KR20200036639A - 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 - Google Patents

고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 Download PDF

Info

Publication number
KR20200036639A
KR20200036639A KR1020180116522A KR20180116522A KR20200036639A KR 20200036639 A KR20200036639 A KR 20200036639A KR 1020180116522 A KR1020180116522 A KR 1020180116522A KR 20180116522 A KR20180116522 A KR 20180116522A KR 20200036639 A KR20200036639 A KR 20200036639A
Authority
KR
South Korea
Prior art keywords
polymer
electrode
solid electrolyte
electrolyte
based solid
Prior art date
Application number
KR1020180116522A
Other languages
English (en)
Other versions
KR102517991B1 (ko
Inventor
이정필
김은비
류지훈
강성중
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180116522A priority Critical patent/KR102517991B1/ko
Priority to EP19865790.0A priority patent/EP3836258A4/en
Priority to CN201980029915.6A priority patent/CN112136233B/zh
Priority to PCT/KR2019/012625 priority patent/WO2020067792A1/ko
Priority to US17/269,128 priority patent/US11978853B2/en
Priority to JP2021504369A priority patent/JP7098046B2/ja
Publication of KR20200036639A publication Critical patent/KR20200036639A/ko
Application granted granted Critical
Publication of KR102517991B1 publication Critical patent/KR102517991B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전고체 전지용 전극 및 이를 제조하는 방법에 대한 것으로서, 상기 전극 활물질층을 구성하는 전극 활물질 입자들 사이에 고분자계 고체 전해질 및 도전재의 혼합물이 충진되어 있으며, 제조 공정에 포함된 솔벤트 어닐링 공정을 통해 전극 활물질 입자와 도전재의 접촉이 개선되어, 전극에서의 이온 전도도 및 전지에서의 용량 발현이 개선된다.

Description

고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극{A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby}
본 발명은 전해질 재료로 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극에 대한 것이다.
액체 전해질을 사용하는 리튬 이온 전지는 분리막에 의해 음극과 양극이 구획되는 구조인데 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 발화 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고체 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고체 전해질을 이용한 리튬 이차 전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다. 또한, 음극으로 리튬 금속을 사용할 수 있어 에너지 밀도를 향상시킬 수 있으며 이에 따라 소형 이차 전지와 더불어 전기 자동차용의 고용량 이차 전지 등에 응용이 기대되어 차세대 전지로 각광받고 있다.
그러나 고체 전해질을 사용하는 리튬 이차 전지는 액상 전해질에 비해 이온 전도도가 낮고 특히 저온에서 출력 특성이 저하된다. 또한, 고체 전해질이 액상 전해질에 비해 활물질과의 표면 밀착성이 떨어져 계면 저항이 증가되며, 전극 활물질과 비접촉 상태로 고체 전해질에 분포되어 있어 투입된 도전재 양에 비해 출력 특성이나 용량 특성이 저하되는 문제가 있다.
도 1은 종래 고분자계 고체 전해질을 포함하는 전고체 전지용 전극을 개략적으로 도식화하여 나타낸 것이다. 도 1은 전극 활물질 입자(121), 도전재(123), 고분자계 고체 전해질(122)이 포함된 슬러리가 집전체(110)에 코팅된 후 가압된 전극 활물질층(120)을 구성한 전극(100)을 나타낸 것으로, 전극 활물질 입자와 고분자계 고체 전해질간의 계면 접촉이 불량하여, 이러한 전극을 사용하여 제조된 전지는 제한적인 용량 발현을 나타내게 된다. 만약, 활물질 입자와 고분자계 고체 전해질 접촉 면적을 증가시키기 위해 가혹하게 가압하는 경우에는 활물질 입자의 깨짐이 발생하게 된다. 이러한 이유로 고분자계 고체 전해질이 적용된 경우 액체 전해액 하에서 전극의 용량만큼 충분히 발현되지 못하여 설계 혹은 이론 용량 대비 낮은 수준이다.
본 발명은 전술한 문제점을 해소하기 위해 전극 활물질 입자와 고분자계 고체 전해질의 접촉 면적을 증가시켜 리튬 이온의 전도도 및 이온전도도 향상을 통해 전극 발현 용량 및 출력특성을 향상시켜 에너지 밀도가 개선된 전극을 제공하는 것을 목적으로 한다. 또한, 본 발명은 이러한 기술적 특성을 갖는 전극을 제조하는 방법을 또 다른 목적으로 한다.
본 발명은 전술한 기술적 과제를 해결하기 위한 전고체 전지용 전극을 제조하는 방법에 대한 것이다. 본 발명의 제1 측면은 상기 방법에 대한 것으로서, 전극 활물질 입자, 제1 고분자계 고체 전해질 및 도전재를 포함하는 제1 피복층용 슬러리를 준비하는 단계; 상기 제1 피복층용 슬러리를 집전체의 적어도 일측면에 코팅하여 1차 예비 전극을 준비하는 단계; 제2 고분자계 고체 전해질과 용매의 액상 혼합물인 전해질 용액을 준비하는 단계; 상기 1차 예비 전극을 상기 전해질 용액으로 함침하고 건조하여 2차 예비 전극을 준비하는 단계; 및 상기 2차 예비 전극에 대해 솔벤트 어닐링 공정을 수행하여 전극을 제조하는 공정;을 포함하며, 여기에서, 상기 고분자계 고체 전해질은 투입 전량 중 일부인 제1 고분자계 고체 전해질이 상기 제1 피복층용 슬러리에 투입되고, 나머지 잔량인 제2 고분자계 고체 전해질이 전해질 용액에 투입되는 것이다.
본 발명의 제2 측면은 전술한 측면에 있어서, 상기 고분자계 고체 전해질은 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고분자계 고체 전해질인 것이다.
본 발명의 제3 측면은 전술한 측면 중 어느 하나에 있어서, 상기 솔벤트 어닐링 공정은 상기 예비 전극을 밀폐된 공간에 넣는 단계; 상기 밀폐된 공간이 기화된 용매로 충진되는 단계; 및 상기 기화된 용매로 충진된 밀폐 공간에서 상기 예비 전극이 유지되는 단계;를 포함한다.
본 발명의 제4 측면은 전술한 측면 중 어느 하나에 있어서, 상기 솔벤트 어닐링 공정이 1시간 내지 72 시간 동안 이루어지는 것이다.
본 발명의 제5 측면은 전술한 측면 중 어느 하나에 있어서, 상기 용매는 N,N'-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈(N-methyl pyrrolidone, NMP), 디메틸술폭시드(dimethyl sulfoxide, DMSO) 및 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF) 중 선택된 비양자성 용매; 및 물, 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), N-부탄올(n-butanol), 이소프로필 알코올(Isopropyl alcohol), 데칼린(Decalin), 아세트산(acetic acid) 및 글리세롤(Glycerol) 중 선택된 양자성 용매; 중 적어도 하나를 포함하는 것이다.
본 발명의 제6 측면은 전술한 측면 중 어느 하나에 있어서, 상기 고분자계 고체 전해질은 기화된 유기 용매의 침윤에 의해 부피가 팽창하는 것이다.
본 발명의 제7 측면은 전술한 측면 중 어느 하나에 있어서, 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질은 서로 다른 것인 전고체 전지용 전극을 제조하는 것이다.
본 발명의 제8 측면은 제7 측면에 있어서, 제1 고분자계 고체 전해질은 폴리프로필렌 카보네이트(polypropylene carbonate), 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 및 폴리에테르계 고분자 전해질 중 선택된 1종 이상이 포함되는 것인 전고체 전지용 전극을 제조하는 것이다.
본 발명의 제9 측면은 전술한 측면 중 적어도 어느 하나에 있어서, 상기 제1 피복층용 슬러리는 산화 안정 첨가제 및 환원 안정 첨가제 중 적어도 1종 이상이 포함되는 것이다.
또한, 본 발명은 전술한 측면 중 적어도 어느 하나의 방법으로 제조된 전고체 전지용 전극에 대한 것이다. 본 발명의 제10 측면은 상기 전극에 대한 것으로서 상기 전극은 복수의 전극 활물질 입자, 제1 고분자계 고체 전해질, 제2 고분자계 고체 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자계 고체 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 상기 제 2 고분자계 고체 전해질은 상기 제1 피복층의 표면, 상기 활물질 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하고, 전극 내에서 복수의 전극 활물질들이 상기 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 것이다.
본 발명의 제11 측면은 상기 제10 측면에 있어서, 상기 제1 및 제2 고분자계 고체 전해질은 기화된 용매에 의한 솔벤트 어닐링 공정이 수행된 결과물에서 유래된 것이다.
본 발명의 제12 측면은 상기 제10 측면 또는 제11 측면에 있어서, 상기 제1 및 제2 고분자계 고체 전해질은 팽윤성 고분자를 포함하는 것이다.
본 발명의 제13 측면은 상기 제10 측면 내지 제12 측면 중 어느 하나에 있어서, 상기 용매는 N,N'-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈(N-methyl pyrrolidone, NMP), 디메틸술폭시드(dimethyl sulfoxide, DMSO) 및 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF) 중 선택된 비양자성 용매; 및 물, 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), N-부탄올(n-butanol), 이소프로필 알코올(Isopropyl alcohol), 데칼린(Decalin), 아세트산(acetic acid) 및 글리세롤(Glycerol) 중 선택된 양자성 용매; 중 적어도 하나를 포함하는 것이다.
본 발명의 제14 측면은 상기 제10 측면 내지 제13 측면 중 어느 하나에 있어서, 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질은 서로 다른 것이다.
본 발명의 제15 측면은 상기 제10 측면 내지 제14 측면 중 어느 하나에 있어서, 상기 제1 고분자계 고체 전해질은 폴리프로필렌 카보네이트(polypropylene carbonate), 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 및 폴리에테르계 고분자 전해질 중 선택된 1종 이상이 포함되는 것이다.
본 발명에 따른 전극은 전극 활물질 입자와 고분자계 고체 전해질의 접촉 면적이 증가하여 전극 활물질의 반응 사이트가 증가하게 된다. 또한, 도전재가 활물질 입자 주변부에 보다 가깝게 있도록 분포됨에 따라 도전재와 전극 활물질 입자의 접촉 빈도가 높아진다. 따라서, 충/방전시 리튬 이온의 이동도가 증가하여 전극의 용량 발현율이 개선된다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 전극 활물질 입자, 고분자계 고체 전해질 및 도전재를 포함하는 종래 전극 구성을 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 실시양태에 따라, 전극 활물질 입자, 고분자계 고체 전해질 및 도전재를 포함하는 전극에 솔벤트 증기가 침투하는 양태를 개략적으로 나타낸 것이다.
도 3은 본 발명의 일 실시양태에 따른, 전극 활물질 입자, 고분자계 고체 전해질 및 도전재를 포함하는 전극을 개략적으로 나타낸 것이다.
도 4는 본 발명의 일 실시양태에 따른 전극의 일부를 확대하여 나타낸 확대도이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
본 발명은 리튬 이온 이차 전지용 전극을 제조하는 방법 및 상기 방법으로 제조된 전극에 대한 것이다. 본 발명에 있어서 상기 리튬 이온 이차 전지는 전해질로 고분자계 고체 전해질을 사용하는 전고체 전지인 것이다. 본 발명에 있어서 상기 전고체 전지는 리튬 폴리머 이차전지 또는 리튬이온 폴리머 이차전지 등으로 지칭될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 전극은 복수의 전극 활물질 입자, 고분자계 고체 전해질 및 도전재를 포함하는 전극 활물질층을 포함하고, 전극 활물질 입자들 사이에 고분자계 고체 전해질이 충진되어 있으며, 상기 고분자계 고체 전해질은 용매의 침윤에 의해 팽윤된 상태인 것으로서 이에 의해 리튬 이온의 이동도를 증가시키도록 구성되어 있다. 또한, 본 발명의 일 실시양태에 있어서, 상기 전극 활물질층은 도전재가 전극 활물질 입자들 사이에 위치하여 전기 전도도를 증가시키도록 구성되어 있다. 즉, 본 발명에 구체적인 일 실시양태에 있어서 상기 전극 활물질층은 전극 활물질 입자들이 주로 고분자계 고체 전해질을 매개로 하여 점결착 및/또는 면결착하여 일체화되어 있다. 또한, 상기 도전재는 상기 고체 전해질에 균일하게 분산되어 있다. 본 발명의 일 실시양태에 있어서, 상기 고분자계 고체 전해질은 팽윤성 고분자 전해질을 포함할 수 있으며, 예를 들어 상기 고분자계 고체 전해질은 이의 적어도 50 부피% 이상, 70부피% 이상, 80부피 % 이상, 90부피% 이상 또는 95 부피% 이상이 팽윤성 고분자 전해질일 수 있으며, 또는 이의 전부가 팽윤성 고분자 전해질일 수 있다. 본 명세서에서 상기 팽윤성 고분자 전해질은 고분자 소재를 포함하며 유기 용매의 침윤에 의해 부피가 팽창하는 것을 의미한다. 따라서, 본 발명에 따른 전극에서 상기 고분자계 고체 전해질은 용매의 침윤에 의해 소정 비율로 팽창(팽윤)되어 있는 상태일 수 있다. 이와 같이 활물질 입자 사이의 공간이 팽윤된 고분자(고분자 전해질)로 충진됨에 따라 전극 활물질층의 기공도가 감소되고 전극 활물질층 내에서 고분자 전해질과 활물질 입자가 접촉되는 면적이 증가하여 저항 감소 및 용량 증대 등 전지 특성의 개선 효과가 발휘된다.
이를 위해 본 발명에 따른 고분자계 고체 전해질은 솔벤트 어닐링에 의해 팽윤될 수 있는 특성을 갖는 것이 바람직하다. 또한, 상기 고분자계 고체 전해질은 전극 활물질 입자의 표면을 피복하고/하거나 전극 활물질 입자 사이를 충진하는 것으로서 전위창이 넓은 것이 사용될 수 있다. 예를 들어 양극의 경우 상기 고분자계 고체 전해질은 산화 안정성이 우수한 고분자계 고체 전해질을 사용할 수 있으며 음극의 경우에는 고분자계 고체 전해질로 환원 안정성이 우수한 고분자계 고체 전해질을 사용할 수 있다. 예를 들어, 산화 안정성의 측면에서는 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 등이 전해질로 포함될 수 있으며, 환원 안전성의 측면에서는 폴리에테르계 고분자 전해질이 포함될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 고분자계 고체 전해질은 솔벤트 어닐링 공정을 통해 1vol% 초과 1,000vol% 이하의 비율로 팽윤되어 부피가 증가될 수 있으며, 상기 범위 내에서 50vol% 이상, 100vol% 이상, 200vol% 이상, 300vol% 이상, 400vol% 이상, 500vol% 이상, 600vol% 이상, 700vol% 이상 또는 800vol% 이상 팽윤될 수 있다. 사용되는 고분자계 고체 전해질의 팽윤도가 상기 범위에 미치지 못하는 경우에는 활물질과 전해질간의 계면 접촉 개선 효과가 낮으며, 상기 범위보다 지나치게 높은 수준으로 팽윤되는 경우에는 전극 두께가 지나치게 두꺼워져 전극의 에너지 밀도가 저하될 수 있다. 상기 고분자계 고체 전해질의 팽윤 정도는 고분자 재료의 분자량 및/또는 가교도에 의해 영향을 받을 수 있으며, 분자량이 작을수록 그리고, 가교도가 낮거나 없을수록 잘 팽윤된다.
통상적으로, "팽윤"이란 물질이 용매를 흡수하여 부피가 팽창하는 현상을 의미하는 것이다. 본원 명세서에서 상기 "팽윤도"는 고분자계 고체 전해질의 솔벤트 어닐링 전(최초 부피) 및 후의 부피를 측정하고 이로부터 부피 증가율을 계산한 것으로서, 아래 식 1)과 같이 나타낼 수 있다. 예를 들어, 고분자계 고체 전해질이 100% 팽윤도를 갖는 경우, 솔벤트 어닐링되기 전의 부피의 두 배의 부피로 팽창한 것을 의미한다. 본 발명에 있어서 상기 솔벤트 어닐링은 고분자계 고체 전해질이 기화된 유기 용매에 소정 시간 노출되어 이로 인해 기화된 유기 용매가 전해질 내로 침윤되는 것을 말하며, 상기 노출은 상기 유기 용매의 증기로 포화된 밀폐 공간에서 이루어지며 노출 시간은 1시간 내지 72시간으로 제어되고, 온도 조건은 20℃ 내지 150℃의 범위 내로 제어될 수 있다. 본 발명의 일 실시양태에 있어서, 상기 온도는 전술한 범위 내에서 30℃ 이상, 40℃ 이상, 50℃ 이상, 60℃ 이상, 70℃ 이상, 80℃ 이상, 또는 90℃ 이상 일 수 있으며, 140℃ 이하, 130℃ 이하, 120℃ 이하, 100℃ 이하 또는 80℃ 이하일 수 있다.
식 1)
팽윤도(%) = {(최초 고분자계 고체 전해질의 부피 - 솔벤트 어닐링 후 고분자계 고체 전해질의 부피) / 최초 고분자계 고체 전해질의 부피}X100
예를 들어, 고분자계 고체 전해질로는 포화된 NMP 증기 분위기에서 30℃의 온도 조건에서 24시간 노출되었을 때 식 1에 따른 팽윤도가 전술한 범위내로 나타나는 것을 선택할 수 있다. 또는, 상기 식 1은 기선택된 고분자계 고체 전해질에 대해 전술한 범위의 팽윤도를 부여할 수 있는 솔벤트 어닐링 조건(용매, 온도 및/또는 노출 시간 등)을 설정하기 위해서도 사용될 수 있다.
후술하는 바와 같이 본 발명에 따른 전고체 전지용 전극은 예비 전극 제조 후 솔벤트 어닐링 공정이 수행된다. 이때, 고분자계 고체 전해질이 기화된 용매의 침윤에 의해 팽윤되며, 이에 따라 최종적으로 수득되는 전극은 예비 전극에 비해 기공도가 감소된다. 본 발명의 구체적인 일 실시양태에 있어서, 최종 수득된 전고체 전지용 전극의 전극 활물질층과 예비 전극의 전극 활물질층의 기공도 차이는 0.5%이상, 1% 이상, 또는 5% 이상일 수 있다. 또한, 상기 팽윤에 의해 예비 전극에 비해 최종 수득된 전고체 전지용 전극의 높이가 더 높아질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 고분자계 고체 전해질은 전극에서 주로 리튬 이온의 전달 역할을 하기에 바람직한 이온 전도도를 나타내는 것을 사용할 수 있으며, 예를 들어 또는 10-7s/cm이상, 10-5s/cm이상 또는 10-4s/cm 이상인 것이 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서 전극 특성 보완 및 전극 활물질 입자의 특성 발현을 위해 1종 또는 2종 이상의 고분자계 고체 전해질이 적절하게 사용될 수 있다.
본 발명에 있어서, 전술한 고분자계 고체 전해질은 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고분자 전해질일 수 있다.
상기 고분자 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, PEO(poly ethylene oxide)와 같은 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 및 이온성 해리기를 포함하는 중합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 전해질은 고분자 수지로서 PEO(poly ethylene oxide), PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 전해질에 있어서, 전술한 리튬염은 이온화 가능한 리튬염으로서 Li+X-로 표현할 수 있다. 이러한 리튬염의 음이온(X)으로는 특별히 제한되지 않으나, F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-, (CF3CF2SO2)2N- 등을 예시할 수 있다.
본 발명의 일 실시양태에 따르면, 전극 활물질층은, 전극 활물질 100 중량부를 기준으로 고분자계 고체 전해질 1 내지 100 중량부를 포함할 수 있다. 고분자계 고체 전해질은 상기 범위 내에서 2 중량부 이상, 10 중량부 이상, 20 중량부 이상, 30 중량부 이상, 50 중량부 이상, 또는 70 중량부 이상일 수 있으며, 또는 상기 범위 내에서 95 중량부 이하, 90 중량부 이하, 80 중량부 이하, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하로 포함될 수 있다. 상기 고분자계 고체 전해질이 상기 상한치보다 많이 포함되는 경우에는 전극 내 활물질 비율이 낮아 에너지 밀도가 저하될 수 있으며, 반면 상기 하한치보다 적게 포함되는 경우에는 전극 내 이온 전도도가 저하되어 용량 발현율이 낮게 된다.
본 발명에 있어서 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; VGCF(Vapor grown carbon fiber)와 같은 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 일 실시양태에 따르면, 전극 활물질층은, 도전재를 전극 활물질층 100 중량%를 기준으로 도전재 0 내지 30중량%의 범위 내에서 포함할 수 있다. 본 발명의 구체적인 실시양태에 따르면 도전재는 상기 범위 내에서 0.5중량% 이상, 1 중량% 이상 또는 3 중량% 이상 또는 5 중량% 이상의 범위로 포함될 수 있으며, 또한, 15 중량% 이하, 10 중량% 이하, 7 중량% 이하, 또는 5 중량% 이하로 포함될 수 있다. 예를 들어, 도전재는 전극 활물질층 100중량% 대비 0.5 내지 5중량%의 범위로 포함될 수 있다. 도전재가 상기 상한치보다 많이 포함되는 경우에는 활물질의 비율이 낮아 에너지 밀도가 감소하게 되고, 상기 하한치보다 적게 포함되는 경우에는 소망하는 수준의 전자 전도도에 미치지 못하여 용량 발현율이 저하된다.
본 발명에 있어서, 상기 전극은 음극 및 양극 중 어느 하나일 수 있다. 상기 전극이 음극인 경우에는 전극 활물질은 리튬이온 이차 전지의 음극 활물질로 사용 가능한 물질이면 어느 것이나 사용할 수 있다. 예를 들어 상기 음극 활물질은 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 -xMe'yOz(Me:Mn, Fe, Pb, Ge; Me':Al, B, P, Si,주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 구체적인 일 실시양태에 있어서 상기 음극 활물질은 탄소계 물질 및/또는 Si을 포함할 수 있다.
상기 전극이 양극인 경우, 상기 전극 활물질은 리튬이온 이차 전지의 양극 활물질로 사용 가능한 것이면 제한 없이 사용할 수 있다. 예를 들어, 상기 양극 활물질은, 리튬 코발트 산화물(LiCoO2),리튬 니켈 산화물(LiNiO2)등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물(Li1 + a[NixMnyCo(1-x-y)]MzO2상기 식에서, 0 ≤ a ≤ 0.2 이고, 0.4 ≤ x ≤ 0.9이며, 0 < x+y <1 이고, M은 Co, Mn, Ni, Al, Fe, V, Cr, Ti, Ta, Mg, Mo, Zr, W, Sn, Hf, Nd 및 Gd로 이루어진 군에서 선택되는 하나 이상의 원소이며, 0≤z≤0.1이다.); 화학식 Li1 + xMn2 - xO4(여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4;디설파이드 화합물; Fe2(MoO4)3등을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
본 발명의 일 실시양태에 있어서, 상기 양극 및/또는 음극 활물질은 입경이 약 0.01㎛ 내지 50㎛일 수 있으며, 복수의 입자들이 응집되어 조립화된 2차 입자의 형태를 가질 수 있다.
상기 전극 활물질층은 집전체의 적어도 일측면상에 형성될 수 있다. 또한, 상기 전극은 필요에 따라 바인더 수지를 더 포함할 수 있다.
본 발명에 있어서, 상기 바인더 수지는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 상기 바인더 수지는 통상적으로 전극층 100 중량% 대비 1 내지 30 중량%, 또는 1 내지 10중량%의 범위로 포함될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 전극은 전극의 물리화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다. 상기 첨가제는 특별히 한정되는 것은 아니나 산화안정 첨가제, 환원 안정 첨가제, 난연제, 열안정제, 무적제(antifogging agent) 등과 같은 첨가제를 1종 이상 포함할 수 있다. 상기 산화 안정 첨가제의 예로는 Succinonitrile를 들 수 있다.
본 발명에 있어서 상기 집전체는 금속판 등 전기 전도성을 나타내는 것으로서 이차 전지 분야에서 공지된 집전체 전극의 극성에 따라 적절한 것을 사용할 수 있다. 또한, 집전체의 두께는 대략적으로 1㎛ 내지 50㎛의 범위 내에서 적절하게 조절될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 최종적으로 수득된 전극 활물질층의 기공도는 0 내지 18%의 범위에서 적절하게 선택될 수 있다. 본 발명에 의 일 실시양태에 있어서 상기 기공도는 1% 이상, 3% 이상, 5% 이상, 7% 이상, 10% 이상, 15% 이상, 또는 17% 이상일 수 있으며, 18% 이하, 15% 이하, 10% 이하, 7% 이하 또는 5% 이하일 수 있고, 예를 들어 1 내지 15% 또는 5 내지 18%일 수 있다. 용어 "기공도(porosity)"는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극율, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 본 발명의 일 실시예에 따라 예를 들어 질소 기체를 사용한 BET(Brunauer-Emmett- Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 측정될 수 있다. 또는 본 발명의 일 실시양태에 있어서, 수득된 전극(전극 활물질층)의 밀도(겉보기 밀도)와 전극(전극 활물질층)에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 전극 활물질층의 진밀도를 계산하고 겉보기 밀도(apparent density)와 진밀도(net density)의 차이로부터 전극 활물질층의 기공도를 계산할 수 있다.
다음으로 전술한 특징을 갖는 전극을 제조하는 방법을 설명한다. 다음에 설명되는 제조 방법은 본 발명에 따른 전극을 제조하는데 있어서 채용될 수 있는 다양한 방법 중 하나인 것으로, 이에 한정되는 것은 아니다.
우선, 전극 활물질 입자, 고분자계 고체 전해질 및 도전재를 포함하는 전극 활물질층 제조용 슬러리를 준비한다(S1).
이를 위해, 고분자계 고체 전해질 및 도전재를 포함하는 혼합물을 준비한다. 상기 고분자계 고체 전해질은 우선 고분자 수지 및 리튬염을 고온 용융하여 준비된 용융 블렌드물의 형태로 제공되거나 고분자 수지 및 리튬염이 유기 용매에 균일하게 분산된 용액의 형태로 제공될 수 있다. 이후 상기 블렌드물이나 용액에 도전재를 첨가하고 혼합하여 상기 혼합물이 준비될 수 있다. 상기 혼합물은 필요에 따라 바인더 수지가 더 포함될 수 있다. 여기에, 전극 활물질 입자를 추가, 혼합하여 전극 활물질층 제조용 슬러리를 준비한다. 상기 슬러리에서 전극 활물질 및 고분자계 고체 전해질의 함량은 전술한 내용을 참조할 수 있다.
다만 전술한 슬러리 준비 방법은 예시적인 것으로서 전술한 내용에 한정되지 않는다. 특히, 슬러리 구성 성분들의 투입 또는 혼합 순서는 투입되는 성분들의 물리 화학적 성질 및 수득하고자 하는 전극이나 전지의 특성 등을 고려하여 변형될 수 있다. 예를 들어, 고분자계 고체 전해질, 도전재 및 전극 활물질이 용매와 같은 분산매에 이시(異時) 투입되거나 또 다른 실시양태에 있어서 동시(同時) 투입될 수 있다.
다음으로 상기 슬러리를 집전체의 적어도 일측면에 코팅하여 예비 전극을 제조한다(S2). 본 명세서에 있어서, 상기 예비 전극은 솔벤트 어닐링이 적용되지 않은 상태의 전극을 의미한다.
상기 코팅은 상기 슬러리를 집전체의 적어도 일면에 도포하고, 건조한다. 상기 도포는 닥터 블레이드나 슬롯 다이 코팅 등 통상적인 슬러리 도포 방법을 사용할 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 후속하는 가압 공정을 수행하기 전에 상기 예비 전극을 고체 전해질 용액으로 함침하는 공정이 더 수행된다(공정 a). 본 발명에 있어서, 상기 고체 전해질 용액은 고분자계 고체 전해질과 용매의 액상 혼합물 또는 현탁액의 상태일 수 있다. 이와 같이 상기 공정 a 를 수행할 때, 고체 전해질 투입 예정량을 분할하여 일부는 도전재 및 전극 활물질과 혼합하여 상기 (S1) 단계 수행시 사용하고, 남은 잔량을 상기 공정 a에 사용할 수 있다. 이러한 경우 공정 a에서는 고체 전해질 투입량 100 중량% 중 1 중량% 내지 99 중량%, 예를 들어 5 중량% 내지 70 중량% 또는 10 내지 50 중량%를 사용할 수 있다.
이와 같이, 고체 전해질의 투입량을 분할하여 2회의 코팅 공정을 수행하는 경우 본 발명에 따른 전극은 복수의 전극 활물질 입자, 제1 고분자계 고체 전해질, 제2 고분자계 고체 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자계 고체 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 또한, 상기 제 2 고분자계 고체 전해질은 상기 제1 피복층의 표면, 상기 활물질 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복한다. 또한, 전극 내에서 복수의 전극 활물질들이 상기 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는다. 여기에서 상기 제1 및 제2 고분자계 고체 전해질은 투입되는 단계에 따라 구별된 것으로서, 서로 같거나 각각 서로 다른 성분일 수 있다.
PEO(polyethylene oxide)는 대표적인 고분자 고체 전해질 중 하나로 제조 방법이 간단하고 다른 고분자계 고체 전해질 대비 이온 전도도와 기계적 물성이 우수하다. 그러나 산화 안정성이 낮아 고전위 양극 재료를 사용하는데 제한적이다. 따라서 양극 제조시 제1 피복층에 산화 안정성이 높은 고분자 전해질 재료, 예를 들어 폴리프로필렌 카보네이트(polypropylene carbonate), 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 등에서 선택된 1종 이상이 포함될 수 있다. 음극의 경우에는 환원 안전성의 측면에서는 폴리에테르계 고분자 전해질이 포함될 수 있다. 또한, 상기 전해질 재료와 함께 또는 이와는 독립적으로 1차 피복층에 양극의 경우에는 산화 안정성을 개선하는 산화 안정 첨가제를, 음극에는 환원 안정성을 개선하는 환원 안정 첨가제를 포함시킴으로써 양극 활물질과 고체 전해질간의 계면 반응을 안정화시킬 수 있다. 또한, 제2 피복층 전해질 재료로 PEO 계 고분자 전해질과 같은 통상적인 고분자계 고체 전해질을 사용하여 성능을 높일 수 있다. 상기 산화 안정 첨가제는 양극의 과도한 산화에 의한 열화를 방지하는데 조력하는 물질로 예를 들어 양극 활물질에 비해서 낮은 전위에서 먼저 산화되는 특징을 갖는 것일 수 있다. 한편, 환원 안정 첨가제는 음극의 과도한 환원에 의한 열화를 방지하는데 조력하는 물질로 예를 들어 음극 활물질에 비해서 높은 전위에서 환원되는 특징을 갖는 것일 수 있다.
또한, 이러한 구조적 특징에 의해서 상기 전극은 아래와 같은 잇점이 있다. 도전재의 투입 예정량 전량은 (S1)은 단계에서 사용되기 때문에 도전재가 제1 피복층에 포함되어 있어 전극 활물질의 주변부에 매우 가깝게 븐포되어 도전재와 전극 활물질과의 이격 거리가 최소화되고 전극 활물질과의 접촉 빈도가 높아진다. 따라서, 도전재가 미반응 영역에 고립되는 확률이 낮으며 적은 양의 도전재를 사용하더라도 우수한 전기 전도도를 나타낼 수 있어서 도전재의 사용량을 절감할 수 있다. 또한 도전재의 효과적인 배치로 인해 전기 전도도가 개선될 수 있어 전극 압연시 전극 기동도를 낮추고 전극과 고분자 전해질의 접촉 면적을 늘리기 위해 가혹한 압력 조건으로 압연을 수행할 필요가 없다.
그리고, (S1) 단계 수행 후, 공정 a를 수행함에 따라서 전극 활물질 사이가 고분자 전해질로 충진되어 전극 활물과 고분자 전해질의 저항이 감소하고 전기화학적 반응 면적이 증가하며 리튬 이온 이동도가 개선되는 등 전지 성능이 개선되는 효과가 있다.
다음으로 전술한 단계에서 수득된 예비 전극을 건조하고 필요에 따라 가압 공정을 수행한다. 상기 가압 공정은 전극(전극 활물질층)이 적절한 기공도를 갖도록 구성 물질들을 패킹(packing)하는 것으로서, 특별한 방법으로 한정되는 것은 아니다. 예를 들어 핫 프레스나 압연 등 공지의 가압 방법을 적절하게 선택하여 수행될 수 있으며, 필요에 따라서 가열하거나 냉각하는 등 적절한 온도 조건으로 제어될 수 있다.
이어서, 예비 전극에 대해 솔벤트 어닐링 공정이 수행된다(S4). 상기 솔벤트 어닐링에서 고분자계 고체 전해질이 기화된 유기 용매에 노출되고 상기 기화된 용매가 고체 전해질 내로 침윤되어 전해질의 부피가 팽창된다. 상기 솔벤트 어닐링 공정은 전극을 밀폐된 공간(예컨대, 챔버(chamber))에 넣는 단계; 상기 밀폐된 공간이 기화된 용매로 충진되는 단계; 및 상기 기화된 용매로 충진된 밀폐 공간에서 상기 전극이 소정 시간 동안 유지되는 단계;를 포함할 수 있다.
상기 유지 단계에서 기화된 용매는 전극의 고분자계 고체 전해질내로 침투하여 고분자계 고체 전해질이 팽윤된다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 밀폐된 공간의 충진은 상기 챔버와 관을 통해 연결된 별도의 공간에서 용매를 기화시키고 기화된 용매를 챔버에 주입하는 방법으로 수행될 수 있다. 또는 별도로 준비된 용기에 액상 용매를 담아 이를 챔버에 넣고 챔버를 가열하여 상기 용매를 챔버 내에서 직접 기화시키는 방법으로 수행될 수 있다. 이때 액상의 용매와 전극이 직접 접촉하지 않도록 소정 간격 이격시키는 것이 바람직하다.
한편, 전극을 밀폐된 공간(예컨대, 챔버(chamber))에 넣는 단계와 상기 밀폐된 공간이 기화된 용매로 충진되는 단계의 순서는 필요에 따라 바뀔 수 있다. 예를 들어 전극을 챔버에 넣기 전 기화된 용매로 미리 챔버를 충진시켜 준비할 수 있다. 즉, 본 발명의 일 실시양태에 있어서 상기 기화는 용매의 증기압이나 끓는 점을 고려해서 약 20℃ 내지 30℃의 상온 조건에서 수행되거나 또는 가온하여 이 보다 높은 온도 조건에서 수행될 수 있다.
본 발명의 일 실시양태에 있어서, 챔버 등 솔벤트 어닐링이 수행되는 상기 밀폐된 공간은 기화된 용매로 포화되어야 한다. 이를 위해, 밀폐된 공간이 용매 증기압 이상이 되도록 유지한다. 본 발명의 일 실시양태에 있어서, 기화 용매를 솔벤트 어닐링이 종료될 때까지 계속 주입하거나, 액상 용매를 챔버에 함께 넣고 가열하는 경우에는 솔벤트 어닐링 공정이 완료될 때까지 모든 용매가 기화되지 않고 잔량의 용매가 남아있게 하기 위해서 과량의 용매를 투입한다. 사용되는 용매의 양은 전극에 사용된 고분자계 고체 전해질의 양(부피 또는 중량) 및/또는 챔버의 크기 등을 고려하여 결정될 수 있다. 예를 들어 용매로 NMP를 사용하는 경우 챔버의 크기가 약 300ml이고, 130℃에서 24시간 동안 솔벤트 어닐링이 수행되는 경우에는 NMP 약 300㎕가 투입될 수 있다.
본 발명의 구체적인 실시양태에 있어서, 솔벤트 어닐링에 사용되는 용매는 전극에 적용되었을 때 전극의 열화를 초래하지 않는 등 화학적으로 안정한 것이면 특별한 제한 없이 사용될 수 있다. 예를 들어 전기화학소자용 전해액으로 사용가능한 용매 중 선택하여 사용될 수 있으며 예를 들어 환형, 선형 또는 가지형의 카보네이트, 선형 에스테르, 에테르 등에서 선택된 1종 이상을 포함할 수 있다. 이의 비제한적으로 예로, 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 부틸렌 카보네이트(BC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 메틸 프로피오네이트(MP), 디메틸설폭사이드, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 비닐렌카보네이트(VC), 감마 부티로락톤(GBL), 플루오르에틸렌 카보네이트(FEC), 포름산 메틸, 포름산 에틸, 포름산 프로필, 초산 메틸, 초산 에틸, 초산 프로필, 초산 펜틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 에틸, 프로피온산 부틸 등을 들 수 있다.
또한, N,N'-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈(N-methyl pyrrolidone, NMP), 디메틸술폭시드(dimethyl sulfoxide, DMSO) 및 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF), THF, 아세토니트릴(acetonitrile), 벤젠(benzene), 부틸 아세테이트(butyl acetate), 클로로 포름(chloroform), 사이클로 헥산(cyclo hexane), 1-2 디클로로에탄(1,2-dichloroethane), 에틸 아세테이트(ethyle acetate), 디에틸에테르(Di-ethyl ether), 헥산(hexane), 헵탄(heptane), 펜탄(pentane), 자일렌(xylene), 톨루엔(toluene) 중 선택된 비양자성 용매; 및 물, 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), N-부탄올(n-butanol), 이소프로필 알코올(Isopropyl alcohol), 데칼린(Decalin), 아세트산(acetic acid) 및 글리세롤(Glycerol) 중 선택된 양자성 용매; 중 적어도 하나가 포함될 수 있다.
또한, 솔벤트 어닐링이 이루어지는 시간은 1 시간 내지 72 시간 범위일 수 있으며 상기 시간은 적절한 범위로 제어할 수 있다. 예를 들어, 상기 시간은 상기 범위내에서 2시간 이상, 10시간 이상, 20시간 이상, 30시간 이상, 또는 50시간 이상 일 수 있으며, 또는 상기 범위 내에서 65시간 이하, 60 시간 이하, 50시간 이하, 40시간 이하, 30시간 이하일 수 있다. 어닐링 온도 및 압력이 상기 범위 내에 있는 경우에 용매 휘발에 의한 솔벤트 어닐링이 효율적으로 이루어질 수 있다. 또한, 어닐링 시간이 상기 제시된 시간보다 길게 이루어지는 경우에는 전극 공정 시간이 길어져 생산성이 낮아지게 되고, 상기 제시된 시간보다 짧게 이루어지는 경우에는 전극을 구성하는 고분자계 고체 전해질이 균일하게 팽윤되지 않을 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 솔벤트 어닐링이 완료된 후 기공도 조절을 위해 추가적으로 가압 공정이 수행될 수 있다.
상기 방법을 통해 수득된 전극에서는 고분자계 고체 전해질이 용매의 침윤에 의해 팽윤되어 전극 활물질층 내에 충진되어 있으며 이에 의해 활물질 입자가 고분자계 고체 전해질 및 도전재와 밀접하게 면결착 및 점결착되어 있어, 일체화된 전극 구조를 나타낸다.
전술한 방법으로 통해 수득된 전극은 전고체 전지용 전극 조립체 및/또는 전고체 전지의 제조 공정에 제공될 수 있으며, 이때 고체 전해질이 어닐링에 의해 팽윤된 상태를 유지하면서 후속 공정에 투입되는 것이 바람직하다.
도 1은 종래 전극 제조 방법에 따라 제조된 전극의 구성을 개략적으로 도시한 것이다. 종래 전극 제조 방법은 활물질 입자, 고분자계 고체 전해질 및 도전재를 한꺼번에 혼합하여 전극 슬러리를 제조한 후 이를 집전체에 코팅하는 방식으로 제조되었다. 이 경우 전극 활물질과 고체 전해질이 밀착되지 않고 접촉 면적이 작아 전극 활물질과 고체 전해질간 전기화학 반응 사이트를 충분히 확보하지 못하며, 이에 따라 용량 저하, 출력 특성 저하, 이온 전도도 저하, 계면 저항 증가 등 전지 성능이 충분히 발현되지 않는 문제가 있다. 이러한 문제를 해소하기 위해 전극 코팅 후 높은 압력 조건 하에서 전극 표면을 압연하여 전극 활물질과 고분자계 고체 전해질의 접촉 면적을 높이는 압연 공정이 필요하게 되었다. 그러나, 가압 공정시 인가된 높은 압력에 의해 활물질이 부스러져 깨어져 전지 용량이 저하되거나, 수명 특성이 저하되는 문제가 있었다.
도 2와 도 3은 본 발명의 일 실시양태에 따른 전극을 개략적으로 도시한 것이다. 이를 참조하면 집전체(210, 310)의 일면에 전극 활물질층(220, 320)이 형성되어 있으며, 솔벤트 어닐링 공정에서 침투한 솔벤트 증기(도 2, 화살표)에 의해, 전극 활물질층(220, 320) 내의 고분자 고체 전해질(222, 322)이 전체적으로 균일하게 팽윤되어, 전극 활물질과 전해질이 더욱 밀착되어 전기화학 반응 사이트의 면적이 증가된다. 또한, 이에 따라 도전재(223, 323)가 전극 활물질 입자(221, 321) 표면에 더욱 가까이 위치하게 되어 전기화학 반응에 참여하는 비율이 높아지게 되므로 도전재 사용량을 저감할 수 있다. 또한, 전극압연시 가혹한 압력을 인가하지 않더라도 고체 전해질과 전극 활물질이 잘 밀착되어 전기화학 반응 사이트가 충분히 확보될 수 있어 가압에 의한 전극 열화를 방지할 수 있다. 그리고 리튬 이온 이동도를 증가시켜 활물질의 용량 발현을 높일 수 있다.
도 4는 본 발명의 일 실시양태에 따른 전극의 일부를 확대하여 도시한 것으로서, 고체 전해질의 투입량을 분할하여 2회의 코팅 공정을 수행함으로써 전극이 복수의 전극 활물질 입자, 제1 고분자계 고체 전해질, 제2 고분자계 고체 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자계 고체 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 또한, 상기 제 2 고분자계 고체 전해질은 상기 제1 피복층의 표면, 상기 활물질 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하고 있다. 또한, 전극 내에서 복수의 전극 활물질들이 상기 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 가질 수 있다.
또한, 본 발명은 상기 전극을 적어도 하나 이상 포함하는 리튬 이온 이차 전지를 제공한다. 상기 전지는 양극, 음극 및 상기 양극과 음극 사이에 개재된 고체 전해질막을 구비하며, 상기 음극 및 양극 중 적어도 하나는 본 발명에 따른 것으로서 전술한 특징을 갖는 것일 수 있다.
본 발명에 있어서, 상기 고체 전해질막은 음극과 양극 사이에 개재되는 것으로서, 음극과 양극을 전기적으로 절연하는 동시에 리튬 이온을 통과시키는 역할을 하는 것이다. 상기 고체 전해질막은 통상 전고체 전지 분야에서 사용되는 고체 전해질막으로 사용되는 것이면 어느 것이나 사용될 수 있으며 특별히 한정되는 것은 아니다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 고체 전해질막은 필름이나 막의 형상으로 준비된 것으로서, 전극 사이에 개재되는 것(free-standing type)이거나, 전극 위에 막이나 필름의 상태로 코팅된 형태일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 고체 전해질 막은 본 발명에 따른 전극에서 사용된 고체 전해질 성분 중 적어도 하나 이상이 포함될 수 있다. 또한, 상기 고체 전해질 막은 전술한 고분자 고체 전해질 성분과는 독립적으로 또는 이와 함께 무기계 고체 전해질 성분이 포함될 수 있다. 상기 무기계 고체 전해질은 황화물계 고체 전해질 및 산화물계 고체 전해질 중 선택된 1종 이상인 것으로서 통상적으로 전고체 전지용 고체 전해질로 사용되는 것이라면 그 성분이 특별히 한정되지는 않는다.
또한, 본 발명은, 상기 이차전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
실시예: 전극 및 전지의 제조
실시예 1
(1) 전극의 제조
우선, 전극 활물질의 표면에 제1 피복층이 형성된 예비 전극을 제조하였다. 전극 활물질 NCM811(LiNi0.8Co0.1Mn0.1O2),도전재 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체전해질(PEO와 LiTFSI(CF3SO2NLiSO2CF3)의 혼합물, PEO:LiTFSI 의 몰비 = 9:1)을 89.9:3.4:6.7의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 알루미늄 집전체(두께 20㎛)를 준비하고 상기 슬러리를 닥터 블레이드를 이용하여 상기 집전체에 도포하고 그 결과물을 120℃에서 4시간 동안 진공 건조시켰다. 롤 프레스를 이용하여 압연 공정을 진행하여, 2mAh/cm2의 전극 로딩, 기공도가 40%인 예비 전극이 수득되었다. 다음으로, 고체 전해질(PEO+LiTFSI, 9:1 몰비)을 아세토니트릴에 투입하여 고분자 용액을 제조한 후 상기에서 수득된 예비 전극에 함침시켰다. 상기 결과물을 120℃에서 4 시간 동안 진공 건조 시켰다. 수득된 전극의 기공도는 20%였다. 이어서, 상기 전극을 챔버(300ml)에 넣고, NMP 300㎕를 상기 전극에 직접 닿지 않도록 상기 챔버에 함께 넣었다. 상기 챔버를 밀폐하고 60℃에서 24시간 유지시켜 솔벤트 어닐링 하였다. 이로써 최종 전극의 전극 활물질층 기공도가 15%인 전극을 제조하였다. 상기 기공도는 전체 부피에 대해 기공이 차지하는 부피(기공 부피)의 비율을 의미하고, 각 전극 활물질층의 부피 및 질량으로부터 계산된 겉보기 밀도와 투입된 성분들의 조성비 및 각 성분들의 밀도로부터 계산된 진밀도를 산출하여 이들로부터 얻어진 기공 부피 등을 이용하여 계산되었다. 한편, 실시예 1에서 제1 피복층 형성시 투입된 전해질의 양은 전해질 투입 총량 대비 40중량%로 하였다.
(2) 전지의 제조
상기에서 제조된 전극을 1.4875cm2의 원형으로 타발하여 준비하였다. 1.7671cm2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 준비하였다. 이 두 전극 사이에 50㎛ 두께의 고체 전해질막 PEO와 LiFTSI의 혼합물, PEO:LiTFSI의 몰비 = 9:1)을 게재시켜 코인형 하프셀(half-cell)을 제조하였다.
실시예 2
전극 활물질 NCM811(LiNi0 . 8Co0 . 1Mn0 . 1O2),도전재 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체전해질(PEO와 LiTFSI(CF3SO2NLiSO2CF3)의 혼합물, PEO:LiTFSI 의 몰비 = 9:1)을 91:2:7로 하여 1차 피복층을 제조하는 것을 제외하고는 실시예 1과 같은 방법으로 전극 및 전지를 제작하였다. 수득된 전극의 기공도는 20%였다.
실시예 3
전극 활물질 NCM811(LiNi0 . 8Co0 . 1Mn0 . 1O2),도전재 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체전해질(PPC(Polyproplyene carbonate)와 LiTFSI(CF3SO2NLiSO2CF3)의 혼합물, PPC:LiTFSI 의 몰비 = 9:1)을 91:2:7로 하여 1차 피복층을 제조하는 것을 제외하고는 실시예 1과 같은 방법으로 전극 및 전지를 제작하였다. 수득된 전극의 기공도는 20%였다.
실시예 4
전극 활물질 NCM811(LiNi0 . 8Co0 . 1Mn0 . 1O2),도전재 VGCF(Vapor grown carbon fiber), 고분자계 고체 고체전해질(PEO와 LiTFSI(CF3SO2NLiSO2CF3)의 혼합물, PEO:LiTFSI 의 몰비 = 9:1) 및 Succinonitrile을 91:2:6.5:0.5로 하여 1차 피복층을 제조하는 것을 제외하고는 실시예 1과 같은 방법으로 전극 및 전지를 제작하였다. 수득된 전극의 기공도는 20%였다.
비교예 1
전극 활물질 NCM811(LiNi0 . 8Co0 . 1Mn0 . 1O2),도전재 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체전해질(PEO와 LiTFSI(CF3SO2NLiSO2CF3)의 혼합물, PEO:LiTFSI 의 몰비 = 9:1)을 89.9:3.4:6.7의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 알루미늄 집전체(두께 20㎛)를 준비하고 상기 슬러리를 닥터 블레이드를 이용하여 상기 집전체에 도포하고 그 결과물을 120℃에서 4시간 동안 진공 건조시켰다. 롤 프레스를 이용하여 압연 공정을 진행하여, 2mAh/cm2의 전극 로딩, 기공도가 22%인 전극이 수득되었다.
비교예 2
비교예 1과 동일한 방법으로 수득된 전극을 준비하였다. 이어서, 상기 전극을 챔버(300ml)에 넣고, NMP 300㎕를 상기 전극에 직접 닿지 않도록 상기 챔버에 함께 넣었다. 상기 챔버를 밀폐하고 60℃에서 24시간 유지시켜 솔벤트 어닐링 하였다. 이로써 최종 전극의 전극 활물질층 기공도가 15%인 전극을 제조하였다.
실험 1. 전극 내 활물질층 전기 저항 평가
상기 실시예 1 내지 2 및 비교예 1 내지 2의 전극의 전기 저항을 MP tester로 측정하여 비교하였으며, 그 결과를 하기 [표 1]에 정리하였다.


활물질층 전기 저항
(ohm*cm)

실시예 1

12.7

실시예 2

20.1

비교예 1

20.8

비교예 2

21.1
상기 결과에서 비교예 1과 2와 동일한 수준의 도전재를 첨가한 실시예1의 경우, 양극 내 활물질 주변에 도전재의 효과적으로 배치하고 있어, 활물질층 전기저항이 감소된 것을 확인할 수 있다. 도전재를 2wt%로 감소시킨 실시예 2에서 비교예와 같은 수준의 전기저항을 나타내어, 활물질 증량을 통한 고용량 전극 개발이 가능함을 알 수 있다.
실험 2. 초기 방전 용량 및 continuous charge 평가
실시예 1 내지 2 및 비교예 1 내지 2의 전지에 대해 60℃ 조건에서 충·방전을 수행하여, 초기 방전 용량을 평가하였다.
충전 조건: CC (정전류)/C V(정전압), (4.25V, 0.005C current cut-off)
방전 조건: CC (정전류)조건 3V
용량 유지율은 첫 번째 방전 용량 대비 30 사이클 후 방전 용량의 비를 계산에 의해 도출하였다. 그 결과를 하기 [표 2]에 정리하였다.
한편, 실시예 및 비교예 1 내지 2의 전지에 대해 continuous 충전을 수행하여 전극 내 부반응 시간을 평가하였다. 평가는 60℃에서 0.05C로 4.25V까지 CC 모드로 충전하였고, 이후 CV 조건으로 지속적으로 전류를 인가하여 평가하였다. 제작된 전지 내 부반응으로 인한 전류 향상 시간(CV 모드 충전 구간 중 전류가 증가되는 시점)을 확인하여 하기 [표 2]에 요약하였다.


방전 용량
(mAh/g, 4.25V)

전류 향상 시간(hr)
(Continuous charge, 4.25V)

실시예 1

185

80

실시예 2

183

75

실시예 3

180

110

실시예 4

181

103

비교예 1

176

89

비교예 2

182

81
상기와 같이 실시예 1 및 2는 솔벤트 어닐링 공정에 의해 전극 활물질층 내 고분자 전해질이 팽윤됨으로써 그에 따라 전극 내 활물질과 고체 전해질간의 접촉 면적이 늘어나 활물질로 이온의 삽입 및 탈리가 더욱 촉진되었다. 이러한 결과 비교예에 비해서 용량 및 출력 특성이 개선되었다. 특히 고전압에 유리한 고체 전해질인 PPC를 활물질 표면에 먼저 코팅하여 솔벤트 어닐링을 실시한 실시예 3 및 실시예 4의 경우 전극 내 활물질과 고체 전해질과의 접촉 면적이 증가하므로 4.25V의 고전압에서 반응량이 증가하여 비교예에 비해 안정성이 보다 개선되었다.
[부호의 설명]
100, 200, 300 전극, 121, 221, 321 전극 활물질
122, 222, 322 고분자계 고체 전해질
123, 223, 323 도전재
110, 210, 310 집전체
120, 220, 320 전극 활물질층
322a 제1 고체 전해질
322b 제2 고체 전해질

Claims (15)

  1. 전고체 전지용 전극을 제조하는 방법이며,
    전극 활물질 입자, 제1 고분자계 고체 전해질 및 도전재를 포함하는 제1 피복층용 슬러리를 준비하는 단계;
    상기 제1 피복층용 슬러리를 집전체의 적어도 일측면에 코팅하여 1차 예비 전극을 준비하는 단계;
    제2 고분자계 고체 전해질과 용매의 액상 혼합물인 전해질 용액을 준비하는 단계;
    상기 1차 예비 전극을 상기 전해질 용액으로 함침하고 건조하여 2차 예비 전극을 준비하는 단계; 및
    상기 2차 예비 전극에 대해 솔벤트 어닐링 공정을 수행하여 전극을 제조하는 공정;을 포함하며,
    여기에서, 상기 고분자계 고체 전해질은 투입 전량 중 일부인 제1 고분자계 고체 전해질이 상기 제1 피복층용 슬러리에 투입되고, 나머지 잔량인 제2 고분자계 고체 전해질이 전해질 용액에 투입되는 것인 전고체 전지용 전극을 제조하는 방법.
  2. 제1항에 있어서,
    상기 고분자계 고체 전해질은 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고분자 전해질인 것인 전고체 전지용 전극을 제조하는 방법.
  3. 제1항에 있어서,
    상기 솔벤트 어닐링 공정은
    상기 예비 전극을 밀폐된 공간에 넣는 단계;
    상기 밀폐된 공간이 기화된 용매로 충진되는 단계; 및
    상기 기화된 용매로 충진된 밀폐 공간에서 상기 예비 전극이 유지되는 단계;를 포함하는 것인 전고체 전지용 전극을 제조하는 방법.
  4. 제1항에 있어서,
    상기 솔벤트 어닐링 공정이 1시간 내지 72 시간 동안 이루어지는 것인 전고체 전지용 전극을 제조하는 방법.
  5. 제3항에 있어서,
    상기 용매는 N,N'-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈(N-methyl pyrrolidone, NMP), 디메틸술폭시드(dimethyl sulfoxide, DMSO) 및 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF) 중 선택된 비양자성 용매; 및 물, 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), N-부탄올(n-butanol), 이소프로필 알코올(Isopropyl alcohol), 데칼린(Decalin), 아세트산(acetic acid) 및 글리세롤(Glycerol) 중 선택된 양자성 용매; 중 적어도 하나를 포함하는 것인 전고체 전지용 전극을 제조하는 방법.
  6. 제1항에 있어서,
    상기 고분자계 고체 전해질은 기화된 유기 용매의 침윤에 의해 부피가 팽창하는 것인, 전고체 전지용 전극을 제조하는 방법.
  7. 제1항에 있어서,
    제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질은 서로 다른 것인 전고체 전지용 전극을 제조하는 방법.
  8. 제7항에 있어서,
    제1 고분자계 고체 전해질은 폴리프로필렌 카보네이트(polypropylene carbonate), 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 및 폴리에테르계 고분자 전해질 중 선택된 1종 이상이 포함되는 것인 전고체 전지용 전극을 제조하는 방법.
  9. 제1항에 있어서,
    상기 제1 피복층용 슬러리는 산화 안정 첨가제 및 환원 안정 첨가제 중 적어도 1종 이상이 포함되는 것인 전고체 전지용 전극을 제조하는 방법.
  10. 전고체 전지용 전극이며, 복수의 전극 활물질 입자, 제1 고분자계 고체 전해질, 제2 고분자계 고체 전해질 및 도전재를 포함하며, 상기 전극 활물질 입자는 제1 고분자계 고체 전해질 및 도전재의 혼합물을 포함하는 제1 피복층에 의해 입자 표면의 적어도 일부가 피복되어 있으며, 상기 제 2 고분자계 고체 전해질은 상기 제1 피복층의 표면, 상기 활물질 입자의 표면 또는 이 둘 모두의 표면 중 적어도 일부를 피복하고, 전극 내에서 복수의 전극 활물질들이 상기 제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질 중 적어도 하나 이상에 의해 서로 결착되어 일체화된 구조를 갖는 것을 특징으로 하며, 제1항에 따른 방법에 의해 제조되는 것인 전고체 전지용 전극.
  11. 제10항에 있어서,
    상기 제1 및 제2 고분자계 고체 전해질은 기화된 용매에 의한 솔벤트 어닐링 공정이 수행된 결과물에서 유래된 것인 전고체 전지용 전극.
  12. 제10항에 있어서,
    상기 제1 및 제2 고분자계 고체 전해질은 팽윤성 고분자를 포함하는 것인 전고체 전지용 전극.
  13. 제10항에 있어서,
    상기 용매는 N,N'-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈(N-methyl pyrrolidone, NMP), 디메틸술폭시드(dimethyl sulfoxide, DMSO) 및 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF) 중 선택된 비양자성 용매; 및 물, 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), N-부탄올(n-butanol), 이소프로필 알코올(Isopropyl alcohol), 데칼린(Decalin), 아세트산(acetic acid) 및 글리세롤(Glycerol) 중 선택된 양자성 용매; 중 적어도 하나를 포함하는 것인 전고체 전지용 전극.
  14. 제10항에 있어서,
    제1 고분자계 고체 전해질 및 제2 고분자계 고체 전해질은 서로 다른 것인 전고체 전지용 전극.
  15. 제14항에 있어서,
    제1 고분자계 고체 전해질은 폴리프로필렌 카보네이트(polypropylene carbonate), 폴리카보네이트계 고분자 전해질, 폴리실록산계 고분자 전해질, 포스파젠계 고분자 전해질 및 폴리에테르계 고분자 전해질 중 선택된 1종 이상이 포함되는 것인 전고체 전지용 전극.
KR1020180116522A 2018-09-28 2018-09-28 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극 KR102517991B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020180116522A KR102517991B1 (ko) 2018-09-28 2018-09-28 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
EP19865790.0A EP3836258A4 (en) 2018-09-28 2019-09-27 ELECTRODE MANUFACTURING PROCESS INCLUDING A SOLID POLYMERIC ELECTROLYTE, AND ELECTRODE MANUFACTURED BY MEANS OF THE SAME
CN201980029915.6A CN112136233B (zh) 2018-09-28 2019-09-27 包含聚合物类固体电解质的电极的制造方法和用该方法制造的电极
PCT/KR2019/012625 WO2020067792A1 (ko) 2018-09-28 2019-09-27 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
US17/269,128 US11978853B2 (en) 2018-09-28 2019-09-27 Method for manufacturing electrode comprising polymer-based solid electrolyte and electrode manufactured by the method
JP2021504369A JP7098046B2 (ja) 2018-09-28 2019-09-27 高分子系固体電解質を含む電極の製造方法及びその方法で製造された電極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180116522A KR102517991B1 (ko) 2018-09-28 2018-09-28 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Publications (2)

Publication Number Publication Date
KR20200036639A true KR20200036639A (ko) 2020-04-07
KR102517991B1 KR102517991B1 (ko) 2023-04-03

Family

ID=69950711

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180116522A KR102517991B1 (ko) 2018-09-28 2018-09-28 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Country Status (6)

Country Link
US (1) US11978853B2 (ko)
EP (1) EP3836258A4 (ko)
JP (1) JP7098046B2 (ko)
KR (1) KR102517991B1 (ko)
CN (1) CN112136233B (ko)
WO (1) WO2020067792A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311066B1 (ko) * 2018-05-03 2021-10-08 주식회사 엘지에너지솔루션 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
CN114335556B (zh) * 2020-09-28 2024-05-03 中国科学院苏州纳米技术与纳米仿生研究所 一种固体电极、其制备方法与应用
CN114464765B (zh) * 2020-11-09 2024-05-03 中国科学院苏州纳米技术与纳米仿生研究所 一种新型正电极结构、其制备方法及电池
CN114824448A (zh) * 2022-03-30 2022-07-29 广东马车动力科技有限公司 一种聚碳酸丙烯酯-硫化物复合固态电解质膜及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
KR20170100783A (ko) * 2016-02-26 2017-09-05 한국과학기술원 벨트 형상의 금속 전극선이 내장된 플렉서블 oled 디스플레이용 폴리이미드 투명전극 및 그 제조방법
WO2018164455A1 (ko) * 2017-03-06 2018-09-13 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355970B2 (ja) 1997-10-29 2009-11-04 ソニー株式会社 固体電解質電池及びその製造方法
EP1753066B1 (en) 1997-10-29 2009-11-25 Sony Corporation Solid electrolyte cell
KR100376051B1 (ko) 1998-03-06 2003-06-12 주식회사 엘지화학 고분자전해질이충전된전극및이의제조방법
JP2004022332A (ja) * 2002-06-17 2004-01-22 Kawasaki Heavy Ind Ltd 繊維状水素吸蔵合金を用いた電極並びに繊維状水素吸蔵合金を用いた電池及び電気二重層キャパシタ
JP2004234879A (ja) 2003-01-28 2004-08-19 Nissan Motor Co Ltd 真性ポリマー電解質を備える二次電池用電極およびその製造方法、ならびに、二次電池
JP4525323B2 (ja) 2004-12-08 2010-08-18 日産自動車株式会社 電極、電池、およびその製造方法
JP5867699B2 (ja) * 2011-12-01 2016-02-24 住友化学株式会社 イオン伝導体
US20140273290A1 (en) 2013-03-15 2014-09-18 Tokyo Electron Limited Solvent anneal processing for directed-self assembly applications
EP2982001A2 (en) * 2013-04-01 2016-02-10 The University of North Carolina At Chapel Hill Ion conducting fluoropolymer carbonates for alkali metal ion batteries
JP6084301B2 (ja) * 2013-10-07 2017-02-22 日産自動車株式会社 非水電解質二次電池用電極材料、並びにこれを用いた非水電解質二次電池用電極および非水電解質二次電池
WO2015076461A1 (ko) 2013-11-25 2015-05-28 한국화학연구원 폴리프로필렌옥사이드 블록 및 폴리에틸렌옥사이드 블록을 포함하는 블록 공중합체가 가지결합하여 형성된 고분자 및 이온성 전해질을 함유하는 수지조성물로부터 제조된 전해질 막 및 이의 용도
KR101969337B1 (ko) * 2015-02-17 2019-04-17 주식회사 엘지화학 블록 공중합체 박막의 용매 어닐링 방법 및 장치
US10522872B2 (en) 2015-10-30 2019-12-31 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
KR102058113B1 (ko) * 2015-11-23 2019-12-23 주식회사 엘지화학 접착력이 개선된 리튬 이차전지용 전극 및 이의 제조방법
KR101984726B1 (ko) * 2016-03-08 2019-05-31 주식회사 엘지화학 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR102486801B1 (ko) 2016-03-09 2023-01-10 삼성에스디아이 주식회사 이차전지
KR102119295B1 (ko) 2016-07-04 2020-06-04 주식회사 엘지화학 막 전극 접합체의 제조방법, 막 전극 접합체 및 이를 포함하는 연료 전지
KR20180116522A (ko) 2017-04-17 2018-10-25 이재빈 지퍼신발

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
KR20170100783A (ko) * 2016-02-26 2017-09-05 한국과학기술원 벨트 형상의 금속 전극선이 내장된 플렉서블 oled 디스플레이용 폴리이미드 투명전극 및 그 제조방법
WO2018164455A1 (ko) * 2017-03-06 2018-09-13 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
KR20180102024A (ko) * 2017-03-06 2018-09-14 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Also Published As

Publication number Publication date
EP3836258A4 (en) 2021-10-13
KR102517991B1 (ko) 2023-04-03
CN112136233A (zh) 2020-12-25
WO2020067792A1 (ko) 2020-04-02
JP7098046B2 (ja) 2022-07-08
US20210249688A1 (en) 2021-08-12
EP3836258A1 (en) 2021-06-16
US11978853B2 (en) 2024-05-07
CN112136233B (zh) 2024-01-26
JP2021532549A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
KR102182683B1 (ko) 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
KR102418990B1 (ko) 고분자계 고체 전해질을 포함하는 전고체 전지의 제조 방법 및 그 방법으로 제조된 전고체 전지
KR102182687B1 (ko) 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
KR102311066B1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
KR102517991B1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
US20210344044A1 (en) Method for Fabricating All-Solid-State Battery
KR102311802B1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
KR20200078228A (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
KR20200041189A (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
CN112055909B (zh) 用于制造包括聚合物固体电解质的全固态电池的方法和由该方法获得的全固态电池
KR20210037358A (ko) 전고체 전지용 전극 및 이를 포함하는 전고체 전지
KR20060045257A (ko) 알킬포스페이트계 화합물이 첨가된 리튬폴리머전지용 겔폴리머전해질

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant