KR20190130714A - Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure - Google Patents

Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure Download PDF

Info

Publication number
KR20190130714A
KR20190130714A KR1020180055172A KR20180055172A KR20190130714A KR 20190130714 A KR20190130714 A KR 20190130714A KR 1020180055172 A KR1020180055172 A KR 1020180055172A KR 20180055172 A KR20180055172 A KR 20180055172A KR 20190130714 A KR20190130714 A KR 20190130714A
Authority
KR
South Korea
Prior art keywords
silk protein
high pressure
silk
ultra
protease
Prior art date
Application number
KR1020180055172A
Other languages
Korean (ko)
Inventor
김옥희
이영환
이재일
이광현
김푸른
Original Assignee
농업회사법인 에스에스바이오팜 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 농업회사법인 에스에스바이오팜 주식회사 filed Critical 농업회사법인 에스에스바이오팜 주식회사
Priority to KR1020180055172A priority Critical patent/KR20190130714A/en
Publication of KR20190130714A publication Critical patent/KR20190130714A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation

Abstract

The present invention relates to a silk protein extraction method by enzymatic hydrolysis under ultra-high pressure, including: a step of preparing a silk protein solution solubilizing silk in calcium chloride, a mixed solvent of ethanol and water, an aqueous lithium bromide solution, or an aqueous calcium chloride solution; a silk decomposition step of adding protease to the silk protein solution; and an ultrahigh pressure treatment step of pressurizing the silk protein solution at a pressure of 100 to 300 MPa.

Description

초고압 효소가수분해를 이용한 실크단백질 추출방법.{EXTRACTION METHOD OF SILK PEPTIDE BY ENZYMATIC HYDROLYSIS UNDER ULTRA HIGH PRESSURE}Extraction of silk protein using ultrahigh-pressure enzyme hydrolysis. {EXTRACTION METHOD OF SILK PEPTIDE BY ENZYMATIC HYDROLYSIS UNDER ULTRA HIGH PRESSURE}

본 발명은 초고압 효소가수분해를 이용한 실크단백질 추출방법에 관한 것으로, 더욱 상세하게는 초고압 조건에서 단백질 분해 효소를 이용함으로써 저분자량의 실크단백질을 추출하는 방법에 관한 것이다.The present invention relates to a silk protein extraction method using ultra-high pressure hydrolysis, and more particularly, to a method for extracting low-molecular weight silk protein by using proteolytic enzymes under ultra-high pressure conditions.

비단원료인 실크는 피브로인(Fibroin:75%)과 세리신(Sericin:25%)으로 구성된 단백질 복합체이다. 그러나 피브로인은 구조적인 특성에 의하여 셀룰로오스와 같은 β-sheet 형태의 구조로 인하여 불용성이면서 일정한 강도를 유지하는 단백질로서 천연섬유인 비단으로 사용되어 왔다. 21세기에 들어오면서 실크분해산물을 이용한 샴푸등의 기능성 생활용품을 비롯하여 당뇨, 고혈압, 숙취제거 등 다양한 식품용 및 인체용 소재로 실용화되고 있다.Silk, a silk, is a protein complex composed of fibroin (75%) and sericin (25%). However, fibroin has been used as silk, a natural fiber as a protein that is insoluble and maintains constant strength due to its β-sheet structure such as cellulose due to its structural properties. Entering the 21st century, it has been put into practical use for various food and human body materials such as diabetes, hypertension, hangover removal, as well as functional daily necessities such as shampoos using silk decomposition products.

출원인은 기존의 실크단백질을 분해하는 방법인 산 처리가 아닌 고압효소분해를 이용한 실크단백질을 제조하는 방법을 개발해 오고 있다. 고압효소분해를 이용한 실크 단백질의 제조 방법은 실크단백질의 분해과정이 중요한 요소가 되는데 이를 위해서는 압력조건과 단백질 분해특성을 고려하여야 한다.Applicants have been developing a method for producing silk protein using high pressure enzyme decomposition, not acid treatment, which is a method for decomposing existing silk protein. In the production of silk protein using high-pressure enzymatic digestion, the decomposition process of silk protein becomes an important factor. To this end, the pressure conditions and proteolytic characteristics should be considered.

자연상태의 실크단백질은 아미노산 성분으로 글리신 약 50%, 알라닌 약 30%, 세린 약 10%로 구성되어 있는데 분해공정을 통해 얻을 수 있는 다른 아미노산 성분의 함량에 의해 실크단백질 제품의 품질이 결정되는 점에서 이러한 단백질 분해효율에 대한 최적화가 요구되고 있다.Natural silk protein is composed of about 50% glycine, about 30% alanine and about 10% serine, and the quality of silk protein products is determined by the content of other amino acids that can be obtained through the decomposition process. There is a need for optimization of such protein degradation efficiency.

기존에 고압효소분해를 이용하여 천마 추출물을 제조하는 방법(대한민국 등록특허공보 10-1740519호, 10-1643245호)이나 인삼 추출물을 제조하는 방법(대한민국 등록특허공보 10-1328413호) 등이 개시되어 있으나, 이러한 방법들은 고압효소분해를 적용한 것일 뿐 실크단백질의 분해공정에 최적화된 것은 아니므로 실크단백질을 대상으로 하는 실크단백질 추출방법을 개발할 필요가 있다.Conventionally, a method for preparing cheonma extract using high-pressure enzymatic digestion (Korea Patent Publication No. 10-1740519, 10-1643245) or a method for preparing ginseng extract (Korea Patent Publication No. 10-1328413) is disclosed. However, these methods are applied to high pressure enzymatic decomposition, but not optimized for the decomposition process of silk protein. Therefore, it is necessary to develop a silk protein extraction method for silk protein.

대한민국 등록특허공보 10-1740519호Republic of Korea Patent Registration No. 10-1740519 대한민국 등록특허공보 10-1643245호Republic of Korea Patent Publication No. 10-1643245 대한민국 등록특허공보 10-1328413호Republic of Korea Patent Publication No. 10-1328413

본 발명은 상기와 같은 종래기술을 감안하여 안출된 것으로, 기존의 산 처리 가수분해의 제조방법이나 고압효소분해 방법을 개선하여 생산 수율을 향상시키는 초고압 조건에서의 효소가수분해를 이용한 실크단백질 추출방법을 제공하는 것을 그 목적으로 한다.The present invention has been made in view of the prior art as described above, silk protein extraction method using enzymatic hydrolysis under ultra-high pressure conditions to improve the production yield by improving the production method or high pressure enzyme decomposition method of the existing acid-treated hydrolysis. To provide that purpose.

또한, 초고압 효소가수분해 방법을 이용함으로써 저분자량의 실크단백질을 추출할 수 있는 방법을 제공하며, 이를 통해 식용 가능한 실크단백질을 제조하는 방법을 제공하는 것을 그 목적으로 한다.In addition, the present invention provides a method for extracting low-molecular weight silk protein by using an ultrahigh-pressure enzyme hydrolysis method, and aims to provide a method for preparing an edible silk protein.

상기와 같은 목적을 달성하기 위한 본 발명의 초고압 효소가수분해를 이용한 실크단백질 추출방법은 실크를 염화칼슘, 에탄올 및 물의 혼합용매, 브롬화리튬 수용액, 또는 염화칼슘 수용액에 가용화하는 실크단백질 용액 제조 단계, 상기 실크단백질 용액에 단백질 분해효소를 부가하는 실크 분해 단계, 상기 실크단백질 용액을 100 내지 300MPa의 압력으로 가압하는 초고압 처리 단계를 포함하는 것을 특징으로 한다.Silk protein extraction method using the ultrahigh-pressure enzyme hydrolysis of the present invention for achieving the above object is a silk protein solution manufacturing step of solubilizing silk in a mixed solvent of calcium chloride, ethanol and water, aqueous lithium bromide, or calcium chloride aqueous solution, the silk Silk decomposition step of adding a protease to the protein solution, characterized in that it comprises an ultra-high pressure treatment step to press the silk protein solution at a pressure of 100 to 300MPa.

이때, 상기 초고압 처리 단계는 40 내지 70℃의 온도에서 5 내지 24시간 동안 처리하는 것이 바람직하다.At this time, the ultra-high pressure treatment step is preferably treated for 5 to 24 hours at a temperature of 40 to 70 ℃.

또한, 상기 단백질 분해효소는 Alcalase, FoodPro Alkaline Protease, Alphalase, 및 Delvolase 중 어느 하나이며, 상기 단백질 분해효소를 실크단백질 대비 0.1~5 중량% 부가하는 것이 바람직하다.In addition, the protease is any one of Alcalase, FoodPro Alkaline Protease, Alphalase, and Delvolase, it is preferable to add 0.1 to 5% by weight of the protease relative to the silk protein.

또한, 상기 초고압 처리 단계를 마친 실크 단백질 용액을 마이크로 필터 또는 탈염기를 이용하여 탈염하는 단계를 추가적으로 포함할 수 있으며, 상기 초고압 처리 단계를 마친 실크 단백질 용액을 동결건조 또는 분무건조를 통해 건조시키는 단계를 추가적으로 포함할 수 있다.In addition, the step of desalting the silk protein solution after the ultra-high pressure treatment step using a micro filter or desalting machine may be further included, and the step of drying the silk protein solution after the ultra-high pressure treatment step through lyophilization or spray drying It may further include.

본 발명에 따른 초고압 효소가수분해를 이용한 실크단백질 추출방법은 기존의 산 처리 가수분해의 제조방법이나 고압효소분해 방법을 개선하여 생산 수율을 향상킬 수 있다.Silk protein extraction method using the ultrahigh-pressure enzyme hydrolysis according to the present invention can improve the production yield by improving the conventional acid-treated hydrolysis method or high-pressure enzyme decomposition method.

또한, 초고압 효소가수분해 방법을 이용함으로써 저분자량의 실크단백질을 추출할 수 있어 이를 통해 식용 가능한 실크단백질을 제조할 수 있다.In addition, it is possible to extract a low-molecular weight silk protein by using an ultrahigh-pressure enzyme hydrolysis method, thereby producing an edible silk protein.

도 1은 본 발명의 실크단백질 추출방법에서 초고압 처리 공정의 시간에 따른 수율의 변화를 나타낸 그래프이다.
도 2는 본 발명의 실크단백질 추출방법에서 초고압 처리 공정의 압력에 따른 수율의 변화를 나타낸 그래프이다.
1 is a graph showing the change in yield with time of the ultra-high pressure treatment process in the silk protein extraction method of the present invention.
Figure 2 is a graph showing the change in yield according to the pressure of the ultrahigh pressure treatment process in the silk protein extraction method of the present invention.

이하 본 발명을 보다 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.

본 발명에 따른 초고압 효소가수분해를 이용한 실크단백질 추출방법은 실크를 염화칼슘, 에탄올 및 물의 혼합용매, 브롬화리튬 수용액, 또는 염화칼슘 수용액에 가용화하는 실크단백질 용액 제조 단계, 상기 실크단백질 용액에 단백질 분해효소를 부가하는 실크 분해 단계, 상기 실크단백질 용액을 100 내지 300MPa의 압력으로 가압하는 초고압 처리 단계를 포함하는 것을 특징으로 한다.Silk protein extracting method using the ultrahigh-pressure enzyme hydrolysis according to the present invention is a silk protein solution preparation step of solubilizing silk in a mixed solvent of calcium chloride, ethanol and water, aqueous lithium bromide, or calcium chloride solution, proteolytic enzymes in the silk protein solution Adding silk decomposition step, characterized in that it comprises an ultra-high pressure treatment step to press the silk protein solution to a pressure of 100 to 300MPa.

