KR20200055798A - 나노 구조의 비편광 빔 스플리터 - Google Patents

나노 구조의 비편광 빔 스플리터 Download PDF

Info

Publication number
KR20200055798A
KR20200055798A KR1020207013093A KR20207013093A KR20200055798A KR 20200055798 A KR20200055798 A KR 20200055798A KR 1020207013093 A KR1020207013093 A KR 1020207013093A KR 20207013093 A KR20207013093 A KR 20207013093A KR 20200055798 A KR20200055798 A KR 20200055798A
Authority
KR
South Korea
Prior art keywords
substrate
reflective structures
beam splitter
wavelength
reflective
Prior art date
Application number
KR1020207013093A
Other languages
English (en)
Other versions
KR102347054B1 (ko
Inventor
드미트리 고어릭
앤드류 힐
오하르 바처
암논 마나센
다리아 니그리
Original Assignee
케이엘에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이 코포레이션 filed Critical 케이엘에이 코포레이션
Publication of KR20200055798A publication Critical patent/KR20200055798A/ko
Application granted granted Critical
Publication of KR102347054B1 publication Critical patent/KR102347054B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/147Beam splitting or combining systems operating by reflection only using averaging effects by spatially variable reflectivity on a microscopic level, e.g. polka dots, chequered or discontinuous patterns, or rapidly moving surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70583Speckle reduction, e.g. coherence control or amplitude/wavefront splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

빔 스플리터는 적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판 및 기판의 표면에 걸쳐 분포된 반사 구조물들을 포함한다. 반사 구조물들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광을 반사 구조물들로부터 반사된 입사광의 부분들로부터 형성된 반사 빔 및 기판을 통해 투과된 입사광의 부분들로부터 형성된 투과 빔으로 분할한다. 투과 빔의 세기에 대한 반사 빔의 세기의 분할 비율은 기판 상의 입사광의 면적에 대한 반사 표면들의 표면적의 비율에 기반한다. 이웃하는 반사 구조물들 간의 이격 거리들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광의 회절된 세기가 선택된 허용 한계 미만으로 유지되도록 컷오프 파장보다 더 작다.

Description

나노 구조의 비편광 빔 스플리터
관련 출원에 대한 상호 참조
본 출원은 2017년 10월 10일 출원된, Dmitry Gorelik, Andrew Hill, Ohad Bachar, Amnon Manassen 및 Dana Negri가 발명한, “광대역 비편광 빔 스플리터를 위한 나노 구조의 코팅(NANO-STRUCTURED COATING FOR BROAD BAND NON POLARIZING BEAM-SPLITTERS)”이라는 명칭의 미국 가출원 제62/570,423호에 대하여 35 U.S.C. § 119(e)에 따라 우선권을 주장하며, 그 전체가 참조로 본 명세서에 포함된다.
기술분야
본 개시는 일반적으로 광학 빔 스플리터들에 관한 것이며, 보다 구체적으로, 나노 구조의 빔 스플리터들에 관한 것이다.
광학 광빔들을 분할하기에 적합한 빔 스플리터들은 많은 광학 시스템에서 이용된다. 예를 들어, 광학 계측 시스템들의 맥락에서, 빔 스플리터들은 일반적으로 공통 대물 렌즈와 함께 사용하기 위해 조명(illumination) 및 수집(collection) 경로들을 결합하는 데 사용된다. 그러나, 관심 있는 광빔들의 스펙트럼이 넓은 범위의 파장들을 커버하는 광대역 응용들을 위한 빔 스플리터들을 설계하는 것은 여러 가지 과제를 제시한다. 예를 들어, 선택된 빔 분할 비율(예를 들어, 투과광에 대한 반사광의 비율)을 고도의 공간 균일성, 낮은 흡수 및 낮은 회절과 함께 동시에 제공하는 것은 요구되는 스펙트럼 폭이 증가함에 따라 점점 더 어려워지고 있다. 따라서 상술된 결함들을 해결하기 위한 시스템들 및 방법들을 제공하는 것이 바람직하다.
빔 스플리터가 본 개시의 하나 이상의 예시적인 실시예에 따라 개시된다. 하나의 예시적인 실시예에서, 빔 스플리터는 적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판을 포함한다. 또다른 예시적인 실시예에서, 빔 스플리터는 기판의 표면에 걸쳐 분포된 반사 구조물들을 포함하고, 반사 구조물들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광을 반사 구조물들로부터 반사된 입사광의 부분들로부터 형성된 반사 빔 및 기판을 통해 투과된 입사광의 부분들로부터 형성된 투과 빔으로 분할한다. 또다른 예시적인 실시예에서, 투과 빔의 세기에 대한 반사 빔의 세기의 분할 비율은 반사 표면들에 의해 덮이지 않은 기판의 면적에 대한 반사 표면들의 표면적의 비율에 기반한다. 또다른 예시적인 실시예에서, 이웃하는 반사 구조물들 간의 이격 거리(separation distance)들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광의 0이 아닌 회절 차수들의 세기가 선택된 허용 한계 미만으로 유지되도록 컷오프 파장보다 더 작다.
계측 시스템이 본 개시의 하나 이상의 예시적인 실시예에 따라 개시된다. 하나의 예시적인 실시예에서, 시스템은 선택된 컷오프 파장을 초과하는 파장들을 갖는 조명 빔(illumination beam)을 생성하도록 구성된 조명원(illumination source)을 포함한다. 또다른 예시적인 실시예에서, 시스템은 대물 렌즈를 포함한다. 또다른 예시적인 실시예에서, 시스템은 검출기(detector)를 포함한다. 또다른 예시적인 실시예에서, 시스템은 빔 스플리터를 포함한다. 또다른 예시적인 실시예에서, 빔 스플리터는 조명 빔을 제1 조명 빔 및 제2 조명 빔으로 분할한다. 또다른 예시적인 실시예에서, 대물 렌즈는 제1 조명 빔을 샘플로 보낸다(direct). 또다른 예시적인 실시예에서, 대물 렌즈는 제1 조명 빔에 반응하여 샘플로부터 발산되는 방사선을 수집하고 대물 렌즈로부터 샘플로부터 발산되는 방사선을 제1 검출 빔 및 제2 검출 빔으로 분할하며, 검출기는 제1 검출 빔을 수신한다. 또다른 예시적인 실시예에서, 빔 스플리터는 적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판을 포함한다. 또다른 예시적인 실시예에서, 빔 스플리터는 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광을 반사된 입사광의 부분들로부터 형성된 반사 빔 및 기판을 통해 투과된 입사광의 부분들로부터 형성된 투과 빔으로 분할하도록 구성된 기판의 표면에 걸쳐 분포된 반사 구조물들을 포함한다. 또다른 예시적인 실시예에서, 투과 빔의 세기에 대한 반사 빔의 세기의 분할 비율은 반사 구조물들에 의해 덮이지 않은 기판의 면적에 대한 반사 표면들의 표면적의 비율에 기반한다. 또다른 예시적인 실시예에서, 이웃하는 반사 구조물들 간의 이격 거리들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광의 0이 아닌 회절 차수들의 세기가 선택된 허용 한계 미만으로 유지되도록 컷오프 파장보다 더 작다.
광을 분할하는 방법이 본 개시의 하나 이상의 예시적인 실시예에 따라 개시된다. 하나의 예시적인 실시예에서, 방법은 선택된 컷오프 파장을 초과하는 파장들을 갖는 광을 적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판의 표면으로 보내는 단계를 포함하며, 기판은 기판의 표면에 걸쳐 분포된 반사 구조물들을 포함한다. 또다른 예시적인 실시예에서, 방법은 반사 구조물들로부터 입사광의 일부를 반사시키는 단계를 포함한다. 또다른 예시적인 실시예에서, 방법은 기판의 표면을 통해 입사광의 일부를 투과시키는 단계를 포함한다. 또다른 예시적인 실시예에서, 투과 빔의 세기에 대한 반사 빔의 세기의 분할 비율은 반사 구조물들에 의해 덮이지 않은 기판의 면적에 대한 반사 표면의 표면적의 비율에 기반한다. 또다른 예시적인 실시예에서, 이웃하는 반사 구조물들 간의 이격 거리들은 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광의 0이 아닌 회절 차수들의 세기가 선택된 허용 한계 미만으로 유지되도록 컷오프 파장보다 더 작다.
앞서 말한 일반적인 설명 및 다음의 상세한 설명은 단지 예시적이고 설명적인 것이며 반드시 청구된 바와 같은 본 발명을 제한하는 것은 아님을 이해하여야 한다. 본 명세서에 포함되어 있고 본 명세서의 일부를 구성하는 첨부된 도면들은 본 발명의 실시예들을 도시하고 일반적인 설명과 함께 본 발명의 원리들을 설명하는 역할을 한다.
본 개시의 많은 이점은 당업자들에 의해 첨부된 도면들을 참조하여 보다 잘 이해될 수 있다. 도면들에서:
도 1a는 본 개시의 하나 이상의 실시예에 따른 플레이트 빔 스플리터로서 구성된 나노 구조의 빔 스플리터의 개념도이다.
도 1b는 본 개시의 하나 이상의 실시예에 따른 큐브 빔 스플리터로서 구성된 나노 구조의 빔 스플리터의 개념도이다.
도 1c는 본 개시의 하나 이상의 실시예에 따른 정사각형으로 형성된 구조화된 표면의 평면도이다.
도 1d는 본 개시의 하나 이상의 실시예에 따른 원형으로 형성된 구조화된 표면의 평면도이다.
도 1e는 본 개시의 하나 이상의 실시예에 따른 기판 상에 박막들로서 형성된 반사 구조물들을 포함하는 구조화된 표면의 측면도이다.
도 2a는 본 개시의 하나 이상의 실시예에 따른 입사 빔의 모든 파장들(
Figure pct00001
)에 대해
Figure pct00002
의 조건을 만족시키는 최대 거리(
Figure pct00003
)만큼 떨어져 있는 구조물들을 갖고 입사 빔을 반사 빔 및 투과 빔으로 분할하는 구조화된 표면의 사시도이다.
도 2b는 본 개시의 하나 이상의 실시예에 따른 입사 빔의 모든 파장들(
Figure pct00004
)에 대해
Figure pct00005
의 조건을 만족시키는 최대 거리(
Figure pct00006
)만큼 떨어져 있는 반사 구조물들을 갖고 입사 빔을 반사 빔 및 투과 빔으로 분할하는 구조화된 표면의 사시도이다.
도 2c는 본 개시의 하나 이상의 실시예에 따른 입사 빔의 모든 파장들(
Figure pct00007
)에 대해
Figure pct00008
의 조건을 만족시키는 최대 거리(
Figure pct00009
)만큼 떨어져 있는 반사 구조물들을 갖고 입사 빔을 반사 빔 및 투과 빔으로 분할하는 구조화된 표면의 사시도이다.
도 3은 본 개시의 하나 이상의 실시예에 따른 나노 구조의 빔 스플리터를 포함하는 광학 계측 시스템의 개념도이다.
도 4는 본 개시의 하나 이상의 실시예에 따른 광을 분할하기 위한 방법에서 수행되는 단계를 도시하는 흐름도이다.
이제 첨부된 도면에 도시된 개시된 주제(subject matter)에 대한 참조가 상세히 이루어질 것이다. 본 개시는 특히 특정 실시예들 및 그 구체적 특징과 관련하여 도시되고 설명되었다. 본 명세서에서 제시된 실시예들을 제한적인 것이 아니라 예시적인 것으로 간주된다. 본 개시의 사상과 범위를 벗어나지 않고 형태 및 세부사항의 다양한 변경들 및 수정들이 이루어질 수 있음이 당업자들에게 자명할 것이다.
본 개시의 실시예들은 광대역 응용들에 적합한 나노 구조의 비편광 빔 스플리터에 관한 것이다. 일 실시예에서, 나노 구조의 빔 스플리터는 광학적으로 투명한 기판 상에 반사 구조물들의 배열을 포함하며, 반사 구조물들의 이격 거리들 및/또는 크기들은 관심 스펙트럼의 가장 낮은 파장보다 실질적으로 작다. 따라서 관심 스펙트럼 내의 입사광은 표면 상의 반사 구조물들의 면적 비율에 따라 반사 빔과 투과 빔 사이에서 분할될 수 있다. 이와 관련하여, 나노 구조의 빔 스플리터는 면적 분할 빔 스플리터로서 동작할 수 있다. 또한, 반사 구조물들 상의 관심 스펙트럼 내의 입사광의 회절과 연관된 회절 손실은 아주 적다.
기판 상에 비구조화된 표면(예를 들어, 금속성 필름, 유전체 필름, 필름 스택 등)을 포함하는 빔 스플리터는 파면(wavefront) 분할 빔 스플리터로서 동작할 수 있고 일반적으로 임의의 빔 크기에 적합한 높은 공간 균일성을 제공할 수 있으며, 이는 회절 제한 시스템들에 적합할 수 있음이 본 명세서에서 인식된다. 그러나, 비구조화된 표면들은 광대역 응용들에 적합하지 않을 수 있다. 예를 들어, 금속성 필름 빔 스플리터는 많은 금속의 광대역 반사율로 인해 광대역 성능을 제공할 수 있지만, 비반사 파장들에 대해 필름에서 높은 흡수 손실을 겪을 수 있다. 또다른 예로서, 유전체 필름 빔 스플리터들은 제한된 흡수 손실을 제공할 수 있지만, 제한된 파장 범위들에만 적합할 수 있다. 이에 따라, 본 개시의 실시예들은 기판 상에 패턴화된 반사 구조물들을 포함하는 빔 스플리터에 관한 것으로, 반사 구조물들의 크기 및 분포는 반사 빔 및 투과 빔을 위한 광대역 성능 및 높은 공간 균일성을 동시에 제공하도록 선택된다.
투명 기판 상에 반사 구조물들의 배열을 포함하는 표면에 의한 광의 회절은 다음의 회절 방정식에 의해 특성화될 수 있다:
Figure pct00010
, (1)
여기서
Figure pct00011
는 구조물들 간의 이격 거리,
Figure pct00012
는 광의 파장,
Figure pct00013
은 회절 차수(예를 들어, 스펙트럼 차수),
Figure pct00014
는 구조화된 표면 상에서의 광의 입사각 그리고
Figure pct00015
는 회절각이다. 또한, 식 (1)은
Figure pct00016
의 피치로 주기적으로 분포된 두 구조물 또는
Figure pct00017
의 공간 주파수 컴포넌트를 갖는 구조물들의 보다 복잡한 배열들에 적용될 수 있다. 이에 따라, 광의 회절 거동은 광의 파장(
Figure pct00018
)과 구조물들 간의 이격 거리(
Figure pct00019
) 사이의 관계에 의존할 수 있다.
본 개시의 추가적인 실시예들은 식 (1)과 관련하여
Figure pct00020
로 분포된 반사 구조물들을 포함하는 나노 구조의 빔 스플리터에 관한 것이다. 이에 따라, 식 (1)은 반사광 및 투과광 모두에 대하여
Figure pct00021
가 되도록 단순화된다. 이와 관련하여, 입사광은 단일의 반사 빔 및 단일의 투과 빔으로 분할되고, 투과광에 대한 반사광의 비율은 구조물들의 반사율뿐만 아니라 비구조화된(예를 들어, 코팅되지 않은) 면적에 대한 구조화된 면적의 비율에 의존한다. 또한, 나노 구조의 빔 스플리터는 반사 구조물들의 광대역 반사율에 기반하여 광대역 성능을 제공할 수 있다.
Figure pct00022
의 조건을 만족시키는 구조물들을 갖는 나노 구조의 빔 스플리터는 임의의 크기의 광학 빔들에 대해 높은 공간 균일성을 추가로 제공할 수 있음이 본 명세서에서 인식된다. 이와 관련하여, 나노 구조의 빔 스플리터는 파면 빔 스플리터와 광학적으로 구별되지 않을 수 있으며 따라서 회절 제한 시스템들을 포함하나 이로 제한되지는 않는 임의의 응용에 적합할 수 있다.
Figure pct00023
의 조건을 만족시키는 구조물들을 갖는 나노 구조의 빔 스플리터는 조건을 만족시키지 않는 표면들의 제약들을 극복할 수 있음이 본 명세서에서 더 인식된다. 예를 들어,
Figure pct00024
인 경우, 식 (1)은 또한 입사광이 단일의 반사 빔 및 단일의 투과 빔으로 분할되도록 반사광 및 투과광 모두에 대하여
Figure pct00025
가 되도록 단순화된다. 그러나, 구조물들의 큰 크기 및/또는 이격 거리는 반사 빔 및/또는 투과 빔에서 공간적 불균일을 초래하여 표면이 작은 빔들(예를 들어,
Figure pct00026
정도의 빔들) 및/또는 회절 제한 시스템들에 적합하지 않게 될 수 있다. 또다른 예로서,
Figure pct00027
인 경우, 식 (1)은 구조물들에 의해 생성된 회절의 다수의 차수와 연관된 다수의 해를 갖는다. 이에 따라, 이러한 표면들은 상당한 회절 손실을 겪을 수 있고 일반적으로 빔 분할 응용들에 적합하지 않다.
이제 도 1 내지 도 4를 참조하여, 나노 구조의 빔 스플리터가 더 상세히 설명된다.
도 1a 및 도 1b는 본 개시의 하나 이상의 실시예에 따른 각각 플레이트 빔 스플리터 및 큐브 빔 스플리터로서 구성된 나노 구조의 빔 스플리터(100)의 개념도이다. 일 실시예에서, 나노 구조의 빔 스플리터(100)는 관심 파장들에 투명한 기판(102)을 포함한다. 기판(102)은 광의 입사 빔(106)을 반사 빔(108) 및 투과 빔(110)으로 분할하기 위한 구조화된 표면(104)을 더 포함할 수 있다. 구조화된 표면(104)은 기판(102)의 임의의 면 상에 위치될 수 있다.
일 실시예에서, 도 1a에 도시된 바와 같이, 나노 구조의 빔 스플리터(100)는 입력 면(112) 및 출력 면(114)의 두 개의 평행한 면을 포함하는 플레이트 빔 스플리터로서 형성된다. 예를 들어, 도 1a에 도시된 바와 같이, 구조화된 표면(104)은 입력 면(112) 상에 위치될 수 있다. 이와 관련하여, 반사 빔(108)은 구조화된 표면(104)에 의해 반사된 입사 빔(106)의 부분들을 포함할 수 있고 투과 빔(110)은 구조화된 표면(104)을 통해 투과되고, 기판(102)을 통해 더 전파되고 출력 면(114)을 통해 빠져나가는 입사 빔(106)의 부분들을 포함할 수 있다. 또다른 예로서, 도시되지는 않았지만, 구조화된 표면(104)은 출력 면(114) 상에 위치될 수 있다. 이와 관련하여, 입사 빔(106)은 입력 면(112)을 통해 기판(102)으로 들어갈 수 있고 구조화된 표면(104)과의 상호작용 시 반사 빔(108) 및 투과 빔(110)으로 분할되어 투과 빔(110)은 출력 면(114)에서 기판(102)을 빠져나가고 반사 빔(108)은 기판(102)과 입력 면(112)을 통해 다시 전파될 수 있다.
또다른 실시예에서, 도 1b에 도시된 바와 같이, 나노 구조의 빔 스플리터(100)는 큐브 빔 스플리터로서 형성된다. 이와 관련하여, 구조화된 표면(104)은 내부 면(116)으로서 형성될 수 있다. 이에 따라, 입사 빔(106)은 입력 면(118)으로 들어갈 수 있고, 반사 빔(108)은 제1 출력 면(120)을 통해 빠져나갈 수 있고 투과 빔(110)은 제2 출력 면(122)을 통해 빠져나갈 수 있다. 또한, 반사 빔(108) 및 투과 빔(110)은 도 1b의 큐브 빔 스플리터 배열에서 기판(102) 내에서 거리를 통해 전파될 수 있음이 본 명세서에서 인식된다.
기판(102)은 유리, 크리스탈 또는 세라믹 재료와 같은, 그러나 이에 제한되지는 않는 관심 파장들에 투명한 임의의 재료로부터 형성될 수 있다. 이와 관련하여, 관심 파장들은 기판(102)을 통한 전파 동안 흡수되지 않을 수 있다. 일 실시예에서, 가시(visible) 관심 파장들을 위하여 구성된 나노 구조의 빔 스플리터(100)는 용융 (fused) 실리카, 석영, 사파이어 또는 붕규산 유리와 같은, 그러나 이에 제한되지는 않는 광의 가시 파장들에 투명한 재료로부터 형성된 기판(102)을 포함한다. 또다른 실시예에서, 자외선(UV; UltraViolet) 파장들 또는 진공 자외선(VUV; Vacuum UltraViolet) 파장들을 포함하는 관심 파장들을 위하여 구성된 나노 구조의 빔 스플리터(100)는 불화 마그네슘, 불화 리튬, SUPRASIL 1, SUPRASIL 2, SUPRASIL 300, SUPRASIL 310, HERALUX PLUS 또는 HERALUX-VUV와 같은, 그러나 이에 제한되지는 않는 광의 UV 또는 VUV 파장에 투명한 재료로부터 형성된 기판(102)을 포함한다. 또한, 위의 재료들 및 파장 범위들은 오로지 예시의 목적으로 제공되며 제한으로서 해석되어서는 안 된다는 것이 이해되어야 한다. 기판(102)은 극자외선(EUV; Extreme UltraViolet) 파장들, 심자외선(DUV; Deep UltraViolet) 파장들, VUV 파장들, UV 파장들, 가시 파장들 또는 적외선(IR; InfraRed) 파장들을 포함하지만 이에 제한되지는 않는 임의의 원하는 범위의 파장들에 대하여 투명성(예를 들어, 아주 적은 흡수)을 제공하기에 적합한 임의의 재료로부터 형성될 수 있다.
구조화된 표면(104)은 임의의 형태로 형성될 수 있다. 도 1c 및 도 1d는 본 개시의 하나 이상의 실시예에 따른, 각각 정사각형 및 원형으로서 형성된 구조화된 표면(104)의 평면도들이다.
일 실시예에서, 구조화된 표면(104)은 식 (1)과 관련하여
Figure pct00028
의 조건을 만족시키는 반사 구조물들(124)의 분포를 포함한다. 반사 빔(108)은 따라서 반사 구조물들(124)에 의해 반사된 입사 빔(106)의 일부를 포함할 수 있고 투과 빔(110)은 덮이지 않은 표면(126)(예를 들어, 반사 구조물들(124)에 의해 덮이지 않은 구조화된 표면(104)의 영역들)을 통해 투과된 입사 빔(106)의 일부를 포함할 수 있다. 또한, 반사 구조물들(124)이
Figure pct00029
(예를 들어, 관심 파장들)의 조건을 만족시키는 범위에서, 구조물들은 입사 빔(106)이 회절 손실에 의해 열화되지(degraded) 않을 수 있도록 입사 빔(106)을 눈에 띄게 회절시키지 않는다.
반사 구조물들(124)은 식 (1)에 대하여
Figure pct00030
의 조건을 만족시키는 임의의 패턴으로 분포될 수 있다. 일 실시예에서, 도 1c 및 도 1d에 도시된 바와 같이, 반사 구조물들(124)은 하나 이상의 방향에서
Figure pct00031
와 동일한 피치(128)를 갖는 이차원 주기 어레이(예를 들어, 격자 패턴)로 분포된다. 예를 들어, 반사 구조물들(124)은 (예를 들어, 도 1c 및 도 1d에 도시된 바와 같은) 직사각형 격자 패턴, 육각형 격자 패턴, 이차원 사선 격자 패턴 또는 이차원 정삼각형 격자 패턴과 같은, 그러나 이에 제한되지는 않는 임의의 유형의 격자 패턴으로 분포될 수 있다. 이에 따라, 빔 분할 비율은 피치(128)에 대하여 구조물들의 치수들에 의존할 수 있다. 또다른 실시예에서, 도시되지는 않았지만, 반사 구조물들(124)은 식 (1)에 대하여
Figure pct00032
의 조건을 만족시키는 불균일한 분포로 분포된다. 이와 관련하여, 구조물들의 크기들 및/또는 구조물들 간의 이격 거리들은 변할 수 있지만, 식 (1)에 대하여 구조물 전체에 걸쳐
Figure pct00033
의 조건이 만족되도록 제한된다. 예를 들어, 반사 구조물들(124)은 무작위의 또는 의사 무작위의(pseudo-random) 분포로 분포될 수 있다.
도 2a 내지 도 2c는 구조화된 표면들의 회절 거동이 입사광의 파장(
Figure pct00034
)에 대한 피치(예를 들어, 피치(128))에 기반하여 변할 수 있음을 도시한다. 도 2a는 본 개시의 하나 이상의 실시예에 따른 입사 빔(106)의 모든 파장들(
Figure pct00035
)에 대하여
Figure pct00036
의 조건을 만족시키는 최대 거리(
Figure pct00037
)만큼 떨어진 구조물들(예를 들어, 반사 구조물들(124) 등, 도시되지 않음)을 갖고 입사 빔(106)을 반사 빔(108) 및 투과 빔(110)으로 분할하는 구조화된 표면(104)(예를 들어, 나노 구조의 빔 스플리터(100)의 일부)의 사시도(202)이다. 본 명세서에서 전술한 바와 같이, 조건
Figure pct00038
가 만족된다면, 식 (1)은 반사광 및 투과광 모두에 대하여
Figure pct00039
가 되도록 단순화된다. 이와 관련하여, 파장에 의존하지 않는 0차 회절(또는 정반사)은 반사 빔(108) 및 투과 빔(110)의 발산이 입사 빔(106)에 대하여 변하지 않도록 모든 파장들에 대하여 효과적으로 지배한다. 이에 따라, 빔 분할 비율은 입사 빔(106)의 부분들을 투과시키는 덮이지 않은 표면(126)에 대한 입사 빔(106)의 부분들을 반사시키는 반사 구조물들(124)의 상대 면적에 기반한다(예를 들어, 도 1c 및 도 1d를 참조). 예를 들어, 도 2a에 도시된 바와 같이, 시준된 입사 빔(106)은 시준된 반사 빔(108) 및 시준된 투과 빔(110)으로 분할된다. 또한, 파장에 비해 작은 구조물들은 반사 빔(108) 및 투과 빔(110)으로의 공간적으로 균일한 분할을 제공한다.
대조적으로, 도 2b 및 도 2c는 조건
Figure pct00040
를 만족시키지 않는 구조화된 표면들에 의한 빔 분할과 연관된 바람직하지 않은 영향을 도시한다.
도 2b는 본 개시의 하나 이상의 실시예에 따른 입사 빔(106)의 모든 파장들(
Figure pct00041
)에 대하여
Figure pct00042
의 조건을 만족시키는 최대 거리(
Figure pct00043
)만큼 떨어진 반사 구조물들(도시되지 않음)을 갖고 입사 빔(106)을 반사 빔(208) 및 투과 빔(210)으로 분할하는 구조화된 표면(206)의 사시도(204)이다. 본 명세서에서 전술한 바와 같이, 조건
Figure pct00044
가 만족된다면, 식 (1)은 파장 의존적 회절을 나타낸다. 이에 따라, 도 2b에 도시된 바와 같이, 광대역 입사 빔(106)의 상이한 파장들은 반사 빔(208) 및 투과 빔(210) 모두에서 상이한 각도들(
Figure pct00045
)만큼 회절될 것이며, 이는 반사 빔(208) 및 투과 빔(210)에서 바람직하지 않은 공간 분산을 초래한다.
도 2c는 본 개시의 하나 이상의 실시예에 따른 입사 빔(106)의 모든 파장들(
Figure pct00046
)에 대하여
Figure pct00047
의 조건을 만족시키는 최대 거리(
Figure pct00048
)만큼 떨어진 반사 구조물들(도시되지 않음)을 갖고 입사 빔(106)을 반사 빔(216) 및 투과 빔(218)으로 분할하는 구조화된 표면(214)의 사시도(212)이다. 본 명세서에서 전술한 바와 같이, 조건
Figure pct00049
가 만족된다면, 식 (1)은 반사광 및 투과광 모두에 대하여
Figure pct00050
가 되도록 단순화된다. 이와 관련하여, 파장에 의존하지 않는 0차 회절은 반사 빔(216) 및 투과 빔(218)의 발산이 입사 빔(106)에 대하여 변하지 않도록 모든 파장에 대하여 효과적으로 지배한다. 그러나, 도 2c에 도시된 바와 같이, 파장에 비해 큰 반사 구조물들의 큰 크기는 반사 빔(216) 및 투과 빔(218)이 공간 균일성을 갖지 않도록 반사 빔(216) 및 투과 빔(218)을 왜곡시킨다. 예를 들어, 반사 구조물들은 투과 빔(218)이 대응하는 갭들을 가지고 반사 빔(216)이 유사하게 영향을 받을 수 있도록 입사 빔(106)의 상당 부분들을 차단하기에 충분히 클 수 있다. 또다른 예로서, 반사 구조물들은 각각 입사 빔(106)을 회절시킬 수 있으며, 이는 반사 빔(216) 및 투과 빔(218)에 추가적인 왜곡을 야기할 수 있다.
다시 도 1a 내지 도 1e를 참조하면, 반사 구조물들(124)은 임의의 형태를 가질 수 있다. 예를 들어, 도 1c 및 도 1d에서 도시된 바와 같이, 반사 구조물들(124)은 정사각형의 형태로 만들어질 수 있다. 그러나, 반사 구조물들(124)은 정사각형으로 제한되지 않으며 원, 육각형 또는 팔각형과 같은, 그러나 이에 제한되지는 않는 임의의 형태를 가질 수 있음이 이해되어야 한다.
또한, 반사 구조물들(124)은 임의의 두께를 가질 수 있다. 도 1e는 본 개시의 하나 이상의 실시예에 따른 기판(102) 상에 박막들로서 형성된 반사 구조물들(124)을 포함하는 구조화된 표면(104)의 측면도이다. 일 실시예에서, 도 1e에 도시된 바와 같이, 반사 구조물들(124)은 균일한 두께(130)(
Figure pct00051
)를 갖는다. 또다른 실시예에서, 도 1e에 도시된 것과 같은 필름들과 같은, 그러나 이에 제한되지는 않는 반사 구조물들(124)은 입사 빔(106)의 균일한 반사(예를 들어, 정반사)를 제공하기 위해 광학적으로 매끄러운 상부 표면(132)를 갖는다. 또다른 실시예에서, 상부 표면(132)은 평면이다.
투과 빔(110)에 대한 반사 빔(108)의 비율(예를 들어, 빔 분할 비율)은, 반사 구조물들(124)의 반사율 및/또는 흡수에 따라, 반사 구조물들(124)에 의해 덮이지 않은 구조화된 표면(104)(예를 들어, 덮이지 않은 표면(126))의 면적에 대한 반사 구조물들(124)에 의해 덮인 구조화된 표면(104)의 면적의 비율에 의해 결정될 수 있다. 예를 들어, 반사 구조물들(124)의 광학적 특성들(예를 들어, 반사율, 투과율, 흡수 등)은 파장, 두께(예를 들어, 두께(130)) 등의 함수로서 변할 수 있다. 이에 따라, 반사 구조물들(124)의 구성, 두께(130), 크기 및 분포(예를 들어, 피치(128))의 임의의 조합은 선택된 관심 파장들의 범위에 대한 선택된 빔 분할 비율을 제공하도록 조정될 수 있다.
반사 구조물들(124)은 관심 파장들에 대한 광대역 반사율을 제공하는 당해 기술 분야에 알려진 임의의 재료로부터 형성될 수 있다. 예를 들어, 반사 구조물들(124)은 알루미늄, 금, 은 또는 크롬과 같은, 그러나 이에 제한되지는 않는 하나 이상의 금속 필름으로부터 형성될 수 있다. 반사 구조물들(124)은 재료 증착 단계들(예를 들어, 금속, 포토레지스트, 포토마스크 등의 증착), 노광(exposure) 단계들 또는 에칭 단계들을 포함하지만 이에 제한되지는 않는 임의의 제조 기법을 사용하여 추가적으로 제조될 수 있다.
또한, 나노 구조의 빔 스플리터(100)는 입사 빔(106)을 반사 빔(108) 및 투과 빔(110)으로 분할하는 메커니즘이 입사 빔(106)의 편광에 실질적으로 의존하지 않을 수 있도록 비편광 빔 스플리터로서 동작할 수 있다. 이에 따라, 빔 분할 비율은 입사 빔(106)의 편광에 의존하지 않을 수 있다. 예를 들어, 입사 빔(106)의 일부를 포함하는 투과 빔(110)은 구조화된 표면(104)의 덮이지 않은 표면(126)을 통해 투과되고, 따라서 입사 빔(106)과 실질적으로 동일한 편광을 가질 수 있다. 유사하게, 반사 구조물들(124)은 반사 구조물들(124) 상에서의 정반사에 기반하여 입사 빔(106)의 일부를 반사시킬 수 있다.
그러나, 인터페이스에서의 반사 및/또는 투과는 프레넬(Fresnel) 방정식들에 기반하여 편광의 함수로서 변할 수 있음이 본 명세서에서 인식된다. 이와 관련하여, 입사 평면으로 배향된 전기장 컴포넌트들(예를 들어, p-편광 광)을 갖는 입사 빔(106)의 부분들은 입사 평면에 수직으로 배향된 것들(예를 들어, s-편광 광)과 상이한 반사 및/또는 투과 계수들을 가질 수 있다. 이와 관련하여, p-편광 광과 s-편광 광 간의 투과율 또는 반사율의 차이(예를 들어,
Figure pct00052
또는
Figure pct00053
)로서 특성화될 수 있지만 그러할 필요는 없는 나노 구조의 빔 스플리터(100)의 편광 균일성은 0이 아닐 수 있다. 그러나, 반사 구조물들(124) 사이의 덮이지 않은 표면(126)의 존재에 기반한 반사 구조물들(124)의 상대적으로 감소된 영향으로 인해 나노 구조의 빔 스플리터(100)의 편광 균일성은 일반적으로 비구조화된 빔 스플리터보다 더 나을 수 있다는 것이 본 명세서에서 더 인식된다.
또한, 나노 구조의 빔 스플리터(100)는 임의의 각도로 사용될 수 있다. 예를 들어, 덮이지 않은 표면(126)의 면적에 대한 반사 구조물들(124)의 면적의 비율은 구조화된 표면(104)이 입사 빔(106)에 대하여 회전되는 동안, 심지어 입사 빔(104)의 투영 면적이 변하는 동안에도 동일하게 유지된다. 그러나, 반사 구조물들(124)의 반사 및/또는 투과 계수들은 일반적으로 빔 분할 비율이 대응하는 변화를 나타낼 수 있도록 입사각의 함수로서 소정의 변화를 나타낼 것임이 본 명세서에서 인식된다.
또다른 실시예에서, 나노 구조의 빔 스플리터(100)는 하나 이상의 표면 상에서의 반사를 완화시키기 위해 반사 방지 코팅을 포함한다. 예를 들어, 도 1a에 도시된 플레이트 나노 구조의 빔 스플리터(100)는 출력 면(114) 상에 반사 방지 코팅을 포함할 수 있다. 또다른 예로서, 도 1b에 도시된 큐브 빔 스플리터는 입력 면(118), 제1 출력 면(120) 또는 제2 출력 면(122) 중 임의의 것 상에 반사 방지 코팅들을 포함할 수 있다. 추가적인 예로서, 나노 구조의 빔 스플리터(100)는 덮이지 않은 표면(126)(예를 들어, 반사 구조물들(124)에 의해 덮이지 않은 구조화된 표면(104)의 부분들) 상에 반사 방지 코팅을 포함할 수 있다. 이와 관련하여, 덮이지 않은 표면(126) 상에서의 반사(예를 들어, 프레넬 반사)가 완화될 수 있다.
이제 도 3을 참조하면, 나노 구조의 빔 스플리터(100)는 광학 시스템에 통합될 수 있다. 도 3은 본 개시의 하나 이상의 실시예에 따른 나노 구조의 빔 스플리터(100)를 포함하는 광학 계측 시스템(300)의 개념도이다.
광학 계측 시스템(300)은 샘플(302)의 일부의 이미지를 생성하기 위한 이미징 계측 툴, 샘플(302)로부터 회절 및/또는 산란을 측정하기 위한 산란측정 계측 툴 또는 샘플(302)의 두 개 이상의 층 상의 특징부(feature)들의 상대적인 위치들을 측정하기 위한 오버레이 계측 툴과 같은, 그러나 이에 제한되지는 않는 샘플(302)과 연관된 계측 데이터를 생성하기에 적합한 당해 기술 분야에 알려진 임의의 유형의 광학 계측 툴을 포함할 수 있다. 오버레이 계측에서의 조명(illumination)은 2015년 8월 11일 허여된 “오버레이 계측에서의 대비 증강을 위한 구조화된 조명(Structured Illumination for Contrast Enhancement in Overlay Metrology)”이라는 명칭의 미국 특허 제9,104,120호에서 일반적으로 설명되며, 그 전체가 본 명세서에서 포함된다.
일 실시예에서, 광학 계측 시스템(300)은 광학 조명 빔(306)을 생성하기 위한 광학 조명원(304)을 포함한다. 광학 조명 빔(306)은 자외선(UV) 광, 가시광 또는 적외선(IR) 광을 포함하지만 이에 제한되지는 않는 하나 이상의 선택된 광의 파장을 포함할 수 있다.
광학 조명원(304)은 광학 조명 빔(306)을 제공하기에 적합한 임의의 유형의 조명원을 포함할 수 있다. 일 실시예에서, 광학 조명원(304)은 레이저원을 포함한다. 예를 들어, 광학 조명원(304)은 하나 이상의 협대역 레이저원, 광대역 레이저원, 초연속 레이저원, 백색광 레이저원 등을 포함할 수 있지만 이에 제한되지는 않는다. 이와 관련하여, 광학 조명원(304)은 높은 응집성(예를 들어, 높은 공간 응집성 및/또는 시간 응집성)을 갖는 광학 조명 빔(306)을 제공할 수 있다. 또다른 실시예에서, 광학 조명원(304)은 레이저 지속 플라즈마(LSP; Laser-Sustained Plasma)원을 포함한다. 예를 들어, 광학 조명원(304)은 레이저원에 의해 플라즈마 상태로 여기될(excited) 때 광대역 조명을 방출할 수 있는 하나 이상의 요소를 포함하기에 적합한 LSP 램프, LSP 전구 또는 LSP 챔버를 포함할 수 있지만 이에 제한되지는 않는다. 또다른 실시예에서, 광학 조명원(304)은 램프원을 포함한다. 예를 들어, 광학 조명원(304)은 아크 램프, 방전 램프, 무전극 램프 등을 포함할 수 있지만 이에 제한되지는 않는다. 이와 관련하여, 광학 조명원(304)은 낮은 응집성(예를 들어, 낮은 공간 응집성 및/또는 시간 응집성)을 갖는 광학 조명 빔(306)을 제공할 수 있다.
또다른 실시예에서, 광학 조명원(304)은 조명 경로(308)를 통하여 광학 조명 빔(306)을 샘플(302)로 보낸다. 조명 경로(308)는 광학 조명 빔(306)의 변경 및/또는 조절에 적합한 하나 이상의 조명 경로 렌즈(310) 또는 추가적인 광학 컴포넌트(312)를 포함할 수 있다. 예를 들어, 하나 이상의 광학 컴포넌트(312)는 하나 이상의 편광기, 하나 이상의 필터, 하나 이상의 빔 스플리터, 하나 이상의 산광기, 하나 이상의 균질기, 하나 이상의 아포다이저(apodizer) 또는 하나 이상의 빔 쉐이퍼를 포함할 수 있지만 이에 제한되지는 않는다. 조명 경로(308)는 광학 조명 빔(306)을 샘플(302)로 보내도록 구성된 대물 렌즈(314)를 더 포함할 수 있다.
또다른 실시예에서, 샘플(302)은 샘플 스테이지(316) 상에 배치된다. 샘플 스테이지(316)는 광학 계측 시스템(300) 내에서 샘플(302)을 위치설정 및/또는 스캔하기에 적합한 임의의 디바이스를 포함할 수 있다. 예를 들어, 샘플 스테이지(316)는 선형 병진 스테이지들, 회전 스테이지들, 팁/틸트 스테이지들 등의 임의의 조합을 포함할 수 있다.
또다른 실시예에서, 광학 계측 시스템(300)은 수집 경로(320)를 통해 샘플(302)로부터 발산되는 광을 포착하도록 구성된 검출기(318)를 포함한다. 수집 경로(320)는 샘플(302)로부터의 광을 수집하기 위한 하나 이상의 수집 경로 렌즈(322)를 포함할 수 있지만 이에 제한되지는 않는다. 예를 들어, 검출기(318)는 하나 이상의 수집 경로 렌즈(322)를 통하여 샘플(302)로부터 (예를 들어, 정반사, 확산 반사 등을 통하여) 반사되거나 산란된 광을 수신할 수 있다. 또다른 예로서, 검출기(318)는 샘플(302)에 의해 생성된 광(예를 들어, 광학 조명 빔(306)의 흡수와 연관된 발광 등)을 수신할 수 있다. 또다른 예로서, 검출기(318)는 샘플(302)로부터 하나 이상의 회절 차수(예를 들어, 0차 회절, ±1차 회절, ±2차 회절 등)의 광을 수신할 수 있다.
검출기(318)는 샘플(302)로부터 수신된 조명을 측정하기에 적합한 당해 기술 분야에 알려진 임의의 유형의 검출기를 포함할 수 있다. 예를 들어, 검출기(318)는 CCD 검출기, TDI 검출기, 광전자 증배관(PMT; PhotoMultiplier Tube), 애벌란시 포토다이오드(APD; Avalanche Photodiode) 등을 포함할 수 있지만 이에 제한되지는 않는다. 또다른 실시예에서, 검출기(318)는 샘플(302)로부터 발산되는 광의 파장들을 식별하기에 적합한 분광 검출기를 포함할 수 있다.
수집 경로(320)는 하나 이상의 수집 경로 렌즈(322), 하나 이상의 필터, 하나 이상의 편광기 또는 하나 이상의 빔 블록을 포함하지만 이에 제한되지는 않는, 샘플(302)로부터 수집된 조명을 보내고/보내거나 변경하기 위한 임의의 수의 광학 요소를 더 포함할 수 있다.
일 실시예에서, 검출기(318)는 샘플(302)의 표면에 거의 수직으로 위치설정된다. 또다른 실시예에서, 광학 계측 시스템(300)은 대물 렌즈(314)가 동시에 광학 조명 빔(306)을 샘플(302)로 보내고 샘플(302)로부터 발산되는 광을 수집할 수 있도록 배향된 나노 구조의 빔 스플리터(100)를 포함한다. 이에 따라, 나노 구조의 빔 스플리터(100)는 조명 경로(308) 및 수집 경로(320)가 하나 이상의 추가적인 요소(예를 들어, 대물 렌즈(314), 조리개, 필터 등)를 공유할 수 있도록 조명 경로(308) 및 수집 경로(32)를 통합할 수 있다. 예를 들어, 나노 구조의 빔 스플리터(100)는 (입사 빔(106a)으로서 동작하는) 광학 조명 빔(306)을 샘플로 보내지는 반사 빔(108a)(예를 들어, 제1 조명 빔) 및 시스템 밖으로 보내지는 투과 빔(110a)(예를 들어, 제2 조명 빔)으로 분할할 수 있다. 또한, 나노 구조의 빔 스플리터(100)는 (추가적인 입사 빔(106b)으로서 동작하는) 샘플(302)로부터 발산되는 광(324)을 시스템 밖으로 보내지고/보내지거나 사용되지 않는 반사 빔(108b)(예를 들어, 제1 검출 빔) 및 검출기(318)로 전파되는 투과 빔(110b)(예를 들어, 제2 검출 빔)으로 분할할 수 있다.
또다른 실시예에서, 광학 계측 시스템(300)은 제어기(326)를 포함한다. 또다른 실시예에서, 제어기(326)는 메모리 매체(330) 상에 유지되는 프로그램 명령어들을 실행하도록 구성된 하나 이상의 프로세서(328)를 포함한다. 이와 관련하여, 제어기(326)의 하나 이상의 프로세서(328)는 본 개시에 걸쳐 설명된 다양한 프로세스 단계들 중 임의의 것을 실행할 수 있다. 예를 들어, 제어기(326)는 검출기(318)로부터 데이터를 수신할 수 있고 검출기(318)로부터의 데이터에 기반하여 계측 데이터를 더 생성할 수 있다. 또다른 예로서, 제어기(326)는 추가적인 컴포넌트들(도시되지 않음)에 계측 데이터를 피드포워드 또는 피드백 데이터로서 제공할 수 있다.
제어기(326)는 광학 계측 시스템(300)의 임의의 컴포넌트들에 결합될(coupled) 수 있다. 일 실시예에서, 제어기(306)는 나노 구조의 빔 스플리터(100) 또는 나노 구조의 빔 스플리터(100)를 고정시키는 회전 스테이지(도시되지 않음)에 통신 가능하게 결합된다. 이와 관련하여, 제어기(326)는 나노 구조의 빔 스플리터(100) 상의 입사 빔(106)의 입사각을 조정할 수 있다.
제어기(326)의 하나 이상의 프로세서(328)는 당해 기술 분야에 알려진 임의의 프로세싱 요소를 포함할 수 있다. 이러한 의미에서, 하나 이상의 프로세서(328)는 알고리즘들 및/또는 명령어들을 실행하도록 구성된 임의의 마이크로프로세서 유형의 디바이스를 포함할 수 있다. 일 실시예에서, 본 개시에 걸쳐 설명된 바와 같이, 하나 이상의 프로세서(328)는 데스크탑 컴퓨터, 메인프레임 컴퓨터 시스템, 워크스테이션, 이미지 컴퓨터, 병렬 프로세서 또는 광학 계측 시스템(300)을 동작시키도록 구성된 프로그램을 실행하도록 구성된 임의의 다른 컴퓨터 시스템(예를 들어, 네트워킹된 컴퓨터)으로 구성될 수 있다. “프로세서(processor)”라는 용어는 비일시적 메모리 매체(330)로부터의 프로그램 명령어들을 실행하는 하나 이상의 프로세싱 요소를 갖는 임의의 디바이스를 망라하도록 광범위하게 정의될 수 있음이 더 인식된다. 또한, 본 개시에 걸쳐 설명된 단계들은 단일의 제어기(326) 또는 대안적으로, 다수의 제어기에 의해 수행될 수 있다. 또한, 제어기(326)는 공통 하우징 또는 다수의 하우징 내에 수용된 하나 이상의 제어기를 포함할 수 있다. 이러한 방식으로, 임의의 제어기 또는 제어기들의 조합은 광학 계측 시스템(300)으로의 통합에 적합한 모듈로서 개별적으로 패키징될 수 있다.
메모리 매체(300)는 연관된 하나 이상의 프로세서(328)에 의해 실행가능한 프로그램 명령어들을 저장하기에 적합한 당해 기술 분야에 알려진 임의의 저장 매체를 포함할 수 있다. 예를 들어, 메모리 매체(330)는 비일시적 메모리 매체를 포함할 수 있다. 또다른 예로서, 메모리 매체(330)는 판독전용 메모리, 랜덤 액세스 메모리, 자기 또는 광학 메모리 디바이스(예를 들어, 디스크), 자기 테이프, 솔리드 스테이트 드라이브 등을 포함할 수 있지만 이에 제한되지는 않는다. 메모리 매체(330)는 하나 이상의 프로세서(328)를 갖는 공통 제어기 하우징 내에 수용될 수 있음에 더 주목하여야 한다. 일 실시예에서, 메모리 매체(330)는 하나 이상의 프로세서(328) 및 제어기(326)의 물리적 위치에 대하여 원격으로 위치될 수 있다. 예를 들어, 제어기(326)의 하나 이상의 프로세서(328)는 네트워크(예를 들어, 인터넷, 인트라넷 등)를 통해 액세스 가능한 원격 메모리(예를 들어, 서버)에 액세스할 수 있다. 따라서, 위의 설명은 본 발명에 대한 제한으로서 해석되어서는 안되고 단지 예시로서 해석되어야 한다.
도 4는 본 개시의 하나 이상의 실시예에 따른 광을 분할하기 위한 방법(400)에서 수행되는 단계들을 도시하는 흐름도이다. 출원인은 나노 구조의 빔 스플리터(100)의 맥락에서 본 명세서에서 전술한 실시예들 및 가능화 기술들은 방법(400)으로 확장되는 것으로 해석되어야 함을 언급한다. 그러나, 방법(400)은 나노 구조의 빔 스플리터(100)에 아키텍처로 제한되지 않음에 더 주목하여야 한다.
일 실시예에서, 방법(400)은 선택된 컷오프 파장을 초과하는 파장들을 갖는 광을 적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판(예를 들어, 기판(102))으로 보내는 단계(402)를 포함하고, 기판은 구조물들의 크기들 또는 구조물들 간의 이격 거리들 중 적어도 하나가 컷오프 파장보다 더 작도록 기판의 표면에 걸쳐 분포된 반사 특징부들(예를 들어, 반사 구조물들(124))을 포함한다. 또다른 실시예에서, 이격 거리들(
Figure pct00054
)은 입사광의 모든 파장들에 대하여 식 (1)에 대한 조건
Figure pct00055
를 만족시킨다. 이에 따라, 컷오프 파장은 식 (1)에 대한 조건
Figure pct00056
가 선택된 허용 한계 내에서 만족되도록 하는 가장 작은 파장인 것으로 간주될 수 있다.
반사 특징부들은 식 (1)에 대한 조건
Figure pct00057
가 만족된다면 임의의 패턴에 따라 분포될 수 있다. 예를 들어, 반사 특징부들은 이차원 격자 패턴(예를 들어, 직사각형 격자 패턴, 육각형 격자 패턴, 사선 격자 패턴, 정삼각형 격자 패턴 등)으로 분포될 수 있다. 또다른 예로서, 반사 특징부들은 무작위의 또는 의사 무작위의 분포로 분포될 수 있다.
또다른 실시예에서, 방법(400)은 복수의 반사 특징부로부터 입사광의 일부를 반사시키는 단계(404)를 포함한다. 또다른 실시예에서, 방법(400)은 기판의 표면을 통해 입사광의 일부를 투과시키는 단계(406)를 포함한다. 또다른 실시예에서, 투과 빔의 세기에 대한 반사 빔의 세기의 분할 비율은 기판 상의 입사광의 면적에 대한 반사 표면들의 표면적의 비율에 기반한다. 예를 들어, 식 (1)에 대한 조건
Figure pct00058
가 만족된다면, 식 (1)은 반사광 및 투과광 모두에 대해
Figure pct00059
가 되도록 단순화된다. 이와 관련하여, 파장에 의존하지 않는 0차 회절(또는 정반사)은 반사광 및 투과광의 발산이 입사광에 대하여 변하지 않도록 모든 파장에 대하여 효과적으로 지배한다. 이에 따라, 빔 분할 비율은 덮이지 않은 표면(예를 들어, 기판의 반사 구조물들 사이의 부분들)의 면적에 대한 입사광의 부분들을 반사시키는 반사 구조물들의 상대 면적에 기반한다. 또한, 파장에 비해 작은 반사 구조물들의 크기는 반사광 및 투과광으로의 공간적으로 균일한 분할을 제공할 수 있다.
본 명세서에서 설명된 주제(subject matter)는 때때로 다른 컴포넌트들 내에 포함되거나 다른 컴포넌트들과 연결된 상이한 컴포넌트들을 예시한다. 이러한 예시된 아키텍처들은 단지 예시적인 것이며, 실제로 동일한 기능을 달성하는 많은 다른 아키텍처가 구현될 수 있음이 이해되어야 한다. 개념적인 의미에서, 동일한 기능을 달성하기 위한 컴포넌트들의 임의의 배열은 원하는 기능이 달성되도록 효과적으로 “연관(associated)”된다. 따라서, 본 명세서에서 특정한 기능을 달성하기 위해 결합된 임의의 두 개의 컴포넌트는 아키텍처들 또는 중간 컴포넌트들에 관계없이, 원하는 기능이 달성되도록 서로 “연관된(associated with)” 것으로 간주될 수 있다. 마찬가지로, 이렇게 연관된 임의의 두 개의 컴포넌트는 또한 원하는 기능을 달성하기 위해 서로 “연결된(connected)” 또는 “결합된(coupled)” 것으로 간주될 수 있고, 이렇게 연관될 수 있는 임의의 두 개의 컴포넌트는 또한 원하는 기능을 달성하기 위해 서로 “결합 가능한(couplable)” 것으로 간주될 수 있다. “결합 가능한(couplable)”의 구체적인 예들은 물리적으로 상호작용 가능한 그리고/또는 물리적으로 상호작용하는 컴포넌트들 및/또는 무선으로 상호작용 가능한 그리고/또는 무선으로 상호작용하는 컴포넌트들 및/또는 논리적으로 상호작용 가능한 그리고/또는 논리적으로 상호작용하는 컴포넌트들을 포함하지만 이에 제한되지는 않는다.
본 개시 및 그 수반되는 많은 이점은 앞서 말한 설명에 의해 이해될 것이며, 개시된 주제로부터 벗어나지 않고 또는 그의 모든 실질적 이점들을 희생하지 않고 컴포넌트들의 형태, 구성 및 배열에서 다양한 변경들이 이루어질 수 있음이 명백할 것이다. 설명된 형태는 단지 설명적인 것이며, 이러한 변경을 망라하고 포함하는 것이 다음의 청구항들의 의도이다. 또한, 본 발명은 첨부된 청구항들에 의해 정의됨을 이해하여야 한다.

Claims (34)

  1. 빔 스플리터로서,
    적어도 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판; 및
    상기 기판의 표면에 걸쳐 분포된 복수의 반사 구조물을 포함하며,
    상기 복수의 반사 구조물은 상기 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광을 상기 복수의 반사 구조물로부터 반사된 상기 입사광의 부분들로부터 형성된 반사 빔 및 상기 기판을 통해 투과된 상기 입사광의 부분들로부터 형성된 투과 빔으로 분할하도록 구성되고, 상기 투과 빔의 세기에 대한 상기 반사 빔의 세기의 분할 비율은 상기 반사 구조물들에 의해 덮이지 않은 상기 기판의 면적에 대한 반사 표면들의 표면적의 비율에 기반하고, 상기 복수의 반사 구조물의 이웃하는 반사 구조물들 간의 이격 거리들은 상기 컷오프 파장보다 더 작고, 상기 복수의 반사 구조물은 상기 선택된 컷오프 파장을 초과하는 파장들을 갖는 상기 입사광의 0이 아닌 회절 차수들의 세기를 선택된 허용 한계 미만으로 유지하도록 구성되는 것인 빔 스플리터.
  2. 제1항에 있어서,
    상기 복수의 반사 구조물은 상기 기판의 상기 표면 상에 금속성 필름들을 포함하는 것인 빔 스플리터.
  3. 제1항에 있어서,
    상기 복수의 반사 구조물은 상기 기판의 상기 표면에 평행한 평면 표면들을 포함하는 것인 빔 스플리터.
  4. 제1항에 있어서,
    상기 복수의 반사 구조물은 제1 방향 및 상기 제1 방향에 수직인 제2 방향으로 공통 피치를 갖는 정사각형 격자 패턴으로 분포되는 것인 빔 스플리터.
  5. 제1항에 있어서,
    상기 복수의 반사 구조물은 육각형 격자 패턴, 사선 격자 패턴 또는 정삼각형 격자 패턴 중 적어도 하나로 분포되는 것인 빔 스플리터.
  6. 제1항에 있어서,
    상기 기판은 용융 실리카, Suprasil, Heralux, CaF2, MgF2, LiF, 석영 또는 사파이어 중 적어도 하나를 포함하는 것인 빔 스플리터.
  7. 제1항에 있어서,
    상기 선택된 컷오프 파장은 대략 120 nm 내지 대략 200 nm 범위의 파장을 포함하는 것인 빔 스플리터.
  8. 제1항에 있어서,
    상기 선택된 컷오프 파장은 자외선 파장, 심자외선 파장(deep ultraviolet wavelength), 진공 자외선 파장 또는 극자외선 파장 중 적어도 하나를 포함하는 것인 빔 스플리터.
  9. 제1항에 있어서,
    상기 복수의 반사 구조물의 크기는 1 마이크로미터 미만인 것인 빔 스플리터.
  10. 제1항에 있어서,
    이웃하는 반사 구조물들 간의 상기 이격 거리들은 1 마이크로미터 미만인 것인 빔 스플리터.
  11. 제1항에 있어서,
    상기 분할 비율은 상기 선택된 컷오프 파장을 초과하는 파장에 의존하지 않는 것인 빔 스플리터.
  12. 제1항에 있어서,
    상기 분할 비율은 상기 입사광의 편광에 의존하지 않으며,
    상기 빔 스플리터는 비편광 빔 스플리터를 포함하는 것인 빔 스플리터.
  13. 제1항에 있어서,
    상기 기판 및 상기 복수의 반사 구조물은 플레이트 빔 스플리터로서 구성되는 것인 빔 스플리터.
  14. 제1항에 있어서,
    상기 복수의 반사 구조물 상에 배치된 추가적인 기판을 더 포함하며,
    상기 제2 기판은 적어도 상기 선택된 컷오프 파장을 초과하는 파장들에 투명한 것인 빔 스플리터.
  15. 제14항에 있어서,
    상기 기판, 상기 복수의 반사 구조물 및 상기 추가적인 기판은 큐브 빔 스플리터로서 구성되는 것인 빔 스플리터.
  16. 제1항에 있어서,
    상기 기판의 상기 평면은 평면 표면인 것인 빔 스플리터.
  17. 제1항에 있어서,
    상기 기판의 상기 표면은 곡면 표면인 것인 빔 스플리터.
  18. 제1항에 있어서,
    상기 곡면 표면은 선택된 초점력(focal power)을 제공하는 것인 빔 스플리터.
  19. 계측 시스템으로서,
    선택된 컷오프 파장을 초과하는 파장들을 갖는 조명 빔을 생성하도록 구성된 조명원;
    대물 렌즈;
    검출기; 및
    빔 스플리터를 포함하며, 상기 빔 스플리터는 상기 조명 빔을 제1 조명 빔 및 제2 조명 빔으로 분할하고, 상기 대물 렌즈는 상기 제1 조명 빔을 샘플로 보내고, 상기 대물 렌즈는 상기 제1 조명 빔에 반응하여 상기 샘플로부터 발산되는 방사선을 수집하고, 상기 빔 스플리터는 상기 대물 렌즈로부터 상기 샘플로부터 발산되는 상기 방사선을 제1 검출 빔 및 제2 검출 빔으로 분할하고, 상기 검출기는 상기 제1 검출 빔을 수신하고, 상기 빔 스플리터는,
    적어도 상기 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판; 및
    상기 기판의 표면에 걸쳐 분포된 복수의 반사 구조물을 포함하며, 상기 복수의 반사 구조물은 상기 선택된 컷오프 파장을 초과하는 파장들을 갖는 입사광을 상기 복수의 반사 구조물로부터 반사된 상기 입사광의 부분들로부터 형성된 반사 빔 및 상기 기판을 통해 투과된 상기 입사광의 부분들로부터 형성된 투과 빔으로 분할하도록 구성되고, 상기 투과 빔의 세기에 대한 상기 반사 빔의 세기의 분할 비율은 상기 반사 구조에 의해 덮이지 않은 상기 기판의 면적에 대한 반사 표면들의 표면적의 비율에 기반하고, 상기 복수의 반사 구조물의 이웃하는 반사 구조물들 간의 이격 거리들은 상기 컷오프 파장보다 더 작고, 상기 복수의 반사 구조물은 상기 선택된 컷오프 파장을 초과하는 파장을 갖는 상기 입사광의 0이 아닌 회절 차수들의 세기를 선택된 허용 한계 미만으로 유지하도록 구성되는 것인 계측 시스템.
  20. 제19항에 있어서,
    상기 복수의 반사 구조물은 상기 기판의 상기 표면 상에 금속성 필름들을 포함하는 것인 계측 시스템.
  21. 제19항에 있어서,
    상기 복수의 반사 구조물은 상기 기판의 상기 표면에 평행한 평면 표면들을 포함하는 것인 계측 시스템.
  22. 제19항에 있어서,
    상기 복수의 반사 구조물은 제1 방향 및 상기 제1 방향에 수직인 제2 방향으로 공통 피치를 갖는 정사각형 격자 패턴으로 분포되는 것인 계측 시스템.
  23. 제19항에 있어서,
    상기 복수의 반사 구조물은 육각형 격자 패턴, 사선 격자 패턴 또는 정삼각형 격자 패턴 중 적어도 하나로 분포되는 것인 계측 시스템.
  24. 제19항에 있어서,
    상기 기판은 용융 실리카, Suprasil, Heralux, CaF2, MgF2, LiF, 석영 또는 사파이어 중 적어도 하나를 포함하는 것인 계측 시스템.
  25. 제19항에 있어서,
    상기 선택된 컷오프 파장은 대략 120 nm 내지 대략 200 nm 범위의 파장을 포함하는 것인 계측 시스템.
  26. 제19항에 있어서,
    상기 선택된 컷오프 파장은 자외선 파장, 심자외선 파장, 진공 자외선 파장 또는 극자외선 파장 중 적어도 하나를 포함하는 것인 계측 시스템.
  27. 제19항에 있어서,
    상기 복수의 반사 구조물의 상기 크기들은 1 마이크로미터 미만인 것인 계측 시스템.
  28. 제19항에 있어서,
    이웃하는 반사 구조물들 간의 상기 이격 거리들은 1 마이크로미터 미만인 것인 계측 시스템.
  29. 제19항에 있어서,
    상기 분할 비율은 상기 선택된 컷오프 파장을 초과하는 파장에 의존하지 않는 것인 계측 시스템.
  30. 제19항에 있어서,
    상기 분할 비율은 상기 입사광의 편광에 의존하지 않으며,
    상기 빔 스플리터는 비편광 빔 스플리터를 포함하는 것인 계측 시스템.
  31. 제19항에 있어서,
    상기 기판 및 상기 복수의 반사 구조물은 플레이트 빔 스플리터로서 구성되는 것인 빔 스플리터.
  32. 제19항에 있어서,
    상기 복수의 반사 구조 상에 배치된 추가적인 기판을 더 포함하며,
    상기 제2 기판은 적어도 상기 선택된 컷오프 파장을 초과하는 파장들에 투명한 것인 빔 스플리터.
  33. 제32항에 있어서,
    상기 기판, 상기 복수의 반사 구조물 및 상기 추가적인 기판은 큐브 빔 스플리터로서 구성되는 것인 빔 스플리터.
  34. 광을 분할하는 방법으로서,
    선택된 컷오프 파장을 초과하는 파장들을 갖는 광을 적어도 상기 선택된 컷오프 파장을 초과하는 광의 파장들에 투명한 재료로부터 형성된 기판의 표면으로 보내는 단계 - 상기 기판은 상기 기판의 표면에 걸쳐 분포된 복수의 반사 구조물을 포함함 -;
    상기 복수의 반사 구조물로부터 입사광의 일부를 반사시키는 단계; 및
    상기 기판의 상기 표면을 통해 상기 입사광의 일부를 투과시키는 단계를 포함하며, 상기 투과 빔의 세기에 대한 상기 반사 빔의 세기의 분할 비율은 상기 반사 구조물들에 의해 덮이지 않은 상기 기판의 면적에 대한 반사 표면들의 표면적의 비율에 기반하고, 상기 복수의 반사 구조물의 이웃하는 반사 구조물들 간의 이격 거리들은 상기 컷오프 파장보다 더 작고, 상기 복수의 반사 구조물은 상기 선택된 컷오프 파장을 초과하는 파장들을 갖는 상기 입사광의 0이 아닌 회절 차수들의 세기를 선택된 허용 한계 미만으로 유지하도록 구성되는 것인 광을 분할하는 방법.
KR1020207013093A 2017-10-10 2018-10-05 나노 구조의 비편광 빔 스플리터 KR102347054B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762570423P 2017-10-10 2017-10-10
US62/570,423 2017-10-10
US16/138,092 2018-09-21
US16/138,092 US10976562B2 (en) 2017-10-10 2018-09-21 Nano-structured non-polarizing beamsplitter
PCT/US2018/054490 WO2019074774A1 (en) 2017-10-10 2018-10-05 NANO-STRUCTURED NON POLARIZING BEAM SEPARATOR

Publications (2)

Publication Number Publication Date
KR20200055798A true KR20200055798A (ko) 2020-05-21
KR102347054B1 KR102347054B1 (ko) 2022-01-03

Family

ID=65992605

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207013093A KR102347054B1 (ko) 2017-10-10 2018-10-05 나노 구조의 비편광 빔 스플리터

Country Status (3)

Country Link
US (1) US10976562B2 (ko)
KR (1) KR102347054B1 (ko)
WO (1) WO2019074774A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230089584A (ko) 2021-12-13 2023-06-21 한국기계연구원 다중 굴절률층을 이용한 빔스플리터 및 이를 포함하는 불량소자 검출장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089385A (ja) 2019-12-05 2021-06-10 本田技研工業株式会社 ハーフミラーの製造方法及び灯体
CN111123420A (zh) * 2020-01-13 2020-05-08 宜兴市晶科光学仪器有限公司 一种半透半反射镜
US20240302164A1 (en) * 2021-08-02 2024-09-12 Asml Netherlands B.V. Optical element for use in metrology systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US543465A (en) * 1895-07-30 buisson
US5880465A (en) * 1996-05-31 1999-03-09 Kovex Corporation Scanning confocal microscope with oscillating objective lens
JP2007127625A (ja) * 2005-09-15 2007-05-24 Asml Netherlands Bv 位置測定ユニット、測定システム、および該位置測定ユニットを備えたリソグラフィ装置
KR20110093291A (ko) * 2010-02-12 2011-08-18 한국과학기술원 십자형 구조 조명 선형 패턴을 이용한 구조 조명 공초점 현미경

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243465A (en) * 1992-05-12 1993-09-07 Tencor Instruments Area-division beamsplitter with broad spectral bandwidth
KR20010043706A (ko) 1999-03-22 2001-05-25 클락 라드니 엘. 회절선택적인 편광빔 스플리터 및 이 스플리터에 의해제조된 빔 경로 선택 프리즘
US6426837B1 (en) * 1999-03-22 2002-07-30 Mems Optical, Inc. Diffractive selectively polarizing beam splitter and beam routing prisms produced thereby
US6234634B1 (en) * 1999-07-28 2001-05-22 Moxtek Image projection system with a polarizing beam splitter
DE10136507A1 (de) 2001-07-17 2003-04-03 Zeiss Carl Geometrischer Strahlteiler und Verfahren zu seiner Herstellung
DE102004037684B4 (de) 2004-08-02 2006-09-21 Schleifring Und Apparatebau Gmbh Vorrichtungen zur optischen Drehübertragung mit freiem Innendurchmesser
US6876784B2 (en) 2002-05-30 2005-04-05 Nanoopto Corporation Optical polarization beam combiner/splitter
US7317539B2 (en) 2004-08-23 2008-01-08 Asml Netherlands B.V. Polarizing beam splitter device, interferometer module, lithographic apparatus, and device manufacturing method
TWI261687B (en) 2005-01-17 2006-09-11 Hong Hocheng Apparatus and method for fabricating 3D nano/micro structures
US7251040B2 (en) 2005-01-21 2007-07-31 Uchicago Argonne Llc Single metal nanoparticle scattering interferometer
KR100684340B1 (ko) 2005-11-17 2007-02-20 (주)아이엠 폴카 도트 빔 스플리터를 포함하는 광 픽업 장치
CN100403076C (zh) 2006-08-21 2008-07-16 厦门大学 一种基于金属微纳米结构的光学分束器及其制造方法
KR20120088749A (ko) 2009-10-20 2012-08-08 시그마 코키 가부시키가이샤 플레이트형 광대역 무편광 빔 스플리터
CN102053380A (zh) 2010-12-27 2011-05-11 周立兵 基于纳米结构的波长不敏感型偏振分束器及器件封装方法和分束单元制作
EP2492739B1 (de) 2011-02-23 2019-04-24 Qioptiq Photonics GmbH & Co. KG Nichtpolarisierender Strahlteiler mit Metallschicht
CN104614796B (zh) 2015-01-29 2017-02-22 北京大学 一种基于双缝干涉的超小宽带偏振分束器
CN104730621B (zh) 2015-03-05 2018-05-04 湖南大学 一种基于金属-介电层-半导体复合纳米结构的光波导分束器的制备方法
US10649209B2 (en) * 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
CN106624354B (zh) 2017-02-21 2018-09-21 长春理工大学 基于达曼光栅和反射镜的多光束激光干涉微纳加工装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US543465A (en) * 1895-07-30 buisson
US5880465A (en) * 1996-05-31 1999-03-09 Kovex Corporation Scanning confocal microscope with oscillating objective lens
JP2007127625A (ja) * 2005-09-15 2007-05-24 Asml Netherlands Bv 位置測定ユニット、測定システム、および該位置測定ユニットを備えたリソグラフィ装置
KR20110093291A (ko) * 2010-02-12 2011-08-18 한국과학기술원 십자형 구조 조명 선형 패턴을 이용한 구조 조명 공초점 현미경

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230089584A (ko) 2021-12-13 2023-06-21 한국기계연구원 다중 굴절률층을 이용한 빔스플리터 및 이를 포함하는 불량소자 검출장치

Also Published As

Publication number Publication date
US10976562B2 (en) 2021-04-13
KR102347054B1 (ko) 2022-01-03
US20190107727A1 (en) 2019-04-11
WO2019074774A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6934879B2 (ja) ハイパースペクトルイメージング計量システム及び方法
JP6782834B2 (ja) 広帯域光源を基にマルチチャネル可調照明を生成するシステム及び方法
CN110494966B (zh) 用于以层特定照明光谱的计量的系统及方法
US7304719B2 (en) Patterned grid element polarizer
TWI665470B (zh) 用於極化控制之系統,方法及裝置
KR102347054B1 (ko) 나노 구조의 비편광 빔 스플리터
JP7254177B2 (ja) 粒子検出のためのラジアル偏光子
US7548370B2 (en) Layered structure for a tile wave plate assembly
TW202104856A (zh) 光學計量學之高亮度照明源
KR102527672B1 (ko) 비선형 광학계를 갖는 검사 장치
JP5666496B2 (ja) 計測装置
US10139539B2 (en) Polarization system
JP2023512258A (ja) 接合されたウェハのオーバレイ計測
JP7344952B2 (ja) 空間選択的波長フィルタにより修正された光源を用いて試料を撮像するためのシステム及び方法並びに紫外線光源
KR20200053385A (ko) 분광 광학계 및 그 분광 광학계를 포함한 반도체 검사 장치
US11906770B2 (en) Monolithic optical retarder
US11366307B2 (en) Programmable and reconfigurable mask with MEMS micro-mirror array for defect detection

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant