parts by mass of the generated lithium vanadium phosphate is less than the above range, the lithium vanadium phosphate carbon composite is used as the positive electrode active material of the lithium secondary battery. Since sufficient conductivity cannot be imparted, the internal resistance of the lithium secondary battery tends to be high, and when the above range is exceeded, the discharge capacity per mass or volume tends to be low.

また、導電性炭素材料源として、炭素材料を用いる場合は、リン酸リチウム水溶液へ炭素材料の混合処理の際に、アルコールをスラリーへ添加して、アルコールの存在下に炭素材料の混合処理を行うと、炭素材料を短時間でスラリー中へ高分散させることができることから、有利に混合処理を行うことができる。   Further, when a carbon material is used as the conductive carbon material source, alcohol is added to the slurry during the mixing treatment of the carbon material into the lithium phosphate aqueous solution, and the carbon material mixing treatment is performed in the presence of the alcohol. Since the carbon material can be highly dispersed in the slurry in a short time, the mixing process can be advantageously performed.

用いることができるアルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール等の低級アルコールの1種又は2種以上で用いられ、この中、特にエタノールが炭素材料を高分散させる効果が高い点で好ましく用いられる。   As the alcohol that can be used, for example, one or more of lower alcohols such as methanol, ethanol, propanol, and butanol are used, and among these, ethanol is particularly preferable in that the effect of highly dispersing the carbon material is high. Used.

アルコールの添加量は、炭素材料100質量部に対して、2〜30質量部、好ましくは5〜20質量部であり、この範囲でアルコールをスラリーへ添加することにより、容易に炭素材料が高分散したスラリーを調製することができる。   The addition amount of the alcohol is 2 to 30 parts by mass, preferably 5 to 20 parts by mass with respect to 100 parts by mass of the carbon material. By adding the alcohol to the slurry in this range, the carbon material is easily highly dispersed. The prepared slurry can be prepared.

リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源を分散させる手段は、特に制限されるものではなく、リン酸リチウム水溶液に、バナジウム源、導電性炭素材料源及び必要により添加されるMe源を添加して、強力攪拌装置等により攪拌下に混合処理する方法が適用できるが、リン酸リチウム水溶液にバナジウム源及び必要により添加されるMe源を分散させたスラリーを固形分の平均粒子径が10μm以下、好ましくは1μm以下となるまでメディアミルにより湿式粉砕処理した粉砕処理品と導電性炭素材料源を含むスラリーを調製するA工程を有することが、得られるリン酸バナジウムリチウム炭素複合体を正極活物質として用いたリチウム二次電池において、特に放電容量が高く、サイクル特性に優れたものが得られる観点から好ましい。   Means for dispersing the vanadium source, the conductive carbon material source and the Me source added if necessary in the lithium phosphate aqueous solution is not particularly limited, and the vanadium source, the conductive carbon material source and the lithium phosphate aqueous solution A method of adding a Me source added if necessary and mixing with stirring with a powerful stirrer or the like can be applied. However, a slurry in which a vanadium source and a Me source added if necessary are dispersed in a lithium phosphate aqueous solution is used. Phosphoric acid obtained by having a step A for preparing a slurry containing a pulverized product and a conductive carbon material source that has been wet pulverized by a media mill until the average particle size of the solid content is 10 μm or less, preferably 1 μm or less In lithium secondary batteries using vanadium lithium-carbon composite as the positive electrode active material, the discharge capacity is particularly high, and the cycle characteristics Is preferable from the viewpoint of obtaining an excellent product.

本発明に係るA工程は、(イ)メディアミルによる湿式粉砕処理したスラリー(B)を調製する工程、(ロ)導電性炭素材料源を混合する工程、を含んでいる。   The step A according to the present invention includes (a) a step of preparing a slurry (B) that has been wet pulverized by a media mill, and (b) a step of mixing a conductive carbon material source.

前記(イ)工程に係る操作は、リン酸リチウム水溶液にバナジウム源及び必要により添加されるMe源を所定量添加したスラリー(A)を、メディアミルによる湿式粉砕処理に付す。この方法を採用することで、バナジウム源及び必要により添加されるMe源をより微細に粉砕することができるので、後述する第2工程で得られる反応前駆体は一層優れた反応性を有したものになる。   In the operation related to the step (a), the slurry (A) obtained by adding a predetermined amount of the vanadium source and the Me source added as necessary to the lithium phosphate aqueous solution is subjected to a wet pulverization treatment by a media mill. By adopting this method, the vanadium source and the Me source added if necessary can be finely pulverized, so that the reaction precursor obtained in the second step described later has even better reactivity. become.

メディアミルとしては、ビーズミル、ボールミル、ペイントシェーカー、アトライタ、サンドミル等を用いることができる。特にビーズミルを用いることが好ましい。その場合、運転条件やビーズの種類及び大きさは、装置のサイズや処理量に応じて適切に選択すればよい。   As the media mill, a bead mill, a ball mill, a paint shaker, an attritor, a sand mill, or the like can be used. It is particularly preferable to use a bead mill. In that case, the operating conditions and the type and size of the beads may be appropriately selected according to the size of the apparatus and the processing amount.

メディアミルを用いた処理を一層効率的に行う観点から、スラリー(A)に、分散剤を加えてもよい。使用する分散剤は、分散媒の種類に応じて適切なものを選択すればよい。分散媒が例えば水である場合には、分散剤として各種の界面活性剤、ポリカルボン酸アンモニウム塩等を用いることができる。スラリーにおける分散剤の濃度は0.01〜10重量%、特に0.1〜5重量%とすることが、十分な分散効果の点で好ましい。   From the viewpoint of more efficiently performing the treatment using the media mill, a dispersant may be added to the slurry (A). What is necessary is just to select a suitable dispersing agent to use according to the kind of dispersion medium. When the dispersion medium is water, for example, various surfactants, polycarboxylic acid ammonium salts, and the like can be used as the dispersant. The concentration of the dispersant in the slurry is preferably 0.01 to 10% by weight, particularly 0.1 to 5% by weight, from the viewpoint of a sufficient dispersion effect.

メディアミルを用いた粉砕処理は、レーザー散乱・回折法により求められる固形分の平均粒子径が5μm以下、好ましくは1μm以下、特に0.2〜1μmとなるまで行うことが、反応性に優れた反応前駆体を得ることができる観点から好ましい。かくすることにより、粉砕処理品を含むスラリー(B)を調製することができる。   The pulverization treatment using the media mill is excellent in reactivity when it is carried out until the average particle size of the solid content obtained by the laser scattering / diffraction method is 5 μm or less, preferably 1 μm or less, particularly 0.2 to 1 μm. It is preferable from the viewpoint of obtaining a reaction precursor. By doing so, a slurry (B) containing a pulverized product can be prepared.

(ロ)導電性炭素材料源を混合する工程は、(イ)メディアミルによる湿式粉砕処理を行う前であっても後であってもよい。即ち、スラリー(A)に導電性炭素材料源を添加し混合処理を行ってもよいし、或いはスラリー(B)に導電性炭素材料源を添加し混合処理を行ってもよい。   (B) The step of mixing the conductive carbon material source may be (i) before or after the wet pulverization treatment by the media mill. That is, the conductive carbon material source may be added to the slurry (A) and mixed, or the conductive carbon material source may be added to the slurry (B) and mixed.

本製造方法では、導電性炭素材料源として、前記炭素材料を用いる場合は、特に(イ)メディアミルによる湿式粉砕処理後のスラリー(B)に、導電性炭素材料源を添加し、次に(ロ)導電性炭素材料源を混合する工程を設けることが、粉砕装置への負担を低減でき、また、得られるリン酸バナジウムリチウム炭素複合体を正極活物質として用いたリチウム二次電池は放電容量が一層向上する観点においても好ましい。   In the present production method, when the carbon material is used as the conductive carbon material source, in particular, (i) the conductive carbon material source is added to the slurry (B) after the wet pulverization treatment by the media mill, B) Providing the step of mixing the conductive carbon material source can reduce the burden on the pulverizer, and the lithium secondary battery using the obtained vanadium lithium phosphate carbon composite as the positive electrode active material has a discharge capacity. Is also preferable from the viewpoint of further improvement.

なお、第3工程での焼成により、炭素が析出するような有機化合物を導電性炭素材料源として用いる場合は、粉砕処理に用いる分散媒に溶解可能なものを用いることが好ましく、粉砕処理前のスラリー(A)に該有機化合物を添加してもよいし、スラリー(B)に該有機化合物を添加してもよい。何れの方法を採用するかは、用いる装置等を考慮して工業的に有利な方法を適宜選択すればよい。   In addition, when using as an electroconductive carbon material source the organic compound which carbon precipitates by baking in a 3rd process, it is preferable to use what can be melt | dissolved in the dispersion medium used for a grinding | pulverization process. The organic compound may be added to the slurry (A), or the organic compound may be added to the slurry (B). Which method is to be adopted may be appropriately selected from industrially advantageous methods in consideration of the apparatus to be used.

かくすることにより、リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源が高分散したスラリー(C)を得ることができ、該スラリー(C)を第2工程に付して、反応前駆体を得る。   In this way, a slurry (C) in which a vanadium source, a conductive carbon material source, and a Me source added as needed are highly dispersed in the lithium phosphate aqueous solution can be obtained, and the slurry (C) is used in the second step. As a result, a reaction precursor is obtained.

本発明に係る第2工程は、第1工程で得られたリン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源を高分散させたスラリー(C)を噴霧乾燥して、優れた反応性を有するリン酸リチウム、バナジウム源、導電性炭素材料源及び必要により添加されるMe源からなる反応前駆体を得る工程である。   In the second step according to the present invention, the slurry (C) in which the vanadium source, the conductive carbon material source, and the Me source added as necessary are highly dispersed in the lithium phosphate aqueous solution obtained in the first step is spray-dried. In this process, a reaction precursor comprising a lithium phosphate having excellent reactivity, a vanadium source, a conductive carbon material source, and a Me source added as necessary is obtained.

スラリー(C)の乾燥方法には噴霧乾燥法以外の方法も知られているが、本製造方法においては噴霧乾燥法を選択することが有利であるとの知見に基づき、この乾燥方法を採用している。詳細には、噴霧乾燥法を用いると、リン酸リチウム、バナジウム源及び導電性炭素材料源を均一に含有し、原料粒子が密に詰まった状態の造粒物が得られることから、この造粒物を本発明では、反応前駆体とし、該反応前駆体を用いて後述する第3工程で焼成を行うことにより、粉末X線回折的には単相のリン酸バナジウムリチウムと、導電性炭素材料との複合体を得ることができる。   Although methods other than the spray drying method are known as the drying method of the slurry (C), this drying method is adopted based on the knowledge that it is advantageous to select the spray drying method in this production method. ing. Specifically, when the spray drying method is used, a granulated product containing lithium phosphate, a vanadium source, and a conductive carbon material source uniformly and packed with raw material particles is obtained. In the present invention, the product is used as a reaction precursor and calcined in the third step to be described later using the reaction precursor, so that, for powder X-ray diffraction, single-phase lithium vanadium phosphate and a conductive carbon material are used. And a complex can be obtained.

噴霧乾燥法においては、所定手段によってスラリー(C)を霧化し、それによって生じた微細な液滴を乾燥させることで反応前駆体を得る。スラリー(C)の霧化には、例えば回転円盤を用いる方法と、圧力ノズルを用いる方法がある。本工程においてはいずれの方法を用いることもできる。   In the spray drying method, the reaction precursor is obtained by atomizing the slurry (C) by a predetermined means and drying fine droplets generated thereby. The atomization of the slurry (C) includes, for example, a method using a rotating disk and a method using a pressure nozzle. Any method can be used in this step.

噴霧乾燥法においては、霧化されたスラリーの液滴の大きさと、それに含まれる固形分の原料粒子の大きさとの関係が、安定した乾燥や、得られる反応前駆体の性状に影響を与える。詳細には、液滴の大きさに対して固形分の原料粒子の大きさが小さすぎると、液滴が不安定になり、乾燥を首尾よく行いづらくなる。この観点から、スラリー(C)中の固形分となる粒子の大きさが前述の範囲であることを条件として、霧化された液滴の大きさは、0.5〜30μm、特に1〜20μmであることが好ましい。噴霧乾燥装置へのスラリー(C)の供給量は、この観点を考慮して決定することが望ましい。
なお、噴霧乾燥装置における乾燥温度は、熱風入口温度が200〜250℃、好ましくは210〜240℃に調整して、粉の温度が100〜150℃、好ましくは105〜130℃となるように調整することが粉体の吸湿を防ぎ粉体の回収が容易になることから好ましい。
In the spray drying method, the relationship between the size of the droplets of the atomized slurry and the size of the raw material particles contained therein affects stable drying and the properties of the obtained reaction precursor. Specifically, if the size of the solid material particles is too small with respect to the size of the droplets, the droplets become unstable, making it difficult to dry successfully. From this point of view, the size of the atomized droplets is 0.5 to 30 μm, particularly 1 to 20 μm, provided that the size of the solid particles in the slurry (C) is in the above-mentioned range. It is preferable that It is desirable to determine the supply amount of the slurry (C) to the spray drying apparatus in consideration of this viewpoint.
The drying temperature in the spray dryer is adjusted so that the hot air inlet temperature is 200 to 250 ° C., preferably 210 to 240 ° C., and the powder temperature is 100 to 150 ° C., preferably 105 to 130 ° C. It is preferable to prevent the powder from absorbing moisture and facilitate the recovery of the powder.

噴霧乾燥法により得られる反応前駆体は、次工程により焼成に付されが、得られるリン酸バナジウムリチウム炭素複合体の平均粒子径等の粉体特性は、反応前駆体の特性を概ね引き継ぐようになる。このため、噴霧乾燥は、反応前駆体の二次粒子が走査型電子顕微鏡(SEM)観察により求められる粒子径で0.5〜30μm、特に1〜20μmとなるように行われることが、目的とするリン酸バナジウムリチウム炭素複合体の粒子径の制御の点から好ましい。   The reaction precursor obtained by the spray drying method is subjected to firing in the next step, and the powder properties such as the average particle diameter of the obtained vanadium lithium phosphate carbon composite generally inherit the properties of the reaction precursor. Become. For this reason, spray drying is performed such that the secondary particles of the reaction precursor are 0.5 to 30 μm, particularly 1 to 20 μm, in terms of the particle diameter determined by observation with a scanning electron microscope (SEM). From the viewpoint of controlling the particle size of the lithium vanadium phosphate carbon composite.

このようにして得られた反応前駆体は、次に不活性ガス雰囲気中又は還元雰囲気中で600〜1300℃で焼成する第3工程に付して、目的とするリン酸バナジウムリチウム炭素複合体を得る。   The reaction precursor thus obtained is then subjected to a third step of firing at 600 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain the target lithium vanadium phosphate carbon composite. obtain.

本発明に係る第3工程は、前記第2工程で得られた反応前駆体を600〜1300℃で焼成を行って、粉末X線回折的に単相のリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体を得る工程である。   In the third step according to the present invention, the reaction precursor obtained in the second step is calcined at 600 to 1300 ° C., and from powder X-ray diffraction single phase lithium vanadium phosphate and a conductive carbon material. This is a step of obtaining a lithium vanadium phosphate carbon composite.

第3工程に係る焼成温度は600〜1300℃、好ましくは800〜1000℃である。この理由は、焼成温度が600℃より小さくなると還元焼成が不十分で最終生成物単一相とならない可能性が高く、一方、焼成温度が1300℃より大きくなると残存炭素分のバラツキが大きく、最終製品の品質特性に影響するからである。   The firing temperature according to the third step is 600 to 1300 ° C, preferably 800 to 1000 ° C. The reason for this is that if the calcination temperature is lower than 600 ° C., the reduction calcination is insufficient and there is a high possibility that the final product does not become a single phase. This is because it affects the quality characteristics of the product.

焼成雰囲気は、バナジウムの酸化を防ぎ,かつリン酸塩の溶融を防ぐという理由から不活性ガス雰囲気又は還元雰囲気中で行う。   The firing atmosphere is performed in an inert gas atmosphere or a reducing atmosphere for the purpose of preventing vanadium oxidation and preventing phosphate melting.

焼成時間は本製造方法において臨界的ではない。一般に1時間以上、特に2〜12時間焼成すれば、粉末X線回折的に単相のリン酸バナジウムリチウムと導電性炭素材料からなる複合体を得ることができる。   The firing time is not critical in this production method. In general, if it is baked for 1 hour or longer, particularly 2 to 12 hours, a composite composed of single-phase lithium vanadium phosphate and a conductive carbon material can be obtained by powder X-ray diffraction.

このようにして得られるリチウムバナジウムリチウム炭素複合体は、必要に応じて複数回の焼成工程に付してもよい。
焼成後は得られるリチウムバナジウム炭素複合体に対して、必要に応じて解砕処理及び/又は粉砕処理し、更に分級を行ってもよい。
The lithium vanadium lithium carbon composite thus obtained may be subjected to a plurality of firing steps as necessary.
After firing, the obtained lithium vanadium carbon composite may be crushed and / or pulverized as necessary, and further classified.

かくして得られるリン酸バナジウムリチウム炭素複合体は、粉末X線回折的に単相のリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体であり、好ましい物性としては、平均粒子径が10μm以下、好ましくは0.01μm以上10μm以下の一次粒子が多数集合して、平均粒子径が1μm以上50μm以下、好ましくは2〜20μmの二次粒子を形成する凝集状のリン酸バナジウムリチウムに、平均粒子径が1μm以下、好ましくは0.01〜0.1μmの導電性炭素材料が含有されているものであることが、リチウム二次電池の正極活物質として用いたときに高い放電容量が得られる点で好ましい。
また、更にリン酸バナジウムリチウム炭素複合体のBET比表面積が15〜50m/g、好ましくは20〜45m/gであると塗料化した際のペースト特性が良好であり,リン酸バナジウムリチウムに炭素分がよく分散した状態で複合体を形成するため良好な電子伝導性を示すことから好ましい。
The lithium vanadium phosphate carbon composite thus obtained is a lithium vanadium phosphate carbon composite composed of a single-phase lithium vanadium phosphate and a conductive carbon material in terms of powder X-ray diffraction. Is aggregated lithium vanadium phosphate in which a large number of primary particles are aggregated, preferably 0.01 μm or more and 10 μm or less to form secondary particles having an average particle diameter of 1 μm or more and 50 μm or less, preferably 2 to 20 μm. In addition, a high discharge capacity when used as a positive electrode active material of a lithium secondary battery is that a conductive carbon material having an average particle size of 1 μm or less, preferably 0.01 to 0.1 μm is contained. It is preferable at the point obtained.
Further, when the BET specific surface area of the lithium vanadium phosphate carbon composite is 15 to 50 m 2 / g, preferably 20 to 45 m 2 / g, the paste characteristics when formed into a paint are good, and the lithium vanadium phosphate has Since a composite is formed in a state where the carbon content is well dispersed, it is preferable because it exhibits good electron conductivity.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
{実施例1}
<第1工程>
10Lビーカーにイオン交換水3Lを入れ,これに85wt%リン酸1,729gを加えて攪拌し,これに炭酸リチウム(平均粒子径10μm)554.2gを加えて25℃で攪拌下に1時間反応を行って、これをリン酸リチウム水溶液とした。
次いで、攪拌下においてリン酸リチウム水溶液へ五酸化バナジウム(平均粒子径12μm)909.4gを加えて1時間攪拌してスラリーを得た。このスラリーにケッチェンブラック(平均粒子径0.04μm)204gとエタノール20gを加えて攪拌混合してスラリー(C)を調製した。
<第2工程>
次いで、熱風入口の温度を230℃に設定した噴霧乾燥装置に、50g/分の供給速度でスラリー(C)を供給し、反応前駆体を得た。なお、反応前駆体をSEM観察した結果、反応前駆体は二次粒子の粒子径が2〜25μmのものであった。
反応前駆体の電子顕微鏡写真(SEM像)を図1に示す。
<第3工程>
得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下900℃で12時間焼成した。焼成品をアルミナ乳鉢内で0.5mm以下に粗粉砕し,ジェットミルにより解砕してリン酸バナジウムリチウム炭素複合体試料を得た。
得られたリン酸バナジウムリチウム炭素複合体試料の電子顕微鏡写真(SEM像)を図2に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
{Example 1}
<First step>
Add 3 L of ion-exchanged water to a 10 L beaker, add 1,729 g of 85 wt% phosphoric acid to this, stir, add 554.2 g of lithium carbonate (average particle size 10 μm), and react at 25 ° C. with stirring for 1 hour This was used as an aqueous lithium phosphate solution.
Next, under stirring, 909.4 g of vanadium pentoxide (average particle size 12 μm) was added to the lithium phosphate aqueous solution and stirred for 1 hour to obtain a slurry. To this slurry, 204 g of ketjen black (average particle size 0.04 μm) and 20 g of ethanol were added and mixed by stirring to prepare slurry (C).
<Second step>
Next, the slurry (C) was supplied to a spray drying apparatus in which the temperature of the hot air inlet was set to 230 ° C. at a supply rate of 50 g / min to obtain a reaction precursor. As a result of SEM observation of the reaction precursor, the reaction precursor had a secondary particle size of 2 to 25 μm.
An electron micrograph (SEM image) of the reaction precursor is shown in FIG.
<Third step>
The obtained reaction precursor was placed in a mullite slag and baked at 900 ° C. for 12 hours in a nitrogen atmosphere. The fired product was coarsely pulverized to 0.5 mm or less in an alumina mortar and crushed by a jet mill to obtain a lithium vanadium phosphate carbon composite sample.
An electron micrograph (SEM image) of the obtained lithium vanadium phosphate carbon composite sample is shown in FIG.

{実施例2}
<第1工程>
10Lビーカーにイオン交換水3Lを入れ,これに85wt%リン酸1,729gを加えて攪拌し,これに炭酸リチウム(平均粒子径10μm)554.2gを加えて23℃で1時間攪拌下に反応を行ってリン酸リチウム水溶液を調整した。次いで、このリン酸リチウム水溶液へ攪拌下に五酸化バナジウム(平均粒子径12μm)909.4gを加えて1h攪拌してスラリー(A)を得た。
湿式粉砕装置に長径0.5mmのジルコニアボールを仕込み、このスラリー(A)を湿式粉砕装置に導入し、レーザー散乱・回折法(日機装製、9320−X100型)により求められる平均粒子径(D50)が1.0μm以下となるまでビースミルにより、5時間、湿式法による粉砕を行いスラリー(B)を調製した。このスラリー(B)にケッチェンブラック204gとエタノール20gを加えて攪拌混合してスラリー(C)を調製した。
<第2工程>
次いで、熱風入口の温度を230℃に設定した噴霧乾燥装置に、50g/分の供給速度でスラリー(C)を供給し、反応前駆体を得た。なお、反応前駆体をSEM観察した結果、反応前駆体は二次粒子の粒子径が2〜30μmのものであった。
<第3工程>
得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下900℃で12時間焼成した。焼成品をアルミナ製乳鉢内で0.5mm以下に粗粉砕し,ジェットミルにより解砕してリン酸バナジウムリチウム炭素複合体試料を得た。
{Example 2}
<First step>
Add 3 L of ion-exchanged water to a 10 L beaker, add 1,729 g of 85 wt% phosphoric acid to this, stir, add 554.2 g of lithium carbonate (average particle size 10 μm), and react at 23 ° C. with stirring for 1 hour. To prepare an aqueous lithium phosphate solution. Subsequently, 909.4 g of vanadium pentoxide (average particle size 12 μm) was added to the aqueous lithium phosphate solution with stirring, and the mixture was stirred for 1 hour to obtain a slurry (A).
A zirconia ball having a major axis of 0.5 mm is charged into a wet pulverizer, and this slurry (A) is introduced into the wet pulverizer, and the average particle diameter (D 50 ) determined by a laser scattering / diffraction method (manufactured by Nikkiso, model 9320-X100). The slurry (B) was prepared by pulverization by a wet method for 5 hours using a bead mill until the slag was 1.0 μm or less. 204 g of ketjen black and 20 g of ethanol were added to this slurry (B) and mixed by stirring to prepare slurry (C).
<Second step>
Next, the slurry (C) was supplied to a spray drying apparatus in which the temperature of the hot air inlet was set to 230 ° C. at a supply rate of 50 g / min to obtain a reaction precursor. As a result of SEM observation of the reaction precursor, the reaction precursor had a secondary particle diameter of 2 to 30 μm.
<Third step>
The obtained reaction precursor was placed in a mullite slag and baked at 900 ° C. for 12 hours in a nitrogen atmosphere. The fired product was coarsely pulverized to 0.5 mm or less in an alumina mortar and pulverized by a jet mill to obtain a lithium vanadium phosphate carbon composite sample.

{比較例1}
2Lビーカーにイオン交換水1Lを入れ,これに水酸化リチウム125.9g(Li:3mol)を加えて溶解した。この溶液に五酸化バナジウム181.9g(V:2mol)加えて1h攪拌した。この液にグルコース(ブドウ糖)36.0g(0.2mol)と85%リン酸345.9g(P:3mol)を加えて1時間攪拌して混合液を得た。
次いで、熱風入口の温度を230℃に設定した噴霧乾燥装置に、50g/分の供給速度で混合液を供給し、反応前駆体を得た。なお、反応前駆体をSEM観察した結果、反応前駆体は二次粒子の粒子径が2〜30μmのものであった。
得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下600で1間焼成した。熱処理品を0.5mm以下に粗砕し,リン酸バナジウムリチウム炭素複合体試料を得た。
{Comparative Example 1}
1 L of ion-exchanged water was put into a 2 L beaker, and 125.9 g of lithium hydroxide (Li: 3 mol) was added and dissolved therein. To this solution, 181.9 g (V: 2 mol) of vanadium pentoxide was added and stirred for 1 h. Glucose (glucose) 36.0 g (0.2 mol) and 85% phosphoric acid 345.9 g (P: 3 mol) were added to this solution and stirred for 1 hour to obtain a mixed solution.
Subsequently, the liquid mixture was supplied to the spray drying apparatus in which the temperature of the hot air inlet was set to 230 ° C. at a supply rate of 50 g / min to obtain a reaction precursor. As a result of SEM observation of the reaction precursor, the reaction precursor had a secondary particle diameter of 2 to 30 μm.
The obtained reaction precursor was put in a mullite slag and baked for 1 minute in a nitrogen atmosphere at 600. The heat-treated product was roughly crushed to 0.5 mm or less to obtain a lithium vanadium phosphate carbon composite sample.

{比較例2}
2Lビーカーにイオン交換水1Lを入れ,これに水酸化リチウム125.9gを加えて溶解した。この溶液に五酸化バナジウム181.9g加えて1h攪拌した。この液にケッチェンブラック(平均粒子径0.04μm)10gと85%リン酸345.9gを加えたて混合液を調製した。ボールミル用ポッドに直径2mmのアルミナボールを仕込み、レーザー散乱・回折法(日機装製、9320−X100型)により求められるスラリー中の粉砕処理品の平均粒子径(D50)が1.0μm以下になるまで24時間、湿式法により処理してスラリー(C)を調製した。
次いで、熱風入口の温度を230℃に設定した噴霧乾燥装置に、50g/分の供給速度でスラリー(C)を供給し、反応前駆体を得た。なお、反応前駆体をSEM観察した結果、反応前駆体は二次粒子の粒子径が2〜30μmのものであった。
得られた前駆体化合物を窒素雰囲気下600℃で1時間焼成して、リン酸バナジウムリチウム炭素複合体試料を得た。
{Comparative Example 2}
1 L of ion exchange water was put into a 2 L beaker, and 125.9 g of lithium hydroxide was added and dissolved therein. To this solution, 181.9 g of vanadium pentoxide was added and stirred for 1 h. To this solution, 10 g of ketjen black (average particle size 0.04 μm) and 345.9 g of 85% phosphoric acid were added to prepare a mixed solution. An alumina ball having a diameter of 2 mm is charged in a pod for ball mill, and the average particle diameter (D 50 ) of the pulverized product in the slurry obtained by a laser scattering / diffraction method (manufactured by Nikkiso, model 9320-X100) is 1.0 μm or less. The slurry (C) was prepared by processing by a wet method until 24 hours.
Next, the slurry (C) was supplied to a spray drying apparatus in which the temperature of the hot air inlet was set to 230 ° C. at a supply rate of 50 g / min to obtain a reaction precursor. As a result of SEM observation of the reaction precursor, the reaction precursor had a secondary particle diameter of 2 to 30 μm.
The obtained precursor compound was baked at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a lithium vanadium phosphate carbon composite sample.

<リン酸バナジウムリチウム炭素複合体の物性評価>
実施例1〜2及び比較例1〜2で得られたリン酸バナジウムリチウム炭素複合体について、リン酸バナジウムリチウム炭素複合体の平均粒子径、BET比表面積及び導電性炭素材料の含有量を測定し、また、粉末X線回折測定を行った。得られた結果を表2に示す。また、実施例1〜2及び比較例1〜2で得られたリン酸バナジウムリチウム炭素複合体の粉末X線回折図を図3に示す。なお、リン酸バナジウムリチウムの平均二次粒子径はレーザー散乱・回折法(日機装製、9320−X100型)により測定した。また、導電性炭素材料の含有量は炭素原子含有量を、TOC全有機炭素計(島津製作所製TOC−5000A)にて測定することによりC原子の含有量として求めた。
<Property evaluation of lithium vanadium phosphate carbon composite>
For the vanadium phosphate carbon composites obtained in Examples 1 and 2 and Comparative Examples 1 and 2, the average particle size, BET specific surface area, and conductive carbon material content of the vanadium lithium phosphate composites were measured. In addition, powder X-ray diffraction measurement was performed. The obtained results are shown in Table 2. Moreover, the powder X-ray-diffraction figure of the vanadium phosphate lithium carbon composite_body | complex obtained in Examples 1-2 and Comparative Examples 1-2 is shown in FIG. In addition, the average secondary particle diameter of lithium vanadium phosphate was measured by a laser scattering / diffraction method (manufactured by Nikkiso, 9320-X100 type). The content of the conductive carbon material was determined as the content of C atoms by measuring the carbon atom content with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation).

<電池性能の評価>
<電池性能試験>
(I)リチウム二次電池の作製;
上記のように製造した実施例1〜2及び比較例1〜2のリン酸バナジウムリチウム炭素複合体91質量%、黒鉛粉末6質量%、ポリフッ化ビニリデン3質量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF61モルを溶解したものを使用した。
<Evaluation of battery performance>
<Battery performance test>
(I) Production of lithium secondary battery;
The positive electrode agent was prepared by mixing 91% by mass of the vanadium lithium phosphate carbon composites of Examples 1 and 2 and Comparative Examples 1 and 2 manufactured as described above, 6% by mass of graphite powder, and 3% by mass of polyvinylidene fluoride. Was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The obtained kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.

(2)電池の性能評価
作製したリチウム二次電池を室温で下記条件で作動させ、下記の電池性能を評価した。
<サイクル特性の評価>
正極に対して定電流電圧(CCCV)充電により1.0Cで5時間かけて、4.4Vまで充電した後、放電レート0.2Cで2.7Vまで放電させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目のそれぞれの放電容量から、下記式により容量維持率を算出した。なお、1サイクル目の放電容量を初期放電容量とした。
(2) Battery performance evaluation The produced lithium secondary battery was operated at room temperature under the following conditions, and the following battery performance was evaluated.
<Evaluation of cycle characteristics>
After charging the positive electrode to 4.4V at 1.0C for 5 hours by constant current voltage (CCCV) charging, charging / discharging to discharge to 2.7V at a discharge rate of 0.2C is performed. The discharge capacity was measured every cycle as one cycle. This cycle was repeated 20 times, and the capacity retention rate was calculated from the discharge capacity of the first cycle and the 20th cycle according to the following formula. The discharge capacity at the first cycle was defined as the initial discharge capacity.

本発明によれば、工業的に有利な方法でリチウム二次電池の正極活物質として有用なリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体を提供することができる。また、本発明の製造方法で得られるリン酸バナジウムリチウム炭素複合体を正極活物質とするリチウム二次電池は、特に放電容量が高く、サイクル特性に優れたものになる。




ADVANTAGE OF THE INVENTION According to this invention, the vanadium lithium phosphate carbon composite which consists of an electroconductive carbon material and lithium vanadium phosphate useful as a positive electrode active material of a lithium secondary battery by an industrially advantageous method can be provided. In addition, a lithium secondary battery using the vanadium phosphate lithium carbon composite obtained by the production method of the present invention as a positive electrode active material has a particularly high discharge capacity and excellent cycle characteristics.




Claims (7)

ナシコン構造を有するリン酸バナジウムリチウムと導電性炭素材料からなるリン酸バナジウムリチウム炭素複合体の製造方法であって、
リン酸リチウム水溶液にバナジウム源、導電性炭素材料源及び必要により添加されるMe源(MeはV以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を分散させたスラリーを調製する第1工程、次に該スラリーを噴霧乾燥して反応前駆体を得る第2工程、次に該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で600〜1300℃で焼成する第3工程を、有することを特徴とするリン酸バナジウムリチウム炭素複合体の製造方法。
A method for producing a lithium vanadium phosphate carbon composite comprising a lithium vanadium phosphate having a NASICON structure and a conductive carbon material,
A slurry is prepared in which a vanadium source, a conductive carbon material source, and a Me source added as necessary (Me represents a metal element having a atomic number of 11 or more or a transition metal element other than V) are dispersed in an aqueous lithium phosphate solution. A first step, then a second step in which the slurry is spray-dried to obtain a reaction precursor, and then a third step in which the reaction precursor is calcined at 600 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere. A method for producing a lithium vanadium phosphate carbon composite, characterized by comprising:
導電性炭素材料源の添加量が生成されるリン酸バナジウムリチウムに対してC原子換算で0.1〜20質量%であることを特徴とする請求項1記載のリン酸バナジウムリチウム炭素複合体の製造方法。   2. The vanadium lithium phosphate carbon composite according to claim 1, wherein the addition amount of the conductive carbon material source is 0.1 to 20% by mass in terms of C atom with respect to lithium vanadium phosphate to be generated. Production method. 導電性炭素材料源が炭素材料であることを特徴とする請求項1又は2記載のリン酸バナジウムリチウム炭素複合体の製造方法。   The method for producing a lithium vanadium phosphate carbon composite according to claim 1 or 2, wherein the conductive carbon material source is a carbon material. 炭素材料の分散はアルコールの存在下に行うことを特徴とする請求項3記載のリン酸バナジウムリチウム炭素複合体の製造方法。   4. The method for producing a lithium vanadium phosphate carbon composite according to claim 3, wherein the carbon material is dispersed in the presence of alcohol. 炭素材料がカーボンブラック及びケッチェンブラックから選ばれることを特徴とする請求項3記載のリン酸バナジウムリチウム炭素複合体の製造方法。   The method for producing a lithium vanadium phosphate carbon composite according to claim 3, wherein the carbon material is selected from carbon black and ketjen black. 第1工程は、リン酸リチウム水溶液にバナジウム源及び必要により添加されるMe源を分散させたスラリーを固形分の平均粒子径が1μm以下となるまでメディアミルにより湿式粉砕処理した粉砕処理品と導電性炭素材料源を含むスラリーを調製するA工程を含むことを特徴とする請求項1乃至5記載のリン酸バナジウムリチウム炭素複合体の製造方法。   In the first step, a slurry in which a vanadium source and an optional Me source are dispersed in a lithium phosphate aqueous solution is subjected to a wet pulverization treatment with a media mill until the average particle size of solids becomes 1 μm or less, and a conductive product. A method for producing a lithium vanadium phosphate carbon composite according to claim 1, further comprising an A step of preparing a slurry containing a carbonaceous material source. 前記A工程は、リン酸リチウム水溶液にバナジウム源及び必要により添加されるMe源を分散させたスラリーを固形分の平均粒子径が1μm以下となるまでメディアミルにより湿式粉砕処理する工程、次いで湿式粉砕処理後のスラリーに導電性炭素材料源として炭素材料を添加し混合処理する工程を含むことを特徴とする請求項6記載のリン酸バナジウムリチウム炭素複合体の製造方法。
Step A is a step in which a slurry in which a vanadium source and an optional Me source are dispersed in a lithium phosphate aqueous solution is subjected to a wet pulverization treatment with a media mill until the average particle size of solids becomes 1 μm or less, and then wet pulverization 7. The method for producing a lithium vanadium phosphate carbon composite according to claim 6, further comprising a step of adding a carbon material as a conductive carbon material source to the slurry after the treatment and mixing the slurry.
JP2010178881A 2010-08-09 2010-08-09 Method for producing lithium vanadium phosphate carbon composite Active JP5612392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178881A JP5612392B2 (en) 2010-08-09 2010-08-09 Method for producing lithium vanadium phosphate carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178881A JP5612392B2 (en) 2010-08-09 2010-08-09 Method for producing lithium vanadium phosphate carbon composite

Publications (2)

Publication Number Publication Date
JP2012036048A true JP2012036048A (en) 2012-02-23
JP5612392B2 JP5612392B2 (en) 2014-10-22

Family

ID=45848468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178881A Active JP5612392B2 (en) 2010-08-09 2010-08-09 Method for producing lithium vanadium phosphate carbon composite

Country Status (1)

Country Link
JP (1) JP5612392B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056760A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
WO2015056759A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
JP2015525735A (en) * 2012-08-10 2015-09-07 サムスン ファイン ケミカルズ カンパニー リミテッドSamsungfine Chemicals Co.,Ltd Method for producing lithium metal phosphate
JP2019164986A (en) * 2018-03-15 2019-09-26 株式会社リコー Positive electrode, nonaqueous power storage element and coating liquid for positive electrode mixture material
JP2020516012A (en) * 2017-08-02 2020-05-28 エナジー・マテリアルズ・カンパニー・リミテッド Method for manufacturing secondary battery positive electrode active material powder
JP2020149964A (en) * 2019-09-12 2020-09-17 株式会社リコー Positive electrode active material, positive electrode, electrode element, and power storage device
JP2020149825A (en) * 2019-03-12 2020-09-17 株式会社リコー Method for production of composite material
JP2020149826A (en) * 2019-03-12 2020-09-17 株式会社リコー Composite material, electrode, electrode element and power storage device
US11532811B2 (en) 2019-03-12 2022-12-20 Ricoh Company, Ltd. Composite material, electrode, electrode device, power storage device and method of manufacturing composite material
WO2024071408A1 (en) * 2022-09-30 2024-04-04 日本ケミコン株式会社 Electrode material, power storage device, and method for producing electrode material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052970A (en) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
WO2008154287A1 (en) * 2007-06-08 2008-12-18 Conocophillips Company Method for producing lithium transition metal polyanion powders for batteries
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device
JP2009231206A (en) * 2008-03-25 2009-10-08 Gs Yuasa Corporation Nonaqueous electrolyte battery
JP2010503606A (en) * 2006-09-13 2010-02-04 ヴァレンス テクノロジー インコーポレーテッド Method for treating active materials for use in secondary electrochemical cells
WO2010080519A1 (en) * 2008-12-19 2010-07-15 Conocophillips Company Process for making fluorinated lithium vanadium polyanion powders for batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052970A (en) * 2006-08-23 2008-03-06 Sumitomo Osaka Cement Co Ltd Manufacturing method of electrode material, positive electrode material, and battery
JP2010503606A (en) * 2006-09-13 2010-02-04 ヴァレンス テクノロジー インコーポレーテッド Method for treating active materials for use in secondary electrochemical cells
WO2008154287A1 (en) * 2007-06-08 2008-12-18 Conocophillips Company Method for producing lithium transition metal polyanion powders for batteries
JP2009231206A (en) * 2008-03-25 2009-10-08 Gs Yuasa Corporation Nonaqueous electrolyte battery
WO2010080519A1 (en) * 2008-12-19 2010-07-15 Conocophillips Company Process for making fluorinated lithium vanadium polyanion powders for batteries
JP2009187963A (en) * 2009-05-26 2009-08-20 Tdk Corp Composite particle for electrode and electrochemical device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014020250; Feng Yu, et al.: 'Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and ca' Journal of Solid State Electrochemistry Vol.14,No.5, 20090623, pp.883-888, Springer *
JPN6014020251; G.Yang,et al.: 'Preparation and Characterization of Spherical Li3V2(PO4)3/C Cathode Material for Lithium-ion Batteri' Journal of New Materials for Electrochemical Systems Vol.12,No.4, 200910, pp.201-205 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525735A (en) * 2012-08-10 2015-09-07 サムスン ファイン ケミカルズ カンパニー リミテッドSamsungfine Chemicals Co.,Ltd Method for producing lithium metal phosphate
US10752504B2 (en) 2012-08-10 2020-08-25 Samsung Sdi Co., Ltd. Method for preparing lithium metal phosphor oxide
CN105765774A (en) * 2013-10-17 2016-07-13 日本贵弥功株式会社 Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
US10847801B2 (en) 2013-10-17 2020-11-24 Nippon Chemi-Con Corporation Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
WO2015056760A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
US9905853B2 (en) 2013-10-17 2018-02-27 Nippon Chemi-Con Corporation Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
CN105765773A (en) * 2013-10-17 2016-07-13 日本贵弥功株式会社 Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
WO2015056759A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
JP2020516012A (en) * 2017-08-02 2020-05-28 エナジー・マテリアルズ・カンパニー・リミテッド Method for manufacturing secondary battery positive electrode active material powder
JP2019164986A (en) * 2018-03-15 2019-09-26 株式会社リコー Positive electrode, nonaqueous power storage element and coating liquid for positive electrode mixture material
JP7302165B2 (en) 2018-03-15 2023-07-04 株式会社リコー Positive electrode for lithium ion secondary battery, coating solution for lithium ion secondary battery and positive electrode mixture
JP2020149825A (en) * 2019-03-12 2020-09-17 株式会社リコー Method for production of composite material
JP2020149826A (en) * 2019-03-12 2020-09-17 株式会社リコー Composite material, electrode, electrode element and power storage device
US11532811B2 (en) 2019-03-12 2022-12-20 Ricoh Company, Ltd. Composite material, electrode, electrode device, power storage device and method of manufacturing composite material
JP7275675B2 (en) 2019-03-12 2023-05-18 株式会社リコー composite material, electrode, electrode element, storage device
JP7358752B2 (en) 2019-03-12 2023-10-11 株式会社リコー Composite material manufacturing method
JP2020149964A (en) * 2019-09-12 2020-09-17 株式会社リコー Positive electrode active material, positive electrode, electrode element, and power storage device
WO2024071408A1 (en) * 2022-09-30 2024-04-04 日本ケミコン株式会社 Electrode material, power storage device, and method for producing electrode material

Also Published As

Publication number Publication date
JP5612392B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5309264B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP4829557B2 (en) Method for producing lithium iron composite oxide
JP5871543B2 (en) Modified vanadium phosphate lithium carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP6531041B2 (en) LMFP Cathode Material with Improved Electrochemical Performance
WO2018179813A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4804045B2 (en) Method for producing lithium iron composite oxide
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101872217B1 (en) Negative electrode material for lithium ion secondary battery
JP2023009119A (en) Method for purifying raw carbon nanotubes
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP5765798B2 (en) Cathode active material for Li-ion battery and method for producing the same
JP5604216B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP2015210960A (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019150511A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2016121711A1 (en) Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery
JP2018195586A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5239153B2 (en) Electrode material composite method, electrode and lithium ion battery
JP2016178049A (en) Carbonaceous material for lithium ion secondary battery
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012054077A (en) Active material for secondary battery and method for producing active material for secondary battery, and secondary battery using the active material for secondary battery
CN109585799A (en) Electrode material for lithium ion cell and lithium ion battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R150 Certificate of patent or registration of utility model

Ref document number: 5612392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250