실크단백질의 분해는 일반적으로 단백질 분해효소를 이용한 효소분해로도 분해될 수 있으나, 초고압 처리를 함으로써 유효성분을 더욱 효과적으로 추출할 수 있다. 특히 실크단백질의 분해를 통한 저분자량의 실크단백질의 추출은 실크단백질의 식품, 의약품 등의 이용에 있어 매우 중요한 기술이 된다.The degradation of silk protein can generally be degraded by enzymatic digestion using proteolytic enzymes, but the effective ingredient can be extracted more effectively by ultra-high pressure treatment. In particular, the extraction of low molecular weight silk protein through the decomposition of silk protein is a very important technology in the use of food, medicine, etc. of the silk protein.

따라서 본 발명에서는 실크단백질의 분해를 위하여 실크단백질 용액에 단백질 분해효소를 부가하는 통상적인 효소분해 방법에 더하여 초고압 조건에서의 처리를 통해 이러한 저분자량의 실크단백질에 대한 수율을 크게 높이고 있다.Therefore, in the present invention, in addition to the conventional enzymatic method of adding proteolytic enzymes to the silk protein solution for the decomposition of the silk protein, the yield for these low molecular weight silk proteins is greatly increased through the treatment under ultra-high pressure conditions.

일반적으로 단백질 분해효소는 엔도형(endo type)의 Protease와 엑소형(exo type)의 aminopeptidase로 단백질을 분해하는 방법으로 분류되고 있다. 효소의 active site에 존재하는 아미노산의 기능에 따라 Serine protease, thiol (cysteine) protease, Aspartyl protease 등으로 분류되기도 한다. 단백질 분해효소를 생성하는 생물체에 따라 Bacterial protease와 Fungal protease로, 반응조건인 pH에 따라 acidic, neutral, alkaline protease로도 구분되고 있으며 각각의 특이성이 다른 것으로 알려져 있다. Generally, proteolytic enzymes are classified into methods of decomposing proteins with endo type protease and exo type aminopeptidase. Depending on the function of amino acids in the active site of the enzyme, it may be classified into Serine protease, thiol (cysteine) protease, and Aspartyl protease. Bacterial protease and Fungal protease are classified into acidic, neutral, and alkaline protease according to the reaction conditions of pH.

본 발명에서는 실크단백질의 분해효율을 높이기 위한 단백질 분해효소를 선발하고 이들을 복합적으로 활용하되 초고압 조건의 처리에 적합한 단백질 분해효소에 대한 시험을 실시하였다. 특히, 단백질 분해효소로서 식품첨가물로 허가된 계통을 사용하면 효소처리에 의해 제조된 실크단백질을 식품 또는 건강기능식품에 안전하게 활용할 수 있는 장점이 있다.In the present invention, a protease was selected to increase the degradation efficiency of the silk protein and used in combination thereof, and tested for a protease suitable for the treatment of ultra-high pressure conditions. In particular, the use of a system approved as a food additive as a protease has the advantage that the silk protein produced by the enzyme treatment can be safely used in food or health functional food.

제1 공정에서는 실크단백질 용액 제조하게 되는데, 실크를 가용화하기 위한 최적의 용매를 탐색하였다. 즉, 염화칼슘, 에탄올 및 물의 혼합용매, 브롬화리튬 수용액, 또는 염화칼슘 수용액에 가용화함으로써 이후 각각의 공정조건을 통해 높은 수율의 저분자량 실크단백질을 얻을 수 있는 것으로 나타났다. 즉, 실크(견사)를 탄산나트륨으로 처리하여 세리신을 제거하고, 얻어진 실크단백질을 상기와 같은 용매를 이용하여 가용화시킨 후, 투석과정을 거쳐 과량의 염을 제거함으로써 실크단백질 용액을 얻을 수 있다.In the first process, a silk protein solution was prepared, and the optimum solvent for solubilizing silk was searched for. That is, by solubilizing in a mixed solvent of calcium chloride, ethanol and water, an aqueous lithium bromide solution, or an aqueous solution of calcium chloride, it was shown that a high yield of low molecular weight silk protein can be obtained through the respective process conditions. That is, silk (silk silk) is treated with sodium carbonate to remove sericin, and the obtained silk protein is solubilized using the solvent as described above, and then the excess protein is removed through a dialysis process to obtain a silk protein solution.

또한, 제2 공정에서는 상기 실크단백질 용액을 식품용으로 허가된 단백질 분해효소를 이용하여 분해하는데, 이러한 분해 공정을 통해 가용성인 저분자량의 실크단백질이 얻어지게 된다.In addition, in the second step, the silk protein solution is decomposed using a protease approved for food, and the low molecular weight soluble silk protein is obtained through this decomposition process.

이에 더하여 제3 공정에서 초고압 처리를 통해 상기 저분자량의 실크단백질의 수율이 대폭 향상되게 된다.In addition, the yield of the low molecular weight silk protein is greatly improved through the ultrahigh pressure treatment in the third process.

본 발명의 실크단백질의 분해 방법을 실시예를 통하여 구체적으로 설명하면 아래와 같다.When explaining the decomposition method of the silk protein of the present invention in detail through Examples.

제1 공정: 세리신을 제거하는 정련 공정First step: refining process to remove sericin

실크(견사)를 0.02M의 탄산나트륨 용액에 충분히 잠기게 하여 100℃에서 20분간 끓이며, 이 과정을 3번 반복하였다. 이후, 건조하여 세리신이 제거된 실크단백질을 얻는다.The silk (silk yarn) was immersed sufficiently in 0.02M sodium carbonate solution and boiled at 100 ° C. for 20 minutes, and this process was repeated three times. Thereafter, it is dried to obtain silk protein from which sericin is removed.

제2 공정: 실크단백질의 용해 및 투석Second Process: Dissolution and Dialysis of Silk Proteins

정련된 20 중량부의 실크단백질에 염화칼슘, 에탄올, 및 물을 1:2:8의 몰비로 혼합하여 제조된 염화칼슘 용액 또는 10M의 브롬화리튬 용액 또는 10M의 염화칼슘 용액을 100 중량부를 가한다. 이를 80 내지 90℃에서 1 내지 3시간 교반하여 용해시킴으로써 20%(w/v)의 고점도 실크단백질 용액을 제조한다.100 parts by weight of a calcium chloride solution prepared by mixing calcium chloride, ethanol, and water in a molar ratio of 1: 2: 8 or a 10M lithium bromide solution or a 10M calcium chloride solution was added to the refined 20 parts by weight of the silk protein. A high viscosity silk protein solution of 20% (w / v) is prepared by dissolving it at 80 to 90 ° C. for 1 to 3 hours.

상기 용액을 한계분자량이 14,000인 투석막(Sigma사)을 이용하여 3일 이상 계속하여 증류수를 교체하면서 과량의 염을 제거한다. 이 과정에서 실크단백질 용액의 점도가 낮아진다.Excess salt is removed while the solution is replaced by distilled water for 3 days or more using a dialysis membrane (Sigma) having a limit molecular weight of 14,000. In this process, the viscosity of the silk protein solution is lowered.

투석이 완료되면 실크단백질 용액을 원심분리하여 고형물을 제거하고 0.45㎛ 셀룰로오스아세테이트 막(Advantec사)을 이용하여 여과한다. 이때 실크피브로인의 농도는 투석 전 20%(w/v)에서 투석-원심분리-여과를 거친 후 약 4 내지 5%(w/v) 수준으로 감소한다.Upon completion of dialysis, the silk protein solution is centrifuged to remove solids and filtered using a 0.45 μm cellulose acetate membrane (Advantec). At this time, the concentration of silk fibroin is reduced to about 4-5% (w / v) level after dialysis-centrifugation-filtration from 20% (w / v) before dialysis.

제3 공정: 단백질 분해효소의 제조 및 여과Third Step: Preparation and Filtration of Protease

본 발명에 적용되는 단백질 분해효소는 식품첨가제 용도로 판매되는 다양한 단백질 분해효소를 구입하여 사용한다. 단백질 분해효소는 각각의 적정 pH에 해당하는 식품용 무기염을 이용한 인산염 완충용액이나 글리신 완충용액을 이용하여 제조한 후, 0.45㎛ 셀룰로오스아세테이트 막(Advantec사)을 이용하여 여과한 후 냉장보관한다. 본 발명에서 사용된 단백질 분해효소는 식품용으로 허가된 것으로서 표 1과 같은 단백질 분해효소를 적용할 수 있다.Protease applied to the present invention is used to purchase a variety of protease sold for use as a food additive. Proteolytic enzymes are prepared using a phosphate buffer or glycine buffer using an inorganic salt for foods corresponding to the appropriate pH, and then filtered using a 0.45 μm cellulose acetate membrane (Advantec) and then refrigerated. The protease used in the present invention can be applied to the proteolytic enzymes shown in Table 1 as approved for food.

제품명product name 반응조건Reaction condition 효소 구분Enzyme classification pHpH 온도(°C)Temperature (° C) 타입type 출처source Active siteActive site pHpH Alcalase AF2.4 LAlcalase AF2.4 L 7.0~9.0 7.0-9.0 30~6530-65 EndoEndo BacteriaBacteria B. licheniformisB. licheniformis Serin ProteaseSerin Protease AlkalineAlkaline Alphalase NPAlphalase NP 6.0~7.56.0-7.5 50~6050-60 EndoEndo BacteriaBacteria B. amyloliquefaciensB. amyloliquefaciens NeutralNeutral Delvolase™Delvolase ™ 7.0~10.57.0-10.5 45~7545-75 EndoEndo BacteriaBacteria B. licheniformisB. licheniformis Serin ProteaseSerin Protease AlkalineAlkaline FoodPro Alakline ProteaseFoodPro Alakline Protease 7.0~9.07.0-9.0 45~7045-70 EndoEndo BacteriaBacteria B. licheniformisB. licheniformis Serin ProteaseSerin Protease AlkalineAlkaline Maxazyme NNP DSMaxazyme NNP DS 6.5~7.56.5 ~ 7.5 40~5040-50 EndoEndo BacteriaBacteria B. subtilisB. subtilis NeutralNeutral Neutrase™ 0.8 LNeutrase ™ 0.8 L 7.0 7.0 40~5040-50 EndoEndo BacteriaBacteria B. amyloliquefaciensB. amyloliquefaciens Metallo(Zn) EnzymeMetallo (Zn) Enzyme NeutralNeutral Protamex Protamex 7.0~8.0 7.0-8.0 5050 EndoEndo BacteriaBacteria Bacillus protease ComplexBacillus protease Complex Serin ProteaseSerin Protease AlkalineAlkaline Bromelain BR1200Bromelain BR1200 6.0~8.06.0-8.0 45~5045-50 EndoEndo PlantPlant Pineapple
(Ananas comosus)
Pineapple
(Ananas comosus)
Thiol (Cys) ProteaseThiol (Cys) Protease NeutralNeutral
Collupulin™ MG Collupulin ™ MG 5.0~7.55.0 ~ 7.5 50~7050-70 EndoEndo PlantPlant Carica papayaCarica papaya Thiol (Cys) ProteaseThiol (Cys) Protease AcidicAcidic Flavourzyme 500 MGFlavorzyme 500 MG 5.5~7.5 5.5 ~ 7.5 50~5550-55 Exo/Endo Exo / Endo FungiFungi A. oryzaeA. oryzae NeutralNeutral Promod™ 192PPromod ™ 192P 4.0~6.04.0-6.0 40~5540-55 ExoExo FungiFungi A. oryzaeA. oryzae AcidicAcidic Promod™ 279MDPPromod ™ 279MDP 4.0~6.04.0-6.0 50~6050-60 ExoExo FungiFungi Aspergillus sp. Aspergillus sp. AcidicAcidic Promod™ 278MDPPromod ™ 278MDP 6.0~8.56.0-8.5 50~7050-70 EndoEndo Plant + BacteriaPlant + Bacteria Carica papaya
+ B. subtilis
Carica papaya
+ B. subtilis
NeutralNeutral
PancreatinPancreatin 7.0~8.07.0-8.0 40~5040-50 EndoEndo AnimalAnimal Porcine pancreasPorcine pancreas Serin ProteaseSerin Protease AlkalineAlkaline BC Pepsin BC Pepsin 2.0~5.52.0-5.5 40~5540-55 EndoEndo AnimalAnimal Porcine gastric mucosaPorcine gastric mucosa Aspartyl ProteaseAspartyl Protease AcidicAcidic

제4 공정: 단백질 분해효소의 선발 및 적용Fourth Step: Selection and Application of Protease

실크단백질 용액을 2 중량%(20g/ℓ)로 희석하여 표 1의 단백질 분해효소를 표 2와 같은 반응 조건으로 효소 분해 반응을 실시하였다.The protein solution of silk protein was diluted to 2% by weight (20 g / L), and the proteolytic enzyme of Table 1 was subjected to the enzyme digestion under the same reaction conditions as those of Table 2.

단백질 분해효소Protease 실크 피브로인(%)Silk Fibroin (%) 효소처리량
효소 : 단백질
Enzyme throughput
Enzyme: Protein
완충용액
(0.25 M)
Buffer
(0.25 M)
반응조건Reaction condition
pHpH 온도(°C)Temperature (° C) Alcalase AF2.4 LAlcalase AF2.4 L 22 7.3%7.3% 인산염 완충용액Phosphate Buffer 8.08.0 5050 Alphalase NPAlphalase NP 22 5.5%5.5% 인산염 완충용액Phosphate Buffer 7.07.0 5050 Delvolase™Delvolase ™ 22 4.7%4.7% 인산염 완충용액Phosphate Buffer 7.07.0 5050 FoodPro Alakline ProteaseFoodPro Alakline Protease 22 4.7%4.7% 인산염 완충용액Phosphate Buffer 8.08.0 5050 Maxazyme NNP DSMaxazyme NNP DS 22 5.2%5.2% 인산염 완충용액Phosphate Buffer 7.07.0 5050 Neutrase™ 0.8 LNeutrase ™ 0.8 L 22 4.1%4.1% 인산염 완충용액Phosphate Buffer 7.0 7.0 5050 Protamex Protamex 22 4.3%4.3% 인산염 완충용액Phosphate Buffer 7.6 7.6 5050 Bromelain BR1200Bromelain BR1200 22 4.7%4.7% 인산염 완충용액Phosphate Buffer 7.07.0 5050 Collupulin™ MG Collupulin ™ MG 22 2.7%2.7% 인산염 완충용액Phosphate Buffer 6.06.0 5050 Flavourzyme 500 MGFlavorzyme 500 MG 22 1.5%1.5% 인산염 완충용액Phosphate Buffer 7.07.0 5050 Promod™ 192PPromod ™ 192P 22 4.7%4.7% 인산염 완충용액Phosphate Buffer 6.06.0 5050 Promod™ 279MDPPromod ™ 279MDP 22 1.9%1.9% 인산염 완충용액Phosphate Buffer 6.06.0 5050 Promod™ 278MDPPromod ™ 278MDP 22 4.4%4.4% 인산염 완충용액Phosphate Buffer 7.07.0 5050 PancreatinPancreatin 22 5.5%5.5% 인산염 완충용액Phosphate Buffer 7.67.6 5050 BC Pepsin BC Pepsin 22 3.0%3.0% 글리신 완충용액Glycine Buffer 2.22.2 5050

효소 반응에 의한 단백질의 분해를 정량적으로 확인하기 위해 단백질 정량방법 중에서 펩타이드 결합에 직접 반응하는 Lowry 방법을 사용하였다. 상기 Lowry 방법은 효소반응액 0.2㎖에 2% Na2CO3(0.1M NaOH)와 1% CuSO4와 2% 주석산칼륨나트륨 4수화물을 98:1:1의 중량비로 혼합한 용액을 1㎖ 첨가하여 상온에서 15분간 방치한 후 Folin-Ciocaiteu Reagent(Sigma사)와 증류수를 1:1의 중량비로 혼합한 용액을 0.1㎖ 첨가하여 상온에서 30분 간 혼합한 후 595nm의 파장으로 흡광도를 측정하였다. 단백질의 농도 측정을 위한 표준물질은 Protein standard(Sigma사)를 사용한다.In order to quantitatively confirm the degradation of proteins by enzymatic reaction, the Lowry method was used. In the Lowry method, 1 ml of a solution containing 2% Na 2 CO 3 (0.1M NaOH), 1% CuSO 4, and 2% sodium sodium stannate tetrahydrate in a weight ratio of 98: 1: 1 was added to 0.2 ml of the enzyme reaction solution. After standing at room temperature for 15 minutes, 0.1 mL of a solution of Folin-Ciocaiteu Reagent (Sigma) and distilled water mixed at a weight ratio of 1: 1 was added thereto, mixed at room temperature for 30 minutes, and the absorbance was measured at a wavelength of 595 nm. Protein standard (Sigma) is used as a standard for measuring protein concentration.

효소 반응에 의한 분해산물인 펩타이드와 아미노산은 아미노기와 정량적으로 반응하는 Ninhydrin 방법을 사용하였다. 즉, 효소반응액 0.2㎖에 Ninhydrin Reagent(Sigma사)를 0.1㎖ 혼합하고 10분 동안 가열한 후 실온으로 냉각시키고 여기에 95% 에탄올 0.5㎖를 첨가하여 혼합한 후 570nm의 파장으로 흡광도를 측정한다. 아미노산 정량을 위한 표준물질은 실크피브로인의 주요 아미노산인 글리신(Samchun사)를 0.05% 아세트산에 용해시켜 사용하였다.Peptides and amino acids, the products of degradation by enzymatic reaction, were used in the ninhydrin method which reacts quantitatively with amino groups. That is, 0.1 ml of Ninhydrin Reagent (Sigma) is mixed with 0.2 ml of the enzyme reaction solution, heated for 10 minutes, cooled to room temperature, 0.5 ml of 95% ethanol is added thereto, and the absorbance is measured at a wavelength of 570 nm. . A standard for quantifying amino acids was used by dissolving glycine (Samchun), a major amino acid of silk fibroin, in 0.05% acetic acid.

일반적으로 고분자량의 단백질이 단백질 분해효소에 의하여 저분자량의 단백질(또는 펩타이드)로 분해되면 Lowry 방법에 의한 단백질의 량은 감소하게 되고, 이와 동시에 분해된 펩타이드 결합으로부터 아미노기가 노출되어 효소 반응에 따라 아미노산의 량은 증가하게 된다. 엔도형의 단백질 분해효소에 의해 단백질이 분해되면 단백질의 량은 감소하는 반면 아미노산의 량은 증가하게 되는 것이다. In general, when a high molecular weight protein is decomposed into a low molecular weight protein (or peptide) by proteolytic enzymes, the amount of protein by the Lowry method is reduced, and at the same time, an amino group is exposed from the decomposed peptide bonds, resulting in an enzymatic reaction. The amount of amino acids will increase. When a protein is degraded by an endotype protease, the amount of protein decreases while the amount of amino acids increases.

한편, 엑소형(aminopeptidase)의 단백질 분해효소의 경우에는 단백질을 구성하고 있는 말단의 아미노산을 단백질 본체에서 격리시키기 때문에 효소반응에 따라 단백질의 량은 미량 감소하는 반면 아미노산의 량은 증가하게 된다. On the other hand, in the case of the exotype (aminopeptidase) protease sequester the amino acid of the terminal constituting the protein in the protein body, the amount of protein decreases while the amount of amino acids increases while enzymatic reaction.

실험결과 단백질 분해효소로 Alcalase, FoodPro Alkaline Protease, Alphalase, 및 Delvolase 중 어느 하나를 적용할 때 실크단백질의 분해력이 우수한 것으로 나타났다. 특히, 상기 단백질 분해효소를 실크단백질 대비 0.1~5 중량% 부가할 때 양호한 결과를 얻었으며, 상기 범위를 벗어나는 경우 단백질 분해가 미흡한 것으로 나타났다.Experimental results showed that the application of Alcalase, FoodPro Alkaline Protease, Alphalase, and Delvolase as protease was superior to the degradability of silk protein. In particular, when the proteolytic enzyme is added 0.1 to 5% by weight compared to the silk protein, good results were obtained, and when it was out of the above range, the protein degradation was insufficient.

제5 공정: 탈염공정Fifth Process: Desalination Process

효소반응이 끝나면 사용된 염화칼슘을 제거하기 위해 실크단백질 용액을 탈염기를 통하여 탈염하였다.After the enzymatic reaction, the silk protein solution was desalted through a demineralizer to remove the used calcium chloride.

제6 공정: 초고압 처리 공정Sixth Process: Ultra High Pressure Treatment Process

탈염이 끝난 실크단백질을 100 내지 300MPa의 압력 조건으로 초고압 처리를 수행하였다. 이때 초고압 처리 조건은 40 내지 70℃의 온도에서 5 내지 24시간인 것이 바람직하다. 상기 온도는 초고압 반응기를 가열하지 않고 가압했을 때 달성되는 온도로서 실크단백질 용액에 대한 별도의 가열처리를 하지 않아 성분의 파괴를 억제하고 있다. 또한, 초고압 처리 시간이 상기 범위를 벗어나 지나치게 짧으면 초고압 처리하지 않은 시료와 유사한 수준의 실크단백질 분해 효율을 얻었으며, 지나치게 길어도 실크단백질 분해 효율은 더 이상 증가하지 않아 공정의 경제성이 떨어지기 때문에 상기 시간 범위에서 처리하는 것이 바람직하다.The desalted silk protein was subjected to ultra high pressure treatment under a pressure condition of 100 to 300 MPa. At this time, the ultrahigh pressure treatment conditions are preferably 5 to 24 hours at a temperature of 40 to 70 ℃. The temperature is a temperature attained when the ultra-high pressure reactor is pressurized without heating, and thus the destruction of the components is suppressed by the separate heating treatment of the silk protein solution. In addition, if the ultra-high pressure treatment time is too short outside the above range, silk protein degradation efficiency similar to that of the sample without ultra-high pressure treatment was obtained. It is preferable to process in the range.

초고압 처리의 효과를 확인하기 위하여 압력을 100MPa로 하고 가압시간을 변화시켰을 때의 실크단백질의 수율의 변화는 도 2와 같으며, 가압시간을 20시간으로 하고 압력을 변화시켰을 때의 실크단백질의 수율의 변화는 도 2와 같다. 도 1 및 2에서 추출량은 통상적인 산 처리에 의해 얻어진 실크단백질 중 세린(serine)을 기준으로 하여 증가된 함량을 나타낸 것이다. 실험을 통해 산 처리했을 때의 세린 함량은 전체 아미노산 중 8.7mol%였으며, 본 발명에 따른 단백질 분해효소를 적용하여 분해했을 때의 전체 아미노산 중 세린 함량은 10.31mol%였다.In order to confirm the effect of the ultra-high pressure treatment, the change of the yield of silk protein when the pressure was changed to 100 MPa and the pressurization time was as shown in FIG. 2, and the yield of the silk protein when the pressure was changed to 20 hours Is shown in FIG. 2. In Figures 1 and 2 the extraction amount shows an increased content based on serine in the silk protein obtained by conventional acid treatment. The serine content when the acid treatment through the experiment was 8.7 mol% of the total amino acids, the serine content of the total amino acids when the degradation by applying the protease according to the present invention was 10.31 mol%.

그 결과를 살펴보면, 초고압 조건에서는 압력이나 가압시간에 따른 수율은 가압시간이나 압력에 따라 서서히 증가하는 경향을 나타내었다. 특히, 도 3에서 100MPa을 넘는 초고압 조건과 일반적인 열수 조건을 비교해보면, 초고압 조건에서 15% 이상의 수율 차이를 나타내어 초고압 처리에 따른 저분자량 실크펩타이드의 수율 증가를 확인할 수 있었다. 또한, 일단 100MPa 이상의 압력에 도달하면 300MPa까지 수율의 증가는 크지 않은 것으로 나타나 100 내지 300MPa의 초고압 조건에서는 급격한 수율의 변화는 없는 것으로 파악되었다.As a result, in the ultrahigh pressure condition, the yield according to the pressure or pressurization time showed a tendency to increase gradually with the pressurization time or pressure. In particular, when comparing the ultra-high pressure condition and the hydrothermal conditions over 100MPa in Figure 3, the yield difference of more than 15% in the ultra-high pressure condition was confirmed that the increase in the yield of low-molecular weight silk peptides according to the ultra-high pressure treatment. In addition, once the pressure reached 100MPa or more, the increase in yield was not significant, and it was found that there was no sudden change in yield under ultrahigh pressure conditions of 100 to 300MPa.

본 발명은 상술한 바와 같이 바람직한 실시예를 들어 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.The present invention has been described with reference to preferred embodiments as described above, but is not limited to the above embodiments and various modifications by those skilled in the art to which the present invention pertains without departing from the spirit of the present invention. Changes are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.

Claims (5)

실크를 염화칼슘, 에탄올 및 물의 혼합용매, 브롬화리튬 수용액, 또는 염화칼슘 수용액에 가용화하는 실크단백질 용액 제조 단계;
상기 실크단백질 용액에 단백질 분해효소를 부가하는 실크 분해 단계;
상기 실크단백질 용액을 100 내지 300MPa의 압력으로 가압하는 초고압 처리 단계를 포함하는 것을 특징으로 하는 초고압 효소가수분해를 이용한 실크단백질 추출방법.
Preparing a silk protein solution by solubilizing silk in a mixed solvent of calcium chloride, ethanol and water, an aqueous lithium bromide solution, or an aqueous calcium chloride solution;
Silk decomposition step of adding a protease to the silk protein solution;
Silk protein extraction method using ultra-high pressure hydrolysis, characterized in that it comprises an ultra-high pressure treatment step to pressurize the silk protein solution at a pressure of 100 to 300MPa.
청구항 1에 있어서,
상기 초고압 처리 단계는 40 내지 70℃의 온도에서 5 내지 24시간 동안 초고압 처리하는 것을 특징으로 하는 초고압 효소가수분해를 이용한 실크단백질 추출방법.
The method according to claim 1,
The ultra-high pressure treatment step is a silk protein extraction method using ultra-high pressure enzyme hydrolysis, characterized in that the ultra-high pressure treatment for 5 to 24 hours at a temperature of 40 to 70 ℃.
청구항 1에 있어서,
상기 단백질 분해효소는 Alcalase, FoodPro Alkaline Protease, Alphalase, 및 Delvolase 중 어느 하나이며, 상기 단백질 분해효소를 실크단백질 대비 0.1~5 중량% 부가하는 것을 특징으로 하는 초고압 효소가수분해를 이용한 실크단백질 추출방법.
The method according to claim 1,
The protease is any one of Alcalase, FoodPro Alkaline Protease, Alphalase, and Delvolase, silk protein extraction method using ultrahigh-pressure enzyme hydrolysis, characterized in that the addition of the protease 0.1 ~ 5% by weight compared to the silk protein.
청구항 1에 있어서,
상기 초고압 처리 단계를 마친 실크 단백질 용액을 마이크로 필터 또는 탈염기를 이용하여 탈염하는 단계를 추가적으로 포함하는 것을 특징으로 하는 초고압 효소가수분해를 이용한 실크단백질 추출방법.
The method according to claim 1,
Silk protein extraction method using ultra-high pressure hydrolysis of the enzyme, characterized in that further comprising the step of desalting the silk protein solution after the ultra-high pressure treatment step using a micro filter or demineralizer.
청구항 1에 있어서,
상기 초고압 처리 단계를 마친 실크 단백질 용액을 동결건조 또는 분무건조를 통해 건조시키는 단계를 추가적으로 포함하는 것을 특징으로 하는 초고압 효소가수분해를 이용한 실크단백질 추출방법.
The method according to claim 1,
Silk protein extraction method using ultra-high pressure enzyme hydrolysis characterized in that it further comprises the step of drying the silk protein solution after the ultra-high pressure treatment step by lyophilization or spray drying.
KR1020180055172A 2018-05-15 2018-05-15 Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure KR20190130714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180055172A KR20190130714A (en) 2018-05-15 2018-05-15 Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180055172A KR20190130714A (en) 2018-05-15 2018-05-15 Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure

Publications (1)

Publication Number Publication Date
KR20190130714A true KR20190130714A (en) 2019-11-25

Family

ID=68730552

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180055172A KR20190130714A (en) 2018-05-15 2018-05-15 Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure

Country Status (1)

Country Link
KR (1) KR20190130714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978917A (en) * 2020-07-17 2020-11-24 厦门大学 Preparation method of rapeseed protein adhesive based on ultrahigh pressure and EGDE composite modification
CN112890208A (en) * 2021-03-11 2021-06-04 江苏冬泽特医食品有限公司 Composite plant peptide powder, preparation method and application thereof
CN114957427A (en) * 2022-06-07 2022-08-30 浙江明亮生物科技有限责任公司 Method for preparing silk fibroin peptide by protease enzymolysis
CN117045533A (en) * 2023-10-07 2023-11-14 广东丝美芳华生物科技有限公司 Fibroin supermolecule hair care composition and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328413B1 (en) 2011-09-09 2013-11-14 주식회사 이노웨이 An extracting method of ginseng by high pressure/enzyme decomposition
KR101643245B1 (en) 2014-11-25 2016-07-29 원광대학교산학협력단 Composition containing Gastrodia elata Blume by high pressure/enzyme dissolution decomposion for improving blood circulation
KR101740519B1 (en) 2016-06-28 2017-06-14 무주군약초영농조합법인 Composition containing extract from Gastrodia elata Blume decomposed by high pressure/enzyme and extract from Zanthoxylum simulans for improving blood circulation and preventing or treating thrombus disease

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328413B1 (en) 2011-09-09 2013-11-14 주식회사 이노웨이 An extracting method of ginseng by high pressure/enzyme decomposition
KR101643245B1 (en) 2014-11-25 2016-07-29 원광대학교산학협력단 Composition containing Gastrodia elata Blume by high pressure/enzyme dissolution decomposion for improving blood circulation
KR101740519B1 (en) 2016-06-28 2017-06-14 무주군약초영농조합법인 Composition containing extract from Gastrodia elata Blume decomposed by high pressure/enzyme and extract from Zanthoxylum simulans for improving blood circulation and preventing or treating thrombus disease

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978917A (en) * 2020-07-17 2020-11-24 厦门大学 Preparation method of rapeseed protein adhesive based on ultrahigh pressure and EGDE composite modification
CN112890208A (en) * 2021-03-11 2021-06-04 江苏冬泽特医食品有限公司 Composite plant peptide powder, preparation method and application thereof
CN112890208B (en) * 2021-03-11 2023-10-13 江苏冬泽特医食品有限公司 Composite plant peptide powder, preparation method and application thereof
CN114957427A (en) * 2022-06-07 2022-08-30 浙江明亮生物科技有限责任公司 Method for preparing silk fibroin peptide by protease enzymolysis
CN117045533A (en) * 2023-10-07 2023-11-14 广东丝美芳华生物科技有限公司 Fibroin supermolecule hair care composition and application thereof

Similar Documents

Publication Publication Date Title
KR20190130714A (en) Extraction method of silk peptide by enzymatic hydrolysis under ultra high pressure
KR101966892B1 (en) Hydrolysis Method of Silk Fibroin by Enzymatic Hydrolysis
KR101020312B1 (en) Preparation method of collagen peptides from fish scale
CN109943615B (en) Method for preparing active peptide by using euphausia superba powder
Pedroche et al. Utilisation of chickpea protein isolates for production of peptides with angiotensin I‐converting enzyme (ACE)‐inhibitory activity
Cian et al. Bioactive Phaseolus lunatus peptides release from maltodextrin/gum arabic microcapsules obtained by spray drying after simulated gastrointestinal digestion
US20110033440A1 (en) Novel process for solubilizing protein from a proteinaceous material and compositions thereof
DE102008032828A1 (en) Tryptophan-containing peptides from alpha-lactalbumin with hypotensive and vasoprotective action for biofunctional foods
JP4226299B2 (en) Method for producing fish-derived gelatin peptide
KR101418067B1 (en) Preparation method of hypoallergenic royal jelly by enzyme treatment
CN108611391A (en) A kind of method of modifying of collagen from black sea cucumbers from East China Sea oligopeptide and its application
CN111990639A (en) Method for preparing SPH-EGCG compound by using polyphenol precipitation hydrolysis peptide
CN101509029A (en) Method for accelerating production of rapeseed peptide with enzyme hydrolysis of rapeseed dregs by using sodium sulfite
JP2012116773A (en) Igf-1 value-elevating agent
KR102211892B1 (en) Silkpeptide production method using high pressure and enzyme treatment
KR101560906B1 (en) Method for preparing placenta of low-molecular weight by subcritical water and high pressure enzyme process
KR20030074577A (en) Process for preparing sterilized pure water-soluble collagen peptide
KR100335702B1 (en) Silk peptide and process for the preparation thereof
KR20200078745A (en) Food composition for anti-obesity comprising silk peptide extract
Hou et al. Extraction, Purification and characterization of collagen peptide prepared from skin hydrolysate of Sturgeon fish
JPS6258714B2 (en)
CN113957112A (en) Preparation method of deer blood peptide and deer blood peptide
JP2011234682A (en) Method for preparing complex containing peptide and heme iron derived from heme protein obtained from fish blood
KR20210020092A (en) Krill Shrimp-derived Chitin Product and Method for Manufacturing Same
KR100407764B1 (en) Method for Production of Silk Peptides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment