KR20190125305A - 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법 - Google Patents

금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법 Download PDF

Info

Publication number
KR20190125305A
KR20190125305A KR1020197024329A KR20197024329A KR20190125305A KR 20190125305 A KR20190125305 A KR 20190125305A KR 1020197024329 A KR1020197024329 A KR 1020197024329A KR 20197024329 A KR20197024329 A KR 20197024329A KR 20190125305 A KR20190125305 A KR 20190125305A
Authority
KR
South Korea
Prior art keywords
electrode layer
layer
metal
electrochemical
metal support
Prior art date
Application number
KR1020197024329A
Other languages
English (en)
Inventor
미쓰아키 에치고
히사오 오니시
유지 쓰다
교헤이 마나베
가즈유키 미나미
오사무 야마자키
Original Assignee
오사까 가스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오사까 가스 가부시키가이샤 filed Critical 오사까 가스 가부시키가이샤
Priority to KR1020247004398A priority Critical patent/KR20240024311A/ko
Publication of KR20190125305A publication Critical patent/KR20190125305A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

신뢰성·내구성이 우수하고, 또한, 저비용의 전기 화학 소자를 제공한다. 금속지지형 전기 화학 소자용의 전극층 부착 기판은, 금속지지체와, 금속지지체 위에 형성된 전극층(2)을 가지고, 전극층(2)은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가진다.

Description

금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법
본 발명은, 금속지지체와 전극층을 가지는 금속지지형 전기 화학 소자용의 전극층 부착 기판 등에 관한 것이다.
종래의 금속지지형의 고체 산화물형 연료 전지(SOFC)에서는, Fe-Cr계 합금분말을 소결하여 얻은 다공질 금속지지체 위에, 애노드 전극층을 형성하고, 그 위에 전해질층을 형성하여 SOFC를 얻고 있다.
Jong-Jin Choi and Dong-Soo Park, "Preparation of Metal-supported SOFC using Low Temperature Ceramic Coating Process", Proceedings of 11th European SOFC & SOE Forum, A1502, Chapter 09- Session B15-14/117-20/117(1-4 July 2014)
그러나, 비특허문헌 1에 나타낸 바와 같이, 저온영역에서 지르코니아계 전해질을 형성하기 위해서는, 1300℃라는 고온에서 소성 처리한 애노드 전극층을 준비할 필요가 있었다. 이 때문에, 금속지지체의 손상을 피할 수 없고, 또한, 금속지지체로부터 셀을 피독(被毒)하는 원소의 확산을 방지하기 위한 고가의 LST(LaSrTiO3) 확산 방지층을 1200℃의 소성 처리에 의해 설치할 필요성이 발생하고, 성능이나 신뢰성·내구성, 나아가서는 비용의 점에서 문제가 있었다.
본 발명은 전술한 문제점을 해결하기 위하여 이루어진 것이며, 그 목적은, 성능·신뢰성·내구성이 우수하고, 또한, 저비용의 전기 화학 소자를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 금속지지형 전기 화학 소자용의 전극층 부착 기판의 특징적 구성은, 금속지지체와, 상기 금속지지체 위에 형성된 전극층을 가지고, 상기 전극층은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지는 점에 있다.
상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 전극층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막인 경우라도, 전극층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 또한, 전극층 표면의 평활도가 높으면(전극층 표면의 요철이 적으면), 전극층과 전해질층 사이의 간극이 적어, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 그리고, 상기 전극층은, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지면 더욱 바람직하다. 이는 전극층 표면의 평활성이 높아질수록, 전술한 효과를 보다 크게 할 수 있기 때문이다.
상기 목적을 달성하기 위한 금속지지형 전기 화학 소자용의 전극층 부착 기판의 특징적 구성은, 금속지지체와, 상기 금속지지체 위에 형성된 전극층과, 상기 전극층 위에 형성된 중간층을 가지고, 상기 중간층은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지는 점에 있다.
상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 중간층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 중간층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막인 경우라도, 중간층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 또한, 중간층 표면의 평활도가 높으면(중간층 표면의 요철이 적으면), 중간층과 전해질층 사이의 간극이 적어, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 그리고, 상기 중간층은, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지면 더욱 바람직하다. 이는 중간층 표면의 평활성이 높아질수록, 전술한 효과를 보다 크게 할 수 있기 때문이다.
본 발명에 따른 금속지지형 전기 화학 소자용의 전극층 부착 기판의 다른 특징적 구성은, 상기 금속지지체의 한쪽 면에 상기 전극층이 형성되고, 상기 금속지지체가 한쪽 면으로부터 다른쪽 면으로 관통하는 관통공을 가지고 있는 점에 있다.
상기한 특징적 구성에 의하면, 전극층에서 반응하는 가스 등을 금속지지체의 다른쪽 면으로부터 원활하게 공급할 수 있으므로, 고성능 전기 화학 소자를 실현할 수 있다.
본 발명에 따른 금속지지형 전기 화학 소자용의 전극층 부착 기판의 다른 특징적 구성은, 상기 금속지지체가 구멍 가공을 실시한 금속판인 점에 있다.
상기한 특징적 구성에 의하면, 구멍 가공에 의해 생성한 구멍에 의해 전극층에서 반응하는 가스 등을 금속지지체의 다른쪽 면으로부터 원활하게 공급할 수 있으므로, 고성능 전기 화학 소자를 실현할 수 있다. 또한, 관통공을 가지는 금속지지체를 용이하게 제조할 수 있어 바람직하다. 또한, 금속판을 기판으로 하면, 강도가 높고, 신뢰성·내구성이 우수한 전기 화학 소자를 실현할 수 있다.
전술한 금속지지형 전기 화학 소자용의 전극층 부착 기판과, 대극 전극층과, 상기 전극층과 상기 대극 전극층 사이에 배치된 전해질층을 가지는 전기 화학 소자는, 신뢰성·내구성이 우수하고, 또한, 저비용의 전기 화학 소자가 되어 바람직하다.
본 발명에 따른 전기 화학 모듈의 특징적 구성은, 전술한 전기 화학 소자가 복수 적층한 상태로 배치되는 점에 있다.
상기한 특징적 구성에 의하면, 전술한 전기 화학 소자가 복수 적층한 상태로 배치되므로, 재료 비용과 가공 비용을 억제하면서, 콤팩트하며 고성능의, 강도와 신뢰성이 우수한 전기 화학 모듈을 얻을 수 있다.
본 발명에 따른 전기 화학 장치의 특징적 구성은, 전술한 전기 화학 모듈과 개질기를 적어도 가지고, 상기 전기 화학 모듈에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료공급부와, 상기 전기 화학 모듈로부터 전력을 추출하는 인버터를 가지는 점에 있다.
상기한 특징적 구성에 의하면, 전기 화학 모듈과 개질기를 가지고 전기 화학 모듈에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료공급부와, 전기 화학 모듈로부터 전력을 추출하는 인버터를 가지므로, 도시가스 등의 기존의 원(原)연료 공급 인프라스트럭쳐(infrastructure)를 사용하여, 내구성·신뢰성 및 성능이 우수한 전기 화학 모듈로부터 전력을 추출할 수 있어, 내구성·신뢰성 및 성능이 우수한 전기 화학 장치를 실현할 수 있다. 또한, 전기 화학 모듈로부터 배출되는 미이용의 연료 가스를 재활용하는 시스템을 구축하기 쉬워지므로, 고효율의 전기 화학 장치를 실현할 수 있다.
본 발명에 따른 에너지 시스템의 특징적 구성은, 전술한 전기 화학 장치와, 상기 전기 화학 장치로부터 배출되는 열을 재이용하는 배출열 이용부를 가지는 점에 있다.
상기한 특징적 구성에 의하면, 전기 화학 장치와, 전기 화학 장치로부터 배출되는 열을 재이용하는 배출열 이용부를 가지므로, 내구성·신뢰성 및 성능이 우수하고, 또한 에너지 효율도 우수한 에너지 시스템을 실현할 수 있다. 그리고, 전기 화학 장치로부터 배출되는 미이용의 연료 가스의 연소열을 이용하여 발전하는 발전 시스템과 조합하여 에너지 효율이 우수한 하이브리드 시스템을 실현할 수도 있다.
본 발명에 따른 고체 산화물형 연료 전지의 특징적 구성은, 전술한 전기 화학 소자를 구비하고, 정격 운전 시에 600℃ 이상 850℃ 이하의 온도에 있어서 상기 전기 화학 소자에서 발전 반응을 발생시키는 점에 있다.
상기한 특징적 구성에 의하면, 정격 운전 시에 600℃ 이상 850℃ 이하의 온도에 있어서 발전 반응을 발생시키므로, 높은 발전성능을 발휘하면서, 금속지지형 전기 화학 소자의 열화를 억제하여 연료 전지의 성능을 장기간 유지하는 것이 가능하게 된다. 그리고, 정격 운전 시에 650℃ 이상 800℃ 이하의 온도영역에서 운전 가능하게 되면, 도시가스 등의 탄화수소계 가스를 원연료로 하는 연료 전지 시스템에 있어서, 원연료를 수소로 변환할 때 필요로 하는 열을 연료 전지의 배출열로 조달할 수 있는 시스템을 구축할 수 있으므로, 연료 전지 시스템의 발전효율을 높일 수 있으므로, 보다 바람직하다.
본 발명에 따른 제조 방법의 특징적 구성은, 금속지지체와, 상기 금속지지체 위에 형성된 전극층을 가지는 금속지지형 전기 화학 소자용의 전극층 부착 기판의 제조 방법으로서, 상기 전극층을 평활화하는 전극층 평활화 공정을 포함하는 점에 있다.
상기한 특징적 구성에 의하면, 전극층의 평활화 공정에 의해, 전극층이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지게 된다. 따라서 상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 전극층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막의 경우라도, 전극층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 또한, 전극층 표면의 평활도가 높으면(전극층 표면의 요철이 적으면), 전극층과 전해질층 사이의 간극이 적어, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 그리고, 상기 전극층이, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지게 되면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지게 되면 더욱 바람직하다. 이는 전극층 표면의 평활성이 높아질수록, 전술한 효과가 보다 큰 전기 화학 소자를 형성할 수 있기 때문이다.
본 발명에 따른 제조 방법의 다른 특징적 구성은, 상기 전극층의 소성을 1100℃ 이하에서 행하는 전극층 소성 공정을 포함하는 점에 있다.
상기한 특징적 구성에 의하면, 전극층의 소성을 1100℃ 이하에서 행하므로, 금속지지체를 고온에 노출하지 않고, 금속지지체 상에 전극층을 형성할 수 있다. 따라서, 금속지지체의 열화를 억제하고, 또한, 금속지지체로부터 전극층이나 전해질층 등의 전기 화학 소자의 구성 요소를 피독하는 원소의 확산을 억제한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 또한, 종래보다 낮은 온도에서 소성할 수 있으므로, 제조 비용의 저감이 가능하게 된다. 또한, 금속지지체와 전극층 사이에 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 되므로, 성능이 우수한 전기 화학 소자를 형성하는 것이 가능하게 되고, 동시에, 제조 비용의 저감도 가능하게 된다. 그리고, 전극층의 소성을 1050℃ 이하에서 행하면 보다 바람직하고, 1000℃ 이하에서 행하면 더욱 바람직하다. 이는, 전극층의 소성온도를 저하시킬수록, 금속기판의 손상·열화를 보다 억제하면서, 전기 화학 소자를 형성할 수 있기 때문이다. 또한, 전극층의 소성을 800℃ 이상에서 행하면, 전극층의 강도를 확보할 수 있으므로 바람직하다.
본 발명에 따른 제조 방법의 다른 특징적 구성은, 상기 전극층 평활화 공정을 압축 성형에 의해 행하는 점에 있다.
상기한 특징적 구성에 의하면, 전극층의 평활화 공정을 간편한 압축 성형에 의해 행함으로써, 전극층이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지게 된다. 따라서 상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 전극층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막의 경우라도, 전극층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 또한, 전극층 표면의 평활도가 높으면(전극층 표면의 요철이 적으면), 전극층과 전해질층 사이의 간극이 적어, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 그리고, 제조 비용의 저감도 가능하게 된다.
본 발명에 따른 제조 방법의 특징적 구성은, 금속지지체와, 상기 금속지지체 위에 형성된 전극층과, 상기 전극층 위에 형성된 중간층을 가지는 금속지지형 전기 화학 소자용의 전극층 부착 기판의 제조 방법으로서, 상기 중간층을 평활화하는 중간층 평활화 공정을 포함하는 점에 있다.
상기한 특징적 구성에 의하면, 중간층의 평활화 공정에 의해, 중간층이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지게 된다. 따라서 상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 중간층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 중간층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막의 경우라도, 중간층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 또한, 중간층 표면의 평활도가 높으면(중간층 표면의 요철이 적으면), 중간층과 전해질층 사이의 간극이 적고, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 그리고, 상기 중간층이, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지게 되면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지게 되면 더욱 바람직하다. 이는 중간층 표면의 평활성이 높아질수록, 전술한 효과가 보다 큰 전기 화학 소자를 형성할 수 있기 때문이다.
본 발명에 따른 제조 방법의 다른 특징적 구성은, 상기 중간층의 소성을 1100℃ 이하에서 행하는 중간층 소성 공정을 포함하는 점에 있다.
상기한 특징적 구성에 의하면, 중간층의 소성을 1100℃ 이하에서 행하므로, 금속지지체를 고온에 노출하지 않고, 금속지지체 상에 중간층을 형성할 수 있다. 따라서, 금속지지체의 열화를 억제하고, 또한, 금속지지체로부터 전극층이나 중간층이나 전해질층 등의 전기 화학 소자의 구성 요소를 피독하는 원소의 확산을 억제한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 또한, 종래보다 낮은 온도에서 소성할 수 있으므로, 제조 비용의 저감이 가능하게 된다. 또한, 금속지지체와 전극층이나 중간층 사이에 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 중간층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 되므로, 성능이 우수한 전기 화학 소자를 형성하는 것이 가능하게 되고, 또한, 제조 비용의 저감도 가능하게 된다. 그리고, 전극층의 소성을 1050℃ 이하에서 행하면 보다 바람직하고, 1000℃ 이하에서 행하면 더욱 바람직하다. 이는, 중간층의 소성온도를 저하시킬수록, 금속기판의 손상·열화를 보다 억제하면서, 전기 화학 소자를 형성할 수 있기 때문이다. 또한, 중간층의 소성을 800℃ 이상에서 행하면, 중간층의 강도를 확보할 수 있으므로 바람직하다.
본 발명에 따른 제조 방법의 다른 특징적 구성은, 상기 중간층 평활화 공정을 압축 성형에 의해 행하는 점에 있다.
상기한 특징적 구성에 의하면, 중간층의 평활화 공정을 간편한 압축 성형에 의해 행함으로써, 중간층이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지게 된다. 따라서 상기한 특징적 구성에 의하면, 저온영역에서의 전해질층 형성 프로세스에 적합한 중간층이 되어, 고가의 LST 확산 방지층을 형성하지 않고, 금속지지체 상에 전극층과 중간층과 전해질층을 가지는 전기 화학 소자를 형성하는 것이 가능하게 된다. 또한, 전해질층이 박막의 경우라도, 중간층 표면의 평활도가 높으면, 전해질층을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를형성할 수 있다. 또한, 중간층 표면의 평활도가 높으면(전극층 표면의 요철이 적으면), 중간층과 전해질층 사이의 간극이 적고, 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 형성할 수 있다. 그리고, 제조 비용의 저감도 가능하게 된다.
도 1은 전기 화학 소자의 구성을 나타낸 개략도이다.
도 2는 전기 화학 소자 및 전기 화학 모듈의 구성을 나타낸 개략도이다.
도 3은 전기 화학 장치 및 에너지 시스템의 구성을 나타낸 개략도이다.
도 4는 전기 화학 모듈의 구성을 나타낸 개략도이다.
도 5는 전기 화학 소자의 단면의 전자현미경 사진이다.
<제1 실시형태>
이하, 도 1을 참조하면서, 본 실시형태에 따른 전기 화학 소자(E) 및 고체 산화물형 연료 전지(Solid Oxide Fuel Cell: SOFC)에 대하여 설명한다. 전기 화학 소자(E)는, 예를 들면, 수소를 포함하는 연료 가스와 공기의 공급을 받아서 발전하는 고체 산화물형 연료 전지의 구성 요소로서 사용된다. 그리고 이하, 층의 위치 관계 등을 나타낼 때, 예를 들면, 전해질층(4)으로부터 볼 때 대극 전극층(6) 측을 「위」 또는 「상측」, 전극층(2) 측을 「아래」 또는 「하측」이라고 하는 경우가 있다. 또한, 금속기판(1)에서의 전극층(2)이 형성되어 있는 측의 면을 「표면측」, 반대측의 면을 「이면측」이라고 하는 경우가 있다.
(전기 화학 소자)
전기 화학 소자(E)는, 도 1에 나타내는 바와 같이, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)과, 전극층(2) 위에 형성된 중간층(3)과, 중간층(3) 위에 형성된 전해질층(4)을 가진다. 그리고 전기 화학 소자(E)는, 전해질층(4) 위에 형성된 반응방지층(5)과, 반응방지층(5) 위에 형성된 대극 전극층(6)을 더욱 가진다. 즉 대극 전극층(6)은 전해질층(4) 위에 형성되고, 반응방지층(5)은 전해질층(4)과 대극 전극층(6) 사이에 형성되어 있다. 전극층(2)은 다공질이며, 전해질층(4)은 치밀하다.
(전극층 부착 기판)
본 실시형태에서는, 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)이, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)과, 전극층(2) 위에 형성된 중간층(3)을 가지고 구성된다. 즉 본 실시형태에서는 전기 화학 소자(E)는, 전극층 부착 기판(B)과, 전해질층(4)과, 반응방지층(5)과, 대극 전극층(6)을 가지고 구성된다.
(금속기판)
금속기판(1)은, 전극층(2), 중간층(3) 및 전해질층(4) 등을 지지하여 전기 화학 소자(E)의 강도를 유지하는, 지지체로서의 역할을 담당한다. 금속기판(1)의 재료로서는, 전자전도성, 내열성, 내산화성 및 내부식성이 우수한 재료가 사용된다. 예를 들면, 페라이트계 스테인레스, 오스테나이트계 스테인레스, 니켈기 합금 등이 사용된다. 특히, 크롬을 포함하는 합금이 바람직하게 사용된다. 그리고 본 실시형태에서는, 금속지지체로서 판형의 금속기판(1)이 사용되지만, 금속지지체로서는 다른 형상, 예를 들면, 상자형, 원통형 등의 형상도 가능하다.
그리고, 금속기판(1)은, 지지체로서 전기 화학 소자를 형성하기에 충분한 강도를 가지면 되고, 예를 들면, 0.1mm∼2mm 정도, 바람직하게는 0.1mm∼1mm 정도, 보다 바람직하게는 0.1mm∼0.5mm 정도의 두께를 사용할 수 있다.
금속기판(1)은, 표면측의 면과 이면측의 면을 관통하여 설치되는 복수의 관통공(1a)을 가진다. 그리고, 예를 들면, 관통공(1a)은, 기계적, 화학적 혹은 광학적 천공(穿孔) 가공 등에 의해, 금속기판(1)에 설치할 수 있다. 관통공(1a)은, 금속기판(1)의 이면측의 면으로부터 표면측의 면에 기체를 투과시키는 기능을 가진다. 금속기판(1)에 기체투과성을 가지게 하기 위하여, 다공질금속을 사용하는 것도 가능하다. 예를 들면, 금속기판(1)은, 소결금속이나 발포금속 등을 사용할 수도 있다.
금속기판(1)의 표면에, 확산 억제층으로서의 금속 산화물층(1b)이 설치된다. 즉, 금속기판(1)과 후술하는 전극층(2) 사이에, 확산 억제층이 형성되어 있다. 금속 산화물층(1b)은, 금속기판(1)의 외부로 노출된 면뿐만 아니라, 전극층(2)과의 접촉면(계면) 및 관통공(1a)의 내측의 면에도 설치된다. 이 금속 산화물층(1b)에 의해, 금속기판(1)과 전극층(2) 사이의 원소상호확산을 억제할 수 있다. 예를 들면, 금속기판(1)으로서 크롬을 함유하는 페라이트계 스테인레스를 사용한 경우에는, 금속 산화물층(1b)이 주로 크롬산화물이 된다. 그리고, 금속기판(1)의 크롬 원자 등이 전극층(2)이나 전해질층(4)으로 확산하는 것을, 크롬산화물을 주성분으로 하는 금속 산화물층(1b)이 억제한다. 금속 산화물층(1b)의 두께는, 확산 방지 성능의 높음과 전기저항의 낮음을 양립시킬 수 있는 두께이면 된다. 예를 들면, 서브미크론(sub-micron) 오더인 것이 바람직하고, 구체적으로는, 평균적인 두께가 0.3㎛ 이상 0.7㎛ 이하 정도인 것이 보다 바람직하다. 또한, 최소두께는 약 0.1㎛ 이상인 것이 보다 바람직하다.
또한, 최대두께가 약 1.1㎛ 이하인 것이 바람직하다.
금속 산화물층(1b)은 다양한 방법에 의해 형성될 수 있지만, 금속기판(1)의 표면을 산화시켜 금속 산화물로 하는 방법이 바람직하게 이용된다. 또한, 금속기판(1)의 표면에, 금속 산화물층(1b)을 스퍼터링법이나 PLD법 등의 PVD법, CVD법, 스프레이코팅법(용사법(溶射法)이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법 )등에 의해 형성할 수도 있고, 도금이라고 산화 처리에 의해 형성할 수도 있다. 또한, 금속 산화물층(1b)은 도전성이 높은 스피넬상(相) 등을 포함할 수도 있다.
금속기판(1)으로서 페라이트계 스테인레스 재료를 사용한 경우, 전극층(2)이나 전해질층(4)의 재료로서 사용되는 YSZ(이트리아 안정화 지르코니아)나 GDC(가돌륨·도핑·세리아, CGO라고도 함) 등과 열팽창계수가 유사하다. 따라서, 저온과 고온의 온도 사이클이 반복된 경우라도 전기 화학 소자(E)가 데미지를 받기 어렵다. 따라서, 장기 내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다.
(전극층)
전극층(2)은, 도 1에 나타낸 바와 같이, 금속기판(1)의 표면측의 면으로서 관통공(1a)이 설치된 영역보다 큰 영역에, 박측(薄層)의 상태로 설치할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는, 5㎛∼50㎛로 할 수 있다. 이와 같은 두께로 하면, 고가인 전극층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 전극성능을 확보하는 것이 가능하게 된다. 관통공(1a)이 설치된 영역 전체가, 전극층(2)에 의해 덮어져 있다. 즉, 관통공(1a)은 금속기판(1)에서의 전극층(2)이 형성된 영역의 내측에 형성되어 있다. 바꾸어 말하면, 모든 관통공(1a)이 전극층(2)을 향하여 설치되어 있다.
전극층(2)의 재료로서는, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용할 수 있다. 이들 예에서는, GDC, YSZ, CeO2를 복합재의 골재로 칭할 수 있다. 그리고, 전극층(2)은, 저온소성법(예를 들면 1100℃보다 높은 고온영역에서의 소성 처리를 하지 않은 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법이나 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 프로세스에 의해, 예를 들면 1100℃보다 높은 고온영역에서의 소성을 사용하지 않고, 양호한 전극층(2)이 얻어진다. 이 때문에, 금속기판(1)을 손상시키지 않고, 또한, 금속기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 내구성이 우수한 전기 화학 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
전극층(2)은, 기체투과성을 가지게 하기 위하여, 그 내부 및 표면에 복수의 세공(細孔)을 가진다.
즉 전극층(2)은, 다공질의 층으로서 형성된다. 전극층(2)은, 예를 들면, 그 치밀도가 30% 이상 80% 미만으로 되도록 형성된다. 세공의 사이즈는, 전기 화학반응을 행할 때 원활한 반응이 진행되기에 적합한 사이즈를 적절하게 선택할 수 있다. 그리고 치밀도는, 층을 구성하는 재료의 공간에 차지하는 비율이며, (1-공공율(空孔率))로 표시할 수 있고, 또한, 상대(相對)밀도와 동등하다.
(중간층)
중간층(3)은, 도 1에 나타낸 바와 같이, 전극층(2)을 덮은 상태로, 전극층(2) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는 2㎛∼50㎛ 정도, 보다 바람직하게는 4㎛∼25㎛ 정도로 할 수 있다. 이와 같은 두께로 하면, 고가인 중간층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 성능을 확보하는 것이 가능하게 된다. 중간층(3)의 재료로서는, 예를 들면, YSZ(이트리아 안정화 지르코니아), SSZ(스칸듐 안정화 지르코니아)이나 GDC(가돌륨·도핑·세리아), YDC(이트륨·도핑·세리아), SDC(사마륨(samarium)·도핑·세리아) 등을 사용할 수 있다. 특히 세리아계의 세라믹스가 바람직하게 사용된다.
중간층(3)은, 저온소성법(예를 들면 1100℃보다 높은 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 성막 프로세스에 의해, 예를 들면 1100℃보다 높은 고온영역에서의 소성을 사용하지 않고 중간층(3)이 얻어진다. 이 때문에, 금속기판(1)을 손상시키지 않고, 금속기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 내구성이 우수한 전기 화학 소자(E)를 실현할 수 있다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
중간층(3)으로서는, 산소 이온(산화물 이온) 전도성을 가지는 것이 바람직하다. 또한, 산소 이온(산화물 이온)과 전자의 혼합전도성을 가지면 더욱 바람직하다. 이러한 성질을 가지는 중간층(3)은, 전기 화학 소자(E)로의 적용에 적합하다.
(중간층의 표면거칠기(Ra))
본 실시형태에서는 중간층(3)은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가진다. 상기 영역은, 중간층(3)의 표면 전체라도 되고, 일부 영역이라도 된다. 중간층(3)이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지는 것에 의해, 중간층(3)과 전해질층(4)의 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자(E)를 구성할 수 있다. 또한, 전해질층(4)이 박막의 경우라도, 전해질층(4)을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 그리고, 중간층(3)은, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지면 더욱 바람직하다. 이는 중간층(3)의 표면거칠기의 평활성이 높아질수록, 전술한 효과가 우수한 전기 화학 소자(E)를 구성할 수 있기 때문이다.
(전해질층)
전해질층(4)은, 도 1에 나타낸 바와 같이, 전극층(2) 및 중간층(3)을 덮은 상태로, 중간층(3) 위에 박층의 상태로 형성된다. 또한, 두께가 10㎛ 이하인 박막의 상태로 형성할 수도 있다. 상세하게는 전해질층(4)은, 도 1에 나타낸 바와 같이, 중간층(3) 위와 금속기판(1) 위에 걸쳐 설치된다. 이와 같이 구성하고, 전해질층(4)을 금속기판(1)에 접합함으로써, 전기 화학 소자 전체로서 견뢰성(堅牢性)이 우수하도록 할 수 있다.
또한 전해질층(4)은, 도 1에 나타낸 바와 같이, 금속기판(1)의 표면측의 면으로서 관통공(1a)이 설치된 영역보다 큰 영역에 설치된다. 즉, 관통공(1a)은 금속기판(1)에서의 전해질층(4)이 형성된 영역의 내측에 형성되어 있다.
또한 전해질층(4)의 주위에 있어서는, 전극층(2) 및 중간층(3)으로부터의 가스의 리크(leak)를 억제할 수 있다. 설명하면, 전기 화학 소자(E)를 SOFC의 구성 요소로서 사용하는 경우, SOFC의 작성 시에는, 금속기판(1)의 이면측으로부터 관통공(1a)을 통하여 전극층(2)에 가스가 공급된다. 전해질층(4)이 금속기판(1)에 접하고 있는 부위에 있어서는, 개스킷 등의 별도의 부재를 설치하지 않고, 가스의 리크를 억제할 수 있다. 그리고, 본 실시형태에서는 전해질층(4)에 의해 전극층(2)의 주위를 모두 덮고 있지만, 전극층(2) 및 중간층(3)의 상부에 전해질층(4)을 설치하고, 주위에 개스킷 등을 설치하는 구성으로 할 수도 있다.
전해질층(4)의 재료로서는, YSZ(이트리아 안정화 지르코니아), SSZ(스칸듐 안정화 지르코니아)이나 GDC(가돌륨·도핑·세리아), YDC(이트륨·도핑·세리아), SDC(사마륨·도핑·세리아), LSGM(스트론튬·마그네슘 첨가 란탄갈레이트) 등을 사용할 수 있다. 특히 지르코니아계의 세라믹스가 바람직하게 사용된다. 전해질층(4)을 지르코니아계 세라믹스로 하면, 전기 화학 소자(E)를 사용한 SOFC의 가동온도를 세리아계 세라믹스에 비해 높게 할 수 있다. 예를 들면, 전기 화학 소자(E)를 SOFC에 사용하는 경우, 전해질층(4)의 재료로서 YSZ와 같은 650℃ 정도 이상의 고온영역에서도 높은 전해질성능을 발휘할 수 있는 재료를 사용하고, 시스템의 원연료에 도시가스나 LPG 등의 탄화수소계의 원연료를 사용하고, 원연료를 수증기 개질 등에 의해 SOFC의 애노드 가스로 하는 시스템 구성으로 하면, SOFC의 셀 스택에서 생기는 열을 원연료 가스의 개질에 사용하는 고효율의 SOFC 시스템을 구축할 수 있다.
전해질층(4)은, 저온소성법(예를 들면 1100℃를 초과하는 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법)이나 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등에 의해 형성하는 것이 바람직하다. 이들, 저온영역에서 사용 가능한 성막 프로세스에 의해, 예를 들면 1100℃를 초과하는 고온영역에서의 소성을 사용하지 않고, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층(4)이 얻어진다. 이 때문에, 금속기판(1)의 손상을 억제하고, 또한 금속기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로, 바람직하다. 또한, 스프레이 코팅법을 사용하면, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층이 저온영역에서 용이하게 얻어지기 쉬우므로 더욱 바람직하다.
전해질층(4)은, 애노드 가스나 캐소드 가스의 가스 리크를 차폐(遮蔽)하고, 또한, 높은 이온 전도성을 발현하기 위하여, 치밀하게 구성된다. 전해질층(4)의 치밀도는 90% 이상이 바람직하고, 95% 이상이면 보다 바람직하고, 98% 이상이면 더욱 바람직하다. 전해질층(4)은, 균일한 층인 경우에는, 그 치밀도가 95% 이상인 것이 바람직하고, 98% 이상이면 보다 바람직하다. 또한, 전해질층(4)이, 복수의 층형(層形)으로 구성되어 있는 경우에는, 그 중의 적어도 일부가, 치밀도가 98% 이상인 층(치밀전해질층)을 포함하고 있으면 바람직하고, 99% 이상인 층(치밀전해질층)을 포함하고 있으면 보다 바람직하다. 이와 같은 치밀전해질층이 전해질층의 일부에 포함되어 있으면, 전해질층이 복수의 층형으로 구성되어 있는 경우라도, 치밀하며 기밀성 및 가스 배리어성이 높은 전해질층을 형성하기 쉽게 되기 때문이다.
(반응방지층)
반응방지층(5)은, 전해질층(4) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는 2㎛∼50㎛ 정도, 보다 바람직하게는 4㎛∼25㎛ 정도로 할 수 있다. 이와 같은 두께로 하면, 고가인 반응방지층 재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 성능을 확보하는 것이 가능하게 된다. 반응방지층(5)의 재료로서는, 전해질층(4)의 성분과 대극 전극층(6)의 성분 사이의 반응을 방지할 수 있는 재료이면 된다. 예를 들면, 세리아계 재료 등이 사용된다. 반응방지층(5)을 전해질층(4)과 대극 전극층(6) 사이에 도입함으로써, 대극 전극층(6)의 구성 재료와 전해질층(4)의 구성 재료의 반응이 효과적으로 억제되어, 전기 화학 소자(E)의 성능의 장기안정성을 향상시킬 수 있다. 반응방지층(5)의 형성은, 1100℃ 이하의 처리온도에서 형성할 수 있는 방법을 적절하게 사용하여 행하면, 금속기판(1)의 손상을 억제하고, 또한 금속기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다. 예를 들면, 저온소성법(예를 들면 1100℃를 초과하는 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등을 적절하게 사용하여 행할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
(대극 전극층)
대극 전극층(6)은, 전해질층(4) 또는 반응방지층(5) 위에 박층의 상태로 형성할 수 있다. 박층으로 하는 경우에는, 그 두께를, 예를 들면, 1㎛∼100㎛ 정도, 바람직하게는, 5㎛∼50㎛로 할 수 있다. 이와 같은 두께로 하면, 고가인 대극 전극층재료의 사용량을 저감하여 비용 저감을 도모하면서, 충분한 전극성능을 확보하는 것이 가능하게 된다. 대극 전극층(6)의 재료로서는, 예를 들면, LSCF, LSM 등의 복합 산화물을 사용할 수 있다. 이상의 재료를 사용하여 구성되는 대극 전극층(6)은, 캐소드로서 기능한다.
그리고, 대극 전극층(6)의 형성은, 1100℃ 이하의 처리온도에서 형성할 수 있는 방법을 적절하게 사용하여 행하면, 금속기판(1)의 손상을 억제하고, 또한 금속기판(1)과 전극층(2)의 원소상호확산을 억제할 수 있고, 성능·내구성이 우수한 전기 화학 소자(E)를 실현할 수 있으므로 바람직하다. 예를 들면, 저온소성법(예를 들면 1100℃를 초과하는 고온영역에서의 소성 처리를 하지 않는 저온영역에서의 소성 처리를 사용하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등을 적절하게 사용하여 행할 수 있다. 특히, 저온소성법이나 스프레이 코팅법 등을 사용하면, 저비용의 소자를 실현할 수 있으므로 바람직하다. 또한, 저온소성법을 사용하면, 원재료의 핸들링이 용이하게 되므로 더욱 바람직하다.
(고체 산화물형 연료 전지)
이상과 같이 전기 화학 소자(E)를 구성함으로써, 전기 화학 소자(E)를 고체 산화물형 연료 전지의 발전 셀로서 사용할 수 있다. 예를 들면, 금속기판(1)의 이면측의 면으로부터 관통공(1a)을 통하여 수소를 포함하는 연료 가스를 전극층(2)에 공급하고, 전극층(2)의 대극이 되는 대극 전극층(6)에 공기를 공급하고, 예를 들면, 600℃ 이상 850℃ 이하의 온도에서 작동시킨다. 이렇게 하면, 대극 전극층(6)에 있어서 공기에 포함되는 산소 O2가 전자 e-와 반응하여 산소 이온 O2 -가 생성된다. 이 산소 이온 O2-가 전해질층(4)을 통하여 전극층(2)에 이동한다. 전극층(2)에 있어서는, 공급된 연료 가스에 포함되는 수소 H2가 산소 이온 O2 -와 반응하여, 물 H2O와 전자 e-가 생성된다. 이상의 반응에 의해, 전극층(2)과 대극 전극층(6) 사이에 기전력(起電力)이 발생한다. 이 경우에, 전극층(2)은 SOFC의 연료극(애노드)으로서 기능하고, 대극 전극층(6)은 공기극(空氣極)(캐소드)으로서 기능한다.
(전기 화학 소자의 제조 방법)
다음으로, 본 실시형태에 따른 전기 화학 소자(E)의 제조 방법에 대하여 설명한다.
(전극층 형성 스텝)
전극층 형성 스텝에서는, 금속기판(1)의 표면측의 면의 관통공(1a)이 설치된 영역보다 넓은 영역에 전극층(2)이 박막의 상태로 형성된다. 금속기판(1)의 관통공은 레이저 가공 등에 의해 설치할 수 있다. 전극층(2)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
전극층 형성 스텝을 저온소성법으로 행하는 경우에는, 구체적으로는 이하의 예와 같이 행한다. 먼저, 전극층(2)의 재료분말과 용매(분산매)를 혼합하여 재료 페이스트를 작성하고, 금속기판(1)의 표면측의 면에 도포한다. 그리고, 전극층(2)을 압축 성형하고(전극층 평활화 공정), 1100℃ 이하에서 소성한다(전극층 소성 공정). 전극층(2)의 압축 성형은, 예를 들면, CIP(Cold Isostatic Pressing, 냉간(冷間) 정수압 가압) 성형, 롤 가압 성형, RIP(Rubber Isostatic Pressing) 성형 등에 의해 행할 수 있다. 또한, 전극층(2)의 소성은, 800℃ 이상 1100℃ 이하의 온도에서 행하면 바람직하다. 또한, 전극층 평활화 공정와 전극층 소성 공정의 순서를 바꿀 수도 있다.
그리고, 중간층을 가지는 전기 화학 소자를 형성하는 경우에는, 전극층 평활화 공정이나 전극층 소성 공정을 생략하거나, 전극층 평활화 공정이나 전극층 소성 공정을 후술하는 중간층 평활화 공정이나 중간층 소성 공정에 포함시킬 수도 있다.
그리고, 전극층 평활화 공정은, 랩 성형이나 레벨링 처리, 표면의 절삭·연마 처리 등을 실시하는 것에 의해 행할 수도 있다.
(확산 억제층 형성 스텝)
전술한 전극층 형성 스텝에서의 소성 공정 시에, 금속기판(1)의 표면에 금속 산화물층(1b)(확산 억제층)이 형성된다. 그리고, 상기 소성 공정에, 소성분위기를 산소분압이 낮은 분위기 조건으로 하는 소성 공정이 포함되어 있으면 원소의 상호확산 억제 효과가 높고, 저항값이 낮은 양질의 금속 산화물층(1b)(확산 억제층)이 형성되므로, 바람직하다. 전극층 형성 스텝을, 소성을 행하지 않는 코팅 방법으로 하는 경우를 포함하고, 별도의 확산 억제층 형성 스텝을 포함할 수도 있다. 어디에 있어서도, 금속기판(1)의 손상을 억제 가능한 1100℃ 이하의 처리온도에서 실시하는 것이 바람직하다. 또한, 후술하는 중간층 형성 스텝에서의 소성 공정 시에, 금속기판(1)의 표면에 금속 산화물층(1b)(확산 억제층)이 형성되어도 된다.
(중간층 형성 스텝)
중간층 형성 스텝에서는, 전극층(2)을 덮는 형태로, 전극층(2) 위에 중간층(3)이 박층의 상태로 형성된다. 중간층(3)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
중간층 형성 스텝을 저온소성법으로 행하는 경우에는, 구체적으로는 이하의 예와 같이 행한다. 먼저, 중간층(3)의 재료분말과 용매(분산매)를 혼합하여 재료 페이스트를 작성하고, 금속기판(1)의 표면측의 면에 도포한다. 그리고, 중간층(3)을 압축 성형하고(중간층 평활화 공정), 1100℃ 이하에서 소성한다(중간층 소성 공정). 중간층(3)의 압연(壓延)은, 예를 들면, CIP(Cold Isostatic Pressing, 냉간 정수압 가압) 성형, 롤 가압 성형, RIP(Rubber Isostatic Pressing) 성형 등에 의해 행할 수 있다. 또한, 중간층의 소성은, 800℃ 이상 1100℃ 이하의 온도에서 행하면 바람직하다. 이와 같은 온도이면, 금속기판(1)의 손상·열화를 억제하면서, 강도가 높은 중간층(3)을 형성할 수 있기 때문이다. 또한, 중간층(3)의 소성을 1050℃ 이하에서 행하면 보다 바람직하고, 1000℃ 이하에서 행하면 더욱 바람직하다. 이는, 중간층(3)의 소성온도를 저하시킬수록, 금속기판(1)의 손상·열화를 보다 억제하면서, 전기 화학 소자(E)를 형성할 수 있기 때문이다. 또한, 중간층 평활화 공정와 중간층 소성 공정의 순서를 바꿀 수도 있다. 그리고, 중간층 평활화 공정은, 랩 성형이나 레벨링 처리, 표면의 절삭·연마 처리 등을 실시하는 것에 의해 행할 수도 있다.
(전해질층 형성 스텝)
전해질층 형성 스텝에서는, 전극층(2) 및 중간층(3)을 덮은 상태로, 전해질층(4)이 중간층(3) 위에 박층의 상태로 형성된다. 또한, 두께가 10㎛ 이하인 박막의 상태로 형성되어도 된다. 전해질층(4)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
치밀하며 기밀성 및 가스 배리어 성능이 높은, 양질의 전해질층(4)을 1100℃ 이하의 온도영역에서 형성하기 위해서는, 전해질층 형성 스텝을 스프레이 코팅법으로 행하는 것이 바람직하다. 이러한 경우, 전해질층(4)의 재료를 금속기판(1) 상의 중간층(3)을 향하여 분사하여, 전해질층(4)을 형성한다.
(반응방지층 형성 스텝)
반응방지층 형성 스텝에서는, 반응방지층(5)이 전해질층(4) 위에 박층의 상태로 형성된다. 반응방지층(5)의 형성은, 전술한 바와 같이, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다. 그리고 반응방지층(5)의 상측의 면을 평탄하게 하기 위하여, 예를 들면, 반응방지층(5)의 형성 후에 레벨링 처리나 표면을 절삭·연마하는 처리를 실시하거나, 습식 형성 후 소성 전에, 프레스가공을 실시할 수도 있다.
(대극 전극층 형성 스텝)
대극 전극층 형성 스텝에서는, 대극 전극층(6)이 반응방지층(5) 위에 박층의 상태로 형성된다. 대극 전극층(6)의 형성은, 전술한 바와 같이, 저온소성법, 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
이상과 같이 하여, 전기 화학 소자(E)를 제조할 수 있다. 그리고, 전술한 전극층 형성 스텝 및 중간층 형성 스텝을 행하여, 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)을 제조할 수 있다. 즉 본 실시형태에 따른 제조 방법은, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)과, 전극층(2) 위에 형성된 중간층(3)을 가지는 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)의 제조 방법으로서, 중간층(3)의 표면을 평활화하는 중간층 평활화 공정을 포함하고, 중간층(3)의 소성을 1100℃ 이하에서 행하는 중간층 소성 공정을 포함한다.
그리고 전기 화학 소자(E)에 있어서, 중간층(3)과 반응방지층(5)은, 어느 한쪽, 혹은 양쪽을 구비하지 않는 형태로 하는 것도 가능하다. 즉, 전극층(2)과 전해질층(4)이 접촉하여 형성되는 형태, 혹은 전해질층(4)과 대극 전극층(6)이 접촉하여 형성되는 형태도 가능하다. 이 경우에 전술한 제조 방법에서는, 중간층 형성 스텝, 반응방지층 형성 스텝이 생략된다. 그리고, 다른층을 형성하는 스텝을 추가하거나, 동종의 층을 복수 적층하거나 할 수도 있지만, 어느 경우라도, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
<실시예>
두께 0.3mm, 직경 25mm의 원형의 crofer22APU의 금속판에 대하여, 중심으로부터 반경 2.5mm의 영역에 레이저 가공에 의해 관통공(1a)을 복수 설치하고, 금속기판(1)을 제작했다. 그리고, 이 때, 금속기판(1)의 표면의 관통공(1a)은 레이저 가공에 의해 설치했다.
다음으로, 60중량%의 NiO분말과 40중량%의 GDC분말을 혼합하고, 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 금속기판(1)의 중심으로부터 반경 3mm의 영역에 전극층(2)을 적층하였다. 그리고, 전극층(2)의 형성 시에는 스크린 인쇄를 사용했다. 그리고, 전극층(2)을 적층한 금속기판(1)에 대하여, 950℃에서 소성 처리를 행하였다(전극층 형성 스텝, 확산 억제층 형성 스텝).
다음으로, GDC의 미분말(微粉末)에 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 스크린 인쇄에 의해, 전극층(2)을 적층한 금속기판(1)의 중심으로부터 반경 5mm의 영역에 중간층(3)을 적층하였다. 다음으로, 중간층(3)을 적층한 금속기판(1)에 대하여, 300MPa의 압력으로 CIP성형한 후, 1000℃에서 소성 처리를 행함으로써, 표면이 평탄한 중간층(3)을 형성하였다(중간층 형성 스텝).
이상의 스텝에서 얻어진 전극층(2)의 두께는 약 20㎛이며, 중간층(3)의 두께는 약 10㎛였다. 또한, 이와 같이 전극층(2)과 중간층(3)을 적층한 상태에서의 금속기판(1)의 He리크량은, 0.2MPa의 압력 하에서 11.5mL/분·cm2이었다. 이러한 사실로부터, 전극층(2)과 중간층(3)을 적층한 금속기판(1)은 가스의 유통성을 가지는 전극층 부착 기판이 되어 있는 것을 알 수 있다.
이어서, 모드 직경이 약 0.7㎛인 8YSZ(이트리아 안정화 지르코니아) 성분을 4.1g/분의 공급속도로, 금속기판(1)의 중간층(3) 위에, 중간층(3)을 덮도록 15mm×15mm의 범위에서 5mm/초의 스캔 속도로 기판을 이동시키면서 분사하여, 전해질층(4)을 형성하였다(스프레이 코팅). 그리고, 이 때, 금속기판(1)은 가열하지 않았다(전해질층 형성 스텝).
이상의 스텝에서 얻어진 전해질층(4)의 두께는 3∼4 ㎛ 정도였다. 이와 같이 전극층(2)과 중간층(3)과 전해질층(4)을 적층한 상태에서의 금속기판(1)의 He리크량을 0.2MPa의 압력 하에서 측정한 바, He리크량은 검출하한(1.0mL/분·cm2) 미만이었다. 따라서, 형성된 전해질층(4)은, 가스 배리어성을 가지는 것을 알 수 있다.
다음으로, GDC의 미분말에 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 스크린 인쇄에 의해, 전기 화학 소자(E)의 전해질층(4) 위에, 반응방지층(5)을 형성했다.
그 후, 반응방지층(5)을 형성한 전기 화학 소자(E)에 대하여, 300MPa의 압력으로 CIP성형한 후, 1000℃에서 소성 처리를 행함으로써, 표면이 평탄한 반응방지층(5)을 형성하였다(반응방지층 형성 스텝).
또한, GDC분말과 LSCF분말을 혼합하고, 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 스크린 인쇄에 의해, 반응방지층(5) 위에 대극 전극층(6)을 형성했다. 마지막으로, 대극 전극층(6)을 형성한 전기 화학 소자(E)를 900℃에서 소성하여(대극 전극층 형성 스텝), 전기 화학 소자(E)를 얻었다.
얻어진 전기 화학 소자(E)에 대하여, 전극층(2)에 수소 가스, 대극 전극층(6)에 공기를 공급하여 고체 산화물형 연료 전지 셀로서의 개회로전압(OCV)을 측정했다. 결과는, 750℃에서 1.07V였다.
또한, 이 전기 화학 소자(E)의 단면의 전자현미경 사진을 도 5에 나타낸다. 전자현미경 사진으로부터 알 수 있는 바와 같이, 중간층(3)의 전해질층에 면하는 측의 표면거칠기(Ra)가 1.0㎛ 이하인 평활한 표면 위에 치밀한 전해질층(4)이 형성되고, 성능이 양호한 고체 산화물형 연료 전지 셀(전기 화학 소자(E))가 얻어지고 있는 것을 알 수 있다.
동일하게 작성한 5개의 샘플에 대하여, 중간층(3)의 표면거칠기(Ra)를, 레이저 현미경에 의해 측정했다. 결과를 표 1에 나타낸다.
[표 1]
Figure pct00001
어느 샘플도, 중간층(3)의 표면거칠기(Ra)는 1.0㎛ 이하이며, 중간층(3) 위에 양호한 전해질층(4), 반응방지층(5), 대극 전극층(6)이 형성 가능한 샘플이다.
다음으로, 중간층(3) 위에 양호한 전해질층(4), 반응방지층(5), 대극 전극층(6)을 형성할 수 없고, 750℃에서 1V 이상의 개회로전압(OCV)이 얻기에 이르지 못한 샘플에 대하여, 중간층(3)의 표면거칠기(Ra)를, 레이저 현미경에 의해 측정했다. 결과를 표 2에 나타낸다.
[표 2]
Figure pct00002
어느 샘플도, 중간층(3)의 표면거칠기(Ra)는 1.0㎛보다 큰 값이 되었다.
이상의 결과로부터, 중간층(3)의 표면거칠기(Ra)를 1.0㎛ 이하로 함으로써, 양호한 금속지지형 전기 화학 소자용의 전극층 부착 기판으로 할 수 있는 것으로 나타났다.
<제2 실시형태>
본 실시형태에 따른 전기 화학 소자(E)는, 중간층(3)을 구비하지 않는 형태, 즉 전극층(2)과 전해질층(4)이 접촉하여 형성되는 형태가 된다. 따라서 전기 화학 소자(E)의 제조 방법에서는, 중간층 형성 스텝이 생략된다.
본 실시형태에 따른 전기 화학 소자(E)는, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)과, 전극층(2) 위에 형성된 전해질층(4)을 가진다. 그리고 전기 화학 소자(E)는, 전해질층(4) 위에 형성된 반응방지층(5)과, 반응방지층(5) 위에 형성된 대극 전극층(6)을 더욱 가진다. 즉 대극 전극층(6)은 전해질층(4) 위에 형성되고, 반응방지층(5)은 전해질층(4)과 대극 전극층(6) 사이에 형성되어 있다. 전극층(2)은 다공질이며, 전해질층(4)은 치밀하다.
(전극층 부착 기판)
본 실시형태에서는, 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)이, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)을 가지고 구성된다. 즉 본 실시형태에서는 전기 화학 소자(E)는, 전극층 부착 기판(B)와, 전해질층(4)과, 반응방지층(5)과, 대극 전극층(6)을 가지고 구성된다.
본 실시형태에서는 전극층(2)은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가진다. 상기 영역은, 전극층(2)의 표면 전체라도 되고, 일부 영역이라도 된다. 전극층(2)이, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 가지는 것에 의해, 전극층(2)과 전해질층(4)의 밀착성이 양호한, 성능·신뢰성·내구성이 우수한 전기 화학 소자(E)를 구성할 수 있다. 또한, 전해질층(4)이 박막의 경우라도, 전해질층(4)을 균일하게 유지할 수 있으므로, 성능·신뢰성·내구성이 우수한 전기 화학 소자를 구성할 수 있다. 그리고, 전극층(2)은, 표면거칠기(Ra)가 0.5㎛ 이하인 영역을 가지면 보다 바람직하고, 0.3㎛ 이하인 영역을 가지면 더욱 바람직하다. 이는 전극층(2)의 표면거칠기의 평활성이 높아질수록, 전술한 효과가 우수한 전기 화학 소자(E)를 구성할 수 있기 때문이다.
(전기 화학 소자의 제조 방법)
다음으로, 본 실시형태에 따른 전기 화학 소자(E)의 제조 방법에 대하여 설명한다. 본 실시형태에 따른 전기 화학 소자(E)는 중간층(3)을 가지지 않는다. 따라서 본 실시형태에 따른 전기 화학 소자(E)의 제조법에서는, 전극층 형성 스텝(확산 억제층 형성 스텝), 전해질층 형성 스텝, 반응방지층 형성 스텝, 대극 전극층 형성 스텝이, 순서대로 행해진다.
(전극층 형성 스텝)
전극층 형성 스텝에서는, 금속기판(1)의 표면측의 면의 관통공(1a)이 설치된 영역보다 넓은 영역에 전극층(2)이 박막의 상태로 형성된다. 금속기판(1)의 관통공은 레이저 가공 등에 의해 설치할 수 있다. 전극층(2)의 형성은, 전술한 바와 같이, 저온소성법(1100℃ 이하의 저온영역에서의 소성 처리를 행하는 습식법), 스프레이 코팅법(용사법이나 에어로졸데포지션법, 에어로졸가스데포지션법, 파우더제트데포지션법, 파티클제트데포지션법, 콜드스프레이법 등의 방법), PVD법(스퍼터링법, 펄스레이저데포지션법 등), CVD법 등의 방법을 사용할 수 있다. 어느 방법을 사용하는 경우라도, 금속기판(1)의 열화를 억제하기 위하여, 1100℃ 이하의 온도에서 행하는 것이 바람직하다.
전극층 형성 스텝을 저온소성법으로 행하는 경우에는, 구체적으로는 이하의 예와 같이 행한다. 먼저, 전극층(2)의 재료분말과 용매(분산매)를 혼합하여 재료 페이스트를 제작하고, 금속기판(1)의 표면측의 면에 도포한다. 그리고, 전극층(2)을 압축 성형하고(전극층 평활화 공정), 1100℃ 이하에서 소성한다(전극층 소성 공정). 전극층(2)의 압축 성형은, 예를 들면, CIP(Cold Isostatic Pressing, 냉간 정수압 가압) 성형, 롤 가압 성형, RIP(Rubber Isostatic Pressing) 성형 등에 의해 행할 수 있다. 또한, 전극층(2)의 소성은, 800℃ 이상 1100℃ 이하의 온도에서 행하면 바람직하다. 이와 같은 온도이면, 금속기판(1)의 손상·열화를 억제하면서, 강도가 높은 전극층(2)을 형성할 수 있기 때문이다. 또한, 전극층(2)의 소성을 1050℃ 이하에서 행하면 보다 바람직하고, 1000℃ 이하에서 행하면 더욱 바람직하다. 이는, 전극층(2)의 소성온도를 저하시킬수록, 금속기판(1)의 손상·열화를 보다 억제하면서, 전기 화학 소자(E)를 형성할 수 있기 때문이다.
그리고, 전극층 평활화 공정은, 랩 성형이나 레벨링 처리, 표면의 절삭·연마 처리 등을 실시하는 것에 의해 행할 수도 있다.
이상과 같이 하여, 전기 화학 소자(E)를 제조할 수 있다. 그리고, 전술한 전극층 형성 스텝을 행하여, 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)을 제조할 수 있다. 즉 본 실시형태에 따른 제조 방법은, 금속기판(1)(금속지지체)과, 금속기판(1) 위에 형성된 전극층(2)을 가지는 금속지지형 전기 화학 소자용의 전극층 부착 기판(B)의 제조 방법으로서, 전극층(2)의 표면을 평활화하는 전극층 평활화 공정을 포함하고, 전극층(2)의 소성을 1100℃ 이하에서 행하는 저온소성 공정을 포함한다.
<실시예>
두께 0.3mm, 직경 25mm의 원형의 crofer22APU의 금속판에 대하여, 중심으로부터 반경 2.5mm의 영역에 레이저 가공에 의해 관통공(1a)을 복수 설치하여, 금속기판(1)을 제작했다. 그리고, 이 때, 금속기판(1)의 표면의 관통공(1a)은 레이저 가공에 의해 설치했다.
다음으로, 60중량%의 NiO분말과 40중량%의 YSZ분말을 혼합하고, 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 금속기판(1)의 중심으로부터 반경 3mm의 영역에 전극층(2)을 적층하였다. 그리고, 전극층(2)의 형성에는 스크린 인쇄를 사용했다.
다음으로, 전극층(2)을 적층한 금속기판(1)에 대하여, 300MPa의 압력으로 CIP성형한 후, 1050℃에서 소성 처리를 행하였다(전극층 형성 스텝, 확산 억제층 형성 스텝).
이상의 스텝에서 얻어진 전극층(2)의 두께는 약 20㎛였다. 또한, 이와 같이 전극층(2)을 적층한 상태에서의 금속기판(1)의 He리크량은, 0.1MPa의 압력 하에서 4.3mL/분·cm2이었다. 이러한 사실로부터, 전극층(2)을 적층한 금속기판(1)은 가스의 유통성을 가지는 전극층 부착 기판이 되어 있는 것을 알 수 있다.
이어서, 모드 직경이 약 0.7㎛인 8YSZ(이트리아 안정화 지르코니아) 성분을 6.0g/분의 공급속도로, 금속기판(1)의 전극층(2) 위에, 전극층(2)을 덮도록 15mm×15mm의 범위에서 5mm/초의 스캔 속도로 기판을 이동시키면서 분사하여, 전해질층(4)을 형성하였다(스프레이 코팅). 그리고, 이 때, 금속기판(1)은 가열하지 않았다(전해질층 형성 스텝).
이상의 스텝에서 얻어진 전해질층(4)의 두께는 5∼6 ㎛ 정도였다. 이와 같이 전극층(2)과 전해질층(4)을 적층한 상태에서의 금속기판(1)의 He리크량을 0.2MPa의 압력 하에서 측정한 바, He리크량은 검출하한(1.0mL/분·cm2) 미만이었다. 따라서, 형성된 전해질층(4)은, 가스 배리어성을 가지는 것을 알 수 있다.
다음으로, GDC의 미분말에 유기 바인더와 유기용매(분산매)를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 스크린 인쇄에 의해, 전기 화학 소자(E)의 전해질층(4) 위에, 반응방지층(5)을 형성했다.
그 후, 반응방지층(5)을 형성한 전기 화학 소자(E)에 대하여, 300MPa의 압력으로 CIP성형한 후, 1000℃에서 소성 처리를 행함으로써, 표면이 평탄한 반응방지층(5)을 형성하였다(반응방지층 형성 스텝).
또한, GDC분말과 LSCF분말을 혼합하고, 유기 바인더와 유기용매를 가하여 페이스트를 제작했다. 이 페이스트를 사용하여, 스크린 인쇄에 의해, 반응방지층(5) 위에 대극 전극층(6)을 형성했다. 마지막으로, 대극 전극층(6)을 형성한 전기 화학 소자(E)를 900℃에서 소성하여(대극 전극층 형성 스텝), 전기 화학 소자(E)를 얻었다.
얻어진 전기 화학 소자(E)에 대하여, 전극층(2)에 수소 가스, 대극 전극층(6)에 공기를 공급하여 고체 산화물형 연료 전지 셀로서의 개회로전압(OCV)을 측정했다. 결과는, 750℃에서 1.05V였다.
동일하게 작성한 다른 샘플에 대하여, 전극층(2)의 표면거칠기(Ra)를, 레이저 현미경에 의해 측정했다. 결과를 표 2에 나타낸다.
[표 3]
Figure pct00003
샘플(6)의 전극층(2)의 표면거칠기(Ra)는 1.0㎛ 이하이며, 전극층(2) 위에 양호한 전해질층(4), 반응방지층(5), 대극 전극층(6)이 형성 가능한 샘플이다.
이상의 결과로부터, 전극층(2)의 표면거칠기(Ra)를 1.0㎛ 이하로 함으로써, 양호한 금속지지형 전기 화학 소자용의 전극층 부착 기판으로 할 수 있는 것으로 나타났다.
<제3 실시형태>
도 2·도 3을 사용하여, 본 실시형태에 따른 전기 화학 소자(E), 전기 화학 모듈(M), 전기 화학 장치(Y) 및 에너지 시스템(Z)에 대하여 설명한다.
본 실시형태에 따른 전기 화학 소자(E)는, 도 2에 나타낸 바와 같이, 금속기판(1)의 이면에 U자형 부재(7)가 장착되어 있고, 금속기판(1)과 U자형 부재(7)에 의해 통형(筒形)지지체를 형성하고 있다.
그리고 집전부재(26)를 사이에 협지하여 전기 화학 소자(E)가 복수 적층되어, 전기 화학 모듈(M)이 구성되어 있다. 집전부재(26)는, 전기 화학 소자(E)의 대극 전극층(6)과, U자형 부재(7)에 접합되어, 양자를 전기적으로 접속하고 있다.
전기 화학 모듈(M)은, 가스 매니폴드(17), 집전부재(26), 종단부재 및 전류추출부를 가진다. 복수 적층된 전기 화학 소자(E)는, 통형지지체의 한쪽의 개구단부가 가스 매니폴드(17)에 접속되어, 가스 매니폴드(17)로부터 기체의 공급을 받는다. 공급된 기체는, 통형지지체의 내부를 통류(通流)하여, 금속기판(1)의 관통공(1a)을 통하여 전극층(2)에 공급된다.
도 3에는, 에너지 시스템(Z) 및 전기 화학 장치(Y)의 개요가 나타나 있다.
에너지 시스템(Z)은, 전기 화학 장치(Y)와, 전기 화학 장치(Y)로부터 배출되는 열을 재이용하는 배출열 이용부로서의 열교환기(53)를 가진다.
전기 화학 장치(Y)는, 전기 화학 모듈(M)과, 탈황기(31)와 개질기(34)를 가지고 전기 화학 모듈(M)에 대하여 환원성 성분을 함유하는 연료 가스를 공급하는 연료공급부와, 전기 화학 모듈(M)로부터 전력을 추출하는 인버터(38)를 가진다.
상세하게는 전기 화학 장치(Y)는, 탈황기(31), 개질수 탱크(32), 기화기(33), 개질기(34), 블로어(blower)(35), 연소부(36), 인버터(38), 제어부(39), 수납 용기(40) 및 전기 화학 모듈(M)을 가진다.
탈황기(31)는, 도시가스 등의 탄화수소계의 원연료에 포함되는 유황화합물성분을 제거(탈황)한다. 원연료 중에 유황화합물이 함유되는 경우, 탈황기(31)를 구비함으로써, 유황화합물에 의한 개질기(34) 혹은 전기 화학 소자(E)에 대한 영향을 억제할 수 있다. 기화기(33)는, 개질수 탱크(32)로부터 공급되는 개질수로부터 수증기를 생성한다. 개질기(34)는, 기화기(33)에서 생성된 수증기를 사용하여 탈황기(31)에서 탈황된 원연료를 수증기 개질하여, 수소를 포함하는 개질 가스를 생성한다.
전기 화학 모듈(M)은, 개질기(34)로부터 공급된 개질 가스와, 블로어(35)로부터 공급된 공기를 사용하여, 전기 화학 반응시켜 발전한다. 연소부(36)는, 전기 화학 모듈(M)으로부터 배출되는 반응 배기 가스와 공기를 혼합시켜, 반응 배기 가스 중의 가연성분을 연소시킨다.
전기 화학 모듈(M)은, 복수의 전기 화학 소자(E)와 가스 매니폴드(17)를 가진다. 복수의 전기 화학 소자(E)는 서로 전기적으로 접속된 상태에서 병렬로 배치되고, 전기 화학 소자(E)의 한쪽 단부(하단부)가 가스 매니폴드(17)에 고정되어 있다. 전기 화학 소자(E)는, 가스 매니폴드(17)를 통하여 공급되는 개질 가스와, 블로어(35)로부터 공급된 공기를 전기 화학 반응시켜 발전한다.
인버터(38)는, 전기 화학 모듈(M)의 출력전력을 조정하여, 상용계통(도시하지 않음)으로부터 수전(受電)하는 전력과 동일한 전압 및 동일한 주파수로 한다. 제어부(39)는 전기 화학 장치(Y) 및 에너지 시스템(Z)의 운전을 제어한다.
기화기(33), 개질기(34), 전기 화학 모듈(M) 및 연소부(36)는, 수납 용기(40) 내에 수납된다. 그리고, 개질기(34)는, 연소부(36)에서의 반응 배기 가스의 연소에 의해 발생하는 연소열을 사용하여 원연료의 개질 처리를 행한다.
원연료는, 승압(昇壓) 펌프(41)의 작동에 의해 원연료 공급로(42)를 통하여 탈황기(31)에 공급된다. 개질수 탱크(32)의 개질수는, 개질수 펌프(43)의 작동에 의해 개질수 공급로(44)를 통하여 기화기(33)에 공급된다. 그리고, 원연료 공급로(42)는 탈황기(31)보다 하류측의 부위에서, 개질수 공급로(44)에 합류되어 있고, 수납 용기(40) 밖에서 합류된 개질수과 원연료가 수납 용기(40) 내에 구비된 기화기(33)에 공급된다.
개질수는 기화기(33)에서 기화되어 수증기가 된다. 기화기(33)에서 생성된 수증기을 포함하는 원연료는, 수증기 함유 원연료 공급로(45)를 통하여 개질기(34)에 공급된다. 개질기(34)에서 원연료가 수증기 개질되고, 수소 가스를 주성분으로 하는 개질 가스(환원성 성분을 가지는 제1 기체)가 생성된다. 개질기(34)에서 생성된 개질 가스는, 개질 가스 공급로(46)를 통하여 전기 화학 모듈(M)의 가스 매니폴드(17)에 공급된다.
가스 매니폴드(17)에 공급된 개질 가스는, 복수의 전기 화학 소자(E)에 대하여 분배되고, 전기 화학 소자(E)와 가스 매니폴드(17)의 접속부인 하단에서 전기 화학 소자(E)에 공급된다. 개질 가스 중의 주로 수소(환원성 성분)가, 전기 화학 소자(E)에서 전기 화학 반응에 사용된다. 반응에 사용되지 않은 잔여의 수소 가스를 포함하는 반응 배기 가스가, 전기 화학 소자(E)의 상단으로부터 연소부(36)에 배출된다.
반응 배기 가스는 연소부(36)에서 연소되어, 연소 배기 가스로 되어 연소 배기 가스 배출구(50)로부터 수납 용기(40)의 외부로 배출된다. 연소 배기 가스 배출구(50)에는 연소 촉매부(51)(예를 들면, 백금계 촉매)가 배치되어, 연소 배기 가스에 함유되는 일산화탄소나 수소 등의 환원성 성분을 연소 제거한다. 연소 배기 가스 배출구(50)로부터 배출된 연소 배기 가스는, 연소 배기 가스 배출로(52)에 의해 열교환기(53)에 보내진다.
열교환기(53)는, 연소부(36)에서의 연소에서 발생한 연소 배기 가스와, 공급되는 냉수를 열교환시켜, 온수를 생성한다. 즉 열교환기(53)는, 전기 화학 장치(Y)로부터 배출되는 열을 재이용하는 배출열 이용부로서 동작한다.
그리고, 배출열 이용부 대신, 전기 화학 모듈(M)로부터 (연소되지 않고) 배출되는 반응 배기 가스를 사용하는 반응 배기 가스 이용부를 설치할 수도 있다. 반응 배기 가스에는, 전기 화학 소자(E)에서 반응에 사용되지 않은 잔여의 수소 가스가 포함된다. 반응 배기 가스 이용부에서는, 잔여의 수소 가스를 사용하여, 연소에 의한 열이용이나, 연료 전지 등에 의한 발전이 행해지고, 에너지의 효과적인 이용이 이루어진다.
<제4 실시형태>
도 4에, 전기 화학 모듈(M)의 다른 실시형태를 나타낸다. 본 실시형태에 따른 전기 화학 모듈(M)은, 전술한 전기 화학 소자(E)를, 셀간 접속 부재(71)를 사이에 협지하여 적층함으로써, 전기 화학 모듈(M)을 구성한다.
셀간 접속 부재(71)는, 도전성을 가지고, 또한 기체투과성을 가지지 않는 판형의 부재이며, 표면과 이면에, 서로 직교하는 홈(72)이 형성되어 있다. 셀간 접속 부재(71)는 스테인레스 등의 금속이나, 금속 산화물을 사용할 수 있다.
도 4에 나타낸 바와 같이, 이 셀간 접속 부재(71)를 사이에 협지하여 전기 화학 소자(E)를 적층하면, 홈(72)을 통하여 기체를 전기 화학 소자(E)에 공급할 수 있다. 상세한 것은 한쪽 홈(72)이 제1 기체 유로(72a)가 되어, 전기 화학 소자(E)의 표면측, 즉 대극 전극층(6)에 기체를 공급한다. 다른 쪽 홈(72)이 제2 기체 유로(72b)가 되어, 전기 화학 소자(E)의 이면측, 즉 금속기판(1)의 이면측의 면으로부터 관통공(1a)을 통하여 전극층(2)에 기체를 공급한다.
이 전기 화학 모듈(M)을 연료 전지로서 동작시키는 경우에는, 제1 기체 유로(72a)에 산소를 공급하고, 제2 기체 유로(72b)에 수소를 공급한다. 이렇게 하면 전기 화학 소자(E)에서 연료 전지로서의 반응이 진행하여, 기전력·전류가 발생한다. 발생한 전력은, 적층된 전기 화학 소자(E)의 양단의 셀간 접속 부재(71)로부터, 전기 화학 모듈(M)의 외부로 추출된다.
그리고, 본 실시형태에서는, 셀간 접속 부재(71)의 표면과 이면에, 서로 직교하는 홈(72)을 형성하였으나, 셀간 접속 부재(71)의 표면과 이면에, 서로 병행하는 홈(72)을 형성할 수도 있다.
(다른 실시형태)
(1) 상기한 실시형태에서는, 전기 화학 소자(E)를 고체 산화물형 연료 전지에 사용하였지만, 전기 화학 소자(E)는, 고체 산화물형 전해 셀이나, 고체 산화물을 이용한 산소 센서 등에 이용할 수도 있다.
(2) 상기한 실시형태에서는, 금속기판(1)을 지지체로 하는 금속지지형의 고체 산화물형 연료 전지에 사용하였지만, 본원은, 전극층(2) 혹은 대극 전극층(6)을 지지체로 하는 전극지지형의 고체 산화물형 연료 전지나 전해질층(4)을 지지체로 하는 전해질지지형의 고체 산화물형 연료 전지에 이용할 수도 있다. 이러한 경우에는, 전극층(2) 혹은 대극 전극층(6), 또는, 전해질층(4)을 필요한 두께로 하여, 지지체로서의 기능이 얻어지도록 할 수 있다.
(3) 상기한 실시형태에서는, 전극층(2)의 재료로서, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용하고, 대극 전극층(6)의 재료로서, 예를 들면 LSCF, LSM 등의 복합 산화물을 사용했다. 이와 같이 구성된 전기 화학 소자(E)는, 전극층(2)에 수소 가스를 공급하여 연료극(애노드)으로 하고, 대극 전극층(6)으로 공기를 공급하여 공기극(캐소드)로 하여, 고체 산화물형 연료 전지 셀로서 사용할 수 있다. 이 구성을 변경하여, 전극층(2)을 공기극으로 하고, 대극 전극층(6)을 연료극으로 하는 것이 가능하도록, 전기 화학 소자(E)를 구성하는 것도 가능하다. 즉, 전극층(2)의 재료로서, 예를 들면 LSCF, LSM 등의 복합 산화물을 사용하고, 대극 전극층(6)의 재료로서, 예를 들면 NiO-GDC, Ni-GDC, NiO-YSZ, Ni-YSZ, CuO-CeO2, Cu-CeO2 등의 복합 재료를 사용한다. 이와 같이 구성한 전기 화학 소자(E)라면, 전극층(2)에 공기를 공급하여 공기극으로 하고, 대극 전극층(6)에 수소 가스를 공급하여 연료극으로 하여, 전기 화학 소자(E)를 고체 산화물형 연료 전지 셀로서 사용할 수 있다.
그리고, 상기한 실시형태에서 개시되는 구성은, 모순이 생기지 않는 한, 다른 실시형태에서 개시되는 구성과 조합하여 적용할 수 있다. 또한 본 명세서에 있어서 개시된 실시형태는 예시이며, 본 발명의 실시형태는 이것으로 한정되지 않고, 본 발명의 목적을 벗어나지 않는 범위 내에서 적절하게 개변하는 것이 가능하다.
[산업상 이용가능성]
전기 화학 소자 및 고체 산화물형 연료 전지 셀로서 이용 가능하다.
1: 금속기판(금속지지체)
1a: 관통공
2: 전극층
3: 중간층
4: 전해질층
4a: 전해질층상측면
5: 반응방지층
6: 대극 전극층
B : 전극층 부착 기판
E : 전기 화학 소자
M : 전기 화학 모듈
Y : 전기 화학 장치
Z : 에너지 시스템

Claims (13)

  1. 금속지지체와, 상기 금속지지체 위에 형성된 전극층을 포함하고, 상기 전극층은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 포함하는, 금속지지형 전기 화학 소자용의 전극층 부착 기판.
  2. 금속지지체, 상기 금속지지체 위에 형성된 전극층, 및 상기 전극층 위에 형성된 중간층을 포함하고, 상기 중간층은, 표면거칠기(Ra)가 1.0㎛ 이하인 영역을 포함하는, 금속지지형 전기 화학 소자용의 전극층 부착 기판.
  3. 제1항 또는 제2항에 있어서,
    상기 금속지지체의 한쪽 면에 상기 전극층이 형성되고, 상기 금속지지체가 한쪽 면으로부터 다른쪽 면으로 관통하는 관통공을 포함하고 있는, 금속지지형 전기 화학 소자용의 전극층 부착 기판.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 금속지지체가 구멍 가공을 실시한 금속판인, 금속지지형 전기 화학 소자용의 전극층 부착 기판.
  5. 제1항 내지 제4항 중 어느 한 항에 기재된 금속지지형 전기 화학 소자용의 전극층 부착 기판, 대극(對極) 전극층, 및 상기 전극층과 상기 대극 전극층 사이에 배치된 전해질층을 포함하는, 전기 화학 소자.
  6. 제5항에 기재된 전기 화학 소자가 복수 적층한 상태로 배치되는, 전기 화학 모듈.
  7. 제5항에 기재된 전기 화학 소자를 포함하고, 정격 운전 시에 600℃ 이상 850℃ 이하의 온도에 있어서 상기 전기 화학 소자에서 발전 반응을 발생시키는, 고체 산화물형 연료 전지.
  8. 금속지지체와, 상기 금속지지체 위에 형성된 전극층을 포함하는 금속지지형 전기 화학 소자용의 전극층 부착 기판의 제조 방법으로서,
    상기 전극층을 평활화하는 전극층 평활화 공정을 포함하는, 제조 방법.
  9. 제8항에 있어서,
    상기 전극층의 소성(燒成)을 1100℃ 이하에서 행하는 전극층 소성 공정을 포함하는, 제조 방법.
  10. 제8항 또는 제9항에 있어서,
    상기 전극층 평활화 공정을 압축 성형에 의해 행하는, 제조 방법.
  11. 금속지지체, 상기 금속지지체 위에 형성된 전극층, 및 상기 전극층 위에 형성된 중간층을 포함하는 금속지지형 전기 화학 소자용의 전극층 부착 기판의 제조 방법으로서,
    상기 중간층을 평활화하는 중간층 평활화 공정을 포함하는, 제조 방법.
  12. 제11항에 있어서,
    상기 중간층의 소성을 1100℃ 이하에서 행하는 중간층 소성 공정을 포함하는, 제조 방법.
  13. 제11항 또는 제12항에 있어서,
    상기 중간층 평활화 공정을 압축 성형에 의해 행하는, 제조 방법.
KR1020197024329A 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법 KR20190125305A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247004398A KR20240024311A (ko) 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-056731 2017-03-22
JP2017056731A JP6910170B2 (ja) 2017-03-22 2017-03-22 金属支持型電気化学素子用の電極層付基板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および製造方法
PCT/JP2018/011441 WO2018174167A1 (ja) 2017-03-22 2018-03-22 金属支持型電気化学素子用の電極層付基板、電気化学素子、電気化学モジュール、固体酸化物形燃料電池、および製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247004398A Division KR20240024311A (ko) 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법

Publications (1)

Publication Number Publication Date
KR20190125305A true KR20190125305A (ko) 2019-11-06

Family

ID=63585470

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197024329A KR20190125305A (ko) 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법
KR1020247004398A KR20240024311A (ko) 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020247004398A KR20240024311A (ko) 2017-03-22 2018-03-22 금속지지형 전기 화학 소자용의 전극층 부착 기판, 전기 화학 소자, 전기 화학 모듈, 고체 산화물형 연료 전지, 및 제조 방법

Country Status (8)

Country Link
US (2) US20210194014A1 (ko)
EP (1) EP3605692A4 (ko)
JP (1) JP6910170B2 (ko)
KR (2) KR20190125305A (ko)
CN (1) CN110402514B (ko)
CA (1) CA3057434A1 (ko)
TW (1) TWI763804B (ko)
WO (1) WO2018174167A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220200033A1 (en) * 2019-04-24 2022-06-23 Kyocera Corporation Cell, cell stack device, module, and module housing device
CN113355643A (zh) * 2021-08-10 2021-09-07 北京思伟特新能源科技有限公司 一种采用磁控溅射法制备金属支撑单体的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030096147A1 (en) * 2001-11-21 2003-05-22 Badding Michael E. Solid oxide fuel cell stack and packet designs
JP2007012361A (ja) * 2005-06-29 2007-01-18 Nissan Motor Co Ltd 固体酸化物形燃料電池
JP2010009810A (ja) * 2008-06-25 2010-01-14 Dainippon Printing Co Ltd 燃料電池用セパレータの製造方法
JP2010218759A (ja) * 2009-03-13 2010-09-30 Tokyo Electric Power Co Inc:The 金属支持型固体酸化物形燃料電池及びその製造方法
US9209473B2 (en) * 2009-03-16 2015-12-08 Korea Institute Of Science And Technology Anode-supported solid oxide fuel cell comprising a nanoporous layer having a pore gradient structure, and a production method therefor
EP2325931A1 (de) * 2009-11-18 2011-05-25 Plansee Se Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen
JP5772125B2 (ja) * 2010-03-31 2015-09-02 大日本印刷株式会社 固体酸化物形燃料電池及びその製造方法
KR20120037839A (ko) * 2010-10-12 2012-04-20 삼성전자주식회사 막전극접합체, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
JP4962640B1 (ja) * 2011-07-22 2012-06-27 大日本印刷株式会社 固体酸化物形燃料電池
JP5814061B2 (ja) * 2011-09-30 2015-11-17 株式会社日本触媒 金属支持型固体酸化物形燃料電池用セル、それを用いた固体酸化物形燃料電池
KR20130123189A (ko) * 2012-05-02 2013-11-12 삼성전자주식회사 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
DE102013008473A1 (de) * 2013-05-21 2014-11-27 Plansee Composite Materials Gmbh Brennstoffzelle
US10505198B2 (en) * 2013-09-27 2019-12-10 Lg Chem, Ltd. Method for manufacturing fuel electrode support for solid oxide fuel cell and fuel electrode support for solid oxide fuel cell
KR102423540B1 (ko) * 2014-09-19 2022-07-20 오사까 가스 가부시키가이샤 전기 화학 소자, 고체 산화물형 연료 전지 셀, 및 이들의 제조 방법
JP6463203B2 (ja) * 2015-03-31 2019-01-30 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
AT14455U3 (de) * 2015-07-14 2017-05-15 Plansee Se Elektrochemisches Modul
TWI558568B (zh) * 2015-11-03 2016-11-21 行政院原子能委員會核能研究所 透氣金屬基板、金屬支撐固態氧化物燃料電池及其製作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jong-Jin Choi and Dong-Soo Park, "Preparation of Metal-supported SOFC using Low Temperature Ceramic Coating Process", Proceedings of 11th European SOFC & SOE Forum, A1502, Chapter 09- Session B15-14/117-20/117(1-4 July 2014)

Also Published As

Publication number Publication date
TW201840048A (zh) 2018-11-01
TWI763804B (zh) 2022-05-11
US20240047702A1 (en) 2024-02-08
JP6910170B2 (ja) 2021-07-28
CN110402514A (zh) 2019-11-01
JP2018160368A (ja) 2018-10-11
CA3057434A1 (en) 2018-09-27
US20210194014A1 (en) 2021-06-24
KR20240024311A (ko) 2024-02-23
EP3605692A1 (en) 2020-02-05
WO2018174167A1 (ja) 2018-09-27
CN110402514B (zh) 2023-01-31
EP3605692A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US11233262B2 (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
US20240047702A1 (en) Substrate with Electrode Layer for Metal-Supported Electrochemical Element, Electrochemical Element, Electrochemical Module, Solid Oxide Fuel Cell and Manufacturing Method
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
JP2024059970A (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セルおよび金属支持体の製造方法
CN110431698B (zh) 电化学元件的制造方法和电化学元件
JP2020095984A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法
US11677080B2 (en) Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method
JP2018174116A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
WO2019189911A1 (ja) 電気化学素子の金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池及び金属支持体の製造方法
JP2023148146A (ja) 金属支持型電気化学素子の製造方法、金属支持型電気化学素子、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2020095983A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination